1
|
Zhang Y, Zhang H, Zhu X, Ye H, Yang K, Zhou X, Hong J. Tear neuropeptides are associated with clinical symptoms and signs of dry eye patients. Ann Med 2025; 57:2451194. [PMID: 39823189 PMCID: PMC11748860 DOI: 10.1080/07853890.2025.2451194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/28/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
PURPOSE To evaluate levels of 3 tear-soluble neuropeptides in dry eye patients and to identify the correlations with clinical signs and symptoms. METHODS A total of 16 dry eye patients and 12 healthy volunteers were enrolled. Dry eye disease (DED) diagnosis was based on the 2017 Report of the Tear Film & Ocular Surface Society International Dry Eye Workshop (TFOS DEWS II). First time of noninvasive breakup time (NIBUT-1st), mean time of noninvasive breakup time (NIBUT-avg), tear meniscus height (TMH), Schirmer test, corneal fluorescein staining (CFS) score and ocular surface disease index (OSDI) were recorded. Tear fluid samples were collected and enzyme-linked immunoassay (ELISA was performed to analyze levels of calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and substance P (SP), as well as the association among the 3 neuropeptides and clinical findings. RESULTS Compared to normal controls, levels of tear CGRP (p=.003) and SP (p=.002) were significantly decreased in dry eye patients yet not NPY concentrations. Levels of tear CGRP and SP showed an inverse correlation with CFS and OSDI, which positively correlated with NIBUT-1st, NIBUT-avg and Schirmer test values. Multiple linear regression analysis showed that Schirmer test values were related to tear CGRP concentration. Subgroup analysis showed lower tear CGRP concentration in DED patients with severe symptoms (OSDI ≥ 46). CONCLUSIONS Levels of tear CGRP and SP decreased in DED patients and showed meaningful correlations with clinical symptoms and signs, implying a potential relationship between tear neuropeptides and ocular neurosensory function.
Collapse
Affiliation(s)
- Yirou Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xingyu Zhu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Han Ye
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Kan Yang
- Department of Ophthalmology, The First People’s Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Rare Disease Gene Editing and Cell Therapy, Shanghai Engineering Research Center of Synthetic Immunology, Fudan University, Shanghai, China
- Department of Ophthalmology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| |
Collapse
|
2
|
Liu R, Buttaci DR, Sokol CL. Neurogenic inflammation and itch in barrier tissues. Semin Immunol 2025; 77:101928. [PMID: 39798211 DOI: 10.1016/j.smim.2024.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Once regarded as distinct systems, the nervous system and the immune system are now recognized for their complex interactions within the barrier tissues. The neuroimmune circuitry comprises a dual-network system that detects external and internal disturbances, providing critical information to tailor a context-specific response to various threats to tissue integrity, such as wounding or exposure to noxious and harmful stimuli like pathogens, toxins, or allergens. Using the skin as an example of a barrier tissue with the polarized sensory neuronal responses of itch and pain, we explore the molecular pathways driving neuronal activation and the effects of this activation on the immune response. We then apply these findings to other barrier tissues, to find common pathways controlling neuroimmune responses in the barriers.
Collapse
Affiliation(s)
- Rebecca Liu
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dean R Buttaci
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
4
|
Lopez Espinoza A, Christopher T, Tait Wojno ED. Epithelial-immune interactions govern type 2 immunity at barrier surfaces. Curr Opin Immunol 2024; 91:102501. [PMID: 39522453 PMCID: PMC11734749 DOI: 10.1016/j.coi.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Allergic diseases are acute and chronic inflammatory conditions resulting from disproportionate responses to environmental stimuli. Affecting approximately 40% of the global population, these diseases significantly contribute to morbidity and increasing health care costs. Allergic reactions are triggered by pollen, house dust mites, animal dander, mold, food antigens, venoms, toxins, and drugs. This review explores the pivotal role of the epithelium in the skin, lungs, and gastrointestinal tract in regulating the allergic response and delves into the mechanisms of tissue-specific epithelial-immune interactions in this context, with recent advances highlighting their roles in the initiation, elicitation, and resolution phases of allergy. Understanding these intricate interactions at epithelial barriers is essential for developing targeted therapies to manage and treat allergic diseases.
Collapse
Affiliation(s)
| | - Tighe Christopher
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
5
|
Hou Y, Sun L, LaFleur MW, Huang L, Lambden C, Thakore PI, Geiger-Schuller K, Kimura K, Yan L, Zang Y, Tang R, Shi J, Barilla R, Deng L, Subramanian A, Wallrapp A, Choi HS, Kye YC, Ashenberg O, Schiebinger G, Doench JG, Chiu IM, Regev A, Sharpe AH, Kuchroo VK. Neuropeptide signalling orchestrates T cell differentiation. Nature 2024; 635:444-452. [PMID: 39415015 DOI: 10.1038/s41586-024-08049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
The balance between T helper type 1 (TH1) cells and other TH cells is critical for antiviral and anti-tumour responses1-3, but how this balance is achieved remains poorly understood. Here we dissected the dynamic regulation of TH1 cell differentiation during in vitro polarization, and during in vivo differentiation after acute viral infection. We identified regulators modulating T helper cell differentiation using a unique TH1-TH2 cell dichotomous culture system and systematically validated their regulatory functions through multiple in vitro and in vivo CRISPR screens. We found that RAMP3, a component of the receptor for the neuropeptide CGRP (calcitonin gene-related peptide), has a cell-intrinsic role in TH1 cell fate determination. Extracellular CGRP signalling through the receptor RAMP3-CALCRL restricted the differentiation of TH2 cells, but promoted TH1 cell differentiation through the activation of downstream cAMP response element-binding protein (CREB) and activating transcription factor 3 (ATF3). ATF3 promoted TH1 cell differentiation by inducing the expression of Stat1, a key regulator of TH1 cell differentiation. After viral infection, an interaction between CGRP produced by neurons and RAMP3 expressed on T cells enhanced the anti-viral IFNγ-producing TH1 and CD8+ T cell response, and timely control of acute viral infection. Our research identifies a neuroimmune circuit in which neurons participate in T cell fate determination by producing the neuropeptide CGRP during acute viral infection, which acts on RAMP3-expressing T cells to induce an effective anti-viral TH1 cell response.
Collapse
Affiliation(s)
- Yu Hou
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Liangzhu Laboratory of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, China
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Linyu Sun
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin W LaFleur
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Linglin Huang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Conner Lambden
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Kimitoshi Kimura
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Longjun Yan
- Liangzhu Laboratory of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Zang
- Liangzhu Laboratory of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruihan Tang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingwen Shi
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Rocky Barilla
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ayshwarya Subramanian
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Antonia Wallrapp
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Hee Sun Choi
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Yoon-Chul Kye
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Orr Ashenberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Geoffrey Schiebinger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| | - Arlene H Sharpe
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Zeng J, Pan Y, Chaker SC, Torres-Guzman R, Lineaweaver WC, Qi F. Neural and Inflammatory Interactions in Wound Healing. Ann Plast Surg 2024; 93:S91-S97. [PMID: 39101856 DOI: 10.1097/sap.0000000000003933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
ABSTRACT The skin is an intricate network of both neurons and immunocytes, where emerging evidence has indicated that the regulation of neural-inflammatory processes may play a crucial role in mediating wound healing. Disease associated abnormal immunological dysfunction and peripheral neuropathy are implicated in the pathogenesis of wound healing impairment. However, the mechanisms through which neural-inflammatory interactions modulate wound healing remain ambiguous. Understanding the underlying mechanisms may provide novel insights to develop therapeutic devices, which could manipulate neural-inflammatory crosstalk to aid wound healing. This review aims to comprehensively illustrate the neural-inflammatory interactions during different stages of the repair process. Numerous mediators including neuropeptides secreted by the sensory and autonomic nerve fibers and cytokines produced by immunocytes play an essential part during the distinct phases of wound healing.
