1
|
Wu M, Yu S, Yan S, Wu M, Zhang L, Chen S, Shi D, Liu S, Fan Y, Lin X, Shen J. Peroxynitrite reduces Treg cell expansion and function by mediating IL-2R nitration and aggravates multiple sclerosis pathogenesis. Redox Biol 2024; 75:103240. [PMID: 38889621 PMCID: PMC11231601 DOI: 10.1016/j.redox.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
T-helper 17 cells and regulatory T cells (Treg) are critical regulators in the pathogenesis of multiple sclerosis (MS) but the factors affecting Treg/Th17 balance remains largely unknown. Redox balance is crucial to maintaining immune homeostasis and reducing the severity of MS but the underlying mechanisms are unclear yet. Herein, we tested the hypothesis that peroxynitrite, a representative molecule of reactive nitrogen species (RNS), could inhibit peripheral Treg cells, disrupt Treg/Th17 balance and aggravate MS pathology by inducing nitration of interleukin-2 receptor (IL-2R) and down-regulating RAS/JNK-AP-1 signalling pathway. Experimental autoimmune encephalomyelitis (EAE) mouse model and serum samples of MS patients were used in the study. We found that the increases of 3-nitrotyrosine and IL-2R nitration in Treg cells were coincided with disease severity in the active EAE mice. Mechanistically, peroxynitrite-induced IL-2R nitration down-regulated RAS/JNK signalling pathway, subsequently impairing peripheral Treg expansion and function, increasing Teff infiltration into the central nerve system (CNS), aggravating demyelination and neurological deficits in the EAE mice. Those changes were abolished by peroxynitrite decomposition catalyst (PDC) treatment. Furthermore, transplantation of the PDC-treated-autologous Treg cells from donor EAE mice significantly decreased Th17 cells in both axillary lymph nodes and lumbar spinal cord, and ameliorated the neuropathology of the recipient EAE mice. Those results suggest that peroxynitrite could disrupt peripheral Treg/Th17 balance, and aggravate neuroinflammation and neurological deficit in active EAE/MS pathogenesis. The underlying mechanisms are related to induce the nitration of IL-2R and inhibit the RAS/JNK-AP-1 signalling pathway in Treg cells. The study highlights that targeting peroxynitrite-mediated peripheral IL-2R nitration in Treg cells could be a novel therapeutic strategy to restore Treg/Th17 balance and ameliorate MS/EAE pathogenesis. The study provides valuable insights into potential role of peripheral redox balance in maintaining CNS immune homeostasis.
Collapse
MESH Headings
- Peroxynitrous Acid/metabolism
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/immunology
- Mice
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Humans
- Receptors, Interleukin-2/metabolism
- Female
- Signal Transduction/drug effects
- Disease Models, Animal
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Male
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Sulan Yu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Shenyu Yan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Minghui Wu
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Lu Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Shuang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Dongyun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China
| | - Shanlin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China; Free Radical Regulation and Application Research Center of Fudan University, Shanghai, 200000, China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiang Lin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
2
|
Liao KL, Bai XF, Friedman A. IL-27 in combination with anti-PD-1 can be anti-cancer or pro-cancer. J Theor Biol 2024; 579:111704. [PMID: 38104658 DOI: 10.1016/j.jtbi.2023.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Interleukin-27 (IL-27) is known to play opposing roles in immunology. The present paper considers, specifically, the role IL-27 plays in cancer immunotherapy when combined with immune checkpoint inhibitor anti-PD-1. We first develop a mathematical model for this combination therapy, by a system of Partial Differential Equations, and show agreement with experimental results in mice injected with melanoma cells. We then proceed to simulate tumor volume with IL-27 injection at a variable dose F and anti-PD-1 at a variable dose g. We show that in some range of "small" values of g, as f increases tumor volume decreases as long as fFc(g), where Fc(g) is a monotone increasing function of g. This demonstrates that IL-27 can be both anti-cancer and pro-cancer, depending on the ranges of both anti-PD-1 and IL-27.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada.
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Avner Friedman
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States of America; Department of Mathematics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
3
|
Lyu MA, Tang X, Khoury JD, Raso MG, Huang M, Zeng K, Nishimoto M, Ma H, Sadeghi T, Flowers CR, Parmar S. Allogeneic cord blood regulatory T cells decrease dsDNA antibody and improve albuminuria in systemic lupus erythematosus. Front Immunol 2023; 14:1217121. [PMID: 37736101 PMCID: PMC10509479 DOI: 10.3389/fimmu.2023.1217121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023] Open
Abstract
Background Lupus nephritis (LN) constitutes the most severe organ manifestations of systemic lupus erythematosus (SLE), where pathogenic T cells have been identified to play an essential role in 'helping' B cells to make autoantibodies and produce inflammatory cytokines that drive kidney injury in SLE. Regulatory T cells (Tregs), responsible for decreasing inflammation, are defective and decreased in SLE and have been associated with disease progression. We hypothesize that treatment with allogeneic, healthy Tregs derived from umbilical cord blood (UCB) may arrest such an inflammatory process and protect against kidney damage. Methods UCB-Tregs function was examined by their ability to suppress CellTrace Violet-labeled SLE peripheral blood mononuclear cells (PBMCs) or healthy donor (HD) conventional T cells (Tcons); and by inhibiting secretion of inflammatory cytokines by SLE PBMCs. Humanized SLE model was established where female Rag2-/-γc-/- mice were transplanted with 3 × 106 human SLE-PBMCs by intravenous injection on day 0, followed by single or multiple injection of UCB-Tregs to understand their impact on disease development. Mice PB was assessed weekly by flow cytometry. Phenotypic analysis of isolated cells from mouse PB, lung, spleen, liver and kidney was performed by flow cytometry. Kidney damage was assessed by quantifying urinary albumin and creatinine secretion. Systemic disease was evaluated by anti-dsDNA IgG Ab analysis as well as immunohistochemistry analysis of organs. Systemic inflammation was determined by measuring cytokine levels. Results In vitro, UCB-Tregs are able to suppress HD Tcons and pathogenic SLE-PBMCs to a similar extent. UCB-Tregs decrease secretion of several inflammatory cytokines including IFN-γ, IP-10, TNF-α, IL-6, IL-17A, and sCD40L by SLE PBMCs in a time-dependent manner, with a corresponding increase in secretion of suppressor cytokine, IL-10. In vivo, single or multiple doses of UCB-Tregs led to a decrease in CD8+ T effector cells in different organs and a decrease in circulating inflammatory cytokines. Improvement in skin inflammation and loss of hair; and resolution of CD3+, CD8+, CD20+ and Ki67+ SLE-PBMC infiltration was observed in UCB-Treg recipients with a corresponding decrease in plasma anti-double stranded DNA IgG antibody levels and improved albuminuria. Conclusions UCB-Tregs can decrease inflammatory burden in SLE, reduce auto-antibody production and resolve end organ damage especially, improve kidney function. Adoptive therapy with UCB-Tregs should be explored for treatment of lupus nephritis in the clinical setting.
Collapse
Affiliation(s)
- Mi-Ae Lyu
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Meixian Huang
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Ke Zeng
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Mitsutaka Nishimoto
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Hongbing Ma
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | | | - Christopher R. Flowers
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Simrit Parmar
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Cassano A, Chong AS, Alegre ML. Tregs in transplantation tolerance: role and therapeutic potential. FRONTIERS IN TRANSPLANTATION 2023; 2:1217065. [PMID: 38993904 PMCID: PMC11235334 DOI: 10.3389/frtra.2023.1217065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 07/13/2024]
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.
Collapse
Affiliation(s)
- Alexandra Cassano
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Immunological Aspects of Von Hippel-Lindau Disease: A Focus on Neuro-Oncology and Myasthenia Gravis. Diagnostics (Basel) 2023; 13:diagnostics13010144. [PMID: 36611440 PMCID: PMC9818211 DOI: 10.3390/diagnostics13010144] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Von Hippel-Lindau (VHL) disease is an autosomal dominant condition that predisposes affected individuals to a variety of malignant and benign neoplasms. The pathogenetic turning point of this illness is the accumulation of hypoxia-inducible factor (HIF)-1α, a transcription factor of several genes involved in oncogenesis, angiogenesis, tissue regeneration, metabolic regulation, hematopoiesis, and inflammatory responses. From an oncological perspective, increased awareness of the molecular pathways underlying this disease is bringing us closer to the development of specific and targeted therapies. Meanwhile, on the surgical side, improved understanding can help to better identify the patients to be treated and the surgical timing. Overall, pathogenesis research is crucial for developing patient-tailored therapies. One of the actual key topics of interest is the link between the VHL/HIF axis and inflammation. The present study aims to outline the fundamental mechanisms that link VHL disease and immune disorders, as well as to explore the details of the overlap between VHL disease and myasthenia gravis (MG) pathogenetic pathways. As a result, MG becomes a paradigm for autoimmune disorders that might be related with VHL disease.
Collapse
|
6
|
Advancing Biologic Therapy for Refractory Autoimmune Hepatitis. Dig Dis Sci 2022; 67:4979-5005. [PMID: 35147819 DOI: 10.1007/s10620-021-07378-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 01/05/2023]
Abstract
Biologic agents may satisfy an unmet clinical need for treatment of refractory autoimmune hepatitis. The goals of this review are to present the types and results of biologic therapy for refractory autoimmune hepatitis, indicate opportunities to improve and expand biologic treatment, and encourage comparative clinical trials. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Rituximab (monoclonal antibodies against CD20 on B cells), infliximab (monoclonal antibodies against tumor necrosis factor-alpha), low-dose recombinant interleukin 2 (regulatory T cell promoter), and belimumab (monoclonal antibodies against B cell activating factor) have induced laboratory improvement in small cohorts with refractory autoimmune hepatitis. Ianalumab (monoclonal antibodies against the receptor for B cell activating factor) is in clinical trial. These agents target critical pathogenic pathways, but they may also have serious side effects. Blockade of the B cell activating factor or its receptors may disrupt pivotal B and T cell responses, and recombinant interleukin 2 complexed with certain interleukin 2 antibodies may selectively expand the regulatory T cell population. A proliferation-inducing ligand that enhances T cell proliferation and survival is an unevaluated, potentially pivotal, therapeutic target. Fully human antibodies, expanded target options, improved targeting precision, more effective delivery systems, and biosimilar agents promise to improve efficacy, safety, and accessibility. In conclusion, biologic agents target key pathogenic pathways in autoimmune hepatitis, and early experiences in refractory disease encourage clarification of the preferred target, rigorous clinical trial, and comparative evaluations.
