1
|
Schmieder H, Leischner C, Piotrowsky A, Marongiu L, Venturelli S, Burkard M. Exploring the link between fat-soluble vitamins and aging-associated immune system status: a literature review. Immun Ageing 2025; 22:8. [PMID: 39962579 PMCID: PMC11831837 DOI: 10.1186/s12979-025-00501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
The importance of vitamin D for a well-functioning immune system is becoming increasingly evident. Nevertheless, the other fat-soluble vitamins A, E and K also seem to play a central role regarding the adequate function of immune cells and to counteract excessive immune reactions and inflammatory processes. However, recognizing hidden hunger, particularly micronutrient deficiencies in vulnerable groups like the elderly, is crucial because older adults often lack sufficient micronutrients for various reasons. This review summarizes the latest findings on the immune modulating functions of fat-soluble vitamins in a physiological and pathophysiological context, provides a graphical comparison of the Recommended Daily Allowances between Deutschland, Austria, Confoederatio Helvetica (D-A-CH; eng. GSA, Germany, Switzerland, Austria), Deutsche Gesellschaft für Ernährung (DGE; eng. German Nutrition Society) and National Institutes of Health (NIH) across all age groups and, in particular, addresses the question regarding the benefits of supplementation of the respective micronutrients for the aging population of industrialized nations to strengthen the immune system. The following review highlights the importance of fat-soluble vitamins A, D, E and K which play critical roles in maintaining immune system function and, in some cases, in preventing excessive immune activation. Therefore, a better understanding of the relevance of adequate blood levels and consequently potential supplementation strategies may contribute to the prevention and management of infectious diseases as well as better overall health of the elderly.
Collapse
Affiliation(s)
- Hendrik Schmieder
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany.
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, Tuebingen, 72074, Germany.
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany.
| |
Collapse
|
2
|
White E, Papagno L, Samri A, Sugata K, Hejblum B, Henry AR, Rogan DC, Darko S, Recordon-Pinson P, Dudoit Y, Llewellyn-Lacey S, Chakrabarti LA, Buseyne F, Migueles SA, Price DA, Andreola MA, Satou Y, Thiebaut R, Katlama C, Autran B, Douek DC, Appay V. Clonal succession after prolonged antiretroviral therapy rejuvenates CD8 + T cell responses against HIV-1. Nat Immunol 2024; 25:1555-1564. [PMID: 39179934 DOI: 10.1038/s41590-024-01931-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/15/2024] [Indexed: 08/26/2024]
Abstract
Human immunodeficiency virus 1 (HIV-1) infection is characterized by a dynamic and persistent state of viral replication that overwhelms the host immune system in the absence of antiretroviral therapy (ART). The impact of prolonged treatment on the antiviral efficacy of HIV-1-specific CD8+ T cells has nonetheless remained unknown. Here, we used single-cell technologies to address this issue in a cohort of aging individuals infected early during the pandemic and subsequently treated with continuous ART. Our data showed that long-term ART was associated with a process of clonal succession, which effectively rejuvenated HIV-1-specific CD8+ T cell populations in the face of immune senescence. Tracking individual transcriptomes further revealed that initially dominant CD8+ T cell clonotypes displayed signatures of exhaustion and terminal differentiation, whereas newly dominant CD8+ T cell clonotypes displayed signatures of early differentiation and stemness associated with natural control of viral replication. These findings reveal a degree of immune resilience that could inform adjunctive treatments for HIV-1.
Collapse
Affiliation(s)
- Eoghann White
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Laura Papagno
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France
| | - Assia Samri
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Boris Hejblum
- Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Rogan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Recordon-Pinson
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France
| | - Yasmine Dudoit
- Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Lisa A Chakrabarti
- CIVIC Group, Virus and Immunity Unit, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
| | - Florence Buseyne
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
| | - Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Marie-Aline Andreola
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Rodolphe Thiebaut
- Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Christine Katlama
- Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France
| | - Brigitte Autran
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victor Appay
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France.
| |
Collapse
|
3
|
Cabral-Piccin MP, Briceño O, Papagno L, Liouville B, White E, Perdomo-Celis F, Autaa G, Volant S, Llewellyn-Lacey S, Fromentin R, Chomont N, Price DA, Sáez-Cirión A, Lambotte O, Katlama C, Appay V. CD8 + T-cell priming is quantitatively but not qualitatively impaired in people with HIV-1 on antiretroviral therapy. AIDS 2024; 38:161-166. [PMID: 37800637 DOI: 10.1097/qad.0000000000003746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND The induction of de novo CD8 + T-cell responses is essential for protective antiviral immunity, but this process is often impaired in people with HIV-1 (PWH). We investigated the extent to which the immune competence of naive CD8 + T cells, a key determinant of priming efficacy, could be preserved or restored in PWH via long-term antiretroviral therapy (ART). METHODS We used flow cytometry, molecular analyses of gene transcription and telomere length, and a fully validated priming assay to characterize naive CD8 + T cells ex vivo and evaluate the induction of antigen-specific effector/memory CD8 + T cells in vitro , comparing age-matched healthy uninfected donors (HUDs), PWH on ART, and natural HIV-1 controllers (HICs). RESULTS We found that naive CD8 + T cells were numerically reduced and exhibited a trend toward shorter telomere lengths in PWH on ART compared with HUDs and HICs. These features associated with impaired priming efficacy. However, we also found that naive CD8 + T cells were fully equipped proliferatively and transcriptionally in PWH on ART, enabling the generation of antigen-specific effector/memory CD8 + T cells with functional and phenotypic attributes comparable to those primed from HUDs. CONCLUSION Our data suggest that naive CD8 + T cells in PWH on ART are intrinsically capable of generating functionally and phenotypically intact effector/memory CD8 + T cells in response to antigen, despite evidence of senescence and an overall numerical reduction that compromises priming efficacy relative to HUDs and HICs.