Collapse
Affiliation(s)
- Junhao Zeng
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyan Pan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ricardo Torres-Guzman
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William C Lineaweaver
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Vine EE, Austin PJ, O'Neil TR, Nasr N, Bertram KM, Cunningham AL, Harman AN. Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Rep 2024; 43:113977. [PMID: 38512869 DOI: 10.1016/j.celrep.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.
Collapse
Affiliation(s)
- Erica Elizabeth Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Westmead Clinic School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Jonathon Austin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Ray O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kirstie Melissa Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony Lawrence Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
8
|
Kim B, Rothenberg ME, Sun X, Bachert C, Artis D, Zaheer R, Deniz Y, Rowe P, Cyr S. Neuroimmune interplay during type 2 inflammation: Symptoms, mechanisms, and therapeutic targets in atopic diseases. J Allergy Clin Immunol 2024; 153:879-893. [PMID: 37634890 PMCID: PMC11215634 DOI: 10.1016/j.jaci.2023.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Type 2 inflammation is characterized by overexpression and heightened activity of type 2 cytokines, mediators, and cells that drive neuroimmune activation and sensitization to previously subthreshold stimuli. The consequences of altered neuroimmune activity differ by tissue type and disease; they include skin inflammation, sensitization to pruritogens, and itch amplification in atopic dermatitis and prurigo nodularis; airway inflammation and/or hyperresponsiveness, loss of expiratory volume, airflow obstruction and increased mucus production in asthma; loss of sense of smell in chronic rhinosinusitis with nasal polyps; and dysphagia in eosinophilic esophagitis. We describe the neuroimmune interactions that underlie the various sensory and autonomic pathologies in type 2 inflammatory diseases and present recent advances in targeted treatment approaches to reduce type 2 inflammation and its associated symptoms in these diseases. Further research is needed to better understand the neuroimmune mechanisms that underlie chronic, sustained inflammation and its related sensory pathologies in diseases associated with type 2 inflammation.
Collapse
Affiliation(s)
- Brian Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, Calif
| | - Claus Bachert
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Muenster, Muenster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | - Sonya Cyr
- Regeneron Pharmaceuticals, Tarrytown, NY
| |
Collapse
|
9
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
10
|
Li J, Wang L, Yin S, Yu S, Zhou Y, Lin X, Jiao Y, Yu W, Xia X, Yang L, Gao P. Emerging trends and hotspots of the itch research: A bibliometric and visualized analysis. CNS Neurosci Ther 2024; 30:e14514. [PMID: 37902196 PMCID: PMC11017449 DOI: 10.1111/cns.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
AIMS Itch, a common uncomfortable sensory experience, occurs frequently in inflammatory or allergic disorders. In recent years, with the discovery of itch-specific pathways in the peripheral and central nervous system, the association between immunology and neural pathways has gradually emerged as the main mechanism of itch. Although many studies have been conducted on itch, no bibliometric analysis study focusing on this topic has been conducted. This study aimed to explore the research hotspots and trends in the itch field from a bibliometric perspective. METHODS Publications relevant to itch, published from 2003 to 2022, were retrieved from the Science Citation Index-Expanded of Web of Science Core Collection. Publications were critically reviewed and analyzed with CiteSpace software, Vosviewer, and the bibliometric online analysis platform. Visual maps were conducted in terms of annual production, collaborating countries or institutions, productive authors, core journals, co-cited references, and keyword bursts. RESULTS 2395 articles on itch that met our criteria were identified and the quantity of publications has been increasing rapidly since 2012. The USA was the most influential country. University Hospital Münster was the institution with the most publications. Gil Yosipovitch was the most prolific author. Atopic dermatitis (AD), intradermal serotonin, chronic pruritus, mechanical itch, gastrin-releasing peptide, substance p, interleukin-31 receptor, histamine-induced itch, bile acid, scratching behavior, and h-4 receptor were the top 11 clusters in co-citation cluster analysis. Keyword burst analysis suggested that treatment, inflammation, and AD are current research hotspots. CONCLUSION Global publications on itch research have increased steadily and rapidly over the past 20 years. Inflammation and AD are current research hotspots. The neuroimmunological and neuroinflammatory mechanisms of itch, as well as clinical assessment methods and therapeutic targets, will be novel research directions in the future. This study provides guidance for further itch research.
Collapse
Affiliation(s)
- Jun Li
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
- Department of AnesthesiologyChaohu Hospital Affiliated to Anhui Medical UniversityChaohuAnhuiChina
| | - Liya Wang
- Department of Gynecologic Oncology, International Peace Maternity and Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Shanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Suqing Yin
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Shuangshuang Yu
- Department of DermatologyChaohu Hospital Affiliated to Anhui Medical UniversityChaohuAnhuiChina
| | - Yanyu Zhou
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Xiaoqi Lin
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Yingfu Jiao
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Weifeng Yu
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Xiaoqiong Xia
- Department of AnesthesiologyChaohu Hospital Affiliated to Anhui Medical UniversityChaohuAnhuiChina
| | - Liqun Yang
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Po Gao
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| |
Collapse
|
11
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
12
|
Wang S, Kahale F, Naderi A, Surico PL, Yin J, Dohlman T, Chen Y, Dana R. Therapeutic Effects of Stimulating the Melanocortin Pathway in Regulating Ocular Inflammation and Cell Death. Biomolecules 2024; 14:169. [PMID: 38397406 PMCID: PMC10886905 DOI: 10.3390/biom14020169] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Alpha-melanocyte-stimulating hormone (α-MSH) and its binding receptors (the melanocortin receptors) play important roles in maintaining ocular tissue integrity and immune homeostasis. Particularly extensive studies have demonstrated the biological functions of α-MSH in both immunoregulation and cyto-protection. This review summarizes the current knowledge of both the physiological and pathological roles of α-MSH and its receptors in the eye. We focus on recent developments in the biology of α-MSH and the relevant clinical implications in treating ocular diseases.