Collapse
|
7
|
Aguilera J, Han X, Cao S, Balmes J, Lurmann F, Tyner T, Lutzker L, Noth E, Hammond SK, Sampath V, Burt T, Utz PJ, Khatri P, Aghaeepour N, Maecker H, Prunicki M, Nadeau K. Increases in ambient air pollutants during pregnancy are linked to increases in methylation of IL4, IL10, and IFNγ. Clin Epigenetics 2022; 14:40. [PMID: 35287715 PMCID: PMC8919561 DOI: 10.1186/s13148-022-01254-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ambient air pollutant (AAP) exposure is associated with adverse pregnancy outcomes, such as preeclampsia, preterm labor, and low birth weight. Previous studies have shown methylation of immune genes associate with exposure to air pollutants in pregnant women, but the cell-mediated response in the context of typical pregnancy cell alterations has not been investigated. Pregnancy causes attenuation in cell-mediated immunity with alterations in the Th1/Th2/Th17/Treg environment, contributing to maternal susceptibility. We recruited women (n = 186) who were 20 weeks pregnant from Fresno, CA, an area with chronically elevated AAP levels. Associations of average pollution concentration estimates for 1 week, 1 month, 3 months, and 6 months prior to blood draw were associated with Th cell subset (Th1, Th2, Th17, and Treg) percentages and methylation of CpG sites (IL4, IL10, IFNγ, and FoxP3). Linear regression models were adjusted for weight, age, season, race, and asthma, using a Q value as the false-discovery-rate-adjusted p-value across all genes. RESULTS Short-term and mid-term AAP exposures to fine particulate matter (PM2.5), nitrogen dioxide (NO2) carbon monoxide (CO), and polycyclic aromatic hydrocarbons (PAH456) were associated with percentages of immune cells. A decrease in Th1 cell percentage was negatively associated with PM2.5 (1 mo/3 mo: Q < 0.05), NO2 (1 mo/3 mo/6 mo: Q < 0.05), and PAH456 (1 week/1 mo/3 mo: Q < 0.05). Th2 cell percentages were negatively associated with PM2.5 (1 week/1 mo/3 mo/6 mo: Q < 0.06), and NO2 (1 week/1 mo/3 mo/6 mo: Q < 0.06). Th17 cell percentage was negatively associated with NO2 (3 mo/6 mo: Q < 0.01), CO (1 week/1 mo: Q < 0.1), PM2.5 (3 mo/6 mo: Q < 0.05), and PAH456 (1 mo/3 mo/6 mo: Q < 0.08). Methylation of the IL10 gene was positively associated with CO (1 week/1 mo/3 mo: Q < 0.01), NO2 (1 mo/3 mo/6 mo: Q < 0.08), PAH456 (1 week/1 mo/3 mo: Q < 0.01), and PM2.5 (3 mo: Q = 0.06) while IL4 gene methylation was positively associated with concentrations of CO (1 week/1 mo/3 mo/6 mo: Q < 0.09). Also, IFNγ gene methylation was positively associated with CO (1 week/1 mo/3 mo: Q < 0.05) and PAH456 (1 week/1 mo/3 mo: Q < 0.06). CONCLUSION Exposure to several AAPs was negatively associated with T-helper subsets involved in pro-inflammatory and anti-inflammatory responses during pregnancy. Methylation of IL4, IL10, and IFNγ genes with pollution exposure confirms previous research. These results offer insights into the detrimental effects of air pollution during pregnancy, the demand for more epigenetic studies, and mitigation strategies to decrease pollution exposure during pregnancy.
Collapse
Affiliation(s)
- Juan Aguilera
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA
| | - Xiaorui Han
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA
| | - Shu Cao
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA
| | - John Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Tim Tyner
- University of California, San Francisco-Fresno, Fresno, CA, USA
- Central California Asthma Collaborative, Fresno, USA
| | - Liza Lutzker
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Elizabeth Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - S Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA
| | - Trevor Burt
- Department of Pediatrics, Division of Neonatology and the Translating Duke Health Children's Health and Discovery Initiative, Duke University School of Medicine, 701 W Main St., Chesterfield Building, Suite 510, Durham, NC, 27701, USA
| | - P J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Purvesh Khatri
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Nima Aghaeepour
- Departments of Biomedical Data Sciences, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Holden Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, 240 Pasteur, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Chen P, Tang X. Gut Microbiota as Regulators of Th17/Treg Balance in Patients With Myasthenia Gravis. Front Immunol 2022; 12:803101. [PMID: 35003133 PMCID: PMC8732367 DOI: 10.3389/fimmu.2021.803101] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is an acquired neurological autoimmune disorder characterized by dysfunctional transmission at the neuromuscular junction, with its etiology associated with genetic and environmental factors. Anti-inflammatory regulatory T cells (Tregs) and pro-inflammatory T helper 17 (Th17) cells functionally antagonize each other, and the immune imbalance between them contributes to the pathogenesis of MG. Among the numerous factors influencing the balance of Th17/Treg cells, the gut microbiota have received attention from scholars. Gut microbial dysbiosis and altered microbial metabolites have been seen in patients with MG. Therefore, correcting Th17/Treg imbalances may be a novel therapeutic approach to MG by modifying the gut microbiota. In this review, we initially review the association between Treg/Th17 and the occurrence of MG and subsequently focus on recent findings on alterations of gut microbiota and microbial metabolites in patients with MG. We also explore the effects of gut microbiota on Th17/Treg balance in patients with MG, which may provide a new direction for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Pan Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Li D, Cheng J, Calderone R, Bellanti JA. Measurements of Treg Cell Induction by Candida albicans DNA Using Flow Cytometry. Methods Mol Biol 2022; 2542:301-306. [PMID: 36008674 DOI: 10.1007/978-1-0716-2549-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbiota and their metabolites in the human gut regulate a variety of immune cells including regulatory T cells (Treg cells) and cytokine production. The T helper 17 (Th17)/Treg ratio biomarker (Th17/Treg), for example, has been linked to the development and progression of certain inflammatory diseases, insulin resistance, and systemic lupus erythematosus (SLE). Candida albicans is an opportunistic fungal pathogen that also colonizes the gut. T cell reactivity through T helper cells play critical roles in fungal clearance by the host through the secretion of proinflammatory cytokines. While these cytokines are mainly produced by the Th1 and Th17 subsets of T cells, another subset of T cells, the Treg cells, are also induced by antigenic ligands from pathogens that inhibit the responses of other effector T cells during the inflammation. The antigenic ligands for Treg induction have been found to include microbial cell wall polysaccharides (PSA), metabolites like short chain fatty acids (SCFA), or even microbial DNA.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Jie Cheng
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A Bellanti
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
10
|
Gil-Manso S, Carbonell D, López-Fernández L, Miguens I, Alonso R, Buño I, Muñoz P, Ochando J, Pion M, Correa-Rocha R. Induction of High Levels of Specific Humoral and Cellular Responses to SARS-CoV-2 After the Administration of Covid-19 mRNA Vaccines Requires Several Days. Front Immunol 2021; 12:726960. [PMID: 34671348 PMCID: PMC8521189 DOI: 10.3389/fimmu.2021.726960] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives In the context of the Covid-19 pandemic, the fast development of vaccines with efficacy of around 95% preventing Covid-19 illness provides a unique opportunity to reduce the mortality associated with the pandemic. However, in the absence of efficacious prophylactic medications and few treatments for this infection, the induction of a fast and robust protective immunity is required for effective disease control, not only to prevent the disease but also the infection and shedding/transmission. The objective of our study was to analyze the level of specific humoral and cellular T-cell responses against the spike protein of SARS-CoV-2 induced by two mRNA-based vaccines (BNT162b2 and mRNA-1273), but also how long it takes after vaccination to induce these protective humoral and cellular immune responses. Methods We studied in 40 healthy (not previously infected) volunteers vaccinated with BNT162b2 or mRNA-1273 vaccines the presence of spike-specific IgG antibodies and SARS-CoV-2-specific T cells at 3, 7 and 14 days after receiving the second dose of the vaccine. The specific T-cell response was analyzed stimulating fresh whole blood from vaccinated volunteers with SARS-CoV-2 peptides and measuring the release of cytokines secreted by T cells in response to SARS-CoV-2 stimulation. Results Our results indicate that the immunization capacity of both vaccines is comparable. However, although both BNT162b2 and mRNA-1273 vaccines can induce early B-cell and T-cell responses, these vaccine-mediated immune responses do not reach their maximum values until 14 days after completing the vaccination schedule. Conclusion This refractory period in the induction of specific immunity observed after completing the vaccination could constitute a window of higher infection risk, which could explain some emerging cases of SARS-CoV-2 infection in vaccinated people.
Collapse
Affiliation(s)
- Sergio Gil-Manso
- Laboratory of Immune-Regulation, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| | - Diego Carbonell
- Laboratory of Immune-Regulation, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain.,Department of Hematology, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| | - Luis López-Fernández
- Pharmacy Service, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| | - Iria Miguens
- Emergency Service, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| | - Roberto Alonso
- Department of Clinical Microbiology and Infectious Diseases of the University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ismael Buño
- Department of Hematology, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases of the University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jordi Ochando
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, University Hospital Gregorio Marañón and "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
| |
Collapse
|
11
|
Jasiecka-Mikołajczyk A, Jaroszewski JJ, Maślanka T. Oclacitinib, a Janus Kinase Inhibitor, Reduces the Frequency of IL-4- and IL-10-, but Not IFN-γ-, Producing Murine CD4 + and CD8 + T Cells and Counteracts the Induction of Type 1 Regulatory T Cells. Molecules 2021; 26:5655. [PMID: 34577127 PMCID: PMC8472008 DOI: 10.3390/molecules26185655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of the present study was to broaden the knowledge and understanding of the effects of oclacitinib (OCL), a Janus kinase inhibitor, on T cells in the context of both the immune mechanisms underlying anti-inflammatory and anti-allergic properties of the drug and its safety. The results indicate that beneficial effects of OCL in the treatment of skin allergic diseases may be partially mediated by the inhibition of IL-4 production in CD4+ and CD8+ T cells. To a certain extent, the antiproliferative effect of OCL on CD8+ T cells may also contribute to its therapeutic effect. The study found that OCL does not affect the proliferation of CD4+ T cells or the number of IFN-γ- and IL-17-producing CD4+ and CD8+ T cells. Moreover, OCL was found to counteract the induction of type 1 regulatory T (Tr1) cells and to act as a strong inhibitor of IL-10 production in both CD4+ and CD8+ T cells. Thus, these results indicate that beneficial effects of OCL in the treatment of skin allergic diseases are not mediated through: (a) the abolishment of IFN-γ and IL-17-production in CD4+ and CD8+ T cells; (b) generation of Tr1 cells; (c) inhibition of CD4+ T cell proliferation; (d) induction of IL-10 production in CD4+ T cells. The results of this study strongly suggest that, with respect to the evaluated parameters, OCL exerts a suppressive effect on Th2- but not Th1-mediated immunity.
