1
|
Cavaillon JM, Chaudry IH. Facing stress and inflammation: From the cell to the planet. World J Exp Med 2024; 14:96422. [DOI: 10.5493/wjem.v14.i4.96422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/31/2024] Open
Abstract
As identified in 1936 by Hans Selye, stress is shaping diseases through the induction of inflammation. But inflammation display some yin yang properties. On one hand inflammation is merging with the innate immune response aimed to fight infectious or sterile insults, on the other hand inflammation favors chronic physical or psychological disorders. Nature has equipped the cells, the organs, and the individuals with mediators and mechanisms that allow them to deal with stress, and even a good stress (eustress) has been associated with homeostasis. Likewise, societies and the planet are exposed to stressful settings, but wars and global warming suggest that the regulatory mechanisms are poorly efficient. In this review we list some inducers of the physiological stress, psychologic stress, societal stress, and planetary stress, and mention some of the great number of parameters which affect and modulate the response to stress and render it different from an individual to another, from the cellular level to the societal one. The cell, the organ, the individual, the society, and the planet share many stressors of which the consequences are extremely interconnected ending in the domino effect and the butterfly effect.
Collapse
Affiliation(s)
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
2
|
Xuan W, Wu X, Zheng L, Jia H, Zhang X, Zhang X, Cao B. Gut microbiota-derived acetic acids promoted sepsis-induced acute respiratory distress syndrome by delaying neutrophil apoptosis through FABP4. Cell Mol Life Sci 2024; 81:438. [PMID: 39453486 PMCID: PMC11511807 DOI: 10.1007/s00018-024-05474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
In patients with sepsis, neutrophil apoptosis tends to be inversely proportional to the severity of sepsis, but its mechanism is not yet clear. This study aimed to explore the mechanism of fatty acid binding protein 4 (FABP4) regulating neutrophil apoptosis through combined analysis of gut microbiota and short-chain fatty acids (SCFAs) metabolism. First, neutrophils from bronchoalveolar lavage fluid (BALF) of patients with sepsis-induced acute respiratory distress syndrome (ARDS) were purified and isolated RNA was applied for sequencing. Then, the cecal ligation and puncture (CLP) method was applied to induce the mouse sepsis model. After intervention with differential SCFAs sodium acetate, neutrophil apoptosis and FABP4 expression were further analyzed. Then, FABP4 inhibitor BMS309403 was used to treat neutrophils. We found CLP group had increased lung injury score, lung tissue wet/dry ratio, lung vascular permeability, and inflammatory factors IL-1β, TNF-α, IL-6, IFN-γ, and CCL3 levels in both bronchoalveolar lavage fluid and lung tissue. Additionally, FABP4 was lower in neutrophils of ARDS patients and mice. Meanwhile, CLP-induced dysbiosis of gut microbiota and changes in SCFAs levels were observed. Further verification showed that acetic acids reduced neutrophil apoptosis and FABP4 expression via FFAR2. Besides, FABP4 affected neutrophil apoptosis through endoplasmic reticulum (ER) stress, and neutrophil depletion alleviated the promotion of ARDS development by BMS309403. Moreover, FABP4 in neutrophils regulated the injury of RLE-6TN through inflammatory factors. In conclusion, FABP4 affected by gut microbiota-derived SCFAs delayed neutrophil apoptosis through ER stress, leading to increased inflammatory factors mediating lung epithelial cell damage.
Collapse
Affiliation(s)
- Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.
| | - Longcheng Zheng
- People's Hospital of Henan University, Department of Respiratory and Critical Care Medicine, People's Hospital of Henan Province, Zhengzhou, 450003, China
| | - Huayun Jia
- Hunan Province Center for Disease Control and Prevention, Changsha, 410000, Hunan, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China.
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Zhao X, Wang M, Zhang Y, Zhang Y, Tang H, Yue H, Zhang L, Song D. Macrophages in the inflammatory response to endotoxic shock. Immun Inflamm Dis 2024; 12:e70027. [PMID: 39387442 PMCID: PMC11465138 DOI: 10.1002/iid3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Endotoxic shock, particularly prevalent in intensive care units, represents a significant medical challenge. Endotoxin, upon invading the host, triggers intricate interactions with the innate immune system, particularly macrophages. This activation leads to the production of inflammatory mediators such as tumor necrosis factor-alpha, interleukin-6, and interleukin-1-beta, as well as aberrant activation of the nuclear factor-kappa-B and mitogen-activated protein kinase signaling pathways. OBJECTIVE This review delves into the intricate inflammatory cascades underpinning endotoxic shock, with a particular focus on the pivotal role of macrophages. It aims to elucidate the clinical implications of these processes and offer insights into potential therapeutic strategies. RESULTS Macrophages, central to immune regulation, manifest in two distinct subsets: M1 (classically activated subtype) macrophages and M2 (alternatively activated subtype) macrophages. The former exhibit an inflammatory phenotype, while the latter adopt an anti-inflammatory role. By modulating the inflammatory response in patients with endotoxic shock, these macrophages play a crucial role in restoring immune balance and facilitating recovery. CONCLUSION Macrophages undergo dynamic changes within the immune system, orchestrating essential processes for maintaining tissue homeostasis. A deeper comprehension of the mechanisms governing macrophage-mediated inflammation lays the groundwork for an anti-inflammatory, targeted approach to treating endotoxic shock. This understanding can significantly contribute to the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Xinjie Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of MedicineXizang Minzu UniversityXianyangChina
| | - Mengjie Wang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Yanru Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Yiyi Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Haojie Tang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Hongyi Yue
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Li Zhang
- Affiliated Hospital of Xizang Minzu UniversityXianyangShaanxiChina
| | - Dan Song
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| |
Collapse
|
4
|
Kenig A, Nachman D, Aliev E, Wagnert-Avraham L, Kolben Y, Kessler A, Lutsker M, Mevorach D. Apoptotic Cell-Based Therapy for the Modification of the Inflammatory Response to Hemorrhagic Shock. Mil Med 2024; 189:416-422. [PMID: 39160884 DOI: 10.1093/milmed/usae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Many trauma patients die from hemorrhagic shock in the military and civilian settings. Although two-thirds of hemorrhagic shock victims die of reasons other than exsanguination, such as the consequent cytokine storm, anti-inflammatory therapies failed to be utilized. Apoptotic cell-based treatments enhance innate ability to exert systemic immunomodulation as demonstrated in several clinical applications and hence might present a novel approach in hemorrhagic shock treatment. MATERIALS AND METHODS Twenty-two rats underwent a pressure-controlled hemorrhagic shock model and followed up for 24 hours. An infusion of apoptotic cells (Allocetra-OTS, Enlivex Therapeutics Ltd, Nes Ziona, Israel) was administered to the treatment group. Hemodynamics, blood counts, biochemistry findings, and cytokine profile were compared to a saline-resuscitated control group. RESULTS The treatment group's mean arterial pressure decreased from 94.8 mmHg to 28.2 mmHg, resulting in an 8.13 mg/dL increase in lactate and a 1.9 g/L decrease in hemoglobin, similar to the control group. White blood cells and platelets decreased more profoundly in the treatment group. A similar cytokine profile after 24 hours was markedly attenuated in the treatment group 2 hours after bleeding. Levels of pro-inflammatory cytokines such as interleukin (IL)-1a (28.4 pg/mL vs. 179.1 pg/mL), IL-1b (47.4 pg/mL vs. 103.9 pg/mL), IL-6 (526.2 pg/mL vs. 3492 pg/mL), interferon γ (11.4 pg/mL vs. 427.9 pg/mL), and tumor necrosis factor α (19.0 pg/mL vs. 31.7 pg/mL) were profoundly lower in the treatment group. CONCLUSION In a pressure-control hemorrhagic shock model in rats, apoptotic cell infusion showed preliminary signs of a uniform attenuated cytokine response. Apoptotic cell-based therapies might serve as a novel immunomodulatory therapy for hemorrhagic shock.
Collapse
Affiliation(s)
- Ariel Kenig
- The Department of Medicine, Hadassah Medical Center and the Faculty of Medicine, Hebrew University, Jerusalem 911210, Israel
- The Lung Institute, Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Dean Nachman
- The Heart Institute, Hadassah Medical Center and the Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel
- Faculty of Medicine, Institute for Research in Military Medicine, The Hebrew University, Jerusalem 9112102, Israel
- Israel Defense Forces, Medical Corps, Ramat Gan 5262000, Israel
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Emil Aliev
- Faculty of Medicine, Institute for Research in Military Medicine, The Hebrew University, Jerusalem 9112102, Israel
- Israel Defense Forces, Medical Corps, Ramat Gan 5262000, Israel
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Linn Wagnert-Avraham
- Faculty of Medicine, Institute for Research in Military Medicine, The Hebrew University, Jerusalem 9112102, Israel
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yotam Kolben
- The Department of Medicine, Hadassah Medical Center and the Faculty of Medicine, Hebrew University, Jerusalem 911210, Israel
| | - Asa Kessler
- The Department of Medicine, Hadassah Medical Center and the Faculty of Medicine, Hebrew University, Jerusalem 911210, Israel
| | - Maya Lutsker
- Israel Defense Forces, Medical Corps, Ramat Gan 5262000, Israel
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dror Mevorach
- The Department of Medicine, Hadassah Medical Center and the Faculty of Medicine, Hebrew University, Jerusalem 911210, Israel
- Department of Rheumatology-Immunology-Allergology and the Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
6
|
Simpson SR, Middleton DD, Lukesh NR, Islam MJ, Ehrenzeller SA, Bachelder EM, Ainslie KM. Microparticles Incorporating Dual Apoptotic Factors to Inhibit Inflammatory Effects in Macrophages. J Pharm Sci 2024:S0022-3549(24)00217-X. [PMID: 38852674 DOI: 10.1016/j.xphs.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
New approaches to treat autoimmune diseases are needed, and we can be inspired by mechanisms in immune tolerance to guide the design of these approaches. Efferocytosis, the process of phagocyte-mediated apoptotic cell (AC) disposal, represents a potent tolerogenic mechanism that we could draw inspiration from to restore immune tolerance to specific autoantigens. ACs engage multiple avenues of the immune response to redirect aberrant immune responses. Two such avenues are: phosphatidylserine on the outer leaflet of the cell and engaging the aryl hydrocarbon receptor (AhR) pathway. We incorporated these two avenues into one acetalated dextran (Ace-DEX) microparticle (MP) for evaluation in vitro. First phosphatidylserine (PS) was incorporated into Ace-DEX MPs and evaluated for cellular association and mediators of cell tolerance including IL-10 production and M2 associated gene expression when particles were cultured with peritoneal macrophages (PMacs). Further PS Ace-DEX MPs were evaluated as an agent to suppress LPS stimulated PMacs. Then, AhR agonist 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) was incorporated into Ace-DEX MPs and expression of M2 and IL-10 genes was evaluated in PMacs. Further the ITE and PS Ace-DEX MPs (PS/ITE MPs) were evaluated for suppression of T cell priming and Th1 polarization. Our results indicate that the PS/ITE-MPs stimulated anti-inflammatory cytokine expression and suppressed inflammation following LPS stimulation of PMacs. Moreover, PS/ITE MPs induced the anti-inflammatory enzyme IDO1 and suppressed macrophage-mediated T cell priming and Th1 polarization. These findings suggest that PS and ITE-loaded Ace-DEX MPs could be a promising therapeutic tool for suppressing inflammation.