Collapse
Affiliation(s)
- Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Francesca Kahale
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Amirreza Naderi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Thomas Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| |
Collapse
|
13
|
Shao Y, Wang D, Zhu Y, Xiao Z, Jin T, Peng L, Shen Y, Tang H. Molecular mechanisms of pruritus in prurigo nodularis. Front Immunol 2023; 14:1301817. [PMID: 38077377 PMCID: PMC10701428 DOI: 10.3389/fimmu.2023.1301817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Pruritus is the most common symptom of dermatological disorders, and prurigo nodularis (PN) is notorious for intractable and severe itching. Conventional treatments often yield disappointing outcomes, significantly affecting patients' quality of life and psychological well-being. The pathogenesis of PN is associated with a self-sustained "itch-scratch" vicious cycle. Recent investigations of PN-related itch have partially revealed the intricate interactions within the cutaneous neuroimmune network; however, the underlying mechanism remains undetermined. Itch mediators play a key role in pruritus amplification in PN and understanding their action mechanism will undoubtedly lead to the development of novel targeted antipruritic agents. In this review, we describe a series of pruritogens and receptors involved in mediating itching in PN, including cytokines, neuropeptides, extracellular matrix proteins, vasculogenic substances, ion channels, and intracellular signaling pathways. Moreover, we provide a prospective outlook on potential therapies based on existing findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Feuillet V, Ugolini S, Reynders A. Differential regulation of cutaneous immunity by sensory neuron subsets. Trends Neurosci 2023:S0166-2236(23)00128-5. [PMID: 37277277 DOI: 10.1016/j.tins.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
The nervous and immune systems have classically been studied as separate entities, but there is now mounting evidence for bidirectional communication between them in various organs, including the skin. The skin is an epithelial tissue with important sensory and immune functions. The skin is highly innervated with specialized subclasses of primary sensory neurons (PSNs) that can be in contact with skin-resident innate and adaptive immune cells. Neuroimmune crosstalk in the skin, through interactions of PSNs with the immune system, has been shown to regulate host cutaneous defense, inflammation, and tissue repair. Here, we review current knowledge about the cellular and molecular mechanisms involved in this crosstalk, as depicted via mouse model studies. We highlight the ways in which different immune challenges engage specialized subsets of PSNs to produce mediators acting on immune cell subsets and modulating their function.
Collapse
Affiliation(s)
- Vincent Feuillet
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Ugolini
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Ana Reynders
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Marseille, France
| |
Collapse
|
15
|
Matar DY, Ng B, Darwish O, Wu M, Orgill DP, Panayi AC. Skin Inflammation with a Focus on Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:269-287. [PMID: 35287486 PMCID: PMC9969897 DOI: 10.1089/wound.2021.0126] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
Significance: The skin is the crucial first-line barrier against foreign pathogens. Compromise of this barrier presents in the context of inflammatory skin conditions and in chronic wounds. Skin conditions arising from dysfunctional inflammatory pathways severely compromise the quality of life of patients and have a high economic impact on the U.S. health care system. The development of a thorough understanding of the mechanisms that can disrupt skin inflammation is imperative to successfully modulate this inflammation with therapies. Recent Advances: Many advances in the understanding of skin inflammation have occurred during the past decade, including the development of multiple new pharmaceuticals. Mechanical force application has been greatly advanced clinically. Bioscaffolds also promote healing, while reducing scarring. Critical Issues: Various skin inflammatory conditions provide a framework for analysis of our understanding of the phases of successful wound healing. The large burden of chronic wounds on our society continues to focus attention on the chronic inflammatory state induced in many of these skin conditions. Future Directions: Better preclinical models of disease states such as chronic wounds, coupled with enhanced diagnostic abilities of human skin, will allow a better understanding of the mechanism of action. This will lead to improved treatments with biologics and other modalities such as the strategic application of mechanical forces and scaffolds, which ultimately results in better outcomes for our patients.
Collapse
Affiliation(s)
- Dany Y. Matar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian Ng
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Oliver Darwish
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, California Northstate University College of Medicine, Elk Grove, California, USA
| | - Mengfan Wu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dennis P. Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana C. Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Liu AW, Gillis JE, Sumpter TL, Kaplan DH. Neuroimmune interactions in atopic and allergic contact dermatitis. J Allergy Clin Immunol 2023; 151:1169-1177. [PMID: 37149370 PMCID: PMC10167546 DOI: 10.1016/j.jaci.2023.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
The skin is a barrier organ populated by many types of skin-resident immune cells and sensory neurons. It has become increasingly appreciated that neuroimmune interactions are an important component of inflammatory diseases such as atopic dermatitis and allergic contact dermatitis. Neuropeptides secreted from nerve terminals play an important role in mediating cutaneous immune cell function, and soluble mediators derived from immune cells interact with neurons to induce itch. In this review article, we will explore emerging research describing neuronal effector functions on skin immune cells in mouse models of atopic and contact dermatitis. We will also discuss the contributions of both specific neuronal subsets and secreted immune factors to itch induction and the associated inflammatory processes. Finally, we will explore how treatment strategies have emerged around these findings and discuss the relationship between scratching and dermatitis.
Collapse
Affiliation(s)
- Andrew W Liu
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Jacob E Gillis
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
17
|
Hanč P, Messou MA, Wang Y, von Andrian UH. Control of myeloid cell functions by nociceptors. Front Immunol 2023; 14:1127571. [PMID: 37006298 PMCID: PMC10064072 DOI: 10.3389/fimmu.2023.1127571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
The immune system has evolved to protect the host from infectious agents, parasites, and tumor growth, and to ensure the maintenance of homeostasis. Similarly, the primary function of the somatosensory branch of the peripheral nervous system is to collect and interpret sensory information about the environment, allowing the organism to react to or avoid situations that could otherwise have deleterious effects. Consequently, a teleological argument can be made that it is of advantage for the two systems to cooperate and form an “integrated defense system” that benefits from the unique strengths of both subsystems. Indeed, nociceptors, sensory neurons that detect noxious stimuli and elicit the sensation of pain or itch, exhibit potent immunomodulatory capabilities. Depending on the context and the cellular identity of their communication partners, nociceptors can play both pro- or anti-inflammatory roles, promote tissue repair or aggravate inflammatory damage, improve resistance to pathogens or impair their clearance. In light of such variability, it is not surprising that the full extent of interactions between nociceptors and the immune system remains to be established. Nonetheless, the field of peripheral neuroimmunology is advancing at a rapid pace, and general rules that appear to govern the outcomes of such neuroimmune interactions are beginning to emerge. Thus, in this review, we summarize our current understanding of the interaction between nociceptors and, specifically, the myeloid cells of the innate immune system, while pointing out some of the outstanding questions and unresolved controversies in the field. We focus on such interactions within the densely innervated barrier tissues, which can serve as points of entry for infectious agents and, where known, highlight the molecular mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Yidi Wang
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| |
Collapse
|
18
|
Koumaki D, Gregoriou S, Evangelou G, Krasagakis K. Pruritogenic Mediators and New Antipruritic Drugs in Atopic Dermatitis. J Clin Med 2023; 12:2091. [PMID: 36983094 PMCID: PMC10054239 DOI: 10.3390/jcm12062091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Atopic dermatitis (AD) is a common highly pruritic chronic inflammatory skin disorder affecting 5-20% of children worldwide, while the prevalence in adults varies from 7 to 10%. Patients with AD experience intense pruritus that could lead to sleep disturbance and impaired quality of life. Here, we analyze the pathophysiology of itchiness in AD. We extensively review the histamine-dependent and histamine-independent pruritogens. Several receptors, substance P, secreted molecules, chemokines, and cytokines are involved as mediators in chronic itch. We also, summarize the new emerging antipruritic drugs in atopic dermatitis.