Collapse
Affiliation(s)
- Agnieszka Jasiecka-Mikołajczyk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 13, 10-719 Olsztyn, Poland; (J.J.J.); (T.M.)
| | | | | |
Collapse
|
12
|
Exploring the Pathogenic Role and Therapeutic Implications of Interleukin 2 in Autoimmune Hepatitis. Dig Dis Sci 2021; 66:2493-2512. [PMID: 32833154 DOI: 10.1007/s10620-020-06562-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
Interleukin 2 is essential for the expansion of regulatory T cells, and low-dose recombinant interleukin 2 has improved the clinical manifestations of diverse autoimmune diseases in preliminary studies. The goals of this review are to describe the actions of interleukin 2 and its receptor, present preliminary experiences with low-dose interleukin 2 in the treatment of diverse autoimmune diseases, and evaluate its potential as a therapeutic intervention in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Interleukin 2 is critical for the thymic selection, peripheral expansion, induction, and survival of regulatory T cells, and it is also a growth factor for activated T cells and natural killer cells. Interleukin 2 activates the signal transducer and activator of transcription 5 after binding with its trimeric receptor on regulatory T cells. Immune suppressor activity is increased; anti-inflammatory interleukin 10 is released; pro-inflammatory interferon-gamma is inhibited; and activation-induced apoptosis of CD8+ T cells is upregulated. Preliminary experiences with cyclic injections of low-dose recombinant interleukin 2 in diverse autoimmune diseases have demonstrated increased numbers of circulating regulatory T cells, preserved regulatory function, improved clinical manifestations, and excellent tolerance. Similar improvements have been recognized in one of two patients with refractory autoimmune hepatitis. In conclusion, interferon 2 has biological actions that favor the immune suppressor functions of regulatory T cells, and low-dose regimens in preliminary studies encourage its rigorous investigation in autoimmune hepatitis.
Collapse
|
13
|
Solé P, Santamaria P. Re-Programming Autoreactive T Cells Into T-Regulatory Type 1 Cells for the Treatment of Autoimmunity. Front Immunol 2021; 12:684240. [PMID: 34335585 PMCID: PMC8320845 DOI: 10.3389/fimmu.2021.684240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic delivery of peptide-major histocompatibility complex (pMHC) class II-based nanomedicines can re-program cognate autoantigen-experienced CD4+ T cells into disease-suppressing T-regulatory type 1 (TR1)-like cells. In turn, these TR1-like cells trigger the formation of complex regulatory cell networks that can effectively suppress organ-specific autoimmunity without impairing normal immunity. In this review, we summarize our current understanding of the transcriptional, phenotypic and functional make up of TR1-like cells as described in the literature. The true identity and direct precursors of these cells remain unclear, in particular whether TR1-like cells comprise a single terminally-differentiated lymphocyte population with distinct transcriptional and epigenetic features, or a collection of phenotypically different subsets sharing key regulatory properties. We propose that detailed transcriptional and epigenetic characterization of homogeneous pools of TR1-like cells will unravel this conundrum.
Collapse
Affiliation(s)
- Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Immunomodulatory effects of galectin-1 in patients with chronic lymphocytic leukemia. Cent Eur J Immunol 2021; 46:54-62. [PMID: 33897284 PMCID: PMC8056350 DOI: 10.5114/ceji.2021.105246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Galectin-1 (Gal-1) has been implicated in the progression of chronic lymphocytic leukemia (CLL) but also the development of immunodeficiency, which commonly accompany this malignancy. In this in vitro study, we investigated the effects of Gal-1 inhibition in the sera of immunocompromised CLL patients on immunomodulating properties of dendritic cells (DCs). DCs derived from peripheral blood mononuclear cells were treated with a healthy serum, CLL serum as well as the combination of CLL serum and Gal-1 inhibitor (OTX008). Following the treatment, the expression levels of DC maturation markers (CD80, CD83, CD86 and IDO-1) were determined as well as their cytokine profile and the ability to polarize the immune response in co-cultures with CD4+ T cells. After treatment with CLL serum, an increase in interleukin (IL)-10 production was observed in both DC cultures and co-cultures with CD4+ T cells. OTX008 caused a reduction in IL-10 production as well as IL-2, but no significant alteration in the expression of DC maturation markers or T regulatory cell (Treg) frequency was observed. The results of our study suggest that Gal-1 from CLL serum give rise to a specific IL-10+ CD4+ T cell phenotype, other than Treg, that could mediate immunodeficiency development in CLL patients.
Collapse
|
15
|
Zhou JY, Alvarez CA, Cobb BA. Integration of IL-2 and IL-4 signals coordinates divergent regulatory T cell responses and drives therapeutic efficacy. eLife 2021; 10:e57417. [PMID: 33617447 PMCID: PMC7899647 DOI: 10.7554/elife.57417] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cells exist within complex milieus of communicating factors, such as cytokines, that combine to generate context-specific responses, yet nearly all knowledge about the function of each cytokine and the signaling propagated downstream of their recognition is based on the response to individual cytokines. Here, we found that regulatory T cells (Tregs) integrate concurrent signaling initiated by IL-2 and IL-4 to generate a response divergent from the sum of the two pathways in isolation. IL-4 stimulation of STAT6 phosphorylation was blocked by IL-2, while IL-2 and IL-4 synergized to enhance STAT5 phosphorylation, IL-10 production, and the selective proliferation of IL-10-producing Tregs, leading to increased inhibition of conventional T cell activation and the reversal of asthma and multiple sclerosis in mice. These data define a mechanism of combinatorial cytokine signaling and lay the foundation upon which to better understand the origins of cytokine pleiotropy while informing improved the clinical use of cytokines.
Collapse
Affiliation(s)
- Julie Y Zhou
- Department of Pathology, Case Western Reserve University School of MedicineClevelandUnited States
| | - Carlos A Alvarez
- Department of Pathology, Case Western Reserve University School of MedicineClevelandUnited States
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of MedicineClevelandUnited States
| |
Collapse
|
16
|
Prunicki M, Cauwenberghs N, Lee J, Zhou X, Movassagh H, Noth E, Lurmann F, Hammond SK, Balmes JR, Desai M, Wu JC, Nadeau KC. Air pollution exposure is linked with methylation of immunoregulatory genes, altered immune cell profiles, and increased blood pressure in children. Sci Rep 2021; 11:4067. [PMID: 33603036 PMCID: PMC7893154 DOI: 10.1038/s41598-021-83577-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
Ambient air pollution exposure is associated with cardiovascular dysregulation and immune system alterations, yet no study has investigated both simultaneously in children. Understanding the multifaceted impacts may provide early clues for clinical intervention prior to actual disease presentation. We therefore determined the associations between exposure to multiple air pollutants and both immunological outcomes (methylation and protein expression of immune cell types associated with immune regulation) and cardiovascular outcomes (blood pressure) in a cohort of school-aged children (6–8 years; n = 221) living in a city with known elevated pollution levels. Exposure to fine particular matter (PM2.5), carbon monoxide (CO), and ozone (O3) was linked to altered methylation of most CpG sites for genes Foxp3, IL-4, IL-10 and IFN-g, all involved in immune regulation (e.g. higher PM2.5 exposure 1 month prior to the study visit was independently associated with methylation of the IL-4 CpG24 site (est = 0.16; P = 0.0095). Also, immune T helper cell types (Th1, Th2 and Th17) were associated with short-term exposure to PM2.5, O3 and CO (e.g. Th1 cells associated with PM2.5 at 30 days: est = − 0.34, P < 0.0001). Both B cells (est = − 0.19) and CD4+ cells (est = 0.16) were associated with 1 day NO2 exposure (P ≤ 0.031), whereas CD4+ and CD8+ cells were associated with chronic exposure to PAH456, NOx and/or NO2 (P ≤ 0.038 for all). Finally, diastolic BP (DBP) was inversely associated with long-term exposures to both CO and PAH456, and both systolic and pulse pressure were associated with short-term NO2 and chronic NOx exposure. Our findings demonstrate links between air pollution exposure and methylation of immunoregulatory genes, immune cell profiles and blood pressure, suggesting that even at a young age, the immune and cardiovascular systems are negatively impacted by exposure to air pollution.
Collapse
Affiliation(s)
- Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | - Justin Lee
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.,Quantitative Sciences Unit, Stanford University, Stanford, CA, 94305, USA
| | - Xiaoying Zhou
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Hesam Movassagh
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Elizabeth Noth
- School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, CA, 94954, USA
| | - S Katharine Hammond
- School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - John R Balmes
- School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA.,Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Manisha Desai
- Quantitative Sciences Unit, Stanford University, Stanford, CA, 94305, USA
| | - Joseph C Wu
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA. .,Department of Medicine, Stanford University, Stanford, CA, 94305, USA. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford University School of Medicine, 269 Campus Drive, CCSR 3215, MC 5366, Stanford, CA, 94305-5101, USA.
| |
Collapse
|
17
|
Bellanti JA, Li D. Treg Cells and Epigenetic Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:95-114. [PMID: 33523445 DOI: 10.1007/978-981-15-6407-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the epigenetic regulation of Treg cells, a cell population with fundamental immunoregulatory properties, has shed considerable insights into an understanding of the role of these cells in health and disease. Research over the past several years has shown that the interaction of Treg cells with the gut microbiota are critical not only for the development of Treg function in health but also for abnormalities of Treg function that play a critical role in the pathogenesis of human diseases such as the allergic diseases, the autoimmune disorders, and cancer. The equilibrium between phenotypic plasticity and stability of Treg cells is defined by the fine-tuned transcriptional and epigenetic events required to ensure stable expression of Foxp3 in Treg cells. In this chapter, we discuss the molecular events that control Foxp3 gene expression and address the importance of DNA methylation as an important molecular switch that regulates the genetic expression of Treg induction and the possible implications of these findings for the treatment of human diseases characterized by abnormalities of Treg cell function.