Collapse
Affiliation(s)
- Sean R Simpson
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Denzel D Middleton
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Nicole Rose Lukesh
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Md Jahirul Islam
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Stephen A Ehrenzeller
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA; Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Liu X, Ou X, Zhang T, Li X, Qiao Q, Jia L, Xu Z, Zhang F, Tian T, Lan H, Yang C, Kong L, Zhang Z. In situ neutrophil apoptosis and macrophage efferocytosis mediated by Glycyrrhiza protein nanoparticles for acute inflammation therapy. J Control Release 2024; 369:215-230. [PMID: 38508529 DOI: 10.1016/j.jconrel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
In the progression of acute inflammation, the activation and recruitment of macrophages and neutrophils are mutually reinforcing, leading to amplified inflammatory response and severe tissue damage. Therefore, to regulate the axis of neutrophils and macrophages is essential to avoid tissue damage induced from acute inflammatory. Apoptotic neutrophils can regulate the anti-inflammatory activity of macrophages through the efferocytosis. The strategy of in situ targeting and inducing neutrophil apoptosis has the potential to modulate macrophage activity and transfer anti-inflammatory drugs. Herein, a natural glycyrrhiza protein nanoparticle loaded with dexamethasone (Dex@GNPs) was constructed, which could simultaneously regulate neutrophil and macrophage function during acute inflammation treatment by combining in situ neutrophil apoptosis and macrophage efferocytosis. Dex@GNPs can be rapidly and selectively internalized by neutrophils and subsequently induce neutrophils apoptosis through a ROS-dependent mechanism. The efferocytosis of apoptotic neutrophils not only promoted the polarization of macrophages into anti-inflammatory state, but also facilitated the transfer of Dex@GNPs to macrophages. This enabled dexamethasone to further modulate macrophage function. In mouse models of acute respiratory distress syndrome and sepsis, Dex@GNPs significantly ameliorated the disordered immune microenvironment and alleviated tissue injury. This study presents a novel strategy for drug delivery and inflammation regulation to effectively treat acute inflammatory diseases.
Collapse
Affiliation(s)
- Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiantian Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Qiao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liyuan Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangxi Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fangming Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Lo WCJ, Luther DG. Detection of Granzyme B-associated Binding Targets in Peripheral Blood Samples of Hosts in Sickness and in Health Using a Granzyme B-like Peptide Fluorescent Conjugate (GP1R). J Fluoresc 2024; 34:691-711. [PMID: 37347422 DOI: 10.1007/s10895-023-03320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Granzyme B, mostly expressed by cytotoxic T lymphocytes in the fight against cancer and infection, is known to induce cell death based on its active enzymatic activity as a serine protease. Recent studies showed cytotoxicity of a non-enzymatic granzyme B-like peptide (also referred to as granzyme B-associated peptide or GP1 in this report) in tumor cells and presence of binding targets for GP1R (i.e., GP1 conjugated with rhodamine fluorochrome) in tumor cells, bacteria, and circulating platelets/neutrophils of healthy hosts. But there were no data on "sick" hosts to help substantiate any potential GP1 based medical applications. Thus, we adopted similar GP1R binding protocols to further study binding of GP1 in different biological samples (including different blood samples of hosts in sickness and in health, cancer cell lines, and trigeminal ganglia culture of infected hosts treated with and without GP1) and determine if any binding patterns might have any associations with different health conditions. The overall preliminary results appear to show certain GP1R + binding patterns in certain blood components (especially neutrophils) have potential correlations with certain health conditions of hosts at sampling times, indicating potential GP1R applications for diagnostic purposes. Findings of different GP1R binding patterns in different cancer cell lines, whole blood samples and trigeminal ganglia culture of experimental mice infected with HSV-1 virus (might cause neuropathy) within a week post-infection, and blood samples of GP1-treated mouse survivors on day 21 post-infection provided preliminary evidence of potential GP1-led tumor cell-specific cell death and treatment efficacy for greater survival.
Collapse
|
9
|
Li F, Wang X, Shi J, Wu S, Xing W, He Y. Anti-inflammatory effect of dental pulp stem cells. Front Immunol 2023; 14:1284868. [PMID: 38077342 PMCID: PMC10701738 DOI: 10.3389/fimmu.2023.1284868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have received a lot of attention as a regenerative medicine tool with strong immunomodulatory capabilities. The excessive inflammatory response involves a variety of immune cells, cytokines, and has a considerable impact on tissue regeneration. The use of DPSCs for controlling inflammation for the purpose of treating inflammation-related diseases and autoimmune disorders such as supraspinal nerve inflammation, inflammation of the pulmonary airways, systemic lupus erythematosus, and diabetes mellitus is likely to be safer and more regenerative than traditional medicines. The mechanism of the anti-inflammatory and immunomodulatory effects of DPSCs is relatively complex, and it may be that they themselves or some of the substances they secrete regulate a variety of immune cells through inflammatory immune-related signaling pathways. Most of the current studies are still at the laboratory cellular level and animal model level, and it is believed that through the efforts of more researchers, DPSCs/SHED are expected to be transformed into excellent drugs for the clinical treatment of related diseases.
Collapse
Affiliation(s)
- FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jin Shi
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Shrestha S, Hong CW. Extracellular Mechanisms of Neutrophils in Immune Cell Crosstalk. Immune Netw 2023; 23:e38. [PMID: 37970234 PMCID: PMC10643328 DOI: 10.4110/in.2023.23.e38] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 11/17/2023] Open
Abstract
Neutrophils are professional phagocytes that provide defense against invading pathogens through phagocytosis, degranulation, generation of ROS, and the formation of neutrophil extracellular traps (NETs). Although long been considered as short-lived effector cells with limited biosynthetic activity, recent studies have revealed that neutrophils actively communicate with other immune cells. Neutrophils employ various types of soluble mediators, including granules, cytokines, and chemokines, for crosstalk with immune cells. Additionally, ROS and NETs, major arsenals of neutrophils, are utilized for intercellular communication. Furthermore, extracellular vesicles play a crucial role as mediators of neutrophil crosstalk. In this review, we highlight the extracellular mechanisms of neutrophils and their roles in crosstalk with other cells.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chang-Won Hong
- Department of Physiology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
11
|
Slysz J, Sinha A, DeBerge M, Singh S, Avgousti H, Lee I, Glinton K, Nagasaka R, Dalal P, Alexandria S, Wai CM, Tellez R, Vescovo M, Sunderraj A, Wang X, Schipma M, Sisk R, Gulati R, Vallejo J, Saigusa R, Lloyd-Jones DM, Lomasney J, Weinberg S, Ho K, Ley K, Giannarelli C, Thorp EB, Feinstein MJ. Single-cell profiling reveals inflammatory polarization of human carotid versus femoral plaque leukocytes. JCI Insight 2023; 8:e171359. [PMID: 37471165 PMCID: PMC10544225 DOI: 10.1172/jci.insight.171359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Femoral atherosclerotic plaques are less inflammatory than carotid plaques histologically, but limited cell-level data exist regarding comparative immune landscapes and polarization at these sites. We investigated intraplaque leukocyte phenotypes and transcriptional polarization in 49 patients undergoing femoral (n = 23) or carotid (n = 26) endarterectomy using single-cell RNA-Seq (scRNA-Seq; n = 13), flow cytometry (n = 24), and IHC (n = 12). Comparative scRNA-Seq of CD45+-selected leukocytes from femoral (n = 9; 35,265 cells) and carotid (n = 4; 30,655 cells) plaque revealed distinct transcriptional profiles. Inflammatory foam cell-like macrophages and monocytes comprised higher proportions of myeloid cells in carotid plaques, whereas noninflammatory foam cell-like macrophages and LYVE1-overexpressing macrophages comprised higher proportions of myeloid cells in femoral plaque (P < 0.001 for all). A significant comparative excess of CCR2+ macrophages in carotid versus plaque was observed by flow cytometry in a separate validation cohort. B cells were more prevalent and exhibited a comparatively antiinflammatory profile in femoral plaque, whereas cytotoxic CD8+ T cells were more prevalent in carotid plaque. In conclusion, human femoral plaques exhibit distinct macrophage phenotypic and transcriptional profiles as well as diminished CD8+ T cell populations compared with human carotid plaques.
Collapse
Affiliation(s)
| | - Arjun Sinha
- Division of Cardiology, Department of Medicine
| | | | | | | | - Inhyeok Lee
- Division of Cardiology, Department of Medicine
| | - Kristofor Glinton
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
| | | | | | - Shaina Alexandria
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| | - Ching Man Wai
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Ricardo Tellez
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
| | | | | | - Xinkun Wang
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Matthew Schipma
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Ryan Sisk
- Division of Cardiology, Department of Medicine
| | - Rishab Gulati
- La Jolla Institute of Immunology, La Jolla, California, USA
| | | | | | - Donald M. Lloyd-Jones
- Division of Cardiology, Department of Medicine
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| | | | | | - Karen Ho
- Division of Vascular Surgery, NUFSM, Chicago, Illinois, USA
| | - Klaus Ley
- Immunology Center of Georgia, Augusta, Georgia, USA
| | - Chiara Giannarelli
- Department of Medicine and
- Department of Pathology, New York University, New York, New York, USA
| | | | - Matthew J. Feinstein
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| |
Collapse
|
12
|
Cheng P, Wang X, Liu Q, Yang T, Qu H, Zhou H. Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Front Pharmacol 2023; 14:1067992. [PMID: 36909157 PMCID: PMC9992194 DOI: 10.3389/fphar.2023.1067992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe ischemic disease with high morbidity and mortality worldwide. Maladaptive cardiac remodeling is a series of abnormalities in cardiac structure and function that occurs following myocardial infarction (MI). The pathophysiology of this process can be separated into two distinct phases: the initial inflammatory response, and the subsequent longer-term scar revision that includes the regression of inflammation, neovascularization, and fibrotic scar formation. Extracellular vesicles are nano-sized lipid bilayer vesicles released into the extracellular environment by eukaryotic cells, containing bioinformatic transmitters which are essential mediators of intercellular communication. EVs of different cellular origins play an essential role in cardiac remodeling after myocardial infarction. In this review, we first introduce the pathophysiology of post-infarction cardiac remodeling, as well as the biogenesis, classification, delivery, and functions of EVs. Then, we explore the dual role of these small molecule transmitters delivered by EVs in post-infarction cardiac remodeling, including the double-edged sword of pro-and anti-inflammation, and pro-and anti-fibrosis, which is significant for post-infarction cardiac repair. Finally, we discuss the pharmacological and engineered targeting of EVs for promoting heart repair after MI, thus revealing the potential value of targeted modulation of EVs and its use as a drug delivery vehicle in the therapeutic process of post-infarction cardiac remodeling.
Collapse
Affiliation(s)
- Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Ji X, Yang X, Shi C, Guo D, Wang X, Messina JM, Meng Q, Urao N, Cooney R, Luo J. Functionalized core-shell nanogel scavenger for immune modulation therapy in sepsis. ADVANCED THERAPEUTICS 2022; 5:2200127. [PMID: 36590645 PMCID: PMC9797201 DOI: 10.1002/adtp.202200127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/05/2023]
Abstract
Sepsis is a complex, life-threatening hyperinflammatory syndrome associated with organ failure and high mortality due to lack of effective treatment options. Here we report a core-shell hydrogel nanoparticle with the core functionalized with telodendrimer (TD) nanotrap (NT) to control hyperinflammation in sepsis. The combination of multi-valent charged and hydrophobic moieties in TD enables effective binding with biomolecules in NT. The higher crosslinking in the shell structure of nanogel excludes the abundant large serum proteins and allows for size-selectivity in scavenging the medium-sized septic molecules (10-30 kDa), e.g., lipopolysaccharides (LPS, a potent endotoxin in sepsis), thus reducing cytokine production. At the same time, the core-shell TD NT nanogel captures the over-flowing proinflammatory cytokines effectively both in vitro and in vivo from biological fluids to further control hyperinflammation. Intraperitoneal injection of core-shell TD NT nanogel effectively attenuates NF-κB activation and cytokine production in LPS-induced septic mouse models. These results indicate the potential applications of the injectable TD NT core-shell nanogel to attenuate local or systemic inflammation.