Collapse
Affiliation(s)
- Dimitra Koumaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stamatios Gregoriou
- Department of Dermatology and Venereology, Andreas Sygros Hospital, Medical School of Athens, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - George Evangelou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | |
Collapse
|
19
|
Talagas M. Anatomical contacts between sensory neurons and epidermal cells: an unrecognized anatomical network for neuro-immuno-cutaneous crosstalk. Br J Dermatol 2023; 188:176-185. [PMID: 36763869 DOI: 10.1093/bjd/ljac066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 01/09/2023]
Abstract
Sensory neurons innervating the skin are conventionally thought to be the sole transducers of touch, temperature, pain and itch. However, recent studies have shown that keratinocytes - like Merkel cells - act as sensory transducers, whether for innocuous or noxious mechanical, thermal or chemical stimuli, and communicate with intraepidermal free nerve endings via chemical synaptic contacts. This paradigm shift leads to consideration of the whole epidermis as a sensory epithelium. Sensory neurons additionally function as an efferent system. Through the release of neuropeptides in intimate neuroepidermal contact areas, they contribute to epidermal homeostasis and to the pathogenesis of inflammatory skin diseases. To counteract the dogma regarding neurocutaneous interactions, seen exclusively from the perspective of soluble and spreading mediators, this review highlights the essential contribution of the unrecognized anatomical contacts between sensory neurons and epidermal cells (keratinocytes, melanocytes, Langerhans cells and Merkel cells), which take part in the reciprocal dialogue between the skin, nervous system and immune system.
Collapse
Affiliation(s)
- Matthieu Talagas
- University of Brest, LIEN, F-29200 Brest, France.,Department of Dermatology, Brest University Hospital, Brest, France
| |
Collapse
|
20
|
Huang X, Li F, Wang F. Neural Regulation of Innate Immunity in Inflammatory Skin Diseases. Pharmaceuticals (Basel) 2023; 16:246. [PMID: 37259392 PMCID: PMC9961653 DOI: 10.3390/ph16020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 09/19/2023] Open
Abstract
As the largest barrier organ of the body, the skin is highly innervated by peripheral sensory neurons. The major function of these sensory neurons is to transmit sensations of temperature, pain, and itch to elicit protective responses. Inflammatory skin diseases are triggered by the aberrant activation of immune responses. Recently, increasing evidence has shown that the skin peripheral nervous system also acts as a regulator of immune responses, particularly innate immunity, in various skin inflammatory processes. Meanwhile, immune cells in the skin can express receptors that respond to neuropeptides/neurotransmitters, leading to crosstalk between the immune system and nervous system. Herein, we highlight recent advances of such bidirectional neuroimmune interactions in certain inflammatory skin conditions.
Collapse
Affiliation(s)
- Xiaobao Huang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
21
|
Sun PY, Li HG, Xu QY, Zhang Z, Chen JW, Shen YH, Qi X, Lu JF, Tan YD, Wang XX, Li CX, Yang MY, Ma YZ, Lu Y, Xu TL, Shen JW, Li WG, Guo YF, Yao ZR. Lidocaine alleviates inflammation and pruritus in atopic dermatitis by blocking different population of sensory neurons. Br J Pharmacol 2022; 180:1339-1361. [PMID: 36521846 DOI: 10.1111/bph.16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Atopic dermatitis is a common chronic pruritic inflammatory disease of the skin involving neuro-immune communication. Neuronal mechanism-based therapeutic treatments remain lacking. We investigated the efficacy of intravenous lidocaine therapy on atopic dermatitis and the underlying neuro-immune mechanism. EXPERIMENTAL APPROACH Pharmacological intervention, immunofluorescence, RNA-sequencing, genetic modification and immunoassay were performed to dissect the neuro-immune basis of itch and inflammation in atopic dermatitis-like mouse model and in patients. KEY RESULTS Lidocaine alleviated skin lesions and itch in both atopic dermatitis patients and calcipotriol (MC903)-induced atopic dermatitis model by blocking subpopulation of sensory neurons. QX-314, a charged NaV blocker that enters through pathologically activated large-pore ion channels and selectivity inhibits a subpopulation of sensory neurons, has the same effects as lidocaine in atopic dermatitis model. Genetic silencing NaV 1.8-expressing sensory neurons was sufficient to restrict cutaneous inflammation and itch in the atopic dermatitis model. However, pharmacological blockade of TRPV1-positive nociceptors only abolished persistent itch but did not affect skin inflammation in the atopic dermatitis model, indicating a difference between sensory neuronal modulation of skin inflammation and itch. Inhibition of activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons by lidocaine largely accounts for the therapeutic effect of lidocaine in the atopic dermatitis model. CONCLUSION AND IMPLICATIONS NaV 1.8+ sensory neurons play a critical role in pathogenesis of atopic dermatitis and lidocaine is a potential anti-inflammatory and anti-pruritic agent for atopic dermatitis. A dissociable difference for sensory neuronal modulation of skin inflammation and itch contributes to further understanding of pathogenesis in atopic dermatitis.
Collapse
Affiliation(s)
- Pei-Yi Sun
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hua-Guo Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qian-Yue Xu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhen Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jia-Wen Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi-Hang Shen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin Qi
- Centre for Brain Science of Shanghai Children's Medical Centre, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Fei Lu
- Centre for Brain Science of Shanghai Children's Medical Centre, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi-Dong Tan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiao-Xiao Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chun-Xiao Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Meng-Ying Yang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu-Zhi Ma
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Lu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Tian-Le Xu
- Centre for Brain Science of Shanghai Children's Medical Centre, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin-Wen Shen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wei-Guang Li
- Centre for Brain Science of Shanghai Children's Medical Centre, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Centre for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yi-Feng Guo
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhi-Rong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
22
|
Balood M, Ahmadi M, Eichwald T, Ahmadi A, Majdoubi A, Roversi K, Roversi K, Lucido CT, Restaino AC, Huang S, Ji L, Huang KC, Semerena E, Thomas SC, Trevino AE, Merrison H, Parrin A, Doyle B, Vermeer DW, Spanos WC, Williamson CS, Seehus CR, Foster SL, Dai H, Shu CJ, Rangachari M, Thibodeau J, V Del Rincon S, Drapkin R, Rafei M, Ghasemlou N, Vermeer PD, Woolf CJ, Talbot S. Nociceptor neurons affect cancer immunosurveillance. Nature 2022; 611:405-412. [PMID: 36323780 PMCID: PMC9646485 DOI: 10.1038/s41586-022-05374-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/21/2022] [Indexed: 11/07/2022]
Abstract
Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems1-5. Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release. Calcitonin gene-related peptide (CGRP)-one such nociceptor-produced neuropeptide-directly increases the exhaustion of cytotoxic CD8+ T cells, which limits their capacity to eliminate melanoma. Genetic ablation of the TRPV1 lineage, local pharmacological silencing of nociceptors and antagonism of the CGRP receptor RAMP1 all reduced the exhaustion of tumour-infiltrating leukocytes and decreased the growth of tumours, nearly tripling the survival rate of mice that were inoculated with B16F10 melanoma cells. Conversely, CD8+ T cell exhaustion was rescued in sensory-neuron-depleted mice that were treated with local recombinant CGRP. As compared with wild-type CD8+ T cells, Ramp1-/- CD8+ T cells were protected against exhaustion when co-transplanted into tumour-bearing Rag1-deficient mice. Single-cell RNA sequencing of biopsies from patients with melanoma revealed that intratumoral RAMP1-expressing CD8+ T cells were more exhausted than their RAMP1-negative counterparts, whereas overexpression of RAMP1 correlated with a poorer clinical prognosis. Overall, our results suggest that reducing the release of CGRP from tumour-innervating nociceptors could be a strategy to improve anti-tumour immunity by eliminating the immunomodulatory effects of CGRP on cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Mohammad Balood
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Maryam Ahmadi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Tuany Eichwald
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ali Ahmadi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Abdelilah Majdoubi
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Karine Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | | | - Anthony C Restaino
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, USA