Collapse
Affiliation(s)
- Joseph A Bellanti
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA. .,Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA. .,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA.
| | - Dongmei Li
- Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA.,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
18
|
Džopalić T, Kostić M, Kostić M, Marjanović G, Guzina J, Jurišić V, Božić Nedeljković B. Effects of galectin-1 on immunomodulatory properties of human monocyte-derived dendritic cells. Growth Factors 2020; 38:235-246. [PMID: 34223785 DOI: 10.1080/08977194.2021.1947267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our study aimed to evaluate the effects of Gal-1 in dose depending manner on maturation and immunomodulatory properties of monocyte-derived (Mo) DCs in-vitro. The effects were analyzed by monitoring their phenotypic characteristics, cytokine profile, and the ability to direct the immune response in the co-culture with allogeneic CD4+T cells. Gal-1 reduced the expression of CD80 and CD86 molecules on MoDCs compared to untreated MoDCs. Gal-1 at concentrations of 1 and 6 μg/mL significantly reduced IL-12 production, while the concentration of 3 μg/mL led to its significant increase. Gal-1 in all concentrations induced a significant increase in the production of IL-10. Treatment of MoDCs with 3 and 6 μg/mL of Gal-1 stimulated the production of IL-2 and IFN-γ in the co-culture with CD4+T lymphocytes. This study demonstrated a dual immunomodulatory effect of Gal-1 on MoDCs in terms of immune stimulation and immune suppression, depending on the applied concentration.
Collapse
Affiliation(s)
- Tanja Džopalić
- Department of Immunology, Medical Faculty, University of Niš, Niš, Serbia
| | - Miloš Kostić
- Department of Immunology, Medical Faculty, University of Niš, Niš, Serbia
| | - Milena Kostić
- Faculty of Biology, Institute for Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| | - Goran Marjanović
- Department of Immunology, Medical Faculty, University of Niš, Niš, Serbia
- Clinic for Hematology and Clinical Immunology, Clinical Center Niš, Niš, Serbia
| | - Jelena Guzina
- Faculty of Biology, Institute for Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Božić Nedeljković
- Faculty of Biology, Institute for Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Sahin M, Sahin E. Prostaglandin E2 Reverses the Effects of DNA Methyltransferase Inhibitor and TGFB1 on the Conversion of Naive T Cells to iTregs. Transfus Med Hemother 2020; 47:244-253. [PMID: 32595429 DOI: 10.1159/000502582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Naturally occurring regulatory T cells (nTregs) are produced under thymic (tTregs) or peripherally induced (pTregs) conditions in vivo. On the other hand, Tregs generated from naive T cells in vitro under some circumstances, such as treatment with transforming growth factor-β (TGFB), are called induced Tregs (iTregs). Tregs are especially characterized by FOXP3 expression, which is mainly controlled by DNA methylation. nTregs play important roles in the suppression of immune response and self-tolerance. The prostaglandin E2 (PGE2) pathway was reported to contribute to regulatory functions of tumor-infiltrating nTregs. In this study, we examined whether PGE2 contributes to the formation of iTregs treated with TGFB1 and 5-aza-2'-deoxycytidine (5-aza-dC), which is a DNA methyltransferase inhibitor. We found that the protein and gene expression levels of FOXP3 and IL-10 were increased in 5-aza-dC and TGFB1-treated T cells in vitro. However, the addition of PGE2 to these cells reversed these increments significantly. In CFSE-based cell suppression assays, we demonstrated that PGE2 decreased the suppressive functions of 5-aza-dC and TGFB1-treated T cells.
Collapse
Affiliation(s)
- Mehmet Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Emel Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
20
|
Epigenetical Targeting of the FOXP3 Gene by S-Adenosylmethionine Diminishes the Suppressive Capacity of Regulatory T Cells Ex Vivo and Alters the Expression Profiles. J Immunother 2020; 42:11-22. [PMID: 30407230 DOI: 10.1097/cji.0000000000000247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Regulatory T cells (Treg cells), a subgroup of CD4 lymphocytes, play a crucial role in serving as an immune suppressor and in maintaining peripheral tolerance. As the accumulation of Treg cells in the tumor microenvironment is significantly associated with a decreased survival time of patients, they are considered as an important therapeutic target in the immunotherapy of human cancers. These cells are either derived from the thymus, which are called (CD4CD25CD127) natural Treg cells (nTreg cells), or they are generated from CD4CD25 naive T cells by transforming growth factor-beta 1 and interleukin 2 (IL-2) in the periphery, which are called induced Treg cells (iTreg cells). Although iTreg cells are unstable, nTreg cells stably express forkhead box P3 (FOXP3) protein. Moreover, nTreg cells can be classified as memory (CD45RA) and naive (CD45RA) Treg cells, and this classification is based on the expression of CD45RA. FOXP3, which is a master regulator transcription factor, is essential for the functions of Treg cells, and it is mainly controlled by epigenetic mechanisms. The cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) pathway is also reported to contribute to the regulatory functions of tumor-infiltrating Treg cells. As a new approach, we investigated whether S-adenosylmethionine (SAM), a substrate of DNA methyltransferase, attenuates the immune-suppressive capacity of the naive subtype of nTreg cells (CD4CD25CD127CD45RA). Moreover, we examined the effects of PGE2/COX2 pathway blockers on the suppressive capacity of Treg cells. We found that SAM diminished the suppression competency of Treg cells by decreasing the FOXP3 mRNA and protein levels in a dose-dependent manner. SAM increased the DNA methylation of FOXP3 at the first intron site. In addition, SAM decreased the mRNA and protein levels of the IL-10 cytokine, which has suppressive roles in the immune system. Moreover, mRNA levels of interferon gamma (IFNG) were found to be increased. COX2 inhibition and blockage of PGE2 receptors also reduced the protein and mRNA levels of IL-10, but they did not exhibit any significant effect on Treg cells' suppression in the coculture system. Our results show that SAM might be considered and investigated as a promising agent for immunotherapy in the future.
Collapse
|
21
|
Interleukin-10 production by B cells is regulated by cytokines, but independently of GATA-3 or FoxP3 expression. Cell Immunol 2020; 347:103987. [DOI: 10.1016/j.cellimm.2019.103987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
|
22
|
Spatiotemporal Dynamics of Immune Cells in Early Left Ventricular Remodeling After Acute Myocardial Infarction in Mice. J Cardiovasc Pharmacol 2019; 75:112-122. [PMID: 31764396 DOI: 10.1097/fjc.0000000000000777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Myocardial infarction remains a leading cause of morbidity and death. Insufficient delivery of oxygen to the myocardium sets into play a complicated process of repair that involves the temporal recruitment of different immune cells so as to remove debris and necrotic cells expeditiously and to form effective scar tissue. Clearly defined and overlapping phases have been identified in the process, which transitions from an overall proinflammatory to anti-inflammatory phenotype with time. Variations in the strength of the phases as well as in the co-ordination among them have profound consequences. Too strong of an inflammatory phase can result in left ventricular wall thinning and eventual rupture, whereas too strong of an anti-inflammatory phase can lead to cardiac stiffening, arrhythmias, or ventricular aneurisms. In both cases, heart failure is an intermediate consequence with death being the likely outcome. Here, we summarize the role of key immune cells in the repair process of the heart after left ventricular myocardial infarction, along with the associated cytokines and chemokines. A better understanding of the immune response ought to lead hopefully to improved therapies that exploit the natural repair process for mending the infarcted heart.
Collapse
|
23
|
Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent Eur J Immunol 2019; 44:190-200. [PMID: 31530989 PMCID: PMC6745546 DOI: 10.5114/ceji.2018.76273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are signalling proteins generated in most part by immune cells that have critical functions in cellular lifespan. Here we present recent data on three selected anti-inflammatory cytokines: interleukin (IL)-10, IL-4 and transforming growth factor β (TGF-β). IL-10 inhibits the synthesis of major pro-inflammatory cytokines, chemokines, and mediates anti-inflammatory reactions. IL-4 is a multifunctional cytokine which plays a crucial role in the regulation of immune responses and is involved in processes associated with development and differentiation of lymphocytes and regulation of T cell survival. Transforming TGF-β, which in normal cells or pre-cancerous cells, promotes proliferation arrest which represses tumour growth. In this review, we focus on the influence of IL-10, IL-4 and TGF-β on various types of cancer as well as potential of these selected cytokines to serve as new biomarkers which can support effective therapies for cancer patients. This article is presented based on a review of the newest research results.
Collapse
|
24
|
Yu L, Yang F, Zhang F, Guo D, Li L, Wang X, Liang T, Wang J, Cai Z, Jin H. CD69 enhances immunosuppressive function of regulatory T-cells and attenuates colitis by prompting IL-10 production. Cell Death Dis 2018; 9:905. [PMID: 30185773 PMCID: PMC6125584 DOI: 10.1038/s41419-018-0927-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/07/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) can inhibit immune responses and maintain immune tolerance by secreting immunosuppressive TGF-β1 and IL-10. However, the efficiency of Tregs become the major obstacle to their use for immunotherapy. In this study, we investigated the relevance of the C-type lectin receptor CD69 to the suppressive function. Compared to CD4+Foxp3+CD69− Tregs (CD69− Tregs), CD4+Foxp3+CD69+ Tregs (CD69+ Tregs) displayed stronger ability to maintain immune tolerance. CD69+ Tregs expressed higher levels of suppression-associated markers such as CTLA-4, ICOS, CD38 and GITR, and secreted higher levels of IL-10 but not TGF-β1. CD69+ Tregs from Il10+/+ rather than Il10−/− mice significantly inhibit the proliferation of CD4+ T cells. CD69 over-expression stimulated higher levels of IL-10 and c-Maf expression, which was compromised by silencing of STAT3 or STAT5. In addition, the direct interaction of STAT3 with the c-Maf promoter was detected in cells with CD69 over-expression. Moreover, adoptive transfer of CD69+ Tregs but not CD69−Tregs or CD69+ Tregs deficient in IL-10 dramatically prevented the development of inflammatory bowel disease (IBD) in mice. Taken together, CD69 is important to the suppressive function of Tregs by promoting IL-10 production. CD69+ Tregs have the potential to develop new therapeutic approach for autoimmune diseases like IBD.