Collapse
Affiliation(s)
- Mariela P Cabral-Piccin
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivia Briceño
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, Mexico City, Mexico
| | - Laura Papagno
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Benjamin Liouville
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | | | - Gaëlle Autaa
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
| | - Stevenn Volant
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Unité HIV Inflammation et Persistance
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris
| | - Olivier Lambotte
- Université Paris-Saclay, AP-HP Hôpitaux Universitaires Paris Saclay, Service de Médecine Interne, Bicêtre (UMR 1184), CEA (IDMIT Department, IBFJ), INSERM, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Le Kremlin Bicêtre
| | - Christine Katlama
- Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM 1136, Sorbonne Université, Paris, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, Bordeaux
- Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
4
|
Schmit MM, Baxley RM, Wang L, Hinderlie P, Kaufman M, Simon E, Raju A, Miller JS, Bielinsky AK. A critical threshold of MCM10 is required to maintain genome stability during differentiation of induced pluripotent stem cells into natural killer cells. Open Biol 2024; 14:230407. [PMID: 38262603 PMCID: PMC10805602 DOI: 10.1098/rsob.230407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 01/25/2024] Open
Abstract
Natural killer (NK) cell deficiency (NKD) is a rare disease in which NK cell function is reduced, leaving affected individuals susceptible to repeated viral infections and cancer. Recently, a patient with NKD was identified carrying compound heterozygous variants of MCM10 (minichromosome maintenance protein 10), an essential gene required for DNA replication, that caused a significant decrease in the amount of functional MCM10. NKD in this patient presented as loss of functionally mature late-stage NK cells. To understand how MCM10 deficiency affects NK cell development, we generated MCM10 heterozygous (MCM10+/-) induced pluripotent stem cell (iPSC) lines. Analyses of these cell lines demonstrated that MCM10 was haploinsufficient, similar to results in other human cell lines. Reduced levels of MCM10 in mutant iPSCs was associated with impaired clonogenic survival and increased genomic instability, including micronuclei formation and telomere erosion. The severity of these phenotypes correlated with the extent of MCM10 depletion. Significantly, MCM10+/- iPSCs displayed defects in NK cell differentiation, exhibiting reduced yields of hematopoietic stem cells (HSCs). Although MCM10+/- HSCs were able to give rise to lymphoid progenitors, these did not generate mature NK cells. The lack of mature NK cells coincided with telomere erosion, suggesting that NKD caused by these MCM10 variants arose from the accumulation of genomic instability including degradation of chromosome ends.
Collapse
Affiliation(s)
- Megan M. Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan M. Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Emily Simon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anjali Raju
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Zhong X, Chen J, Wen B, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Xiao Z. Potential role of mesenchymal stem cells in T cell aging. J Mol Med (Berl) 2023; 101:1365-1378. [PMID: 37750918 DOI: 10.1007/s00109-023-02371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Immunosenescence occurs with progressive age. T cell aging is manifested by immunodeficiency and inflammation. The main mechanisms are thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, loss of protein stability, reduction of T cell receptor (TCR) repertoire, naïve-memory T cell ratio imbalance, T cell senescence, and lack of effector plasticity. Mesenchymal stem cells (MSCs) are thought to hold great potential as anti-aging therapy. However, the role of MCSs in T cell aging remains elusive. This review makes a tentative summary of the potential role of MSCs in the protection against T cell aging. It might provide a new idea to intervene in the aging of the immune system.
Collapse
Affiliation(s)
- Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, People's Hospital of Nanbu County, Nanchong, 637300, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Bo Wen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Bevilacqua A, Ho PC, Franco F. Metabolic reprogramming in inflammaging and aging in T cells. LIFE METABOLISM 2023; 2:load028. [PMID: 39872627 PMCID: PMC11749375 DOI: 10.1093/lifemeta/load028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 01/30/2025]
Abstract
Aging represents an emerging challenge for public health due to the declined immune responses against pathogens, weakened vaccination efficacy, and disturbed tissue homeostasis. Metabolic alterations in cellular and systemic levels are also known to be cardinal features of aging. Moreover, cellular metabolism has emerged to provide regulations to guide immune cell behavior via modulations on signaling cascades and epigenetic landscape, and the aberrant aging process in immune cells can lead to inflammaging, a chronic and low-grade inflammation that facilitates aging by perturbing homeostasis in tissues and organs. Here, we review how the metabolic program in T cells is influenced by the aging process and how aged T cells modulate inflammaging. In addition, we discuss the potential approaches to reverse or ameliorate aging by rewiring the metabolic programming of immune cells.
Collapse
Affiliation(s)
- Alessio Bevilacqua
- Department of Fundamental Oncology, University of Lausanne, 1007 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, 1007 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Fabien Franco
- Department of Fundamental Oncology, University of Lausanne, 1007 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
7
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Marton C, Minaud A, Coupet CA, Chauvin M, Dhiab J, Vallet H, Boddaert J, Kehrer N, Bastien B, Inchauspe G, Barraud L, Sauce D. IL-7 producing immunotherapy improves ex vivo T cell functions of immunosenescent patients, especially post hip fracture. Hum Vaccin Immunother 2023; 19:2232247. [PMID: 37417353 PMCID: PMC10332238 DOI: 10.1080/21645515.2023.2232247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Following acute stress such as trauma or sepsis, most of critically ill elderly patients become immunosuppressed and susceptible to secondary infections and enhanced mortality. We have developed a virus-based immunotherapy encoding human interleukin-7 (hIL-7) aiming at restoring both innate an adaptative immune homeostasis in these patients. We assessed the impact of this encoded hIL-7 on the ex vivo immune functions of T cells from PBMC of immunosenescent patients with or without hip fracture. T-cell ex vivo phenotyping was characterized in terms of senescence (CD57), IL-7 receptor (CD127) expression, and T cell differentiation profile. Then, post stimulation, activation status, and functionality (STAT5/STAT1 phosphorylation and T cell proliferation assays) were evaluated by flow cytometry. Our data show that T cells from both groups display immunosenescence features, express CD127 and are activated after stimulation by virotherapy-produced hIL-7-Fc. Interestingly, hip fracture patients exhibit a unique functional ability: An important T cell proliferation occurred compared to controls following stimulation with hIL-7-Fc. In addition, stimulation led to an increased naïve T cell as well as a decreased effector memory T cell proportions compared to controls. This preliminary study indicates that the produced hIL-7-Fc is well recognized by T cells and initiates IL-7 signaling through STAT5 and STAT1 phosphorylation. This signaling efficiently leads to T cell proliferation and activation and enables a T cell "rejuvenation." These results are in favor of the clinical development of the hIL-7-Fc expressing virotherapy to restore or induce immune T cell responses in immunosenescent hip fracture patients.