| | | | | | | | - Elise Semerena
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Sini C Thomas
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Alexandro E Trevino
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Hannah Merrison
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexandre Parrin
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Benjamin Doyle
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, USA
| | - William C Spanos
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, USA
| | | | - Corey R Seehus
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Simmie L Foster
- Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Manu Rangachari
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Jacques Thibodeau
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | | | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sebastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
23
|
Konstantinou GN, Konstantinou GN, Koulias C, Petalas K, Makris M. Further Understanding of Neuro-Immune Interactions in Allergy: Implications in Pathophysiology and Role in Disease Progression. J Asthma Allergy 2022; 15:1273-1291. [PMID: 36117919 PMCID: PMC9473548 DOI: 10.2147/jaa.s282039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
The complicated interaction between the central and the autonomic (sympathetic, parasympathetic, and enteric) nervous systems on the one hand and the immune system and its components, on the other hand, seems to substantially contribute to allergy pathophysiology, uncovering an under-recognized association that could have diagnostic and therapeutic potentials. Neurons connect directly with and regulate the function of many immune cells, including mast cells, the cells that have a leading role in allergic disorders. Proinflammatory mediators such as cytokines, neurotrophins, chemokines, and neuropeptides are released by immune cells, which stimulate sensory neurons. The release of neurotransmitters and neuropeptides caused by the activation of these neurons directly impacts the functional activity of immune cells and vice versa, playing a decisive role in this communication. Successful application of Pavlovian conditioning in allergic disorders supports the existence of a psychoneuroimmunological interplay in classical allergic hypersensitivity reactions. Activation of neuronal homeostatic reflexes, like sneezing in allergic rhinitis, coughing in allergic asthma, and vomiting in food allergy, offers additional evidence of a neuroimmunological interaction that aims to maintain homeostasis. Dysregulation of this interaction may cause overstimulation of the immune system that will produce profound symptoms and exaggerated hemodynamic responses that will lead to severe allergic pathophysiological events, including anaphylaxis. In this article, we have systematically reviewed and discussed the evidence regarding the role of the neuro-immune interactions in common allergic clinical modalities like allergic rhinitis, chronic rhinosinusitis, allergic asthma, food allergy, atopic dermatitis, and urticaria. It is essential to understand unknown – to most of the immunology and allergy experts – neurological networks that not only physiologically cooperate with the immune system to regulate homeostasis but also pathogenetically interact with more or less known immunological pathways, contribute to what is known as neuroimmunological inflammation, and shift homeostasis to instability and disease clinical expression. This understanding will provide recognition of new allergic phenotypes/endotypes and directions to focus on specialized treatments, as the era of personalized patient-centered medicine, is hastening apace.
Collapse
Affiliation(s)
- George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Christopher Koulias
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Michael Makris
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| |
Collapse
|
24
|
Roger A, Reynders A, Hoeffel G, Ugolini S. Neuroimmune crosstalk in the skin: a delicate balance governing inflammatory processes. Curr Opin Immunol 2022; 77:102212. [DOI: 10.1016/j.coi.2022.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
25
|
Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res 2022; 91:101105. [PMID: 35868985 DOI: 10.1016/j.preteyeres.2022.101105] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
In the cornea, resident immune cells are in close proximity to sensory nerves, consistent with their important roles in the maintenance of nerves in both homeostasis and inflammation. Using in vivo confocal microscopy in humans, and ex vivo immunostaining and fluorescent reporter mice to visualize corneal sensory nerves and immune cells, remarkable progress has been made to advance our understanding of the physical and functional interactions between corneal nerves and immune cells. In this review, we summarize and discuss recent studies relating to corneal immune cells and sensory nerves, and their interactions in health and disease. In particular, we consider how disrupted corneal nerve axons can induce immune cell activity, including in dendritic cells, macrophages and other infiltrating cells, directly and/or indirectly by releasing neuropeptides such as substance P and calcitonin gene-related peptide. We summarize growing evidence that the role of corneal intraepithelial immune cells is likely different in corneal wound healing versus other inflammatory-dominated conditions. The role of different types of macrophages is also discussed, including how stromal macrophages with anti-inflammatory phenotypes communicate with corneal nerves to provide neuroprotection, while macrophages with pro-inflammatory phenotypes, along with other infiltrating cells including neutrophils and CD4+ T cells, can be inhibitory to corneal re-innervation. Finally, this review considers the bidirectional interactions between corneal immune cells and corneal nerves, and how leveraging this interaction could represent a potential therapeutic approach for corneal neuropathy.
Collapse
|
26
|
Ye Y, Luo J, Zeng N, Jiang S, Chen W, Hoyle RD, Klenerman P, Pavord ID, Xue L. Neuromedin U promotes human type 2 immune responses. Mucosal Immunol 2022; 15:990-999. [PMID: 35810259 PMCID: PMC9385483 DOI: 10.1038/s41385-022-00543-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Type 2 immunity mediates the immune responses against parasites and allergic stimuli. Evidence from studies of cell lines and animals implies that neuromedin U (NmU) acts as a pro-inflammatory mediator of type 2 inflammation. However, the role of NmU in human type 2 immunity remains unclear. Here we investigated the expression of NmU in human blood and airways, and the expression of NmU receptors by human immune cells in blood and lung tissue. We detected human NmU (hNmU-25) in blood and airways with higher concentrations in the latter. NmU receptor 1 (NmUR1) was expressed by most human immune cells with higher levels in type 2 cells including type 2 T helpers, type 2 cytotoxic T cells, group-2 innate lymphoid cells and eosinophils, and was upregulated in lung-resident and activated type 2 cells. We also assessed the effects of NmU in these cells. hNmU-25 elicited type 2 cytokine production by type 2 lymphocytes and induced cell migration, including eosinophils. hNmU-25 also enhanced the type 2 immune response to other stimuli, particularly prostaglandin D2. These results indicate that NmU could contribute to the pathogenic processes of type 2 immunity-mediated diseases in humans via its pro-inflammatory effects on type 2 lymphocytes and eosinophils.
Collapse
Affiliation(s)
- Yuan Ye
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jian Luo
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ni Zeng
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Shan Jiang
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Wentao Chen
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ryan D Hoyle
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit and Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Ian D Pavord
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Luzheng Xue
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
28
|
Peng F, Zhao S, Zhang X, Long S, He Y. Calcitonin gene-related peptide upregulates IL-17A and IL-22 in γδ-T cells through the paracrine effect of langerhans cells on LC/γδ-T co-culture model. J Neuroimmunol 2022; 364:577792. [PMID: 35030439 DOI: 10.1016/j.jneuroim.2021.577792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022]
Abstract
Intense mental stimulation and stress often directly induce or exacerbate psoriasis. On the contrary, patients with nerve injury and nervous system dysfunction have psoriasis remission. The nervous system plays an important role in the inflammatory process of psoriasis, and neuropeptides are considered as local mediators of disease maintenance. To examine the molecular mechanism involved in this, first we analyzed calcitonin gene-related peptide (CGRP)-treated langerhans Cells and γδ-T cells separately. CGRP induced IL-23 mRNA and protein expression via PDK1-Rsk signaling pathway. However, CGRP had no effect on secretion of IL-17A and IL-22 in γδ-T cells. Then we treated LCs/γδ-T cells Co-culture Model with CGRP. CGRP upregulated IL-17A and IL-22 expression in co-culture model through the paracrine effect of LCs. IL-17A and IL-22 are key cytokines of psoriasis. These findings provide a potential mechanism by which nerve factors affect the development of psoriasis.