Collapse
Affiliation(s)
- Lei Yu
- Laboratory of Cancer Biology, The Key Lab of Biotherapy in Zhejiang Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.,Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.,Chronic Disease Research Institute, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fanghui Zhang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Danfeng Guo
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ling Li
- Laboratory of Cancer Biology, The Key Lab of Biotherapy in Zhejiang Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Hongchuan Jin
- Laboratory of Cancer Biology, The Key Lab of Biotherapy in Zhejiang Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Prunicki M, Stell L, Dinakarpandian D, de Planell-Saguer M, Lucas RW, Hammond SK, Balmes JR, Zhou X, Paglino T, Sabatti C, Miller RL, Nadeau KC. Exposure to NO 2, CO, and PM 2.5 is linked to regional DNA methylation differences in asthma. Clin Epigenetics 2018; 10:2. [PMID: 29317916 PMCID: PMC5756438 DOI: 10.1186/s13148-017-0433-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022] Open
Abstract
Background DNA methylation of CpG sites on genetic loci has been linked to increased risk of asthma in children exposed to elevated ambient air pollutants (AAPs). Further identification of specific CpG sites and the pollutants that are associated with methylation of these CpG sites in immune cells could impact our understanding of asthma pathophysiology. In this study, we sought to identify some CpG sites in specific genes that could be associated with asthma regulation (Foxp3 and IL10) and to identify the different AAPs for which exposure prior to the blood draw is linked to methylation levels at these sites. We recruited subjects from Fresno, California, an area known for high levels of AAPs. Blood samples and responses to questionnaires were obtained (n = 188), and in a subset of subjects (n = 33), repeat samples were collected 2 years later. Average measures of AAPs were obtained for 1, 15, 30, 90, 180, and 365 days prior to each blood draw to estimate the short-term vs. long-term effects of the AAP exposures. Results Asthma was significantly associated with higher differentially methylated regions (DMRs) of the Foxp3 promoter region (p = 0.030) and the IL10 intronic region (p = 0.026). Additionally, at the 90-day time period (90 days prior to the blood draw), Foxp3 methylation was positively associated with NO2, CO, and PM2.5 exposures (p = 0.001, p = 0.001, and p = 0.012, respectively). In the subset of subjects retested 2 years later (n = 33), a positive association between AAP exposure and methylation was sustained. There was also a negative correlation between the average Foxp3 methylation of the promoter region and activated Treg levels (p = 0.039) and a positive correlation between the average IL10 methylation of region 3 of intron 4 and IL10 cytokine expression (p = 0.030). Conclusions Short-term and long-term exposures to high levels of CO, NO2, and PM2.5 were associated with alterations in differentially methylated regions of Foxp3. IL10 methylation showed a similar trend. For any given individual, these changes tend to be sustained over time. In addition, asthma was associated with higher differentially methylated regions of Foxp3 and IL10. Electronic supplementary material The online version of this article (10.1186/s13148-017-0433-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305 USA.,Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Laurel Stell
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Deendayal Dinakarpandian
- Department of Medicine, Stanford University, Stanford, CA 94305 USA.,Center for Biomedical Informatics Research, Stanford University, Stanford, CA 94305 USA
| | | | | | - S Katharine Hammond
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720 USA
| | - John R Balmes
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720 USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Xiaoying Zhou
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305 USA.,Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Tara Paglino
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305 USA.,Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Chiara Sabatti
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA.,Department of Statistics, Stanford University, Stanford, CA 94305 USA
| | - Rachel L Miller
- Department of Medicine, Columbia University, New York, NY 10032 USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA 94305 USA.,Department of Medicine, Stanford University, Stanford, CA 94305 USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford University School of Medicine, 269 Campus Drive, CCSR 3215, MC 5366, Stanford, CA 94305-5101 USA
| |
Collapse
|
26
|
Sadreev II, Chen MZQ, Umezawa Y, Biktashev VN, Kemper C, Salakhieva DV, Welsh GI, Kotov NV. The competitive nature of signal transducer and activator of transcription complex formation drives phenotype switching of T cells. Immunology 2017; 153:488-501. [PMID: 29030870 DOI: 10.1111/imm.12851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/16/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are key molecular determinants of T-cell fate and effector function. Several inflammatory diseases are characterized by an altered balance of T-cell phenotypes and cytokine secretion. STATs, therefore, represent viable therapeutic targets in numerous pathologies. However, the underlying mechanisms by which the same STAT proteins regulate both the development of different T-cell phenotypes and their plasticity during changes in extracellular conditions remain unclear. In this study, we investigated the STAT-mediated regulation of T-cell phenotype formation and plasticity using mathematical modelling and experimental data for intracellular STAT signalling proteins. The close fit of our model predictions to the experimental data allows us to propose a potential mechanism for T-cell switching. According to this mechanism, T-cell phenotype switching is the result of the relative redistribution of STAT dimer complexes caused by the extracellular cytokine-dependent STAT competition effects. The developed model predicts that the balance between the intracellular STAT species defines the amount of the produced cytokines and thereby T-cell phenotypes. The model predictions are consistent with the experimentally observed interferon-γ to interleukin-10 switching that regulates human T helper type 1/type 1 regulatory T-cell responses. The proposed model is applicable to a number of STAT signalling circuits.
Collapse
Affiliation(s)
- Ildar I Sadreev
- Centre for Systems, Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Michael Z Q Chen
- School of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Yoshinori Umezawa
- Department of Dermatology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Vadim N Biktashev
- Centre for Systems, Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.,Division of Transplant Immunology and Mucosal Biology, King's College London, London, UK.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Gavin I Welsh
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Nikolay V Kotov
- Biophysics & Bionics Laboratory, Institute of Physics, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
27
|
Drennan S, D'Avola A, Gao Y, Weigel C, Chrysostomou E, Steele AJ, Zenz T, Plass C, Johnson PW, Williams AP, Packham G, Stevenson FK, Oakes CC, Forconi F. IL-10 production by CLL cells is enhanced in the anergic IGHV mutated subset and associates with reduced DNA methylation of the IL10 locus. Leukemia 2017; 31:1686-1694. [PMID: 27890932 DOI: 10.1038/leu.2016.356] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
Chronic lymphocytic leukemias (CLLs) with unmutated (U-CLL) or mutated (M-CLL) IGHV have variable features of immunosuppression, possibly influenced by those CLL cells activated to produce interleukin 10 (IL-10). The two subsets differ in their levels of anergy, defined by low surface immunoglobulin M levels/signaling capacity, and in their DNA methylation profile, particularly variable in M-CLL. We have now found that levels of IL-10 produced by activated CLL cells were highly variable. Levels were higher in M-CLL than in U-CLL and correlated with anergy. DNA methylation analysis of IL10 locus revealed two previously uncharacterized 'variably methylated regions' (CLL-VMRs1/2) in the gene body, but similarly low methylation in the promoter of both U-CLL and M-CLL. CLL-VMR1/2 methylation was lower in M-CLL than in U-CLL and inversely correlated with IL-10 induction. A functional signal transducer and activator of transcription 3 (STAT3) binding site in CLL-VMR2 was confirmed by proximity ligation and luciferase assays, whereas inhibition of SYK-mediated STAT3 activation resulted in suppression of IL10. The data suggest epigenetic control of IL-10 production. Higher tumor load may compensate the reduced IL-10 production in U-CLL, accounting for clinical immunosuppression in both subsets. The observation that SYK inhibition also suppresses IL-10 provides a potential new rationale for therapeutic targeting and immunological rescue by SYK inhibitors in CLL.
Collapse
Affiliation(s)
- S Drennan
- Haematology Oncology Group, Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A D'Avola
- Haematology Oncology Group, Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Y Gao
- Wessex Investigational Sciences Hub laboratory, Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C Weigel
- Division of Epigenomics and Cancer Risk Factors, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - E Chrysostomou
- Haematology Oncology Group, Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A J Steele
- Molecular Oncology Group, Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, Faculty of Medicine, University of Southampton, Southampton, UK
| | - T Zenz
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - C Plass
- Division of Epigenomics and Cancer Risk Factors, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P W Johnson
- Medical Oncology, University Hospital Southampton National Health Service Trust, Southampton, UK
| | - A P Williams
- Wessex Investigational Sciences Hub laboratory, Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, Faculty of Medicine, University of Southampton, Southampton, UK
| | - G Packham
- Molecular Oncology Group, Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, Faculty of Medicine, University of Southampton, Southampton, UK
| | - F K Stevenson
- Molecular Immunology Group, Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C C Oakes
- Division of Epigenomics and Cancer Risk Factors, The German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - F Forconi
- Haematology Oncology Group, Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, Faculty of Medicine, University of Southampton, Southampton, UK
- Haematology Department, University Hospital Southampton National Health Service Trust, Southampton, UK
| |
Collapse
|
28
|
Wang J, Djudjaj S, Gibbert L, Lennartz V, Breitkopf DM, Rauen T, Hermert D, Martin IV, Boor P, Braun GS, Floege J, Ostendorf T, Raffetseder U. YB-1 orchestrates onset and resolution of renal inflammation via IL10 gene regulation. J Cell Mol Med 2017; 21:3494-3505. [PMID: 28664613 PMCID: PMC5706504 DOI: 10.1111/jcmm.13260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 12/24/2022] Open
Abstract
The Y‐box‐binding protein (YB)‐1 plays a non‐redundant role in both systemic and local inflammatory response. We analysed YB‐1‐mediated expression of the immune regulatory cytokine IL‐10 in both LPS and sterile inflammation induced by unilateral renal ischaemia–reperfusion (I/R) and found an important role of YB‐1 not only in the onset but also in the resolution of inflammation in kidneys. Within a decisive cis‐regulatory region of the IL10 gene locus, the fourth intron, we identified and characterized an operative YB‐1 binding site via gel shift experiments and reporter assays in immune and different renal cells. In vivo, YB‐1 phosphorylated at serine 102 localized to the fourth intron, which was paralleled by enhanced IL‐10 mRNA expression in mice following LPS challenge and in I/R. Mice with half‐maximal expression of YB‐1 (Yb1+/−) had diminished IL‐10 expression upon LPS challenge. In I/R, Yb1+/− mice exhibited ameliorated kidney injury/inflammation in the early‐phase (days 1 and 5), however showed aggravated long‐term damage (day 21) with increased expression of IL‐10 and other known mediators of renal injury and inflammation. In conclusion, these data support the notion that there are context‐specific decisions concerning YB‐1 function and that a fine‐tuning of YB‐1, for example, via a post‐translational modification regulates its activity and/or localization that is crucial for systemic processes such as inflammation.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Sonja Djudjaj
- Institute of Pathology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Lydia Gibbert
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Vera Lennartz
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Daniel M Breitkopf
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Thomas Rauen
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Daniela Hermert
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Ina V Martin
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Gerald S Braun
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Tammo Ostendorf
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| |
Collapse
|
29
|
Yu HR, Tsai CC, Chang LS, Huang HC, Cheng HH, Wang JY, Sheen JM, Kuo HC, Hsieh KS, Huang YH, Yang KD, Hsu TY. l-Arginine-Dependent Epigenetic Regulation of Interleukin-10, but Not Transforming Growth Factor-β, Production by Neonatal Regulatory T Lymphocytes. Front Immunol 2017; 8:487. [PMID: 28487700 PMCID: PMC5403834 DOI: 10.3389/fimmu.2017.00487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/07/2017] [Indexed: 02/04/2023] Open
Abstract
A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL)-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs) function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs) produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs) by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-β production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ling-Sai Chang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsin-Chun Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsin-Hsin Cheng
- Department of Obstetrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Allergy and Clinical Immunology Research (ACIR) Center, College of Medicine National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuender D Yang
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
30
|
Fu W, Hu W, Shi L, Mundra JJ, Xiao G, Dustin ML, Liu CJ. Foxo4- and Stat3-dependent IL-10 production by progranulin in regulatory T cells restrains inflammatory arthritis. FASEB J 2016; 31:1354-1367. [PMID: 28011648 DOI: 10.1096/fj.201601134r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/06/2016] [Indexed: 12/30/2022]
Abstract
Progranulin (PGRN) restrains inflammation and is therapeutic against inflammatory arthritis; however, the underlying immunological mechanism remains unknown. In this study, we demonstrated that anti-inflammatory cytokine IL-10 was a critical mediator for PGRN-mediated anti-inflammation in collagen-induced arthritis by using PGRN and IL-10 genetically modified mouse models. IL-10 green fluorescent protein reporter mice revealed that regulatory T (Treg) cells were the predominant source of IL-10 in response to PGRN. In addition, PGRN-mediated expansion and activation of Treg cells, as well as IL-10 production, depends on JNK signaling, but not on known PGRN-activated ERK and PI3K pathways. Furthermore, microarray and chromatin immunoprecipitation sequencing screens led to the discovery of forkhead box protein O4 and signal transducer and activator of transcription 3 as the transcription factors required for PGRN induction of IL-10 in Treg cells. These findings define a previously unrecognized signaling pathway that underlies IL-10 production by PGRN in Treg cells and present new insights into the mechanisms by which PGRN resolves inflammation in inflammatory conditions and autoimmune diseases, particularly inflammatory arthritis.-Fu, W., Hu, W., Shi, L., Mundra, J. J. Xiao, G., Dustin, M. L., Liu, C. Foxo4- and Stat3-dependent IL-10 production by progranulin in regulatory T cells restrains inflammatory arthritis.