Collapse
Affiliation(s)
- Chrystel Marton
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
- ImmmunResQ Department, Transgene, Lyon, France
| | - Alix Minaud
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| | | | - Manon Chauvin
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| | - Jamila Dhiab
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| | - Hélène Vallet
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Unité de Gériatrie Aigue, Paris, France
| | - Jacques Boddaert
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpétrière, Unité périopératoire gériatrique, Paris, France
| | | | | | | | - Luc Barraud
- ImmmunResQ Department, Transgene, Lyon, France
| | - Delphine Sauce
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| |
Collapse
|
9
|
Gensous N, White E, Appay V. [Do T cells have a potentially unlimited replication capacity?]. Med Sci (Paris) 2023; 39:609-611. [PMID: 37695148 DOI: 10.1051/medsci/2023100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Affiliation(s)
- Noémie Gensous
- Université de Bordeaux, CNRS UMR 5164, Inserm ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, Inserm ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, Inserm ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| |
Collapse
|
10
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Liu S, Nong W, Ji L, Zhuge X, Wei H, Luo M, Zhou L, Chen S, Zhang S, Lei X, Huang H. The regulatory feedback of inflammatory signaling and telomere/telomerase complex dysfunction in chronic inflammatory diseases. Exp Gerontol 2023; 174:112132. [PMID: 36849001 DOI: 10.1016/j.exger.2023.112132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Inflammation is believed to play a role in the progression of numerous human diseases. Research has shown that inflammation and telomeres are involved in a feedback regulatory loop: inflammation increases the rate of telomere attrition, leading to telomere dysfunction, while telomere components also participate in regulating the inflammatory response. However, the specific mechanism behind this feedback loop between inflammatory signaling and telomere/telomerase complex dysfunction has yet to be fully understood. This review presents the latest findings on this topic, with a particular focus on the detailed regulation and molecular mechanisms involved in the progression of aging, various chronic inflammatory diseases, cancers, and different stressors. Several feedback loops between inflammatory signaling and telomere/telomerase complex dysfunction, including NF-κB-TERT feedback, NF-κB-RAP1 feedback, NF-κB-TERC feedback, STAT3-TERT feedback, and p38 MAPK-shelterin complex-related gene feedback, are summarized. Understanding the latest discoveries of this feedback regulatory loop can help identify novel potential drug targets for the suppression of various inflammation-associated diseases.
Collapse
Affiliation(s)
- Shun Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Weihua Nong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533300, China
| | - Lin Ji
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China
| | - Xiuhong Zhuge
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Huimei Wei
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Min Luo
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Leguang Zhou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shenghua Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Shun Zhang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China.
| |
Collapse
|
12
|
Willemsen M, Staels F, Gerbaux M, Neumann J, Schrijvers R, Meyts I, Humblet-Baron S, Liston A. DNA replication-associated inborn errors of immunity. J Allergy Clin Immunol 2023; 151:345-360. [PMID: 36395985 DOI: 10.1016/j.jaci.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Inborn errors of immunity are a heterogeneous group of monogenic immunologic disorders caused by mutations in genes with critical roles in the development, maintenance, or function of the immune system. The genetic basis is frequently a mutation in a gene with restricted expression and/or function in immune cells, leading to an immune disorder. Several classes of inborn errors of immunity, however, result from mutation in genes that are ubiquitously expressed. Despite the genes participating in cellular processes conserved between cell types, immune cells are disproportionally affected, leading to inborn errors of immunity. Mutations in DNA replication, DNA repair, or DNA damage response factors can result in monogenic human disease, some of which are classified as inborn errors of immunity. Genetic defects in the DNA repair machinery are a well-known cause of T-B-NK+ severe combined immunodeficiency. An emerging class of inborn errors of immunity is those caused by mutations in DNA replication factors. Considerable heterogeneity exists within the DNA replication-associated inborn errors of immunity, with diverse immunologic defects and clinical manifestations observed. These differences are suggestive for differential sensitivity of certain leukocyte subsets to deficiencies in specific DNA replication factors. Here, we provide an overview of DNA replication-associated inborn errors of immunity and discuss the emerging mechanistic insights that can explain the observed immunologic heterogeneity.
Collapse
Affiliation(s)
- Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
| | - Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julika Neumann
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium; ERN-RITA Core Center Member, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium.
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge.
| |
Collapse
|
13
|
Han S, Georgiev P, Ringel AE, Sharpe AH, Haigis MC. Age-associated remodeling of T cell immunity and metabolism. Cell Metab 2023; 35:36-55. [PMID: 36473467 PMCID: PMC10799654 DOI: 10.1016/j.cmet.2022.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Aging results in remodeling of T cell immunity and is associated with poor clinical outcomes in age-related diseases such as cancer. Among the hallmarks of aging, changes in host and cellular metabolism critically affect the development, maintenance, and function of T cells. Although metabolic perturbations impact anti-tumor T cell responses, the link between age-associated metabolic dysfunction and anti-tumor immunity remains unclear. In this review, we summarize recent advances in our understanding of aged T cell metabolism, with a focus on the bioenergetic and immunologic features of T cell subsets unique to the aging process. We also survey insights into mechanisms of metabolic T cell dysfunction in aging and discuss the impacts of aging on the efficacy of cancer immunotherapy. As the average life expectancy continues to increase, understanding the interplay between age-related metabolic reprogramming and maladaptive T cell immunity will be instrumental for the development of therapeutic strategies for older patients.