Collapse
Affiliation(s)
- Fen Peng
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Siqi Zhao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xuan Zhang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Siyu Long
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| |
Collapse
|
29
|
Szöllősi AG, Oláh A, Lisztes E, Griger Z, Tóth BI. Pruritus: A Sensory Symptom Generated in Cutaneous Immuno-Neuronal Crosstalk. Front Pharmacol 2022; 13:745658. [PMID: 35321329 PMCID: PMC8937025 DOI: 10.3389/fphar.2022.745658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pruritus or itch generated in the skin is one of the most widespread symptoms associated with various dermatological and systemic (immunological) conditions. Although many details about the molecular mechanisms of the development of both acute and chronic itch were uncovered in the last 2 decades, our understanding is still incomplete and the clinical management of pruritic conditions is one of the biggest challenges in daily dermatological practice. Recent research revealed molecular interactions between pruriceptive sensory neurons and surrounding cutaneous cell types including keratinocytes, as well as resident and transient cells of innate and adaptive immunity. Especially in inflammatory conditions, these cutaneous cells can produce various mediators, which can contribute to the excitation of pruriceptive sensory fibers resulting in itch sensation. There also exists significant communication in the opposite direction: sensory neurons can release mediators that maintain an inflamed, pruritic tissue-environment. In this review, we summarize the current knowledge about the sensory transduction of pruritus detailing the local intercellular interactions that generate itch. We especially emphasize the role of various pruritic mediators in the bidirectional crosstalk between cutaneous non-neuronal cells and sensory fibers. We also list various dermatoses and immunological conditions associated with itch, and discuss the potential immune-neuronal interactions promoting the development of pruritus in the particular diseases. These data may unveil putative new targets for antipruritic pharmacological interventions.
Collapse
Affiliation(s)
- Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Balázs István Tóth,
| |
Collapse
|
30
|
Ding W, Stohl LL, Saab J, Azizi S, Zhou XK, Mehta D, Granstein RD. Regulation of Cutaneous Immunity In Vivo by Calcitonin Gene-Related Peptide Signaling through Endothelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:633-641. [PMID: 35031579 PMCID: PMC8852344 DOI: 10.4049/jimmunol.2100139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/21/2021] [Indexed: 02/03/2023]
Abstract
Calcitonin gene-related peptide (CGRP) can bias the outcome of Ag presentation to responsive T cells in vitro away from Th1-type immunity and toward the Th2 and Th17 poles through actions on endothelial cells (ECs). To test the in vivo significance of this observation, we engineered a mouse lacking functional CGRP receptors on ECs (EC receptor activity modifying protein 1 [RAMP1] knockout mice). On percutaneous immunization to 1-fluoro-2,4-dinitrobenzene, stimulated CD4+ T cells from draining lymph nodes showed significantly reduced IL-17A expression with significantly increased IFN-γ, IL-4, and IL-22 expression at the protein and mRNA levels compared with control mice. Retinoic acid receptor-related orphan receptor γ t mRNA was significantly reduced, while mRNAs for T-box expressed in T cells and GATA binding protein 3 were significantly increased. In addition, EC RAMP1 knockout mice had significantly reduced contact hypersensitivity responses, and systemic administration of a CGRP receptor antagonist similarly inhibited contact hypersensitivity in wild-type mice. These observations provide compelling evidence that CGRP is a key regulator of cutaneous immunity through effects on ECs and suggest a novel pathway for potential therapeutic manipulation.
Collapse
Affiliation(s)
- Wanhong Ding
- Department of Dermatology, Weill Cornell Medicine, New York, NY
| | - Lori L Stohl
- Department of Dermatology, Weill Cornell Medicine, New York, NY
| | - Jad Saab
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY; and
| | - Shayan Azizi
- Department of Dermatology, Weill Cornell Medicine, New York, NY
| | - Xi K Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Devina Mehta
- Department of Dermatology, Weill Cornell Medicine, New York, NY
| | | |
Collapse
|
31
|
Costa PAC, Silva WN, Prazeres PHDM, Picoli CC, Guardia GDA, Costa AC, Oliveira MA, Guimarães PPG, Gonçalves R, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Russo RC, Cunha TM, Galante PAF, Mintz A, Birbrair A. Chemogenetic modulation of sensory neurons reveals their regulating role in melanoma progression. Acta Neuropathol Commun 2021; 9:183. [PMID: 34784974 PMCID: PMC8594104 DOI: 10.1186/s40478-021-01273-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/10/2021] [Indexed: 02/08/2023] Open
Abstract
Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.
Collapse
Affiliation(s)
- Pedro A C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Walison N Silva
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro H D M Prazeres
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Caroline C Picoli
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | - Alinne C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mariana A Oliveira
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro P G Guimarães
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ricardo Gonçalves
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mauro C X Pinto
- Departamento de Farmacologia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Jaime H Amorim
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, BA, Brasil
| | - Vasco A C Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rodrigo R Resende
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Remo C Russo
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Thiago M Cunha
- Departamento de Farmacologia, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brasil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
32
|
Kim YJ, Granstein RD. Roles of calcitonin gene-related peptide in the skin, and other physiological and pathophysiological functions. Brain Behav Immun Health 2021; 18:100361. [PMID: 34746878 PMCID: PMC8551410 DOI: 10.1016/j.bbih.2021.100361] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/05/2023] Open
Abstract
Skin immunity is regulated by many mediator molecules. One is the neuropeptide calcitonin gene-related peptide (CGRP). CGRP has roles in regulating the function of components of the immune system including T cells, B cells, dendritic cells (DCs), endothelial cells (ECs), and mast cells (MCs). Herein we discuss actions of CGRP in mediating inflammatory and vascular effects in various cutaneous models and disorders. CGRP can help to recruit immune cells through endothelium-dependent vasodilation. CGRP plays an important role in the pathogenesis of neurogenic inflammation. Functions of many components in the immune system are influenced by CGRP. CGRP regulates various inflammatory processes in human skin by affecting different cell-types.
Collapse
Affiliation(s)
- Yee Jung Kim
- Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, WGC9, New York, NY, 10021, USA
| | - Richard D Granstein
- Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, WGC9, New York, NY, 10021, USA
| |
Collapse
|
33
|
Hwang DDJ, Lee SJ, Kim JH, Lee SM. The Role of Neuropeptides in Pathogenesis of Dry Dye. J Clin Med 2021; 10:4248. [PMID: 34575359 PMCID: PMC8471988 DOI: 10.3390/jcm10184248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides are known as important mediators between the nervous and immune systems. Recently, the role of the corneal nerve in the pathogenesis of various ocular surface diseases, including dry eye disease, has been highlighted. Neuropeptides are thought to be important factors in the pathogenesis of dry eye disease, as suggested by the well-known role between the nervous and immune systems, and several recently published studies have elucidated the previously unknown pathogenic mechanisms involved in the role of the neuropeptides secreted from the corneal nerves in dry eye disease. Here, we reviewed the emerging concept of neurogenic inflammation as one of the pathogenic mechanisms of dry eye disease, the recent results of related studies, and the direction of future research.