Collapse
Affiliation(s)
- Wenyu Fu
- Department of Orthopaedic Surgery New York University Medical Center, New York, New York, USA
| | - Wenhuo Hu
- Memorial Hospital Research Laboratories, New York, New York, USA
| | - Lei Shi
- Department of Orthopaedic Surgery New York University Medical Center, New York, New York, USA
| | - Jyoti Joshi Mundra
- Department of Orthopaedic Surgery New York University Medical Center, New York, New York, USA
| | - GuoZhi Xiao
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, China.,Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, New York, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery New York University Medical Center, New York, New York, USA; .,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
31
|
Buckley L, Lacey M, Ehrlich M. Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood. Epigenomics 2016; 8:13-31. [PMID: 26756355 PMCID: PMC4863877 DOI: 10.2217/epi.15.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. Materials & methods: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. Results: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. Conclusion: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology.
Collapse
Affiliation(s)
- Lauren Buckley
- Human Genetics Program, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle Lacey
- Tulane Cancer Center & Department of Mathematics, Tulane University, New Orleans, LA 70112, USA
| | - Melanie Ehrlich
- Human Genetics Program, Center for Bioinformatics & Genomics, Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
32
|
McKnight RA, Yost CC, Yu X, Wiedmeier JE, Callaway CW, Brown AS, Lane RH, Fung CM. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene. Physiol Genomics 2015; 47:634-43. [DOI: 10.1152/physiolgenomics.00082.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state.
Collapse
Affiliation(s)
- Robert A. McKnight
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian C. Yost
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Xing Yu
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Julia E. Wiedmeier
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christopher W. Callaway
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Ashley S. Brown
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Robert H. Lane
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
33
|
Garrigan E, Belkin NS, Seydel F, Han Z, Carter J, McDuffie M, Morel L, Peck AB, Clare-Salzler MJ, Atkinson M, Wasserfall C, Davoodi-Semiromi A, Shi JD, Haskell-Luevano C, Yang LJ, Alexander JJ, Cdebaca A, Piliant T, Riggs C, Amick M, Litherland SA. Csf2 and Ptgs2 Epigenetic Dysregulation in Diabetes-prone Bicongenic B6.NODC11bxC1tb Mice. GENETICS & EPIGENETICS 2015; 7:5-17. [PMID: 26512207 PMCID: PMC4603573 DOI: 10.4137/geg.s29696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 11/05/2022]
Abstract
In Type 1 diabetic (T1D) human monocytes, STAT5 aberrantly binds to epigenetic regulatory sites of two proinflammatory genes, CSF2 (encoding granulocyte-macrophage colony-stimulating factor) and PTGS2 (encoding prostaglandin synthase 2/cyclooxygenase 2). Bicongenic B6.NOD C11bxC1tb mice re-create this phenotype of T1D monocytes with only two nonobese diabetic (NOD) Idd subloci (130.8 Mb-149.7 Mb, of Idd5 on Chr 1 and 32.08-53.85 Mb of Idd4.3 on Chr11) on C57BL/6 genetic background. These two Idd loci interact through STAT5 binding at upstream regulatory regions affecting Csf2 (Chr 11) and Ptgs2 (Chr 1) expression. B6.NODC11bxC1tb mice exhibited hyperglycemia and immune destruction of pancreatic islets between 8 and 30 weeks of age, with 12%-22% penetrance. Thus, B6.NODC11bxC1tb mice embody NOD epigenetic dysregulation of gene expression in myeloid cells, and this defect appears to be sufficient to impart genetic susceptibility to diabetes in an otherwise genetically nonautoimmune mouse.
Collapse
Affiliation(s)
- Erin Garrigan
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nicole S Belkin
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Federica Seydel
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zhao Han
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jamal Carter
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marcia McDuffie
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ammon B Peck
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Abdoreza Davoodi-Semiromi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jing-da Shi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carrie Haskell-Luevano
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - John J Alexander
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Autumn Cdebaca
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Corin Riggs
- Bionetics Corporation, Kennedy Space Center, FL, USA. ; Sanford-Burnham Medical Research Institute, Diabetes and Obesity Center, Lake Nona-Orlando, FL, USA
| | - Matthew Amick
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA. ; Sanford-Burnham Medical Research Institute, Diabetes and Obesity Center, Lake Nona-Orlando, FL, USA
| | - Sally A Litherland
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA. ; Sanford-Burnham Medical Research Institute, Diabetes and Obesity Center, Lake Nona-Orlando, FL, USA. ; Florida Hospital Cancer Institute, Orlando, FL, USA
| |
Collapse
|
34
|
Liberal R, Grant CR, Holder BS, Cardone J, Martinez-Llordella M, Ma Y, Heneghan MA, Mieli-Vergani G, Vergani D, Longhi MS. In autoimmune hepatitis type 1 or the autoimmune hepatitis-sclerosing cholangitis variant defective regulatory T-cell responsiveness to IL-2 results in low IL-10 production and impaired suppression. Hepatology 2015; 62:863-75. [PMID: 25953611 DOI: 10.1002/hep.27884] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/03/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Defective immune regulation plays a permissive role enabling effector cells to initiate and perpetuate tissue damage, eventually resulting in autoimmune disease. Numerical and functional regulatory T-cell (Treg) impairment has been previously reported in autoimmune liver disease (AILD; including autoimmune hepatitis and autoimmune sclerosing cholangitis ASC). However, in these early reports, Tregs were phenotypically defined as CD4(+) CD25(+) or CD4(+) CD25(high) cells. In the current study, we reexamined phenotypic and functional properties of Tregs by adopting a more refined definition of these cells that also includes negativity or low level of expression of CD127. We studied 43 AILD patients and 22 healthy subjects (HSs) and found that CD4(+) CD25(+) CD127(-) Tregs were decreased in the former. This decrease was more marked in patients with active disease than in those in remission. In AILD, Treg frequencies correlated inversely with parameters of disease activity and were not affected by immunosuppressive treatment. We also document, for the first time, that, in AILD, bona-fide Tregs produce less interleukin (IL)-10 and are impaired in their ability to suppress CD4(+) CD25(-) target cell proliferation, a feature that in HSs, but not in AILDs, is dependent, at least in part, on IL-10 secretion. Decreased IL-10 production by Tregs in AILD is linked to poor responsiveness to IL-2 and phospho signal transducer and activator of transcription 5 up-regulation. CONCLUSION Tregs are numerically impaired in AILD, this impairment being more prominent during active disease. Notably, defective IL-10 production, resulting from low Treg responsiveness to IL-2, contributes to Treg functional impairment.
Collapse
Affiliation(s)
- Rodrigo Liberal
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Charlotte R Grant
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Beth S Holder
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - John Cardone
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Marc Martinez-Llordella
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Yun Ma
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Michael A Heneghan
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Giorgina Mieli-Vergani
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.,Pediatric Liver, GI & Nutrition Center, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Diego Vergani
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Maria Serena Longhi
- Department of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, MRC Center for Transplantation, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| |
Collapse
|
35
|
IL-10 gene polymorphism and influence of chemotherapy on cytokine plasma levels in childhood acute lymphoblastic leukemia patients. Blood Cells Mol Dis 2015; 55:168-72. [DOI: 10.1016/j.bcmd.2015.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/21/2022]
|
36
|
Zeng H, Zhang R, Jin B, Chen L. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol Immunol 2015; 12:566-71. [PMID: 26051475 DOI: 10.1038/cmi.2015.44] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022] Open
Abstract
The lack of immune response to an antigen, a process known as immune tolerance, is essential for the preservation of immune homeostasis. To date, two mechanisms that drive immune tolerance have been described extensively: central tolerance and peripheral tolerance. Under the new nomenclature, thymus-derived regulatory T (tT(reg)) cells are the major mediators of central immune tolerance, whereas peripherally derived regulatory T (pT(reg)) cells function to regulate peripheral immune tolerance. A third type of T(reg) cells, termed iT(reg), represents only the in vitro-induced T(reg) cells(1). Depending on whether the cells stably express Foxp3, pT(reg), and iT(reg) cells may be divided into two subsets: the classical CD4(+)Foxp3(+) T(reg) cells and the CD4(+)Foxp3(-) type 1 regulatory T (Tr1) cells(2). This review focuses on the discovery, associated biomarkers, regulatory functions, methods of induction, association with disease, and clinical trials of Tr1 cells.