Collapse
Affiliation(s)
- SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alison E Ringel
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Belić M, Sopić M, Roksandić-Milenković M, Ćeriman V, Guzonijić A, Vukašinović A, Ostanek B, Dimić N, Jovanović D, Kotur-Stevuljević J. Correlation of Short Leukocyte Telomeres and Oxidative Stress with the Presence and Severity of Lung Cancer Explored by Principal Component Analysis. Folia Biol (Praha) 2023; 69:59-68. [PMID: 38063002 DOI: 10.14712/fb2023069020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Lung cancer (LC) is the second most common malignancy and leading cause of cancer death. The potential "culprit" for local and systemic telomere shortening in LC patients is oxidative stress. We investigated the correlation between the peripheral blood leukocyte (PBL) telomere length (TL) and the presence/severity of LC and oxidative stress, and its usefulness as LC diagnostic marker. PBL TL was measured in 89 LC patients and 83 healthy subjects using the modified Cawthon RTq-PCR method. The relative PBL TL, found to be a potential diagnostic marker for LC with very good accuracy (P < 0.001), was significantly shorter in patients compared to the control group (CG) (P < 0.001). Significantly shorter telomeres were found in patients with LC TNM stage IV than in patients with stages I-III (P = 0.014), in patients without therapy compared to those on therapy (P = 0.008), and in patients with partial response and stable/progressive disease compared to those with complete response (P = 0.039). The total oxidant status (TOS), advanced oxidation protein products (AOPP), prooxidant-antioxidant balance (PAB) and C-reactive protein (CRP) were significantly higher in patients compared to CG (P < 0.001) and correlated negatively with TL in both patients and CG (P < 0.001). PCA showed a relation between PAB and TL, and between the EGFR status and TL. Oxidative stress and PBL telomere shortening are probably associated with LC development and progression.
Collapse
Affiliation(s)
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Serbia.
| | | | - Vesna Ćeriman
- Institute for Lung Diseases, Thoracic Surgery and Tuberculosis, Clinical Center of Serbia, Belgrade, Serbia
| | - Azra Guzonijić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Aleksandra Vukašinović
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Nemanja Dimić
- University Clinical-Hospital Center Dr. Dragisa Misovic, Belgrade, Serbia
| | | | | |
Collapse
|
15
|
Ruder J, Docampo MJ, Rex J, Obahor S, Naghavian R, Müller AM, Schanz U, Jelcic I, Martin R. Dynamics of T cell repertoire renewal following autologous hematopoietic stem cell transplantation in multiple sclerosis. Sci Transl Med 2022; 14:eabq1693. [DOI: 10.1126/scitranslmed.abq1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Autologous hematopoietic stem cell transplantation (aHSCT) is a highly effective treatment of multiple sclerosis (MS). It depletes autoreactive cells and subsequently renews adaptive immune cells. The possible proinflammatory potential of surviving T cells early after aHSCT has not been studied. Here, we examined the dynamics of new and surviving T cells in 27 patients after aHSCT by multidimensional flow cytometry, T cell receptor (TCR) sequencing, specificity testing, telomere length profiling, and HLA genotyping. Early after aHSCT, naïve T cells are barely detectable, whereas effector memory (EM) T cells quickly reconstitute to pre-aHSCT values. EM CD4+T cells early after aHSCT have shorter telomeres, have higher expression of senescence and exhaustion markers, and proliferate less than those before aHSCT. We find a median TCR repertoire overlap of 26% between the early post-aHSCT EM CD4+T cells and pre-aHSCT, indicating persistence of EM CD4+T cells early after transplantation. The EM CD4+TCR repertoire overlap declines to 15% at 12 months after aHSCT, whereas the naïve TCR repertoire entirely renews. HLA-DR–associated EM CD4+T cell reactivity toward MS-related antigens decreased after aHSCT, whereas reactivity toward EBV increased. Our data show substantial survival of pre-aHSCT EM CD4+T cells early after transplantation but complete renewal of the T cell repertoire by nascent T cells later.
Collapse
Affiliation(s)
- Josefine Ruder
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - María José Docampo
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jordan Rex
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Simon Obahor
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Reza Naghavian
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Antonia M.S. Müller
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
16
|
Chappert P, Huetz F, Espinasse MA, Chatonnet F, Pannetier L, Da Silva L, Goetz C, Mégret J, Sokal A, Crickx E, Nemazanyy I, Jung V, Guerrera C, Storck S, Mahévas M, Cosma A, Revy P, Fest T, Reynaud CA, Weill JC. Human anti-smallpox long-lived memory B cells are defined by dynamic interactions in the splenic niche and long-lasting germinal center imprinting. Immunity 2022; 55:1872-1890.e9. [PMID: 36130603 PMCID: PMC7613742 DOI: 10.1016/j.immuni.2022.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022]
Abstract
Memory B cells (MBCs) can persist for a lifetime, but the mechanisms that allow their long-term survival remain poorly understood. Here, we isolated and analyzed human splenic smallpox/vaccinia protein B5-specific MBCs in individuals who were vaccinated more than 40 years ago. Only a handful of clones persisted over such an extended period, and they displayed limited intra-clonal diversity with signs of extensive affinity-based selection. These long-lived MBCs appeared enriched in a CD21hiCD20hi IgG+ splenic B cell subset displaying a marginal-zone-like NOTCH/MYC-driven signature, but they did not harbor a unique longevity-associated transcriptional or metabolic profile. Finally, the telomeres of B5-specific, long-lived MBCs were longer than those in patient-paired naive B cells in all the samples analyzed. Overall, these results imply that separate mechanisms such as early telomere elongation, affinity selection during the contraction phase, and access to a specific niche contribute to ensuring the functional longevity of MBCs.
Collapse
Affiliation(s)
- Pascal Chappert
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Inovarion, Paris, France; Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, équipe 2, Université Paris-Est Créteil (UPEC), Créteil, France.
| | - François Huetz
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Institut Pasteur, Université Paris Cité, Unité Anticorps en thérapie et pathologie, UMR 1222 INSERM, Paris, France
| | - Marie-Alix Espinasse
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Fabrice Chatonnet
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France; Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Louise Pannetier
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Lucie Da Silva
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Clara Goetz
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Jérome Mégret
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Aurélien Sokal
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Etienne Crickx
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Ivan Nemazanyy
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Vincent Jung
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Chiara Guerrera
- Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Sébastien Storck
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Matthieu Mahévas
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France; Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, équipe 2, Université Paris-Est Créteil (UPEC), Créteil, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Antonio Cosma
- Translational Medicine Operations Hub, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Labellisé Ligue Nationale contre le Cancer, Imagine Institute, Université Paris Cité, Paris, France
| | - Thierry Fest
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France; Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France.
| | - Jean-Claude Weill
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France.