Collapse
Affiliation(s)
- Daniel Duck-Jin Hwang
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| | - Seok-Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Jeong-Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
| | - Sang-Mok Lee
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| |
Collapse
|
34
|
Wong LS, Yen YT, Lee CH. The Implications of Pruritogens in the Pathogenesis of Atopic Dermatitis. Int J Mol Sci 2021; 22:7227. [PMID: 34281281 PMCID: PMC8269281 DOI: 10.3390/ijms22137227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/17/2023] Open
Abstract
Atopic dermatitis (AD) is a prototypic inflammatory disease that presents with intense itching. The pathophysiology of AD is multifactorial, involving environmental factors, genetic susceptibility, skin barrier function, and immune responses. A recent understanding of pruritus transmission provides more information about the role of pruritogens in the pathogenesis of AD. There is evidence that pruritogens are not only responsible for eliciting pruritus, but also interact with immune cells and act as inflammatory mediators, which exacerbate the severity of AD. In this review, we discuss the interaction between pruritogens and inflammatory molecules and summarize the targeted therapies for AD.
Collapse
Affiliation(s)
- Lai-San Wong
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Yu-Ta Yen
- Department of Dermatology, Fooying University Hospital, Pingtung 928, Taiwan;
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
35
|
Rodrigues-Braz D, Zhao M, Yesilirmak N, Aractingi S, Behar-Cohen F, Bourges JL. Cutaneous and ocular rosacea: Common and specific physiopathogenic mechanisms and study models. Mol Vis 2021; 27:323-353. [PMID: 34035646 PMCID: PMC8131178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Rosacea is a chronic inflammatory disease that affects the face skin. It is clinically classified into the following four subgroups depending on its location and severity: erythematotelangiectatic, papulopustular, phymatous, and ocular. Rosacea is a multifactorial disease triggered by favoring factors, the pathogenesis of which remains imperfectly understood. Recognized mechanisms include the innate immune system, with the implication of Toll-like receptors (TLRs) and cathelicidins; neurovascular deregulation involving vascular endothelial growth factor (VEGF), transient receptor potential (TRP) ion channels, and neuropeptides; and dysfunction of skin sebaceous glands and ocular meibomian glands. Microorganisms, genetic predisposition, corticosteroid treatment, and ultraviolet B (UVB) radiation are favoring factors. In this paper, we review the common and specific molecular mechanisms involved in the pathogenesis of cutaneous and ocular rosacea and discuss laboratory and clinical studies, as well as experimental models.
Collapse
Affiliation(s)
- Daniela Rodrigues-Braz
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
| | - Nilufer Yesilirmak
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
- Department of Ophthalmology, Ankara Yildirim Beyazit University, Ankara, Turkey
- Ophtalmopole, Assistance Publique -Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Selim Aractingi
- Department of Dermatology, AP-HP, Cochin Hospital, Paris, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
- Ophtalmopole, Assistance Publique -Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Jean-Louis Bourges
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
- Ophtalmopole, Assistance Publique -Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| |
Collapse
|
36
|
Zhang Y, Zhang H, Jiang B, Tong X, Yan S, Lu J. Current views on neuropeptides in atopic dermatitis. Exp Dermatol 2021; 30:1588-1597. [PMID: 33963624 DOI: 10.1111/exd.14382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease involving skin barrier dysfunction and immune imbalance. However, the mechanism of AD is not clear completely and may be related to heredity and environment. Neuropeptides are a class of peptides secreted by nerve endings, they may play roles in promoting vasodilation, plasma extravasation, chemotaxis of inflammatory cells and mediating pruritus. Since itching and immune cell infiltration are the main manifestations of atopic dermatitis, to further investigate the impact of neuropeptides on AD, our review summarized the mechanisms of several common neuropeptides in AD and hypothesized that neuropeptides may be the novel potential targets in AD treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Hanyi Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Boyue Jiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoliang Tong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyu Yan
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Duarte LF, Reyes A, Farías MA, Riedel CA, Bueno SM, Kalergis AM, González PA. Crosstalk Between Epithelial Cells, Neurons and Immune Mediators in HSV-1 Skin Infection. Front Immunol 2021; 12:662234. [PMID: 34012447 PMCID: PMC8126613 DOI: 10.3389/fimmu.2021.662234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
38
|
Moattari CR, Granstein RD. Neuropeptides and neurohormones in immune, inflammatory and cellular responses to ultraviolet radiation. Acta Physiol (Oxf) 2021; 232:e13644. [PMID: 33724698 DOI: 10.1111/apha.13644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Humans are exposed to varying amounts of ultraviolet radiation (UVR) through sunlight. UVR penetrates into human skin leading to release of neuropeptides, neurotransmitters and neuroendocrine hormones. These messengers released from local sensory nerves, keratinocytes, Langerhans cells (LCs), mast cells, melanocytes and endothelial cells (ECs) modulate local and systemic immune responses, mediate inflammation and promote differing cell biologic effects. In this review, we will focus on both animal and human studies that elucidate the roles of calcitonin gene-related peptide (CGRP), substance P (SP), nerve growth factor (NGF), nitric oxide and proopiomelanocortin (POMC) derivatives in mediating immune and inflammatory effects of exposure to UVR as well as other cell biologic effects of UVR exposure.
Collapse
|
39
|
Abstract
Classically, skin was considered a mere structural barrier protecting organisms from a diversity of environmental insults. In recent decades, the cutaneous immune system has become recognized as a complex immunologic barrier involved in both antimicrobial immunity and homeostatic processes like wound healing. To sense a variety of chemical, mechanical, and thermal stimuli, the skin harbors one of the most sophisticated sensory networks in the body. However, recent studies suggest that the cutaneous nervous system is highly integrated with the immune system to encode specific sensations into evolutionarily conserved protective behaviors. In addition to directly sensing pathogens, neurons employ novel neuroimmune mechanisms to provide host immunity. Therefore, given that sensation underlies various physiologies through increasingly complex reflex arcs, a much more dynamic picture is emerging of the skin as a truly systemic organ with highly coordinated physical, immunologic, and neural functions in barrier immunology.
Collapse
Affiliation(s)
- Masato Tamari
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; , .,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Department of Pediatrics, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Aaron M Ver Heul
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Brian S Kim
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; , .,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
40
|
Kahremany S, Hofmann L, Harari M, Gruzman A, Cohen G. Pruritus in psoriasis and atopic dermatitis: current treatments and new perspectives. Pharmacol Rep 2021; 73:443-453. [PMID: 33460006 DOI: 10.1007/s43440-020-00206-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Psoriasis and atopic dermatitis (AD) are two common chronic inflammatory skin diseases. Although showing different etiology and clinical manifestations, patients with either disease suffer from low health-related quality of life due to pruritus (dermal itch). Recent studies have revealed that more than 85% of psoriasis patients suffer from pruritus, and it is also the dominating symptom of AD. However, as this is a non-life treating symptom, it was partly neglected for years. In this review, we focus on current findings as well as the impact and potential treatments of pruritus in these two skin diseases. We first distinguish the type of itch based on involved mediators and modulators. This clear delineation between the types of pruritus based on involved receptors and pathways allows for precise treatment. In addition, insights into recent clinical trials aimed to alleviate pruritus by targeting these receptors are presented. We also report about novel advances in combinatorial treatments, dedicated to the type of pruritus linked to a causal disease. Altogether, we suggest that only a focused treatment tailored to the primary disease and the underlying molecular signals will provide fast and sustained relief of pruritus associated with psoriasis or AD.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel. .,The Skin Research Institute, The Dead Sea and Arava Science Center, 86910, Masada, Israel.