Collapse
Affiliation(s)
- Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojing Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Qinghe Meng
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Robert Cooney
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
14
|
Herman KD, Wright CG, Marriott HM, McCaughran SC, Bowden KA, Collins MO, Renshaw SA, Prince LR. The EGFR/ErbB inhibitor neratinib modifies the neutrophil phosphoproteome and promotes apoptosis and clearance by airway macrophages. Front Immunol 2022; 13:956991. [PMID: 35967296 PMCID: PMC9371615 DOI: 10.3389/fimmu.2022.956991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
Dysregulated neutrophilic inflammation can be highly destructive in chronic inflammatory diseases due to prolonged neutrophil lifespan and continual release of histotoxic mediators in inflamed tissues. Therapeutic induction of neutrophil apoptosis, an immunologically silent form of cell death, may be beneficial in these diseases, provided that the apoptotic neutrophils are efficiently cleared from the tissue. Previous research in our group identified ErbB inhibitors as able to induce neutrophil apoptosis and reduce neutrophilic inflammation both in vitro and in vivo. Here, we extend that work using a clinical ErbB inhibitor, neratinib, which has the potential to be repurposed in inflammatory diseases. We show that neratinib reduces neutrophilic migration o an inflammatory site in zebrafish larvae. Neratinib upregulates efferocytosis and reduces the number of persisting neutrophil corpses in mouse models of acute, but not chronic, lung injury, suggesting that the drug may have therapeutic benefits in acute inflammatory settings. Phosphoproteomic analysis of human neutrophils shows that neratinib modifies the phosphorylation of proteins regulating apoptosis, migration, and efferocytosis. This work identifies a potential mechanism for neratinib in treating acute lung inflammation by upregulating the clearance of dead neutrophils and, through examination of the neutrophil phosphoproteome, provides important insights into the mechanisms by which this may be occurring.
Collapse
Affiliation(s)
- Kimberly D. Herman
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Bateson Centre, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Carl G. Wright
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Helen M. Marriott
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sam C. McCaughran
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Kieran A. Bowden
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Mark O. Collins
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and The Bateson Centre, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
Hong C, Lu H, Huang X, Chen M, Jin R, Dai X, Gong F, Dong H, Wang H, Gao XM. Neutrophils as regulators of macrophage-induced inflammation in a setting of allogeneic bone marrow transplantation. Stem Cell Reports 2022; 17:1561-1575. [PMID: 35777356 PMCID: PMC9287675 DOI: 10.1016/j.stemcr.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
Clinical data reveal that patients with allogeneic hematopoietic stem cell transplantation (HSCT) are vulnerable to infection and prone to developing severe sepsis, which greatly compromises the success of transplantation, indicating a dysregulation of inflammatory immune response in this clinical setting. Here, by using a mouse model of haploidentical bone marrow transplantation (haplo-BMT), we found that uncontrolled macrophage inflammation underlies the pathogenesis of both LPS- and E.coli-induced sepsis in recipient animals with graft-versus-host disease (GVHD). Deficient neutrophil maturation in GVHD mice post-haplo-BMT diminished modulation of macrophage-induced inflammation, which was mechanistically dependent on MMP9-mediated activation of TGF-β1. Accordingly, adoptive transfer of mature neutrophils purified from wild-type donor mice inhibited both sterile and infectious sepsis in GVHD mice post-haplo-BMT. Together, our findings identify a novel mature neutrophil-dependent regulation of macrophage inflammatory response in a haplo-BMT setting and provide useful clues for developing clinical strategies for patients suffering from post-HSCT sepsis. Macrophage inflammation leads to the development of post-haplo-BMT sepsis Impaired neutrophil maturation diminishes regulation of macrophage inflammation Extramedullary granulopoiesis fails to support neutrophil maturation after haplo-BMT Neutrophils regulate macrophage inflammation via MMP9-mediated TGF-β1 activation
Collapse
Affiliation(s)
- Chao Hong
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Hongyun Lu
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaohong Huang
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Ming Chen
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Rong Jin
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaoqiu Dai
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Fangyuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongliang Dong
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongmin Wang
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
16
|
Kim SY, Kim JM, Lee SR, Kim HJ, Lee JH, Choi HL, Lee YJ, Lee YS, Cho J. Efferocytosis and enhanced FPR2 expression following apoptotic cell instillation attenuate radiation-induced lung inflammation and fibrosis. Biochem Biophys Res Commun 2022; 601:38-44. [DOI: 10.1016/j.bbrc.2022.02.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
|
17
|
Syahirah R, Hsu AY, Deng Q. A curious case of cyclin‐dependent kinases in neutrophils. J Leukoc Biol 2022; 111:1057-1068. [PMID: 35188696 PMCID: PMC9035055 DOI: 10.1002/jlb.2ru1021-573r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are terminally differentiated, short-lived white blood cells critical for innate immunity. Although cyclin-dependent kinases (CDKs) are typically related to cell cycle progression, increasing evidence has shown that they regulate essential functions of neutrophils. This review highlights the roles of CDKs and their partners, cyclins, in neutrophils, outside of cell cycle regulation. CDK1-10 and several cyclins are expressed in neutrophils, albeit at different levels. Observed phenotypes associated with specific inhibition or genetic loss of CDK2 indicate its role in modulating neutrophil migration. CDK4 and 6 regulate neutrophil extracellular traps (NETs) formation, while CDK5 regulates neutrophil degranulation. CDK7 and 9 are critical in neutrophil apoptosis, contributing to inflammation resolution. In addition to the CDKs that regulate mature neutrophil functions, cyclins are essential in hematopoiesis and granulopoiesis. The pivotal roles of CDKs in neutrophils present an untapped potential in targeting CDKs for treating neutrophil-dominant inflammatory diseases and understanding the regulation of the neutrophil life cycle.
Collapse
Affiliation(s)
- Ramizah Syahirah
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Alan Y. Hsu
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
- Department of Pathology Harvard Medical School Boston Massachusetts USA
- Department of Laboratory Medicine The Stem Cell Program, Boston Children's Hospital Boston Massachusetts USA
| | - Qing Deng
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
- Purdue Institute of Inflammation Immunology and Infectious Disease, Purdue University West Lafayette Indiana USA
- Purdue University Center for Cancer Research, Purdue University West Lafayette Indiana USA
| |
Collapse
|
18
|
Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 2021; 20:899-919. [PMID: 33686237 DOI: 10.1038/s41573-021-00155-y] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types.
Collapse
|
19
|
Wu L, Kim Y, Seon GM, Choi SH, Park HC, Son G, Kim SM, Lim BS, Yang HC. Effects of RGD-grafted phosphatidylserine-containing liposomes on the polarization of macrophages and bone tissue regeneration. Biomaterials 2021; 279:121239. [PMID: 34753037 DOI: 10.1016/j.biomaterials.2021.121239] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
Phosphatidylserine-containing liposomes (PSLs) can mimic the anti-inflammatory effects of apoptotic cells by binding to the phosphatidylserine receptors of macrophages. MGF-E8, a bridge molecule between phosphatidylserine and macrophages, can promote M2 polarization by activating macrophage integrin with its arginine-glycine-aspartic acid (RGD) motif. In this study, to mimic MGF-E8, PSLs presenting RGD peptide (RGD-PSLs) were prepared, and their immunomodulatory effects on macrophages and the bone tissue regeneration of rat calvarial defects were investigated. RGD peptides enhanced the phagocytosis of PSLs by macrophages, especially when the PSLs contained 3% RGD. RGD-PSLs were also more effective than PSLs for the suppression of lipopolysaccharide-induced gene expression of proinflammatory cytokines (i.e., IL-1β, IL-6, and TNF-α) as well as CD86 (M1 marker) expression. Furthermore, RGD promoted PSL-induced M2 polarization: 3%-RGD-PSLs significantly enhanced the mRNA expression of Arg-1, FIZZ1, and YM-1, as well as CD206 (M2 marker) expression. In a calvarial defect model, a significant increase in M2 with a decrease in M1 macrophages was observed with 3%-RGD-PSL treatment compared with the effects of PSLs alone. Finally, new bone formation was also accelerated by 3%-RGD-PSLs. Thus, these results suggest that the intensive immunomodulatory effect of RGD-PSLs led to the enhancement of bone tissue regeneration.
Collapse
Affiliation(s)
- Lele Wu
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Yongjoon Kim
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Gyeung Mi Seon
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Sang Hoon Choi
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hee Chul Park
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Gitae Son
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Bum-Soon Lim
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hyeong-Cheol Yang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
20
|
van Heerden PV, Abutbul A, Sviri S, Zlotnick E, Nama A, Zimro S, El-Amore R, Shabat Y, Reicher B, Falah B, Mevorach D. Apoptotic Cells for Therapeutic Use in Cytokine Storm Associated With Sepsis- A Phase Ib Clinical Trial. Front Immunol 2021; 12:718191. [PMID: 34659208 PMCID: PMC8515139 DOI: 10.3389/fimmu.2021.718191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Background Sepsis has no proven specific pharmacologic treatment and reported mortality ranges from 30%–45%. The primary aim of this phase IB study was to determine the safety profile of Allocetra™-OTS (early apoptotic cell) infusion in subjects presenting to the emergency room with sepsis. The secondary aims were to measure organ dysfunction, intensive care unit (ICU) and hospital stays, and mortality. Exploratory endpoints included measuring immune modulator agents to elucidate the mechanism of action. Methods Ten patients presenting to the emergency room at the Hadassah Medical Center with sepsis were enrolled in this phase Ib clinical study. Enrolled patients were males and females aged 51–83 years, who had a Sequential Organ Failure Assessment (SOFA) score ≥2 above baseline and were septic due to presumed infection. Allocetra™-OTS was administered as a single dose (day +1) or in two doses of 140×106 cells/kg on (day +1 and +3), following initiation of standard-of-care (SOC) treatment for septic patients. Safety was evaluated by serious adverse events (SAEs) and adverse events (AEs). Organ dysfunction, ICU and hospital stays, and mortality, were compared to historical controls. Immune modulator agents were measured using Luminex® multiplex analysis. Results All 10 patients had mild-to-moderate sepsis with SOFA scores ranging from 2–6 upon entering the study. No SAEs and no related AEs were reported. All 10 study subjects survived, while matched historical controls had a mortality rate of 27%. The study subjects exhibited rapid resolution of organ dysfunction and had significantly shorter ICU stays compared to matched historical controls (p<0.0001). All patients had both elevated pro- and anti-inflammatory cytokines, chemokines, and additional immune modulators that gradually decreased following treatment. Conclusion Administration of apoptotic cells to patients with mild-to-moderate sepsis was safe and had a significant immuno-modulating effect, leading to early resolution of the cytokine storm. Clinical Trial Registration ClinicalTrials.gov Identifier: NCT03925857. (https://clinicaltrials.gov/ct2/show/study/NCT03925857).
Collapse
Affiliation(s)
| | - Avraham Abutbul
- Medical Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sigal Sviri
- Medical Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eitan Zlotnick
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Ahmad Nama
- Department of Emergency Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Sebastian Zimro
- General Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Raja El-Amore
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Yehudit Shabat
- Department of Research, Enlivex Therapeutics Ltd., Ness-Ziona, Israel
| | - Barak Reicher
- Department of Research, Enlivex Therapeutics Ltd., Ness-Ziona, Israel
| | - Batla Falah
- Department of Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel.,Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Abstract
Sepsis is a life-threatening condition caused by the extreme release of inflammatory mediators into the blood in response to infection (e.g., bacterial infection, COVID-19), resulting in the dysfunction of multiple organs. Currently, there is no direct treatment for sepsis. Here we report an abiotic hydrogel nanoparticle (HNP) as a potential therapeutic agent for late-stage sepsis. The HNP captures and neutralizes all variants of histones, a major inflammatory mediator released during sepsis. The highly optimized HNP has high capacity and long-term circulation capability for the selective sequestration and neutralization of histones. Intravenous injection of the HNP protects mice against a lethal dose of histones through the inhibition of platelet aggregation and migration into the lungs. In vivo administration in murine sepsis model mice results in near complete survival. These results establish the potential for synthetic, nonbiological polymer hydrogel sequestrants as a new intervention strategy for sepsis therapy and adds to our understanding of the importance of histones to this condition. Sepsis caused by the release of inflammatory mediators into the blood is a life threatening disease. Here, the authors report on the development of hydrogel nanoparticles for the capture and neutralisation of histones, major inflammatory mediators, and demonstrate sepsis treatment in a murine model.