| |
Collapse
|
17
|
Valeri A, García-Ortiz A, Castellano E, Córdoba L, Maroto-Martín E, Encinas J, Leivas A, Río P, Martínez-López J. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front Immunol 2022; 13:953849. [PMID: 35990652 PMCID: PMC9381932 DOI: 10.3389/fimmu.2022.953849] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the impressive results of autologous CAR-T cell therapy in refractory B lymphoproliferative diseases, CAR-NK immunotherapy emerges as a safer, faster, and cost-effective approach with no signs of severe toxicities as described for CAR-T cells. Permanently scrutinized for its efficacy, recent promising data in CAR-NK clinical trials point out the achievement of deep, high-quality responses, thus confirming its potential clinical use. Although CAR-NK cell therapy is not significantly affected by the loss or downregulation of its CAR tumor target, as in the case of CAR-T cell, a plethora of common additional tumor intrinsic or extrinsic mechanisms that could also disable NK cell function have been described. Therefore, considering lessons learned from CAR-T cell therapy, the emergence of CAR-NK cell therapy resistance can also be envisioned. In this review we highlight the processes that could be involved in its development, focusing on cytokine addiction and potential fratricide during manufacturing, poor tumor trafficking, exhaustion within the tumor microenvironment (TME), and NK cell short in vivo persistence on account of the limited expansion, replicative senescence, and rejection by patient’s immune system after lymphodepletion recovery. Finally, we outline new actively explored alternatives to overcome these resistance mechanisms, with a special emphasis on CRISPR/Cas9 mediated genetic engineering approaches, a promising platform to optimize CAR-NK cell function to eradicate refractory cancers.
Collapse
Affiliation(s)
- Antonio Valeri
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eva Castellano
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Maroto-Martín
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jessica Encinas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Leivas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Joaquín Martínez-López,
| |
Collapse
|
18
|
Wang Y, Dong C, Han Y, Gu Z, Sun C. Immunosenescence, aging and successful aging. Front Immunol 2022; 13:942796. [PMID: 35983061 PMCID: PMC9379926 DOI: 10.3389/fimmu.2022.942796] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Aging induces a series of immune related changes, which is called immunosenescence, playing important roles in many age-related diseases, especially neurodegenerative diseases, tumors, cardiovascular diseases, autoimmune diseases and coronavirus disease 2019(COVID-19). However, the mechanism of immunosenescence, the association with aging and successful aging, and the effects on diseases are not revealed obviously. In order to provide theoretical basis for preventing or controlling diseases effectively and achieve successful aging, we conducted the review and found that changes of aging-related phenotypes, deterioration of immune organ function and alterations of immune cell subsets participated in the process of immunosenescence, which had great effects on the occurrence and development of age-related diseases.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yudian Han
- Information Center, The First People’s Hospital of Nantong City, Nantong, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| |
Collapse
|
19
|
Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, Sharma A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022; 11:cells11061017. [PMID: 35326467 PMCID: PMC8947539 DOI: 10.3390/cells11061017] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the greatest risk factor for nearly all major chronic diseases, including cardiovascular diseases, cancer, Alzheimer’s and other neurodegenerative diseases of aging. Age-related impairment of immune function (immunosenescence) is one important cause of age-related morbidity and mortality, which may extend beyond its role in infectious disease. One aspect of immunosenescence that has received less attention is age-related natural killer (NK) cell dysfunction, characterized by reduced cytokine secretion and decreased target cell cytotoxicity, accompanied by and despite an increase in NK cell numbers with age. Moreover, recent studies have revealed that NK cells are the central actors in the immunosurveillance of senescent cells, whose age-related accumulation is itself a probable contributor to the chronic sterile low-grade inflammation developed with aging (“inflammaging”). NK cell dysfunction is therefore implicated in the increasing burden of infection, malignancy, inflammatory disorders, and senescent cells with age. This review will focus on recent advances and open questions in understanding the interplay between systemic inflammation, senescence burden, and NK cell dysfunction in the context of aging. Understanding the factors driving and enforcing NK cell aging may potentially lead to therapies countering age-related diseases and underlying drivers of the biological aging process itself.
Collapse
Affiliation(s)
- Ashley Brauning
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Michael Rae
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Gina Zhu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Elena Fulton
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Tesfahun Dessale Admasu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence: (A.S.); (A.S.)
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
20
|
Guerrero A, De Strooper B, Arancibia-Cárcamo IL. Cellular senescence at the crossroads of inflammation and Alzheimer's disease. Trends Neurosci 2021; 44:714-727. [PMID: 34366147 DOI: 10.1016/j.tins.2021.06.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Aging is a key risk factor for Alzheimer's disease (AD), but the reasons for this association are not well understood. Senescent cells accumulate in aged tissues and have been shown to play causal roles in age-related pathologies through their proinflammatory secretome. The question arises whether senescence-induced inflammation might contribute to AD and bridge the gap between aging and AD. Here, we highlight the role of cellular senescence as a driver of the aging phenotype, and discuss the current evidence that connects senescence with AD and neurodegeneration.
Collapse
Affiliation(s)
- Ana Guerrero
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Bart De Strooper
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK; The Francis Crick Institute, London NW1 1AT, UK; Department of Neurosciences, Leuven Brain Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Centre for Brain and Disease Research, Leuven, Belgium
| | - I Lorena Arancibia-Cárcamo
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK; The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
21
|
Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol 2021; 22:687-698. [PMID: 33986548 DOI: 10.1038/s41590-021-00927-z] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The aged adaptive immune system is characterized by progressive dysfunction as well as increased autoimmunity. This decline is responsible for elevated susceptibility to infection and cancer, as well as decreased vaccination efficacy. Recent evidence indicates that CD4+ T cell-intrinsic alteratins contribute to chronic inflammation and are sufficient to accelerate an organism-wide aging phenotype, supporting the idea that T cell aging plays a major role in body-wide deterioration. In this Review, we propose ten molecular hallmarks to represent common denominators of T cell aging. These hallmarks are grouped into four primary hallmarks (thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, and loss of proteostasis) and four secondary hallmarks (reduction of the TCR repertoire, naive-memory imbalance, T cell senescence, and lack of effector plasticity), and together they explain the manifestation of the two integrative hallmarks (immunodeficiency and inflammaging). A major challenge now is weighing the relative impact of these hallmarks on T cell aging and understanding their interconnections, with the final goal of defining molecular targets for interventions in the aging process.