Collapse
Affiliation(s)
- Hanyu Zeng
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Rong Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| |
Collapse
|
37
|
Nguyen M, Boutinaud M, Pétridou B, Gabory A, Pannetier M, Chat S, Bouet S, Jouneau L, Jaffrezic F, Laloë D, Klopp C, Brun N, Kress C, Jammes H, Charlier M, Devinoy E. DNA methylation and transcription in a distal region upstream from the bovine AlphaS1 casein gene after once or twice daily milking. PLoS One 2014; 9:e111556. [PMID: 25369064 PMCID: PMC4219721 DOI: 10.1371/journal.pone.0111556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022] Open
Abstract
Once daily milking (ODM) induces a reduction in milk production when compared to twice daily milking (TDM). Unilateral ODM of one udder half and TDM of the other half, enables the study of underlying mechanisms independently of inter-individual variability (same genetic background) and of environmental factors. Our results show that in first-calf heifers three CpG, located 10 kb upstream from the CSN1S1 gene were methylated to 33, 34 and 28%, respectively, after TDM but these levels were higher after ODM, 38, 38 and 33%, respectively. These methylation levels were much lower than those observed in the mammary gland during pregnancy (57, 59 and 50%, respectively) or in the liver (74, 78 and 61%, respectively). The methylation level of a fourth CpG (CpG4), located close by (29% during TDM) was not altered after ODM. CpG4 methylation reached 39.7% and 59.5%, during pregnancy or in the liver, respectively. CpG4 is located within a weak STAT5 binding element, arranged in tandem with a second high affinity STAT5 element. STAT5 binding is only marginally modulated by CpG4 methylation, but it may be altered by the methylation levels of the three other CpG nearby. Our results therefore shed light on mechanisms that help to explain how milk production is almost, but not fully, restored when TDM is resumed (15.1±0.2 kg/day instead of 16.2±0.2 kg/day, p<0.01). The STAT5 elements are 100 bp away from a region transcribed in the antisense orientation, in the mammary gland during lactation, but not during pregnancy or in other reproductive organs (ovary or testes). We now need to clarify whether the transcription of this novel RNA is a consequence of STAT5 interacting with the CSN1S1 distal region, or whether it plays a role in the chromatin structure of this region.
Collapse
Affiliation(s)
- Minh Nguyen
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Marion Boutinaud
- INRA, UMR1348 Physiologie Environnement et Génétique pour l′Animal et les Systèmes d′Elevage, Saint-Gilles, France
| | - Barbara Pétridou
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Maëlle Pannetier
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Sophie Chat
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Stephan Bouet
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Luc Jouneau
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Florence Jaffrezic
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Denis Laloë
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Christophe Klopp
- INRA, Sigenae, UR875 Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Nicolas Brun
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Clémence Kress
- INSERM U846 Stem Cell and Brain Research Institute, INRA, USC1361 AGROBIOSYSTEM, Université de Lyon 1 UMR S 846, Bron, France
| | - Hélène Jammes
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Madia Charlier
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Eve Devinoy
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
38
|
Stat3 promotes IL-10 expression in lupus T cells through trans-activation and chromatin remodeling. Proc Natl Acad Sci U S A 2014; 111:13457-62. [PMID: 25187566 DOI: 10.1073/pnas.1408023111] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The immune-regulatory cytokine IL-10 plays a central role during innate and adaptive immune responses. IL-10 is elevated in the serum and tissues of patients with systemic lupus erythematosus (SLE), an autoimmune disorder characterized by autoantibody production, immune-complex formation, and altered cytokine expression. Because of its B cell-promoting effects, IL-10 may contribute to autoantibody production and tissue damage in SLE. We aimed to determine molecular events governing T cell-derived IL-10 expression in health and disease. We link reduced DNA methylation of the IL10 gene with increased recruitment of Stat family transcription factors. Stat3 and Stat5 recruitment to the IL10 promoter and an intronic enhancer regulate gene expression. Both Stat3 and Stat5 mediate trans-activation and epigenetic remodeling of IL10 through their interaction with the histone acetyltransferase p300. In T cells from SLE patients, activation of Stat3 is increased, resulting in enhanced recruitment to regulatory regions and competitive replacement of Stat5, subsequently promoting IL-10 expression. A complete understanding of the molecular events governing cytokine expression will provide new treatment options in autoimmune disorders, including SLE. The observation that altered activation of Stat3 influences IL-10 expression in T cells from SLE patients offers molecular targets in the search for novel target-directed treatment options.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Tumor growth elicits antigen-specific cytotoxic as well as immune suppressive responses. Interleukin-10 (IL-10) is a key immune-suppressive cytokine produced by regulatory T-cells and by helper T-cells. Here, we review pleiotropic functions of IL-10 that impact the immune pathology of cancer. RECENT FINDINGS The role of IL-10 in cancer has become less certain with the knowledge of its immune stimulatory functions. IL-10 is needed for T-helper cell functions, T-cell immune surveillance, and suppression of cancer-associated inflammation. By promoting tumor-specific immune surveillance and hindering pathogenic inflammation, IL-10 is emerging as a key cytokine in the battle of the host against cancer. SUMMARY IL-10 functions at the cross-roads of immune stimulation and immune suppression in cancer. Immunological mechanisms of action of IL-10 can be ultimately exploited to develop novel and effective cancer therapies.
Collapse
|
40
|
Xie L, Sun F, Wang J, Mao X, Xie L, Yang SH, Su DM, Simpkins JW, Greenberg DA, Jin K. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:6009-19. [PMID: 24829408 PMCID: PMC4128178 DOI: 10.4049/jimmunol.1303492] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling by the mammalian target of rapamycin (mTOR) plays an important role in the modulation of both innate and adaptive immune responses. However, the role and underlying mechanism of mTOR signaling in poststroke neuroinflammation are largely unexplored. In this study, we injected rapamycin, a mTOR inhibitor, by the intracerebroventricular route 6 h after focal ischemic stroke in rats. We found that rapamycin significantly reduced lesion volume and improved behavioral deficits. Notably, infiltration of γδ T cells and granulocytes, which are detrimental to the ischemic brain, was profoundly reduced after rapamycin treatment, as was the production of proinflammatory cytokines and chemokines by macrophages and microglia. Rapamycin treatment prevented brain macrophage polarization toward the M1 type. In addition, we also found that rapamycin significantly enhanced anti-inflammation activity of regulatory T cells (Tregs), which decreased production of proinflammatory cytokines and chemokines by macrophages and microglia. Depletion of Tregs partially elevated macrophage/microglia-induced neuroinflammation after stroke. Our data suggest that rapamycin can attenuate secondary injury and motor deficits after focal ischemia by enhancing the anti-inflammation activity of Tregs to restrain poststroke neuroinflammation.
Collapse
Affiliation(s)
- Luokun Xie
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Fen Sun
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Jixian Wang
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - XiaoOu Mao
- Buck Institute for Research on Aging, Novato, CA 94945; and
| | - Lin Xie
- Buck Institute for Research on Aging, Novato, CA 94945; and
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Dong-Ming Su
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; Department of Physiology and Pharmacology, Center for Neuroscience, Health Science Center, West Virginia University, Morgantown, WV 26506
| | | | - Kunlin Jin
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107;
| |
Collapse
|
41
|
Hashimoto SI, Ogoshi K, Sasaki A, Abe J, Qu W, Nakatani Y, Ahsan B, Oshima K, Shand FHW, Ametani A, Suzuki Y, Kaneko S, Wada T, Hattori M, Sugano S, Morishita S, Matsushima K. Coordinated changes in DNA methylation in antigen-specific memory CD4 T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4076-91. [PMID: 23509353 DOI: 10.4049/jimmunol.1202267] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory CD4(+) T cells are central regulators of both humoral and cellular immune responses. T cell differentiation results in specific changes in chromatin structure and DNA methylation of cytokine genes. Although the methylation status of a limited number of gene loci in T cells has been examined, the genome-wide DNA methylation status of memory CD4(+) T cells remains unexplored. To further elucidate the molecular signature of memory T cells, we conducted methylome and transcriptome analyses of memory CD4(+) T cells generated using T cells from TCR-transgenic mice. The resulting genome-wide DNA methylation profile revealed 1144 differentially methylated regions (DMRs) across the murine genome during the process of T cell differentiation, 552 of which were associated with gene loci. Interestingly, the majority of these DMRs were located in introns. These DMRs included genes such as CXCR6, Tbox21, Chsy1, and Cish, which are associated with cytokine production, homing to bone marrow, and immune responses. Methylation changes in memory T cells exposed to specific Ag appeared to regulate enhancer activity rather than promoter activity of immunologically relevant genes. In addition, methylation profiles differed between memory T cell subsets, demonstrating a link between T cell methylation status and T cell differentiation. By comparing DMRs between naive and Ag-specific memory T cells, this study provides new insights into the functional status of memory T cells.
Collapse
Affiliation(s)
- Shin-ichi Hashimoto
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rodriguez RM, Suarez-Alvarez B, Salvanés R, Muro M, Martínez-Camblor P, Colado E, Sánchez MA, Díaz MG, Fernandez AF, Fraga MF, Lopez-Larrea C. DNA methylation dynamics in blood after hematopoietic cell transplant. PLoS One 2013; 8:e56931. [PMID: 23451113 PMCID: PMC3579934 DOI: 10.1371/journal.pone.0056931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/16/2013] [Indexed: 12/20/2022] Open
Abstract
Epigenetic deregulation is considered a common hallmark of cancer. Nevertheless, recent publications have demonstrated its association with a large array of human diseases. Here, we explore the DNA methylation dynamics in blood samples during hematopoietic cell transplant and how they are affected by pathophysiological events during transplant evolution. We analyzed global DNA methylation in a cohort of 47 patients with allogenic transplant up to 12 months post-transplant. Recipients stably maintained the donor’s global methylation levels after transplant. Nonetheless, global methylation is affected by chimerism status. Methylation analysis of promoters revealed that methylation in more than 200 genes is altered 1 month post-transplant when compared with non-pathological methylation levels in the donor. This number decreased by 6 months post-transplant. Finally, we analyzed methylation in IFN-γ, FASL, IL-10, and PRF1 and found association with the severity of the acute graft-versus-host disease. Our results provide strong evidence that methylation changes in blood are linked to underlying physiological events and demonstrate that DNA methylation analysis is a viable strategy for the study of transplantation and for development of biomarkers.