Collapse
|
22
|
Javadinia SA, Nazeminezhad N, Ghahramani-Asl R, Soroosh D, Fazilat-Panah D, PeyroShabany B, Saberhosseini SN, Mehrabian A, Taghizadeh-Hesary F, Nematshahi M, Dhawan G, Welsh JS, Calabrese EJ, Kapoor R. Low-dose radiation therapy for osteoarthritis and enthesopathies: a review of current data. Int J Radiat Biol 2021; 97:1352-1367. [PMID: 34259615 DOI: 10.1080/09553002.2021.1956000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteoarthritis (OA), the most common degenerative joint disease, is associated with severe functional limitation and impairment of quality of life. Numerous reports have documented the clinical efficacy of low-dose radiotherapy (LD-RT) in the management of various inflammatory disorders, including OA. In this paper, we assessed the clinical literature involving the use of LD-RT in the treatment of OA, its dose-response features, possible underlying mechanistic features, and optimal therapeutic dose range. METHODS We carried out a systematic review based on the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements and evaluated articles meeting the inclusion criteria for this review. RESULTS A total of 361 articles were identified from databases, such as Scopus, PubMed, Embase, and Science Direct out of which 224 articles were duplicates and were discarded. Of the remaining 137 articles, 74 articles were un-related, 27 articles were review articles, eight were conference abstracts, three were letters, two were editorials, two were notes, and one was a book chapter. Finally, 20 articles met all the inclusion criteria and were included in this systematic review. DISCUSSION Several single-arm retrospective/prospective studies showed advantages for LD-RT in the management of OA in terms of pain relief, improvement of mobility and function, and showed minimal side effects. Mechanistic considerations involve positive subcellular effects mediated by the activation of a nuclear factor erythroid 2-related transcription factor (Nrf2) mediated antioxidant response. Further research on both the short- and long-term effects of LD-RT on OA and other inflammatory disorders is recommended.
Collapse
Affiliation(s)
- Seyed Alireza Javadinia
- Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Ruhollah Ghahramani-Asl
- Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Soroosh
- Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Babak PeyroShabany
- Department of Internal Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Arezoo Mehrabian
- Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Nematshahi
- Department of Anesthesiology and Critical Care, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Gaurav Dhawan
- Sri Guru Ram Das University of Health Sciences, Amritsar, India
| | - James S Welsh
- Edward Hines Jr. VA Hospital, Loyola University Chicago Stritch School of Medicine, Chicago, IL, USA
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| |
Collapse
|
23
|
Kaur S, Bronson SM, Pal-Nath D, Miller TW, Soto-Pantoja DR, Roberts DD. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int J Mol Sci 2021; 22:4570. [PMID: 33925464 PMCID: PMC8123789 DOI: 10.3390/ijms22094570] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Steven M. Bronson
- Department of Internal Medicine, Section of Molecular Medicine, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Thomas W. Miller
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, 13273 Marseille, France
| | - David R. Soto-Pantoja
- Department of Surgery and Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| |
Collapse
|
24
|
Noseykina EM, Schepetkin IA, Atochin DN. Molecular Mechanisms for Regulation of Neutrophil Apoptosis under Normal and Pathological Conditions. J EVOL BIOCHEM PHYS+ 2021; 57:429-450. [PMID: 34226754 PMCID: PMC8245921 DOI: 10.1134/s0022093021030017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Neutrophils are one of the main cells of innate immunity that perform a key effector and regulatory function in the development of the human inflammatory response. Apoptotic forms of neutrophils are important for regulating the intensity of inflammation and restoring tissue homeostasis. This review summarizes current data on the molecular mechanisms of modulation of neutrophil apoptosis by the main regulatory factors of the inflammatory response-cytokines, integrins, and structural components of bacteria. Disturbances in neutrophil apoptosis under stress are also considered, molecular markers of changes in neutrophil lifespan associated with various diseases and pathological conditions are presented, and data on pharmacological agents for modulating apoptosis as potential therapeutics are also discussed.
Collapse
Affiliation(s)
| | - I. A. Schepetkin
- Tomsk Polytechnic University, Tomsk, Russia ,Department of Microbiology
and Immunology, Montana State University, Bozeman, MT, USA
| | - D. N. Atochin
- Tomsk Polytechnic University, Tomsk, Russia ,Cardiovascular Research Center,
Cardiology Division, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
25
|
The Functional Heterogeneity of Neutrophil-Derived Extracellular Vesicles Reflects the Status of the Parent Cell. Cells 2020; 9:cells9122718. [PMID: 33353087 PMCID: PMC7766779 DOI: 10.3390/cells9122718] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Similar to other cell types, neutrophilic granulocytes also release extracellular vesicles (EVs), mainly medium-sized microvesicles/microparticles. According to published data, authors have reached a consensus on the physical parameters (size, density) and chemical composition (surface proteins, proteomics) of neutrophil-derived EVs. In contrast, there is large diversity and even controversy in the reported functional properties. Part of the discrepancy may be ascribed to differences in the viability of the starting cells, in eliciting factors, in separation techniques and in storage conditions. However, the most recent data from our laboratory prove that the same population of neutrophils is able to generate EVs with different functional properties, transmitting pro-inflammatory or anti-inflammatory effects on neighboring cells. Previously we have shown that Mac-1 integrin is a key factor that switches anti-inflammatory EV generation into pro-inflammatory and antibacterial EV production. This paper reviews current knowledge on the functional alterations initiated by neutrophil-derived EVs, listing their effects according to the triggering agents and target cells. We summarize the presence of neutrophil-derived EVs in pathological processes and their perspectives in diagnostics and therapy. Finally, the functional heterogeneity of differently triggered EVs indicates that neutrophils are capable of producing a broad spectrum of EVs, depending on the environmental conditions prevailing at the time of EV genesis.
Collapse
|
26
|
Tajbakhsh A, Farahani N, Gheibihayat SM, Mirkhabbaz AM, Savardashtaki A, Hamblin MR, Mirzaei H. Autoantigen-specific immune tolerance in pathological and physiological cell death: Nanotechnology comes into view. Int Immunopharmacol 2020; 90:107177. [PMID: 33249046 DOI: 10.1016/j.intimp.2020.107177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Apoptotic cells are tolerogenic and can present self-antigens in the absence of inflammation, to antigen-presenting cells by the process of efferocytosis, resulting in anergy and depletion of immune effector cells. This tolerance is essential to maintain immune homeostasis and prevent systemic autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Consequently, effective efferocytosis can result in the induction of immune tolerance mediated via triggering modulatory lymphocytes and anti-inflammatory responses. Furthermore, several distinct soluble factors, receptors and pathways have been found to be involved in the efferocytosis, which are able to regulate immune tolerance by lessening antigen presentation, inhibition of T-cell proliferation and induction of regulatory T-cells. Some newly developed nanotechnology-based approaches can induce antigen-specific immunological tolerance without any systemic immunosuppression. These strategies have been explored to reverse autoimmune responses induced against various protein antigens in different diseases. In this review, we describe some nanotechnology-based approaches for the maintenance of self-tolerance using the apoptotic cell clearance process (efferocytosis) that may be able to induce immune tolerance and treat autoimmune diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sayed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
27
|
Kolonics F, Kajdácsi E, Farkas VJ, Veres DS, Khamari D, Kittel Á, Merchant ML, McLeish KR, Lőrincz ÁM, Ligeti E. Neutrophils produce proinflammatory or anti-inflammatory extracellular vesicles depending on the environmental conditions. J Leukoc Biol 2020; 109:793-806. [PMID: 32946637 PMCID: PMC8851677 DOI: 10.1002/jlb.3a0320-210r] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are important elements of intercellular communication. A plethora of different, occasionally even opposite, physiologic and pathologic effects have been attributed to these vesicles in the last decade. A direct comparison of individual observations is however hampered by the significant differences in the way of elicitation, collection, handling, and storage of the investigated vesicles. In the current work, we carried out a careful comparative study on 3, previously characterized types of EVs produced by neutrophilic granulocytes. We investigated in parallel the modulation of multiple blood-related cells and functions by medium-sized vesicles. We show that EVs released from resting neutrophils exert anti-inflammatory action by reducing production of reactive oxygen species (ROS) and cytokine release from neutrophils. In contrast, vesicles generated upon encounter of neutrophils with opsonized particles rather promote proinflammatory processes as they increase production of ROS and cytokine secretion from neutrophils and activate endothelial cells. EVs released from apoptosing cells were mainly active in promoting coagulation. We thus propose that EVs are “custom made,” acquiring selective capacities depending on environmental factors prevailing at the time of their biogenesis.
Collapse
Affiliation(s)
- Ferenc Kolonics
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Erika Kajdácsi
- Research Laboratory of the 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Veronika J Farkas
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Dániel S Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes Kittel
- Institute of Experimental Medicine, Eötvös Loránd Research Network (ELRN), Budapest, Hungary
| | - Michael L Merchant
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Ákos M Lőrincz
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Alizadehgharib S, Östberg AK, Dahlstrand Rudin A, Dahlgren U, Christenson K. The effects of the dental methacrylates TEGDMA, Bis-GMA, and UDMA on neutrophils in vitro. Clin Exp Dent Res 2020; 6:439-447. [PMID: 32543782 PMCID: PMC7453771 DOI: 10.1002/cre2.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/30/2022] Open
Abstract
Objectives The prevalent usage of methacrylates in modern dentistry demands good knowledge of their biological impacts. While there have been several studies demonstrating the effects of different methacrylic monomers on mononuclear white blood cells, very little is known about the effects caused by these monomers on neutrophilic granulocytes. The objective of this study was to add novel knowledge about how neutrophils are affected by exposure to triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), and bisphenol A glycol dimethacrylate (Bis‐GMA) alone or in combinations. Materials and Methods Isolated neutrophils were cultured in the presence or absence of methacrylates. The IL‐8 release was measured using a DuoSet ELISA development kit. Apoptosis and necrosis were analyzed using flow cytometry. The formation of neutrophil extracellular traps (NETs) was investigated using Sytox green DNA staining combined with microscopically examination of released DNA and myeloperoxidase (MPO). Results The release of IL‐8 was significantly increased after exposure to TEGDMA, Bis‐GMA, UDMA, or TEGDMA in combination with Bis‐GMA or UDMA compared to the unstimulated controls. Exposure to TEGDMA, UDMA, and Bis‐GMA for 24 hr separately or in combination did not affect apoptosis or necrosis of the exposed neutrophils. NET structures were formed by neutrophils after exposure to the different combinations of the methacrylates. Conclusion The combination of TEGDMA and Bis‐GMA had a synergistic proinflammatory effect on neutrophils by increasing the release of IL‐8 and the formation of NET structures. The changes in the normal functions of neutrophils caused by methacrylate exposure may lead to altered inflammatory response and relate to previously reported adverse immune reactions caused by these substances.