Collapse
Affiliation(s)
- Maria Mittelbrunn
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
22
|
Merz MP, Turner JD. Is early life adversity a trigger towards inflammageing? Exp Gerontol 2021; 150:111377. [PMID: 33905877 DOI: 10.1016/j.exger.2021.111377] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
There are many 'faces' of early life adversity (ELA), such as childhood trauma, institutionalisation, abuse or exposure to environmental toxins. These have been implicated in the onset and severity of a wide range of chronic non-communicable diseases later in life. The later-life disease risk has a well-established immunological component. This raises the question as to whether accelerated immune-ageing mechanistically links early-life adversity to the lifelong health trajectory resulting in either 'poor' or 'healthy' ageing. Here we examine observational and mechanistic studies of ELA and inflammageing, highlighting common and distinct features in these two life stages. Many biological processes appear in common including reduction in telomere length, increased immunosenescence, metabolic distortions and chronic (viral) infections. We propose that ELA shapes the developing immune, endocrine and nervous system in a non-reversible way, creating a distinct phenotype with accelerated immunosenescence and systemic inflammation. We conclude that ELA might act as an accelerator for inflammageing and age-related diseases. Furthermore, we now have the tools and cohorts to be able to dissect the interaction between ELA and later life phenotype. This should, in the near future, allow us to identify the ecological and mechanistic processes that are involved in 'healthy' or accelerated immune-ageing.
Collapse
Affiliation(s)
- Myriam P Merz
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Jonathan D Turner
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
23
|
Mehta SR, Iudicello JE, Lin J, Ellis RJ, Morgan E, Okwuegbuna O, Cookson D, Karris M, Saloner R, Heaton R, Grant I, Letendre S. Telomere length is associated with HIV infection, methamphetamine use, inflammation, and comorbid disease risk. Drug Alcohol Depend 2021; 221:108639. [PMID: 33621803 PMCID: PMC8026664 DOI: 10.1016/j.drugalcdep.2021.108639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND HIV infection and methamphetamine dependence (METH) are each associated with inflammation and premature aging, but their impact on biological aging is difficult to measure. Here we examined the impact of HIV and METH on leukocyte telomere lengths (LTL), and the correlations between LTL and other aging biomarkers. METHODS The study was a cross-sectional analysis of 161 individuals categorized by HIV and methamphetamine (METH) dependence status into four groups: HIV-METH- (n = 50), HIV-METH+ (n = 29), HIV + METH- (n = 40), and HIV + METH+ (n = 42). We analyzed the relationships of leukocyte telomere length (telomere to single copy gene [T/S] ratio) with demographic and clinical data as well as a panel of biomarkers of inflammation and endothelial activation measured in blood and cerebrospinal fluid (CSF). RESULTS HIV and METH were independently associated with shorter T/S ratio, even after adjusting for demographics and leukocyte count (R2 = 0·59, p < 0·0001). Higher plasma C-reactive protein (p = 0·0036) and CSF VCAM-1 (p = 0·0080) were also associated with shorter T/S ratio. A shorter T/S ratio was associated with higher risk for cardiovascular disease (p < 0·0001) and stroke (p < 0·0001), worse motor functioning (p = 0·037) and processing speed (p = 0·023), more depressive symptoms (p = 0·013), and higher CSF neurofilament-light (p = 0·003). CONCLUSIONS HIV and METH dependence were each associated with shorter telomeres. After adjusting for demographics, HIV, and METH, T/S ratio remained associated with aging-related outcomes including neurocognitive impairment, neurodegeneration, risks of cardiovascular disease and stroke. While not establishing causality, this study supports using the T/S ratio as a biomarker for estimating the impact of HIV and comorbidities on long-term health.
Collapse
Affiliation(s)
- Sanjay R Mehta
- Department of Medicine University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA; San Diego Veterans Affairs Healthcare System, San Diego, CA, 92131, USA.
| | - Jennifer E Iudicello
- Department of Psychiatry University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA
| | - Jue Lin
- Department of Biophysics and Biochemistry University of California San Francisco, CA, USA
| | - Ronald J Ellis
- Department of Neurology University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA
| | - Erin Morgan
- Department of Psychiatry University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA
| | - Oluwakemi Okwuegbuna
- Department of Medicine University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA
| | - Debra Cookson
- Department of Psychiatry University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA
| | - Maile Karris
- Department of Medicine University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA
| | - Rowan Saloner
- Department of Psychiatry University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA
| | - Robert Heaton
- Department of Psychiatry University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA
| | - Igor Grant
- Department of Psychiatry University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA
| | - Scott Letendre
- Department of Medicine University of California San Diego, 9500 Gilman Drive La Jolla, CA, 92093, USA
| |
Collapse
|
24
|
Baxley RM, Leung W, Schmit MM, Matson JP, Yin L, Oram MK, Wang L, Taylor J, Hedberg J, Rogers CB, Harvey AJ, Basu D, Taylor JC, Pagnamenta AT, Dreau H, Craft J, Ormondroyd E, Watkins H, Hendrickson EA, Mace EM, Orange JS, Aihara H, Stewart GS, Blair E, Cook JG, Bielinsky AK. Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun 2021; 12:1626. [PMID: 33712616 PMCID: PMC7955084 DOI: 10.1038/s41467-021-21878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.
Collapse
Affiliation(s)
- Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megan M Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jacob Peter Matson
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Taylor
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Adam J Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Debashree Basu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jenny C Taylor
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Alistair T Pagnamenta
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Helene Dreau
- Department of Haematology, University of Oxford, Oxford, OX3 7BN, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jordan S Orange
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
25
|
Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun 2021; 27:100323. [PMID: 33530025 DOI: 10.1016/j.ctarc.2021.100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Badrzadeh
- Faculti of Medicine, Golestan University of Medical sciences, Golestan, Iran.
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
26
|
Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021; 20:e13316. [PMID: 33524238 PMCID: PMC7884036 DOI: 10.1111/acel.13316] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.