Collapse
Affiliation(s)
- Ramon M. Rodriguez
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | | | - Rubén Salvanés
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Manuel Muro
- Department of Immunology, Hospital Virgen de la Arrixaca, Murcia, Spain
| | | | - Enrique Colado
- Department of Hematology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Miguel Alcoceba Sánchez
- Servicio de Hematología y Hemoterapia, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Marcos González Díaz
- Servicio de Hematología y Hemoterapia, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Agustin F. Fernandez
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnologıa/CNB-CSIC, Cantoblanco, Madrid, Spain
- * E-mail: (MFF); (CLL)
| | - Carlos Lopez-Larrea
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
- Fundación Renal “Iñigo Álvarez de Toledo”, Madrid, Spain
- * E-mail: (MFF); (CLL)
| |
Collapse
|
43
|
Lisowska KA, Dębska-Ślizień A, Jasiulewicz A, Daca A, Bryl E, Witkowski JM. The influence of recombinant human erythropoietin on apoptosis and cytokine production of CD4+ lymphocytes from hemodialyzed patients. J Clin Immunol 2012. [PMID: 23180360 PMCID: PMC3591526 DOI: 10.1007/s10875-012-9835-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recombinant human erythropoietin (rhEPO) treatment of hemodialyzed (HD) patients normalizes the altered phenotype of CD4+ lymphocytes and restores the balance of Th1/Th2 cytokines. We decided to test how the presence of rhEPO in cell culture modulates cytokine production of CD4+ lymphocytes in HD patients with stable hemoglobin level and expression of activation antigens of stimulated CD4+ lymphocytes similar to those observed in healthy individuals. We also tested whether the presence of rhEPO in cell culture protects stimulated CD4+ lymphocytes of HD patients from apoptosis. Peripheral blood mononuclear cells (PBMC) of HD patients were stimulated with an immobilized anti-CD3 antibody with or without addition of rhEPO. The percentage of apoptotic CD4+ lymphocytes and the level of Th1/Th2 cytokines in culture supernatants were measured with flow cytometry. HD patients showed a decrease in the percentage of apoptotic CD4+ cells after stimulation with the anti-CD3 antibody combined with rhEPO. The level of IFN-γ and IL-10 was increased while the level of TNF-α was decreased in the presence of rhEPO in cell culture from HD patients. These results confirm the role of rhEPO signaling in T lymphocytes of HD patients.
Collapse
Affiliation(s)
- Katarzyna A Lisowska
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| | | | | | | | | | | |
Collapse
|
44
|
Ogata M, Ito T, Shimamoto K, Nakanishi T, Satsutani N, Miyamoto R, Nomura S. Plasmacytoid dendritic cells have a cytokine-producing capacity to enhance ICOS ligand-mediated IL-10 production during T-cell priming. Int Immunol 2012; 25:171-82. [DOI: 10.1093/intimm/dxs103] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
45
|
Jin JO, Han X, Yu Q. Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation. J Autoimmun 2012; 40:28-44. [PMID: 22921334 DOI: 10.1016/j.jaut.2012.07.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 01/01/2023]
Abstract
Compared with its pro-inflammatory function, the mechanisms underlying the anti-inflammatory effect of IL-6 are poorly understood. IL-6 can cooperate with TGF-β to induce IL-10 production in Th17 cells in vitro. However, the effect of IL-6 on generation of Tr1 cells and the in vivo importance of this effect are mostly uncharacterized. In this study, we showed that in vitro, IL-6 can induce the generation of IL-10-producing Tr1 cells from naïve CD4 T cells, independently of IL-27 and TGF-β. IL-6 induces IL-21 production in CD4 T cells and IL-10-inducing effect of IL-6 requires both IL-21 and IL-2. Although IL-6 cannot induce IL-10 production in CD8 T cells in a cell-autonomous manner, it can do so indirectly through promoting CD4 T cell IL-21 production. The IL-10-producing T cells induced by IL-6 have phenotypic, genetic and functional traits of Tr1 cells and can suppress LPS-induced in vivo inflammatory response in an IL-10-dependent fashion. Blockade of IL-6 in two autoimmune inflammation models, induced respectively by anti-CD3 antibody or Treg-depletion, led to reduction in IL-10-producing T cells and exacerbated inflammation of lung and intestine. Thus, we delineated critical pathways involved in IL-6-induced generation of Tr1 cells and demonstrated the importance of this event in restraining autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Jun-O Jin
- Department of Immunology, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
46
|
Bonacci B, Edwards B, Jia S, Williams CB, Hessner MJ, Gauld SB, Verbsky JW. Requirements for growth and IL-10 expression of highly purified human T regulatory cells. J Clin Immunol 2012; 32:1118-28. [PMID: 22562448 DOI: 10.1007/s10875-012-9701-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/13/2012] [Indexed: 01/07/2023]
Abstract
Human regulatory T cells (T(R)) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human T(R) cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimulation with a superagonistic anti-CD28 antibody (clone 9.3) and IL-2 partially reversed the proliferative defect, and this correlated with reversal of the defective calcium mobilization in these cells. Dendritic cells were effective at promoting T(R) cell proliferation, and under these conditions the proliferative capacity of T(R) cells was comparable to conventional CD4 lymphocytes. Blocking TGF-β activity abrogated IL-10 expression from these cells, while addition of TGF-β resulted in IL-10 production. These data demonstrate that highly purified populations of T(R) cells are anergic even in the presence of high doses of IL-2. Furthermore, antigen presenting cells provide proper co-stimulation to overcome the anergic phenotype of T(R) cells, and under these conditions they are highly sensitive to IL-2. In addition, these data demonstrate for the first time that TGF-β is critical to enable human T(R) cells to express IL-10.
Collapse
Affiliation(s)
- Benedetta Bonacci
- Department of Pediatrics, Medical College of Wisconsin and the Children's Research Institute, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Altin JA, Goodnow CC, Cook MC. IL-10+ CTLA-4+ Th2 inhibitory cells form in a Foxp3-independent, IL-2-dependent manner from Th2 effectors during chronic inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 188:5478-88. [PMID: 22547705 DOI: 10.4049/jimmunol.1102994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activated Th cells influence other T cells via positive feedback circuits that expand and polarize particular types of response, but little is known about how they may also initiate negative feedback against immunopathological reactions. In this study, we demonstrate the emergence, during chronic inflammation, of GATA-3(+) Th2 inhibitory (Th2i) cells that express high levels of inhibitory proteins including IL-10, CTLA-4, and granzyme B, but do so independently of Foxp3. Whereas other Th2 effectors promote proliferation and IL-4 production by naive T cells, Th2i cells suppress proliferation and IL-4 production. We show that Th2i cells develop directly from Th2 effectors, in a manner that can be promoted by effector cytokines including IL-2, IL-10, and IL-21 ex vivo and that requires T cell activation through CD28, Card11, and IL-2 in vivo. Formation of Th2i cells may act as an inbuilt activation-induced feedback inhibition mechanism against excessive or chronic Th2 responses.
Collapse
Affiliation(s)
- John A Altin
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | |
Collapse
|
48
|
Durham A, Chou PC, Kirkham P, Adcock IM. Epigenetics in asthma and other inflammatory lung diseases. Epigenomics 2012; 2:523-37. [PMID: 22121972 DOI: 10.2217/epi.10.27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways. The causes of asthma and other inflammatory lung diseases are thought to be both environmental and heritable. Genetic studies do not adequately explain the heritability and susceptabilty to the disease, and recent evidence suggests that epigentic changes may underlie these processes. Epigenetics are heritable noncoding changes to DNA and can be influenced by environmental factors such as smoking and traffic pollution, which can cause genome-wide and gene-specific changes in DNA methylation. In addition, alterations in histone acetyltransferase/deacetylase activities can be observed in the cells of patients with lung diseases such as severe asthma and chronic obstructive pulmonary disease, and are often linked to smoking. Drugs such as glucocorticoids, which are used to control inflammation, are dependent on histone deacetylase activity, which may be important in patients with severe asthma and chronic obstructive pulmonary disease who do not respond well to glucocorticoid therapy. Future work targeting specific histone acetyltransferases/deacetylases or (de)methylases may prove to be effective future anti-inflammatory treatments for patients with treatment-unresponsive asthma.
Collapse
Affiliation(s)
- Andrew Durham
- Airways Disease Section, National Heart & Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY, UK.
| | | | | | | |
Collapse
|
49
|
Role of interleukin-10 in malaria: focusing on coinfection with lethal and nonlethal murine malaria parasites. J Biomed Biotechnol 2011; 2011:383962. [PMID: 22190849 PMCID: PMC3228686 DOI: 10.1155/2011/383962] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/23/2022] Open
Abstract
Interleukin- (IL-) 10, anti-inflammatory cytokine, is known to inhibit the protective immune responses against malaria parasites and to be involved in exacerbating parasitemia during Plasmodium infection. In contrast, IL-10 is regarded as necessary for suppressing severe pathology during Plasmodium infection. Here, we summarize the role of IL-10 during murine malaria infection, focusing especially on coinfection with lethal and nonlethal strains of malaria parasites. Recent studies have demonstrated that the major sources of IL-10 are subpopulations of CD4+ T cells in humans and mice infected with Plasmodium. We also discuss the influence of innate immunity on the induction of CD4+ T cells during murine malaria coinfection.
Collapse
|
50
|
Fu LH, Ma CL, Cong B, Li SJ, Chen HY, Zhang JG. Hypomethylation of proximal CpG motif of interleukin-10 promoter regulates its expression in human rheumatoid arthritis. Acta Pharmacol Sin 2011; 32:1373-80. [PMID: 21986577 DOI: 10.1038/aps.2011.98] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIM The promoter of human interleukin-10 (IL10), a cytokine crucial for suppressing inflammation and regulating immune responses, contains an interspecies-conserved sequence with CpG motifs. The aim of this study was to investigate whether methylation of CpG motifs could regulate the expression of IL10 in rheumatoid arthritis (RA). METHODS Bioinformatic analysis was conducted to identify the interspecies-conserved sequence in human, macaque and mouse IL10 genes. Peripheral blood mononuclear cells (PBMCs) from 20 RA patients and 20 health controls were collected. The PBMCs from 6 patients were cultured in the presence or absence of 5-azacytidine (5 μmol/L). The mRNA and protein levels of IL10 were examined using RT-PCR and ELISA, respectively. The methylation of CpGs in the IL10 promoter was determined by pyrosequencing. Chromatin immunoprecipitation (ChIP) assays were performed to detect the cyclic AMP response element-binding protein (CREB)-DNA interactions. RESULTS One interspecies-conserved sequence was found within the IL10 promoter. The upstream CpGs at -408, -387, -385, and -355 bp were hypermethylated in PBMCs from both the RA patients and healthy controls. In contrast, the proximal CpG at -145 was hypomethylated to much more extent in the RA patients than in the healthy controls (P=0.016), which was correlated with higher IL10 mRNA and serum levels. In the 5-azacytidine-treated PBMCs, the CpG motifs were demethylated, and the expression levels of IL10 mRNA and protein was significantly increased. CHIP assays revealed increased phospho-CREB binding to the IL10 promoter. CONCLUSION The methylation of the proximal CpGs in the IL10 promoter may regulate gene transcription in RA.
Collapse
|