Collapse
Affiliation(s)
- Sara Alizadehgharib
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Karin Östberg
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Dahlgren
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Kolpakov MA, Guo X, Rafiq K, Vlasenko L, Hooshdaran B, Seqqat R, Wang T, Fan X, Tilley DG, Kostyak JC, Kunapuli SP, Houser SR, Sabri A. Loss of Protease-Activated Receptor 4 Prevents Inflammation Resolution and Predisposes the Heart to Cardiac Rupture After Myocardial Infarction. Circulation 2020; 142:758-775. [PMID: 32489148 DOI: 10.1161/circulationaha.119.044340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiac rupture is a major lethal complication of acute myocardial infarction (MI). Despite significant advances in reperfusion strategies, mortality from cardiac rupture remains high. Studies suggest that cardiac rupture can be accelerated by thrombolytic therapy, but the relevance of this risk factor remains controversial. METHODS We analyzed protease-activated receptor 4 (Par4) expression in mouse hearts with MI and investigated the effects of Par4 deletion on cardiac remodeling and function after MI by echocardiography, quantitative immunohistochemistry, and flow cytometry. RESULTS Par4 mRNA and protein levels were increased in mouse hearts after MI and in isolated cardiomyocytes in response to hypertrophic and inflammatory stimuli. Par4-deficient mice showed less myocyte apoptosis, reduced infarct size, and improved functional recovery after acute MI relative to wild-type (WT). Conversely, Par4-/- mice showed impaired cardiac function, greater rates of myocardial rupture, and increased mortality after chronic MI relative to WT. Pathological evaluation of hearts from Par4-/- mice demonstrated a greater infarct expansion, increased cardiac hemorrhage, and delayed neutrophil accumulation, which resulted in impaired post-MI healing compared with WT. Par4 deficiency also attenuated neutrophil apoptosis in vitro and after MI in vivo and impaired inflammation resolution in infarcted myocardium. Transfer of Par4-/- neutrophils, but not of Par4-/- platelets, in WT recipient mice delayed inflammation resolution, increased cardiac hemorrhage, and enhanced cardiac dysfunction. In parallel, adoptive transfer of WT neutrophils into Par4-/- mice restored inflammation resolution, reduced cardiac rupture incidence, and improved cardiac function after MI. CONCLUSIONS These findings reveal essential roles of Par4 in neutrophil apoptosis and inflammation resolution during myocardial healing and point to Par4 inhibition as a potential therapy that should be limited to the acute phases of ischemic insult and avoided for long-term treatment after MI.
Collapse
Affiliation(s)
- Mikhail A Kolpakov
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Xinji Guo
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Khadija Rafiq
- Thomas Jefferson University, Philadelphia, PA (K.R.)
| | - Liudmila Vlasenko
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Bahman Hooshdaran
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Rachid Seqqat
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Tao Wang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Xiaoxuan Fan
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Douglas G Tilley
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - John C Kostyak
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Satya P Kunapuli
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Steven R Houser
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| | - Abdelkarim Sabri
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (M.A.K., X.G., L.V., B.H., R.S., T.W., X.F., D.G.T., J.C.K., S.P.K., S.R.H., A.S.)
| |
Collapse
|
30
|
Dhawan G, Kapoor R, Dhawan R, Singh R, Monga B, Giordano J, Calabrese EJ. Low dose radiation therapy as a potential life saving treatment for COVID-19-induced acute respiratory distress syndrome (ARDS). Radiother Oncol 2020; 147:212-216. [PMID: 32437820 PMCID: PMC7206445 DOI: 10.1016/j.radonc.2020.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 01/22/2023]
Abstract
The new coronavirus COVID-19 disease caused by SARS-CoV-2 was declared a global public health emergency by WHO on Jan 30, 2020. Despite massive efforts from various governmental, health and medical organizations, the disease continues to spread globally with increasing fatality rates. Several experimental drugs have been approved by FDA with unknown efficacy and potential adverse effects. The exponentially spreading pandemic of COVID-19 deserves prime public health attention to evaluate yet unexplored arenas of management. We opine that one of these treatment options is low dose radiation therapy for severe and most critical cases. There is evidence in literature that low dose radiation induces an anti-inflammatory phenotype that can potentially afford therapeutic benefit against COVID-19-related complications that are associated with significant morbidity and mortality. Herein, we review the effects and putative mechanisms of low dose radiation that may be viable, useful and of value in counter-acting the acute inflammatory state induced by critical stage COVID-19.
Collapse
Affiliation(s)
- Gaurav Dhawan
- Human Research Protection Office, University of Massachusetts, Amherst, United States.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, United States
| | - Rajiv Dhawan
- Radiotherapy Department, Government Medical College, Amritsar, India
| | - Ravinder Singh
- MedSurg Urgent Care, Gilbertsville, Pennsylvania, United States
| | - Bharat Monga
- Division of Hospital Medicine, Mount Sinai Morningside Hospital, New York, United States
| | - James Giordano
- Department of Neurology and Biochemistry and Chief, Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States; Program in Biosecurity, Technology, and Ethics, US Naval War College, Newport, United States
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, United States
| |
Collapse
|
31
|
Aydın E, Yıldırım Y, Aydın FY, Bahadır MV, Kaplan İ, Kadiroğlu B, Ketani MA, Yılmaz Z, Kadiroğlu AK, Yılmaz ME. Evaluation of the effect of intraperitoneal etanercept administration on oxidative stress and inflammation indicators in the kidney and blood of experimental sepsis-induced rats. Rev Soc Bras Med Trop 2020; 53:e20200016. [PMID: 32348434 PMCID: PMC7198067 DOI: 10.1590/0037-8682-0016-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION: Sepsis is an important cause of mortality and morbidity, and inflammatory response and oxidative stress play major roles underlying its pathophysiology. Here, we evaluated the effect of intraperitoneal etanercept administration on oxidative stress and inflammation indicators in the kidney and blood of experimental sepsis-induced rats. METHODS: Twenty-eight adult Sprague Dawley rats were classified into Control (Group 1), Sepsis (Group 2), Sepsis+Cefazolin (Group 3), and Sepsis+Cefazolin+Etanercept (Group 4) groups. Kidney tissue and serum samples were obtained for biochemical and histopathological investigations and examined for the C reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), triggering receptor expressed on myeloid cells (TREM), and malondialdehyde (MDA) levels. RESULTS: The levels of TNF-α, TREM, and MDA in serum and kidney samples were significantly higher in rats from sepsis group than in rats from control group (p < 0.05). Group 3 showed a significant reduction in serum levels of TNF-α, CRP, and TREM as compared with Group 2 (p < 0.05). Serum TNF-α, CRP, TREM, and MDA levels and kidney TNF-α and TREM levels were significantly lower in Group 4 than in Group 2 (p < 0.05). Serum TNF-α and TREM levels in Group 4 were significantly lower than those in Group 3, and histopathological scores were significantly lower in Group 3 and Group 4 than in Group 2 (p < 0.05). Histopathological scores of Group 4 were significantly lower than those of Group 3 (p < 0.05). CONCLUSIONS: Etanercept, a TNF-α inhibitor, may ameliorate sepsis-induced oxidative stress, inflammation, and histopathological damage.
Collapse
Affiliation(s)
- Emre Aydın
- Department of Nephrology, School of Medicine, University of Dicle, Diyarbakır, Turkey
| | - Yaşar Yıldırım
- Department of Nephrology, School of Medicine, University of Dicle, Diyarbakır, Turkey
| | - Fatma Yılmaz Aydın
- Department of Internal Medicine, School of Medicine, University of Dicle, Diyarbakır, Turkey
| | - Mehmet Veysi Bahadır
- Department of General Surgery, School of Medicine, University of Dicle, Diyarbakır, Turkey
| | - İbrahim Kaplan
- Department of Biochemistry, School of Medicine, University of Dicle, Diyarbakır, Turkey
| | - Berfin Kadiroğlu
- Department of Virology, School of Veterinary Medicine, University of Dicle, Diyarbakır, Turkey
| | - Muzaffer Aydın Ketani
- Department of Histology and Embryology, School of Veterinary Medicine, University of Dicle, Diyarbakır, Turkey
| | - Zülfükar Yılmaz
- Department of Nephrology, School of Medicine, University of Dicle, Diyarbakır, Turkey
| | - Ali Kemal Kadiroğlu
- Department of Nephrology, School of Medicine, University of Dicle, Diyarbakır, Turkey
| | - Mehmet Emin Yılmaz
- Department of Nephrology, School of Medicine, University of Dicle, Diyarbakır, Turkey
| |
Collapse
|
32
|
Giustarini G, Vrisekoop N, Kruijssen L, Wagenaar L, van Staveren S, van Roest M, Bleumink R, Bol-Schoenmakers M, Weaver RJ, Koenderman L, Smit J, Pieters R. Trovafloxacin-Induced Liver Injury: Lack in Regulation of Inflammation by Inhibition of Nucleotide Release and Neutrophil Movement. Toxicol Sci 2020; 167:385-396. [PMID: 30247740 DOI: 10.1093/toxsci/kfy244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The fluoroquinolone trovafloxacin (TVX) is associated with a high risk of drug-induced liver injury (DILI). Although part of the liver damage by TVX+TNF relies on neutrophils, we have recently demonstrated that liver recruitment of monocytes and neutrophils is delayed by TVX. Here we show that the delayed leukocyte recruitment is caused by a combination of effects which are linked to the capacity of TVX to block the hemichannel pannexin 1. TVX inhibited find-me signal release in apoptotic HepG2 hepatocytes, decelerated freshly isolated human neutrophils toward IL-8 and f-MLF, and decreased the liver expression of ICAM-1. In blood of TVX+TNF-treated mice, we observed an accumulation of activated neutrophils despite an increased MIP-2 release by the liver. Depletion of monocytes and neutrophils caused increased serum concentrations of TNF, IL-6, and MIP-2 in TVX-treated mice as well as in mice treated with the fluoroquinolone levofloxacin, known to have a lower DILI-inducing profile. This supports the idea that early leukocyte recruitment regulates inflammation. In conclusion, disrupted regulation by leukocytes appears to constitute a fundamental step in the onset of TVX-induced liver injury, acting in concert with the capability of TVX to induce hepatocyte cell death. Interference of leukocyte-mediated regulation of inflammation represents a novel mechanism to explain the onset of DILI.
Collapse
Affiliation(s)
- Giulio Giustarini
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Nienke Vrisekoop
- Department of Respiratory Medicine and Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Laura Kruijssen
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Laura Wagenaar
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Selma van Staveren
- Department of Respiratory Medicine and Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Manon van Roest
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Rob Bleumink
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Marianne Bol-Schoenmakers
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Richard J Weaver
- Institut de Recherches Internationales Servier (I.R.I.S.), Suresnes 92284, France
| | - Leo Koenderman
- Department of Respiratory Medicine and Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Joost Smit
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Raymond Pieters
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
33
|
Rahman A, Henry KM, Herman KD, Thompson AA, Isles HM, Tulotta C, Sammut D, Rougeot JJ, Khoshaein N, Reese AE, Higgins K, Tabor C, Sabroe I, Zuercher WJ, Savage CO, Meijer AH, Whyte MK, Dockrell DH, Renshaw SA, Prince LR. Inhibition of ErbB kinase signalling promotes resolution of neutrophilic inflammation. eLife 2019; 8:50990. [PMID: 31613219 PMCID: PMC6839918 DOI: 10.7554/elife.50990] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Neutrophilic inflammation with prolonged neutrophil survival is common to many inflammatory conditions, including chronic obstructive pulmonary disease (COPD). There are few specific therapies that reverse neutrophilic inflammation, but uncovering mechanisms regulating neutrophil survival is likely to identify novel therapeutic targets. Screening of 367 kinase inhibitors in human neutrophils and a zebrafish tail fin injury model identified ErbBs as common targets of compounds that accelerated inflammation resolution. The ErbB inhibitors gefitinib, CP-724714, erbstatin and tyrphostin AG825 significantly accelerated apoptosis of human neutrophils, including neutrophils from people with COPD. Neutrophil apoptosis was also increased in Tyrphostin AG825 treated-zebrafish in vivo. Tyrphostin AG825 decreased peritoneal inflammation in zymosan-treated mice, and increased lung neutrophil apoptosis and macrophage efferocytosis in a murine acute lung injury model. Tyrphostin AG825 and knockdown of egfra and erbb2 by CRISPR/Cas9 reduced inflammation in zebrafish. Our work shows that inhibitors of ErbB kinases have therapeutic potential in neutrophilic inflammatory disease. Chronic obstructive pulmonary disease (or COPD) is a serious condition that causes the lungs to become inflamed for long periods of time, leading to permanent damage of the airways. Immune cells known as neutrophils promote inflammation after an injury, or during an infection, to aid the healing process. However, if they are active for too long, they may also cause tissue damage and drive inflammatory diseases including COPD. To limit damage to the body, neutrophils usually have a very short lifespan and die by a regulated process known as apoptosis. Finding ways to stimulate apoptosis in neutrophils may be key to developing better treatments for inflammatory diseases. Cells contain many enzymes known as kinases that control apoptosis and other cell processes. Drugs that inhibit specific kinases are effective treatments for some types of cancer and other conditions, and new kinase-inhibiting drugs are currently being developed. However, it remains unclear which kinases regulate apoptosis in neutrophils or which kinase-inhibiting drugs may have the potential to treat COPD and other inflammatory diseases. To address these questions, Rahman et al. tested over 350 kinase-inhibiting drugs to identify ones that promote apoptosis in neutrophils. The experiments showed that human neutrophils treated with drugs that inhibit the ErbB family of kinases died by apoptosis more quickly than untreated neutrophils. Next, Rahman et al. used zebrafish with injured tail fins as models to study inflammation. Zebrafish treated with one of these drugs – known as Tyrphostin AG825 – had lower levels of inflammation and their neutrophils underwent apoptosis more frequently than untreated zebrafish. Since drugs can have off-target effects, Rahman et al. went on to show using gene-editing technology that reducing the activity of two genes that encode ErbB kinases in zebrafish also decreased the levels of inflammation in the fish. Further experiments used mice that develop inflammation in the lungs similar to COPD in humans. As expected, neutrophils in the lungs of mice treated with Tyrphostin AG825 underwent apoptosis more frequently than those in untreated mice. These dead neutrophils were effectively cleared by other immune cells called macrophages, which also helps limit damage caused by neutrophils. Together, these findings show that Tyrphostin AG825 and other drugs that inhibit ErbB kinases help to reduce inflammation by promoting the death of neutrophils. Since several of these drugs are already used to treat human cancers, it may be possible in the future to repurpose them for use in people with COPD and other long-term inflammatory diseases. Determining whether this is possible is an aim for future studies.