Collapse
Affiliation(s)
- Dingxi Zhou
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Mariana Borsa
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | | |
Collapse
|
27
|
Schmit M, Bielinsky AK. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Int J Mol Sci 2021; 22:E911. [PMID: 33477564 PMCID: PMC7831139 DOI: 10.3390/ijms22020911] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Deoxyribonucleic acid (DNA) replication can be divided into three major steps: initiation, elongation and termination. Each time a human cell divides, these steps must be reiteratively carried out. Disruption of DNA replication can lead to genomic instability, with the accumulation of point mutations or larger chromosomal anomalies such as rearrangements. While cancer is the most common class of disease associated with genomic instability, several congenital diseases with dysfunctional DNA replication give rise to similar DNA alterations. In this review, we discuss all congenital diseases that arise from pathogenic variants in essential replication genes across the spectrum of aberrant replisome assembly, origin activation and DNA synthesis. For each of these conditions, we describe their clinical phenotypes as well as molecular studies aimed at determining the functional mechanisms of disease, including the assessment of genomic stability. By comparing and contrasting these diseases, we hope to illuminate how the disruption of DNA replication at distinct steps affects human health in a surprisingly cell-type-specific manner.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
28
|
Nicoli F, Solis-Soto MT, Paudel D, Marconi P, Gavioli R, Appay V, Caputo A. Age-related decline of de novo T cell responsiveness as a cause of COVID-19 severity. GeroScience 2020; 42:1015-1019. [PMID: 32583231 PMCID: PMC7312114 DOI: 10.1007/s11357-020-00217-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Francesco Nicoli
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 64/B, 44121, Ferrara, Italy.
| | | | | | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 64/B, 44121, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 64/B, 44121, Ferrara, Italy
| | - Victor Appay
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- Kumamoto University, International Research Center for Medical Sciences (IRCMS), Kumamoto, Japan
| | - Antonella Caputo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 64/B, 44121, Ferrara, Italy
| |
Collapse
|
29
|
Granier C, Gey A, Roncelin S, Weiss L, Paillaud E, Tartour E. Immunotherapy in older patients with cancer. Biomed J 2020; 44:260-271. [PMID: 33041248 PMCID: PMC8358190 DOI: 10.1016/j.bj.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Ageing implicates a remodeling of our immune system, which is a consequence of the physiological senescence of our cells and tissues coupled with environmental factors and chronic antigen exposure. An immune system that senesces includes more differentiated cells with accumulation of highly differentiated CD4 and CD8 T cells. The pool of naive T cells decreases with the exponential thymic involution induced by age. Differentiated T cells have similar, if not higher, functional capacities but scarce studies are looking at the impact of senescence among specific T cells. After a stimulation, other immune cells (monocytes, dendritic cells and NK) are functionally altered during ageing. It is as if the immune system was more efficient at the basal level, but less efficient after a stimulation in the old compared to young people, likely due to less reserve. Concerning the clinical impact, older people are more prone to certain pathogens and their clinical manifestations differ from the younger people. Severe flu and VZV reactivation are more frequent with an altered cellular response to vaccination. Vaccination failure can have detrimental consequences in people presenting frailty criteria. Old people frailty is majored by their comorbidities and diseases like cancer. Thus, chemotherapies are employed with circumspection in older patients. The use of anti-PD-1/PD-L1 immunotherapies is therefore attractive, because of less side effects with a better response compared to chemotherapy. Old persons inclusion is lacking in current studies and clinical trials. Some subgroups or pooled analyses confirm the gain in response without increased toxicities in older patients but their inclusion criteria differ from the real-life practice. Specific studies focusing on this population are needed because of the increasing cancer incidence with age and the overall ageing of the population.
Collapse
Affiliation(s)
- C Granier
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France; University of Paris, PARCC, INSERM, APHP, Paris, France; Ligue Contre le Cancer Labeled Team, France.
| | - A Gey
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France; University of Paris, PARCC, INSERM, APHP, Paris, France; Ligue Contre le Cancer Labeled Team, France
| | - S Roncelin
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France
| | - L Weiss
- Clinical Immunology Department, APHP, Paris, France; INSERM U976 HIPI, Paris, France; Paris Descartes Medical School, University of Paris, Paris, France
| | - E Paillaud
- Department of Geriatric, APHP, Paris Cancer Institute CARPEM, Europeen Georges Pompidou Hospital, Paris, France; Paris Est Creteil University, INSERM, IMRB, Creteil, France
| | - E Tartour
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France; University of Paris, PARCC, INSERM, APHP, Paris, France; Ligue Contre le Cancer Labeled Team, France
| |
Collapse
|
30
|
Tarazona R, Lopez-Sejas N, Guerrero B, Hassouneh F, Valhondo I, Pera A, Sanchez-Correa B, Pastor N, Duran E, Alonso C, Solana R. Current progress in NK cell biology and NK cell-based cancer immunotherapy. Cancer Immunol Immunother 2020; 69:879-899. [PMID: 32130453 DOI: 10.1007/s00262-020-02532-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
A better understanding of the complex interactions between the immune system and tumour cells from different origins has opened the possibility to design novel procedures of antitumoral immunotherapy. One of these novel approaches is based on the use of autologous or allogeneic natural killer (NK) cells to treat cancer. In the last decade, different strategies to activate NK cells and their use in adoptive NK cell-based therapy have been established. Although NK cells are often considered as a uniform cell population, several phenotypic and functionally distinct NK cells subsets exist in healthy individuals, that are differentially affected by ageing or by apparently innocuous viruses such as cytomegalovirus (CMV). In addition, further alterations in the expression of activating and inhibitory receptors are found in NK cells from cancer patients, likely because of their interaction with tumour cells. Thus, NK cells represent a promising strategy for adoptive immunotherapy of cancer already tested in phase 1/2 clinical trials. However, the existence of NK cell subpopulations expressing different patterns of activating and inhibitory receptors and different functional capacities, that can be found to be altered not only in cancer patients but also in healthy individuals stratified by age or CMV infection, makes necessary a personalized definition of the procedures used in the selection, expansion, and activation of the relevant NK cell subsets to be successfully used in NK cell-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alejandra Pera
- University of Cordoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain
| | | | - Nieves Pastor
- Department of Medicine, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Esther Duran
- Department of Medicine, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Corona Alonso
- Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain. .,Reina Sofia University Hospital, Córdoba, Spain. .,Immunology Unit, IMIBIC-Reina Sofia University Hospital-University of Cordoba, Av. Menendez Pidal, 14004, Córdoba, Spain.