Collapse
Affiliation(s)
- Atiqur Rahman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Katherine M Henry
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kimberly D Herman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Alfred Ar Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Hannah M Isles
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Claudia Tulotta
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - David Sammut
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | | | - Nika Khoshaein
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Abigail E Reese
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Kathryn Higgins
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Caroline Tabor
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - William J Zuercher
- SGC-UNC, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Caroline O Savage
- Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline Research and Development Ltd, Stevenage, United Kingdom
| | | | - Moira Kb Whyte
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David H Dockrell
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen A Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Lynne R Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
34
|
Laing AG, Riffo-Vasquez Y, Sharif-Paghaleh E, Lombardi G, Sharpe PT. Immune modulation by apoptotic dental pulp stem cells in vivo. Immunotherapy 2019; 10:201-211. [PMID: 29370720 DOI: 10.2217/imt-2017-0117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) show considerable promise as a cellular immunotherapy for the treatment of a number of autoimmune and inflammatory disorders. However, the precise physiologically and therapeutically relevant mechanism(s) by which MSCs mediate immune modulation remains elusive. Dental pulp stem cells are a readily available source of MSCs that have been reported to show similar immune modulation in vitro as bone marrow MSCs. To test their potential in vivo, we used a clinically relevant humanized mouse model of GvHD in which only human T cells engraft. In this model, we found no effects on either T-cell proliferation, T-cell phenotype or disease progression. To determine if this lack of efficacy was related to a failure of engraftment or persistence of the cells, we used viability dependent radioactive cell tracking and showed that no cells were detectable after 24-h postinjection. Given the apparent failure of MSC to survive following intravenous injection, we hypothesized that their apoptosis may account for the widely reported therapeutic effect in numerous experimental models in vivo. To address this, we employed a well-established model of allergic airway inflammation to compare the efficacy of live and apoptotic MSCs in a fully immunocompetent model. In this model, both live and apoptotic dental pulp MSCs induced a robust immune suppressive reaction that was substantially greater with apoptotic cells. We propose that the mechanism of immune modulation following systemic application of MSCs is a result of cell entrapment and apoptosis occurring in the lungs.
Collapse
Affiliation(s)
- Adam G Laing
- MRC Centre for Transplantation, King's College London, London, UK, SE1 9RT.,Centre for Craniofacial & Regenerative Biology, King's College London, London, UK, SE1 9RT
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | | | - Giovanna Lombardi
- MRC Centre for Transplantation, King's College London, London, UK, SE1 9RT
| | - Paul T Sharpe
- MRC Centre for Transplantation, King's College London, London, UK, SE1 9RT.,Centre for Craniofacial & Regenerative Biology, King's College London, London, UK, SE1 9RT
| |
Collapse
|
35
|
Bonaterra GA, Schwarzbach H, Kelber O, Weiser D, Kinscherf R. Anti-inflammatory effects of Phytodolor® (STW 1) and components (poplar, ash and goldenrod) on human monocytes/macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152868. [PMID: 30831466 DOI: 10.1016/j.phymed.2019.152868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/30/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Populus tremula L. (Poplar), Fraxinus excelsior L. (ash) and Solidago virgaurea L. (goldenrod) have been used for medicinal purposes through centuries, to treat pain, fever and inflammation, but their mechanisms of action are still not fully understood. The present study was performed to investigate, whether the herbal medicinal product Phytodolor® (STW 1) and its components have anti-inflammatory effects on activated human monocytes and differentiated human macrophages to elucidate their modes of action in comparison with well-known analgesic, non-steroidal anti-inflammatory drug (NSAIDs) as diclofenac. METHODS Adherent human monocytes obtained from peripheral blood mononuclear cells (PBMCs) were cultured in serum-free medium and pre-treated with 50-100 µg/ml of diclofenac, STW 1, their components, poplar, ash or goldenrod or its combination (0.05% to 2%). Thereafter, monocytes were activated with 0.1 or 1 µg/ml LPS for 24 h. The intracellular expressions of TNF-α or PTGS2 were determined by cell-based ELISA. Apoptotic cells were identified by YO-PRO-1 staining. Protein or total RNA were isolated to perform SDS-PAGE/Western blot and qRT-PCR analyses. PMA-differentiated human THP-1 macrophages were pre-treated with diclofenac (50 µg/ml) or STW1 (0.1%) and afterwards with LPS (1 µg/ml) and the translocation of the intracellular p62 NF-κB subunit was detected by immunofluorescence. RESULTS STW 1 inhibited the intracellular content of TNF-α and PTGS2 protein, as well as of TNF-α and PTGS2 gene expression and induced apoptosis in LPS-activated human monocytes under serum free conditions. Furthermore, STW 1 inhibited the translocation of the p65 subunit of the redox-regulated NF-κB into the nucleus in LPS-activated human macrophages. CONCLUSION The present in vitro investigations suggest a significant anti-inflammatory activity of STW 1 and its components by inhibiting pro-inflammatory cytokine as TNF-α and the key enzyme PTGS2 in LPS-activated human monocytes, which is, at least partly mediated through the suppression of NF-κB activation. Our results provide evidence for distinctive anti-inflammatory effects of STW 1 and its components on LPS-activated human monocytes/macrophages and, thus, for the therapeutic use of STW 1 in inflammation and pain related disorders.
Collapse
Affiliation(s)
- Gabriel A Bonaterra
- Anatomy und Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany.
| | - Hans Schwarzbach
- Anatomy und Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany
| | - Olaf Kelber
- Innovation and Development, Phytomedicine Supply and Development Centre, Bayer Consumer Health Care, Steigerwald Arzneimittel GmbH, Havelstraße 5, 64295 Darmstadt, Germany
| | - Dieter Weiser
- Innovation and Development, Phytomedicine Supply and Development Centre, Bayer Consumer Health Care, Steigerwald Arzneimittel GmbH, Havelstraße 5, 64295 Darmstadt, Germany
| | - Ralf Kinscherf
- Anatomy und Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany
| |
Collapse
|
36
|
Cartwright JA, Lucas CD, Rossi AG. Inflammation Resolution and the Induction of Granulocyte Apoptosis by Cyclin-Dependent Kinase Inhibitor Drugs. Front Pharmacol 2019; 10:55. [PMID: 30886578 PMCID: PMC6389705 DOI: 10.3389/fphar.2019.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a necessary dynamic tissue response to injury or infection and it's resolution is essential to return tissue homeostasis and function. Defective or dysregulated inflammation resolution contributes significantly to the pathogenesis of many, often common and challenging to treat human conditions. The transition of inflammation to resolution is an active process, involving the clearance of inflammatory cells (granulocytes), a change of mediators and their receptors, and prevention of further inflammatory cell infiltration. This review focuses on the use of cyclin dependent kinase inhibitor drugs to pharmacologically target this inflammatory resolution switch, specifically through inducing granulocyte apoptosis and phagocytic clearance of apoptotic cells (efferocytosis). The key processes and pathways required for granulocyte apoptosis, recruitment of phagocytes and mechanisms of engulfment are discussed along with the cumulating evidence for cyclin dependent kinase inhibitor drugs as pro-resolution therapeutics.
Collapse
Affiliation(s)
- Jennifer A. Cartwright
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Christopher D. Lucas
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Adriano G. Rossi
- Queen's Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Matrine reduces cigarette smoke-induced airway neutrophilic inflammation by enhancing neutrophil apoptosis. Clin Sci (Lond) 2019; 133:551-564. [PMID: 30733313 DOI: 10.1042/cs20180912] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a major incurable global health burden and will become the third largest cause of death in the world by 2030. It is well established that an exaggerated inflammatory and oxidative stress response to cigarette smoke (CS) leads to, emphysema, small airway fibrosis, mucus hypersecretion, and progressive airflow limitation. Current treatments have limited efficacy in inhibiting chronic inflammation and consequently do not reverse the pathology that initiates and drives the long-term progression of disease. In particular, there are no effective therapeutics that target neutrophilic inflammation in COPD, which is known to cause tissue damage by degranulation of a suite of proteolytic enzymes including neutrophil elastase (NE). Matrine, an alkaloid compound extracted from Sophora flavescens Ait, has well known anti-inflammatory activity. Therefore, the aim of the present study was to investigate whether matrine could inhibit CS-induced lung inflammation in mice. Matrine significantly reduced CS-induced bronchoalveolar lavage fluid (BALF) neutrophilia and NE activity in mice. The reduction in BALF neutrophils in CS-exposed mice by matrine was not due to reductions in pro-neutrophil cytokines/chemokines, but rather matrine's ability to cause apoptosis of neutrophils, which we demonstrated ex vivo Thus, our data suggest that matrine has anti-inflammatory actions that could be of therapeutic potential in treating CS-induced lung inflammation observed in COPD.
Collapse
|
38
|
Hilliard KA, Brown CR. Treatment of Borrelia burgdorferi-Infected Mice with Apoptotic Cells Attenuates Lyme Arthritis via PPAR-γ. THE JOURNAL OF IMMUNOLOGY 2019; 202:1798-1806. [PMID: 30700583 DOI: 10.4049/jimmunol.1801179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022]
Abstract
Infection of mice with Borrelia burgdorferi causes an inflammatory arthritis that peaks 3-4 wk postinfection and then spontaneously resolves. Although the recruitment of neutrophils is known to drive the development of arthritis, mechanisms of disease resolution remain unclear. Efficient clearance of apoptotic cells (AC) is likely an important component of arthritis resolution. In this article, we show the number of AC increases in the joints of B. burgdorferi-infected mice around day 21 postinfection and peaks around day 28. Injection of AC directly into the ankles of B. burgdorferi-infected mice limited ankle swelling but had no effect on spirochete clearance or arthritis severity scores. In vitro, addition of AC to bone marrow macrophage cultures decreased B. burgdorferi-induced TNF-α and KC and increased IL-10. In addition, phagocytosis of B. burgdorferi and neutrophil migration to LTB4 were inhibited by AC. Exogenous AC caused an increase in peroxisome proliferator-activated receptor-γ (PPAR-γ) expression both in vitro and in vivo during B. burgdorferi infection. The PPAR-γ agonist rosiglitazone elicited similar changes in macrophage cytokine production and neutrophil migration as exogenous AC. Addition of the PPAR-γ antagonist GW 9662 abrogated the effects of AC in vitro. Injection of rosiglitazone directly into the tibiotarsal joints of B. burgdorferi-infected mice decreased ankle swelling and immune cell recruitment, similar to the injection of AC. These results suggest that clearance of AC plays a role in the resolution of inflammation during experimental Lyme arthritis through the activation of PPAR-γ. PPAR-γ agonists, such as rosiglitazone, may therefore be effective treatments for inducing arthritis resolution.
Collapse
Affiliation(s)
- Kinsey A Hilliard
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211
| | - Charles R Brown
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
39
|
Ebara M. Apoptotic Cell-Mimetic Polymers for Anti-Inflammatory Therapy. Chonnam Med J 2019; 55:1-7. [PMID: 30740334 PMCID: PMC6351328 DOI: 10.4068/cmj.2019.55.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022] Open
Abstract
The field of biomaterials has seen a strong rejuvenation due to the new potential to modulate immune system in our body. This special class of materials is called "immunomodulatory biomaterials". Generally, three fundamental strategies are followed in the design of immunomodulatory biomaterials: (1) immuno-inert biomaterials, (2) immuno-activating biomaterials, and (3) immuno-tolerant biomaterials. While many applications of immuno-inert biomaterials such as biocompatible medical implants have been already proposed in the past decades, the ability to engineer biological activity into synthetic materials greatly increases the number of their potential uses and improves their performance in more traditional applications. The major focus of researchers is now set on developing immuno-tolerant biomaterials for anti-inflammatory therapies. In this review, we therefore introduce recent developments of immuno-tolerant biomaterials. Especially we introduce an apoptotic cell membrane-inspired polymer and its post-inflammatory effects on immune cells in this article.
Collapse
Affiliation(s)
- Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Graduate School of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
40
|
Kabanov DS, Rykov VA, Prokhorenko SV, Murashev AN, Prokhorenko IR. In vivo Proinflammatory Cytokine Production by CD-1 Mice in Response to Equipotential Doses of Rhodobacter capsulatus PG and Salmonella enterica Lipopolysaccharides. BIOCHEMISTRY (MOSCOW) 2018; 83:846-854. [PMID: 30200869 DOI: 10.1134/s0006297918070088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The capacities of relatively nontoxic lipopolysaccharide (LPS) from Rhodobacter capsulatus PG and highly potent LPS from Salmonella enterica serovar Typhimurium to evoke proinflammatory cytokine production have been compared in vivo. Intravenous administration of S. enterica LPS at a relatively low dose (1 mg/kg body weight) led to upregulation of TNF-α, IL-6, and IFN-γ production by non-sensitized CD-1 mice. LPS from R. capsulatus PG used at a four-times higher dose than that from S. enterica elicited production of almost the same amount of systemic TNF-α; therefore, the doses of 4 mg/kg LPS from R. capsulatus PG and 1 mg/kg LPS from S. enterica were considered to be approximately equipotential doses with respect to the LPS-dependent TNF-α production by CD-1 mice. Rhodobacter capsulatus PG LPS was a weaker inducer of the production of TNF-α, IL-6, and IFN-γ, as compared to the equipotential dose of S. enterica LPS. Administration of R. capsulatus PG LPS before S. enterica LPS decreased production of IFN-γ, but not of TNF-α and IL-6, induced by S. enterica LPS. Rhodobacter capsulatus PG LPS also suppressed IFN-γ production induced by S. enterica LPS when R. capsulatus PG LPS had been injected as little as 10 min after S. enterica LPS, but to a much lesser extent. Rhodobacter capsulatus PG LPS did not affect TNF-α and IL-6 production induced by the equipotential dose of S. enterica LPS. In order to draw conclusion on the endotoxic activity of particular LPSs, species-specific structure or arrangement of the animal or human immune systems should be considered.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V A Rykov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - S V Prokhorenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitation, Moscow, 107031, Russia
| | - A N Murashev
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - I R Prokhorenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
41
|
Xi D, Bao T, Chen Q, Chen S, Cheng YC, Cullen J, Frank DA, Friedberg JW, Kronish I, Lee JE, Levine M, Li P, Li S, Lu W, Mao JJ, O'Keefe S, Rubinstein L, Shah MA, Standish L, Paller CJ, Chu E. State of the Science: Cancer Complementary and Alternative Medicine Therapeutics Research-NCI Strategic Workshop Highlights of Discussion Report. J Natl Cancer Inst Monogr 2018; 2017:4617818. [PMID: 29140484 DOI: 10.1093/jncimonographs/lgx003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
In May 2016, the Office of Cancer Complementary and Alternative Medicine, Division of Cancer Diagnosis and Treatment, of the National Cancer Institute convened a special workshop focused on the State of the Science: Cancer Complementary and Alternative Medicine Therapeutics Research. The current state of the science, gaps, and future opportunities were reviewed and discussed by a distinguished panel of experts in this field of research, and the highlights of this meeting are reported herein.
Collapse
Affiliation(s)
- Dan Xi
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Ting Bao
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Qi Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Sushing Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Yung-Chi Cheng
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Joseph Cullen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - David A Frank
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Jonathan W Friedberg
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Ian Kronish
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Jeffrey E Lee
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Mark Levine
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Pingping Li
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Shao Li
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Weidong Lu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Jun J Mao
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Stephen O'Keefe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Larry Rubinstein
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Manish A Shah
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Leanna Standish
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Channing J Paller
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| | - Edward Chu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD; Memorial Sloan Kettering Cancer Center, New York, NY; University of Kansas, Lawrence, KS; University of Florida, Gainsville, FL; Yale University, New Haven, CT; University of Iowa, Iowa City, IA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; University of Rochester Medical Center, Rochester, NY; Columbia University Medical Center, New York, NY; The University of Texas MD Anderson Cancer Center, Houston, TX; Peking University Cancer Hospital, Beijing, China; University of Pittsburgh, Pittsburgh, PA; Weill Cornell Medicine at Cornell University, New York, NY; Bastyr University, Kenmore, WA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; Tsinghua University, Beijing, China
| |
Collapse
|
42
|
Targeting formyl peptide receptors to facilitate the resolution of inflammation. Eur J Pharmacol 2018; 833:339-348. [PMID: 29935171 DOI: 10.1016/j.ejphar.2018.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The formyl peptide receptors (FPRs) are G protein coupled receptors that recognize a broad range of structurally distinct pathogen and danger-associated molecular patterns and mediate host defense to infection and tissue injury. It became evident that the cellular distribution and biological functions of FPRs extend beyond myeloid cells and governing their activation and trafficking. In recent years, significant progress has been made to position FPRs at check points that control the resolution of inflammation, tissue repair and return to homeostasis. Accumulating data indicate a role for FPRs in an ever-increasing range of human diseases, including atherosclerosis, chronic obstructive pulmonary disease, asthma, autoimmune diseases and cancer, in which dysregulated or defective resolution are increasingly recognized as critical component of the pathogenesis. This review summarizes recent advances on how FPRs recognize distinct ligands and integrate opposing cues to govern various responses and will discuss how this knowledge could be harnessed for developing novel therapeutic strategies to counter inflammation that underlies many human diseases.
Collapse
|
43
|
Abstract
Cell death is a perpetual feature of tissue microenvironments; each day under homeostatic conditions, billions of cells die and must be swiftly cleared by phagocytes. However, cell death is not limited to this natural turnover-apoptotic cell death can be induced by infection, inflammation, or severe tissue injury. Phagocytosis of apoptotic cells is thus coupled to specific functions, from the induction of growth factors that can stimulate the replacement of dead cells to the promotion of tissue repair or tissue remodeling in the affected site. In this review, we outline the mechanisms by which phagocytes sense apoptotic cell death and discuss how phagocytosis is integrated with environmental cues to drive appropriate responses.
Collapse
Affiliation(s)
- Lidia Bosurgi
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Bernard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| | - Lindsey D Hughes
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA
| | - Sourav Ghosh
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
44
|
Kim W, Lee HN, Jang JH, Kim SH, Lee YH, Hahn YI, Ngo HKC, Choi Y, Joe Y, Chung HT, Chen Y, Cha YN, Surh YJ. 15-Deoxy-Δ 12,14-Prostaglandin J 2 Exerts Proresolving Effects Through Nuclear Factor E2-Related Factor 2-Induced Expression of CD36 and Heme Oxygenase-1. Antioxid Redox Signal 2017; 27:1412-1431. [PMID: 28398824 DOI: 10.1089/ars.2016.6754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has been shown to rescue cells from inflammatory insults and to participate in the resolution of acute inflammation. In this study, we investigated molecular mechanisms underlying proresolving effects of 15d-PGJ2. RESULTS 15d-PGJ2 injected into the peritoneum of mice facilitated the resolution of zymosan A-induced peritonitis. 15d-PGJ2 administration reduced the number of total leukocytes and attenuated polymorphonuclear leukocyte infiltration. Furthermore, 15d-PGJ2 increased the proportion of macrophages engulfing apoptotic neutrophils, a process called efferocytosis. In addition, when the thioglycollate-elicited mouse peritoneal macrophages were stimulated with 15d-PGJ2, their efferocytic activity was amplified. In another experiment, RAW264.7 murine macrophages exposed to 15d-PGJ2 conducted phagocytic clearance of apoptotic cells to a greater extent than the control cells. Under these conditions, expression of CD36 and heme oxygenase-1 (HO-1) was enhanced along with increased accumulation of the nuclear factor E2-related factor 2 (Nrf2) in the nucleus. Knockdown of Nrf2 abolished 15d-PGJ2-induced expression of CD36 and HO-1, and silencing of CD36 and HO-1 attenuated 15d-PGJ2-induced efferocytosis. Moreover, peritoneal macrophages isolated from Nrf2-null mice failed to upregulate 15d-PGJ2-induced expression of CD36 and HO-1 and to mediate efferocytosis. Unlike 15d-PGJ2, its nonelectrophilic analog 9,10-dihydro-15d-PGJ2 lacking the α,β-unsaturated carbonyl group could not induce CD36 expression and efferocytosis. INNOVATION 15d-PGJ2, as one of the terminal products of cyclooxygenase-2, exerts proresolving effects through induction of efferocytosis. The results of this study suggest that 15d-PGJ2 possesses a therapeutic value in the management of inflammatory disorders. CONCLUSION 15d-PGJ2 facilitates resolution of inflammation by inducing Nrf2-induced expression of CD36 and HO-1 in macrophages. Antioxid. Redox Signal. 27, 1412-1431.