| | - Rafael Solana
- University of Cordoba, Córdoba, Spain. .,Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain. .,Reina Sofia University Hospital, Córdoba, Spain. .,Immunology Unit, IMIBIC-Reina Sofia University Hospital-University of Cordoba, Av. Menendez Pidal, 14004, Córdoba, Spain.
| |
Collapse
|
31
|
Ataya M, Redondo-Pachón D, Llinàs-Mallol L, Yélamos J, Heredia G, Pérez-Sáez MJ, Vila J, Costa-García M, Raïch-Regué D, Vilches C, Pascual J, Crespo M, López-Botet M. Pretransplant adaptive NKG2C+ NK cells protect against cytomegalovirus infection in kidney transplant recipients. Am J Transplant 2020; 20:663-676. [PMID: 31612635 DOI: 10.1111/ajt.15658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 01/25/2023]
Abstract
Cytomegalovirus (CMV) infection constitutes a complication for kidney transplant recipients (KTR) and CMV-specific T cells reduce the risk of viral replication in seropositive patients. CMV promotes the adaptive differentiation and expansion of an NK cell subset, hallmarked by expression of the CD94/NKG2C receptor with additional characteristic features. We previously reported an association of pretransplant NKG2C+ NK cells with a reduced incidence of CMV infection. We have strengthened the analysis in cryopreserved peripheral blood mononuclear cells from an enlarged KTR cohort (n = 145) with homogeneous immunosuppression, excluding cases at low risk of infection (ie, CMV D-R-) or receiving antiviral prophylaxis. Moreover, adaptive NKG2C+ NK cell-associated markers (ie, NKG2A, CD57, Immunoglobulin-like transcript 2 [LIR1 or LILRB1], FcεRI γ chain, and Prolymphocytic Leukemia Zinc Finger transcription factor) as well as T lymphocyte subsets were assessed by multicolor flow cytometry. The relation of NKG2C+ NK cells with T cells specific for CMV antigens was analyzed in pretransplant patients (n = 29) and healthy controls (n = 28). Multivariate Cox regression and Kaplan-Meier analyses supported that NKG2C+ NK cells bearing adaptive markers were specifically associated with a reduced incidence of posttransplant symptomatic CMV infection; no correlation between NKG2C+ NK cells and CMV-specific T cells was observed. These results support that adaptive NKG2C+ NK cells contribute to control CMV infection in KTR.
Collapse
Affiliation(s)
- Michelle Ataya
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Dolores Redondo-Pachón
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | | | - José Yélamos
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Immunology Service, Hospital del Mar, Barcelona, Spain
| | | | - María J Pérez-Sáez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Joan Vila
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Dàlia Raïch-Regué
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics-HLA, Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Julio Pascual
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Marta Crespo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Immunology Service, Hospital del Mar, Barcelona, Spain.,University Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
32
|
Zaghi E, Calvi M, Di Vito C, Mavilio D. Innate Immune Responses in the Outcome of Haploidentical Hematopoietic Stem Cell Transplantation to Cure Hematologic Malignancies. Front Immunol 2019; 10:2794. [PMID: 31849972 PMCID: PMC6892976 DOI: 10.3389/fimmu.2019.02794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
In the context of allogeneic transplant platforms, human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents one of the latest and most promising curative strategies for patients affected by high-risk hematologic malignancies. Indeed, this platform ensures a suitable stem cell source immediately available for virtually any patents in need. Moreover, the establishment in recipients of a state of immunologic tolerance toward grafted hematopoietic stem cells (HSCs) remarkably improves the clinical outcome of this transplant procedure in terms of overall and disease free survival. However, the HLA-mismatch between donors and recipients has not been yet fully exploited in order to optimize the Graft vs. Leukemia effect. Furthermore, the efficacy of haplo-HSCT is currently hampered by several life-threatening side effects including the onset of Graft vs. Host Disease (GvHD) and the occurrence of opportunistic viral infections. In this context, the quality and the kinetic of the immune cell reconstitution (IR) certainly play a major role and several experimental efforts have been greatly endorsed to better understand and accelerate the post-transplant recovery of a fully competent immune system in haplo-HSCT. In particular, the IR of innate immune system is receiving a growing interest, as it recovers much earlier than T and B cells and it is able to rapidly exert protective effects against both tumor relapses, GvHD and the onset of life-threatening opportunistic infections. Herein, we review our current knowledge in regard to the kinetic and clinical impact of Natural Killer (NK), γδ and Innate lymphoid cells (ILCs) IRs in both allogeneic and haplo-HSCT. The present paper also provides an overview of those new therapeutic strategies currently being implemented to boost the alloreactivity of the above-mentioned innate immune effectors in order to ameliorate the prognosis of patients affected by hematologic malignancies and undergone transplant procedures.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
33
|
Goodier MR, Wolf AS, Riley EM. Differentiation and adaptation of natural killer cells for anti-malarial immunity. Immunol Rev 2019; 293:25-37. [PMID: 31762040 DOI: 10.1111/imr.12798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Natural killer cells employ a diverse arsenal of effector mechanisms to target intracellular pathogens. Differentiation of natural killer (NK) cell activation pathways occurs along a continuum from reliance on innate pro-inflammatory cytokines and stress-induced host ligands through to interaction with signals derived from acquired immune responses. Importantly, the degree of functional differentiation of the NK cell lineage influences the magnitude and specificity of interactions with host cells infected with viruses, bacteria, fungi, and parasites. Individual humans possess a vast diversity of distinct NK cell clones, each with the capacity to vary along this functional differentiation pathway, which - when combined - results in unique individual responses to different infections. Here we summarize these NK cell differentiation events, review evidence for direct interaction of malaria-infected host cells with NK cells and assess how innate inflammatory signals induced by malaria parasite-associated molecular patterns influence the indirect activation and function of NK cells. Finally, we discuss evidence that anti-malarial immunity develops in parallel with advancing NK differentiation, coincident with a loss of reliance on inflammatory signals, and a refined capacity of NK cells to target malaria parasites more precisely, particularly through antibody-dependent mechanisms.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Asia-Sophia Wolf
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.,Department of Infection and Immunity, University College London, London, UK
| | - Eleanor M Riley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|