Collapse
Affiliation(s)
- Wonki Kim
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Ha-Na Lee
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Jeong-Hoon Jang
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Seung Hyeon Kim
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Yeon-Hwa Lee
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Young-Il Hahn
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Hoang-Kieu-Chi Ngo
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Yeonseo Choi
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Yeonsoo Joe
- 2 School of Biological Sciences, University of Ulsan , Meta-Inflammation Basic Research Laboratory, Ulsan, Republic of Korea
| | - Hun Taeg Chung
- 2 School of Biological Sciences, University of Ulsan , Meta-Inflammation Basic Research Laboratory, Ulsan, Republic of Korea
| | - Yingqing Chen
- 2 School of Biological Sciences, University of Ulsan , Meta-Inflammation Basic Research Laboratory, Ulsan, Republic of Korea
| | - Young Nam Cha
- 3 Department of Pharmacology and Toxicology, College of Medicine, Inha University , Incheon, Republic of Korea
| | - Young-Joon Surh
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea.,4 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University , Seoul, Republic of Korea.,5 Cancer Research Institute, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
45
|
Kim YB, Yoon YS, Choi YH, Park EM, Kang JL. Interaction of macrophages with apoptotic cells inhibits transdifferentiation and invasion of lung fibroblasts. Oncotarget 2017; 8:112297-112312. [PMID: 29348826 PMCID: PMC5762511 DOI: 10.18632/oncotarget.22737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023] Open
Abstract
The invasion of activated fibroblasts is a key mechanism of tissue fibrosis pathology. The recognition and uptake of apoptotic cells can induce the anti-fibrogenic programming of macrophages. We demonstrate that after interacting with apoptotic cells, macrophages secrete bioactive molecules that antagonize TGF-β1-induced increases in myofibroblast (fibroproliferative) phenotypic markers and reduce the enhanced invasive capacity of TGF-β1- or EGF-treated mouse lung fibroblasts (MLg). Furthermore, numerous treatment strategies prevented the anti-fibrotic effects of conditioned media, including transfection of macrophages with COX-2 or RhoA siRNAs or treatment of MLg cells with receptor antagonists for prostaglandin E2 (PGE2), PGD2, or hepatocyte growth factor (HGF). Additionally, administration of apoptotic cells in vivo inhibited the bleomycin-mediated invasive capacity of primary fibroblasts, as well as adhesion and extracellular matrix protein mRNA expression. These data suggest that the anti-fibrogenic programming of macrophages by apoptotic cells can be used as a novel tool to control the progressive fibrotic reaction.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Young-So Yoon
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Youn-Hee Choi
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Eun-Mi Park
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Jihee Lee Kang
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| |
Collapse
|
46
|
Jie H, He Y, Huang X, Zhou Q, Han Y, Li X, Bai Y, Sun E. Necrostatin-1 enhances the resolution of inflammation by specifically inducing neutrophil apoptosis. Oncotarget 2017; 7:19367-81. [PMID: 27027357 PMCID: PMC4991389 DOI: 10.18632/oncotarget.8346] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022] Open
Abstract
Neutrophils play a central role in innate immunity and are rapidly recruited to sites of infection and injury. Neutrophil apoptosis is essential for the successful resolution of inflammation. Necrostatin-1 (Nec-1,methyl-thiohydantoin-tryptophan (MTH-Trp)), is a potent and specific inhibitor of necroptosis[1] (a newly identified type of cell death representing a form of programmed necrosis or regulated non apoptotic cell death) by inhibiting the receptor interacting protein 1(RIP1) kinase. Here we report that Nec-1 specifically induces caspase-dependent neutrophils apoptosis and overrides powerful anti-apoptosis signaling from survival factors such as GM-CSF and LPS. We showed that Nec-1 markedly enhanced the resolution of established neutrophil-dependent inflammation in LPS-induced acute lung injury in mice. We also provided evidence that Nec-1 promoted apoptosis by reducing the expression of the anti-apoptotic protein Mcl-1 and increasing the expression of pro-apoptotic protein Bax. Thus, Nec-1 is not only an inhibitor of necroptosis, but also a promoter of apoptosis, of neutrophils, enhancing the resolution of established inflammation by inducing apoptosis of inflammatory cells. Our results suggest that Nec-1 may have potential roles for the treatment of diseases with increased or persistent inflammatory responses.
Collapse
Affiliation(s)
- Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
| | - Qingyou Zhou
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
| | - Yanping Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China.,Hospital of South China Normal University, Guangzhou, Guangdong, China
| | - Xing Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
| | - Yongkun Bai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
| |
Collapse
|
47
|
Trahtemberg U, Mevorach D. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells. Front Immunol 2017; 8:1356. [PMID: 29118755 PMCID: PMC5661053 DOI: 10.3389/fimmu.2017.01356] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022] Open
Abstract
Inefficient and abnormal clearance of apoptotic cells (efferocytosis) contributes to systemic autoimmune disease in humans and mice, and inefficient chromosomal DNA degradation by DNAse II leads to systemic polyarthritis and a cytokine storm. By contrast, efficient clearance allows immune homeostasis, generally leads to a non-inflammatory state for both macrophages and dendritic cells (DCs), and contributes to maintenance of peripheral tolerance. As many as 3 × 108 cells undergo apoptosis every hour in our bodies, and one of the primary “eat me” signals expressed by apoptotic cells is phosphatidylserine (PtdSer). Apoptotic cells themselves are major contributors to the “anti-inflammatory” nature of the engulfment process, some by secreting thrombospondin-1 (TSP-1) or adenosine monophosphate and possibly other immune modulating “calm-down” signals that interact with macrophages and DCs. Apoptotic cells also produce “find me” and “tolerate me” signals to attract and immune modulate macrophages and DCs that express specific receptors for some of these signals. Neither macrophages nor DCs are uniform, and each cell type may variably express membrane proteins that function as receptors for PtdSer or for opsonins like complement or opsonins that bind to PtdSer, such as protein S and growth arrest-specific 6. Macrophages and DCs also express scavenger receptors, CD36, and integrins that function via bridging molecules such as TSP-1 or milk fat globule-EGF factor 8 protein and that differentially engage in various multi-ligand interactions between apoptotic cells and phagocytes. In this review, we describe the anti-inflammatory and pro-homeostatic nature of apoptotic cell interaction with the immune system. We do not review some forms of immunogenic cell death. We summarize the known apoptotic cell signaling events in macrophages and DCs that are related to toll-like receptors, nuclear factor kappa B, inflammasome, the lipid-activated nuclear receptors, Tyro3, Axl, and Mertk receptors, as well as induction of signal transducer and activator of transcription 1 and suppressor of cytokine signaling that lead to immune system silencing and DC tolerance. These properties of apoptotic cells are the mechanisms that enable their successful use as therapeutic modalities in mice and humans in various autoimmune diseases, organ transplantation, graft-versus-host disease, and sepsis.
Collapse
Affiliation(s)
- Uriel Trahtemberg
- General Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
48
|
Saas P, Bonnefoy F, Toussirot E, Perruche S. Harnessing Apoptotic Cell Clearance to Treat Autoimmune Arthritis. Front Immunol 2017; 8:1191. [PMID: 29062314 PMCID: PMC5640883 DOI: 10.3389/fimmu.2017.01191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Early-stage apoptotic cells possess immunomodulatory properties. Proper apoptotic cell clearance during homeostasis has been shown to limit subsequent immune responses. Based on these observations, early-stage apoptotic cell infusion has been used to prevent unwanted inflammatory responses in different experimental models of autoimmune diseases or transplantation. Moreover, this approach has been shown to be feasible without any toxicity in patients undergoing allogeneic hematopoietic cell transplantation to prevent graft-versus-host disease. However, whether early-stage apoptotic cell infusion can be used to treat ongoing inflammatory disorders has not been reported extensively. Recently, we have provided evidence that early-stage apoptotic cell infusion is able to control, at least transiently, ongoing collagen-induced arthritis. This beneficial therapeutic effect is associated with the modulation of antigen-presenting cell functions mainly of macrophages and plasmacytoid dendritic cells, as well as the induction of collagen-specific regulatory CD4+ T cells (Treg). Furthermore, the efficacy of this approach is not altered by the association with two standard treatments of rheumatoid arthritis (RA), methotrexate and tumor necrosis factor (TNF) inhibition. Here, in the light of these observations and recent data of the literature, we discuss the mechanisms of early-stage apoptotic cell infusion and how this therapeutic approach can be transposed to patients with RA.
Collapse
Affiliation(s)
- Philippe Saas
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Université Bourgogne Franche-Comté, Besançon, France.,INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center in Biotherapy, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Université Bourgogne Franche-Comté, Besançon, France
| | - Eric Toussirot
- INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center in Biotherapy, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France.,Department of Rheumatology, University Hospital of Besançon, Besançon, France.,Department of Therapeutics, Université Bourgogne Franche-Comté, UPRES EA 4266, Pathogenic Agents and Inflammation, Besancon, France
| | - Sylvain Perruche
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
49
|
Nakagawa Y, Saitou A, Aoyagi T, Naito M, Ebara M. Apoptotic Cell Membrane-Inspired Polymer for Immunosuppression. ACS Macro Lett 2017; 6:1020-1024. [PMID: 35650882 DOI: 10.1021/acsmacrolett.7b00592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Apoptotic cell death serves important roles in homeostasis by eliminating dangerous, damaged, or unnecessary cells without causing an inflammatory response by externalizing phosphatidylserine to the outer leaflet in the phospholipid bilayer. In this study, we newly designed apoptotic cell membrane-inspired monomer and polymer which have the phosphoryl serine group as the anti-inflammatory functional moiety and demonstrate here for the first time that administration of an apoptotic cell membrane-inspired phosphorylserine polymer can protect murine macrophages (RAW 264.7) from lipopolysaccharide-induced inflammation. Interestingly, statistical copolymers with phosphorylcholine monomer that mimicked more precisely the apoptotic cell membrane result in more effective suppression of macrophage activation. This study provides new insights into the rational design of effective polymeric materials for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Yasuhiro Nakagawa
- International
Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, Japan
- Materials
and Science Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, Ibaraki, Japan
| | - Atsuhiro Saitou
- Development
of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Takao Aoyagi
- Department
of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Tokyo, Japan
| | - Masanobu Naito
- Materials
and Science Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, Ibaraki, Japan
- Research
Center for Strategic Materials, National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Mitsuhiro Ebara
- International
Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, Japan
- Materials
and Science Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, Ibaraki, Japan
- Department
of Materials Science and Technology, Graduate School of Industrial
Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
50
|
Bao W, Luo Y, Wang D, Li J, Wu X, Mei W. Sodium salicylate modulates inflammatory responses through AMP-activated protein kinase activation in LPS-stimulated THP-1 cells. J Cell Biochem 2017; 119:850-860. [PMID: 28661045 PMCID: PMC5724678 DOI: 10.1002/jcb.26249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
Sodium salicylate (NaSal) is a nonsteroidal anti-inflammatory drug. The putative mechanisms for NaSal's pharmacologic actions include the inhibition of cyclooxygenases, platelet-derived thromboxane A2, and NF-κB signaling. Recent studies demonstrated that salicylate could activate AMP-activated protein kinase (AMPK), an energy sensor that maintains the balance between ATP production and consumption. The anti-inflammatory action of AMPK has been reported to be mediated by promoting mitochondrial biogenesis and fatty acid oxidation. However, the exact signals responsible for salicylate-mediated inflammation through AMPK are not well-understood. In the current study, we examined the potential effects of NaSal on inflammation-like responses of THP-1 monocytes to lipopolysaccharide (LPS) challenge. THP-1 cells were stimulated with or without 10 ug/mL LPS for 24 h in the presence or absence of 5 mM NaSal. Apoptosis was measured by flow cytometry using Annexin V/PI staining and by Western blotting for the Bcl-2 anti-apoptotic protein. Cell proliferation was detected by EdU incorporation and by Western blot analysis for proliferating cell nuclear antigen (PCNA). Secretion of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) was determined by enzyme-linked immunosorbent assay (ELISA). We observed that the activation of AMPK by NaSal was accompanied by induction of apoptosis, inhibition of cell proliferation, and increasing secretion of TNF-α and IL-1β. These effects were reversed by Compound C, an inhibitor of AMPK. In addition, NaSal/AMPK activation inhibited LPS-induced STAT3 phosphorylation, which was reversed by Compound C treatment. We conclude that AMPK activation is important for NaSal-mediated inflammation by inducing apoptosis, reducing cell proliferation, inhibiting STAT3 activity, and producing TNF-α and IL-1β.
Collapse
Affiliation(s)
- Weiwei Bao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Anesthesiology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Yaru Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, Hubei, China
| | - Dan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Anesthesiology, Shenzhen Second People's Hospital, Guangdong Province, Shenzhen, China
| | - Xi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|