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Marco Harari
- Medical Climatotherapy Unit, The Dead Sea and Arava Science Center, 86910, Masada, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, 86910, Masada, Israel.,Ben Gurion University of the Negev, Eilat Campus, 8855630, Eilat, Israel
| |
Collapse
|
41
|
Williams KA, Roh YS, Brown I, Sutaria N, Bakhshi P, Choi J, Gabriel S, Chavda R, Kwatra SG. Pathophysiology, diagnosis, and pharmacological treatment of prurigo nodularis. Expert Rev Clin Pharmacol 2020; 14:67-77. [PMID: 33191806 DOI: 10.1080/17512433.2021.1852080] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Prurigo nodularis (PN) is a chronic inflammatory skin disease characterized by intensely pruritic, hyperkeratotic nodules distributed on the trunk and extensor surfaces of the extremities. PN has a profoundly negative impact on sleep and quality of life in patients with PN. There are currently no U.S. Food and Drug Administration-approved agents and patients are often recalcitrant to current therapies, highlighting the importance of further research into this severely debilitating condition. Areas covered: A PubMed search was conducted to find available literature on the pathophysiology and clinical management of PN. In this review article, we discuss the current understanding of the pathophysiology, recommended diagnostic approach, and treatment options available for PN. Expert opinion/commentary: PN is an extremely difficult condition to treat, because there is a lack of effective therapies available due to our limited understanding of its pathophysiology. Currently, available treatment options are often multimodal due to the intersection of neuroimmune etiologic factors in the pathogenesis of PN. Fortunately, as our knowledge of PN expands, novel treatments targeting specific molecular biomarkers of PN are emerging, providing hope to this long-suffering patient population.
Collapse
Affiliation(s)
- Kyle A Williams
- Department of Dermatology, Johns Hopkins University School of Medicine , Baltimore, USA
| | - Youkyung S Roh
- Department of Dermatology, Johns Hopkins University School of Medicine , Baltimore, USA
| | - Isabelle Brown
- Department of Dermatology, Johns Hopkins University School of Medicine , Baltimore, USA
| | - Nishadh Sutaria
- Department of Dermatology, Johns Hopkins University School of Medicine , Baltimore, USA
| | - Pegah Bakhshi
- Department of Dermatology, Johns Hopkins University School of Medicine , Baltimore, USA
| | - Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine , Baltimore, USA
| | - Sylvie Gabriel
- 27 Galderma Presciption GBU , La Tour-dePeilz, Switzerland
| | - Rajeev Chavda
- 27 Galderma Presciption GBU , La Tour-dePeilz, Switzerland
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine , Baltimore, USA
| |
Collapse
|
42
|
Itch: A Paradigm of Neuroimmune Crosstalk. Immunity 2020; 52:753-766. [PMID: 32433948 DOI: 10.1016/j.immuni.2020.04.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Although the medical definition of itch has been in existence for 360 years, only in the last 20 years have we begun to understand the basic mechanisms that underlie this unique sensation. Therapeutics that specifically target chronic itch as a pathologic entity are currently still not available. Recent seminal advances in itch circuitry within the nervous system have intersected with discoveries in immunology in unexpected ways to rapidly inform emerging treatment strategies. The current review aims to introduce these basic concepts in itch biology and highlight how distinct immunologic pathways integrate with recently identified itch-sensory circuits in the nervous system to inform a major new paradigm of neuroimmunology and therapeutic development for chronic itch.
Collapse
|
43
|
Zhang Y, Lin C, Wang X, Ji T. Calcitonin gene-related peptide: A promising bridge between cancer development and cancer-associated pain in oral squamous cell carcinoma. Oncol Lett 2020; 20:253. [PMID: 32994816 PMCID: PMC7509602 DOI: 10.3892/ol.2020.12116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 01/23/2023] Open
Abstract
Nerves have been widely demonstrated to exert major effects in tumor-associated microenvironments. Due to the characteristic innervation of the oral cavity and the fact that cancer-associated pain is a distinct feature of oral squamous cell carcinoma (OSCC), the sensory nerves may dominate in the OSCC-nerve microenvironment. As the most abundant neuropeptide in the trigeminal ganglion, the calcitonin gene-related peptide (CGRP) exerts a dual effect on cancer development and cancer-associated pain in various types of cancer. The present review explored the potential molecular mechanisms of the roles of CGRP in cancer development and cancer-associated pain, suggesting that CGRP may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chengzhong Lin
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xu Wang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Tong Ji
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
44
|
Zhou S, Han M, Ren Y, Yang X, Duan L, Zeng Y, Li J. Dibutyl phthalate aggravated asthma-like symptoms through oxidative stress and increasing calcitonin gene-related peptide release. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110740. [PMID: 32446102 DOI: 10.1016/j.ecoenv.2020.110740] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most ubiquitous phthalate esters found in everyday products, and is receiving increased attention as an immunologic adjuvant. However, information regarding DBP-aggravated allergic asthma is still limited. This study used a mouse model sensitized with ovalbumin (OVA) to determine any adverse effects of DBP on allergic asthma. Our results reveal that allergic asthmatic mice exposed to DBP for an extended period had a significant increase in inflammatory cell infiltration; a significant increase in levels of serum immunoglobulin and T helper 2 cell (Th2) and T helper 17 cell (Th17) cytokines in lung tissue; and significant changes in lung histology and AHR, all of which are typical asthmatic symptoms. The levels of oxidative stress and levels of the neuropeptide, calcitonin gene related peptide (CGRP), were also elevated after DBP exposure. Interestingly, blocking oxidative stress by administering melatonin (MT) not only reduced oxidative stress and CGRP levels, but also ameliorated the asthmatic symptoms. Collectively, these results show that DBP exacerbates asthma-like pathologies by increasing the expression of CGRP mediated by oxidative stress.
Collapse
Affiliation(s)
- Sangyu Zhou
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Man Han
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yaolin Ren
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Liju Duan
- School of Public Health, Huazhong University of Science and Technology, Wuhan, 430030, 430079, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
45
|
Neuroinflammatory Gene Expression Pattern Is Similar between Allergic Rhinitis and Atopic Dermatitis but Distinct from Atopic Asthma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7196981. [PMID: 32596360 PMCID: PMC7305544 DOI: 10.1155/2020/7196981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 11/18/2022]
Abstract
Methods In the study, we included 86 children diagnosed with atopic asthma (n = 25), allergic rhinitis (n = 20), and atopic dermatitis (n = 20) and healthy control subjects (n = 21) of Caucasian origin from the Polish population. The blood leukocyte expression of 31 genes involved in neuroinflammatory response (neurotrophins, their receptors, neuropeptides, and histamine signaling pathway) was analysed using TaqMan low-density arrays. The relative expression of selected proteins from plasma was done using TaqMan Protein Assays. Statistical analysis was done using Statistica. Results Blood expression of 31 genes related to neuroimmune interactions showed significant increase in both allergic diseases, allergic rhinitis and atopic dermatitis, in comparison to the control group. We found 12 genes significantly increased in allergic rhinitis and 9 genes in which the expression was elevated in atopic dermatitis. Moreover, 9 genes with changed expression in atopic dermatitis overlapped with those in allergic rhinitis. Atopic asthma showed 5 genes with altered expression. The peripheral expression of neuroinflammatory genes in the human study was verified in target tissues (nasal epithelium and skin) in a rat model of allergic inflammation. Conclusions A common pattern of neuroinflammatory gene expression between allergic rhinitis and atopic dermatitis may reflect similar changes in sensory nerve function during chronic allergic inflammation.
Collapse
|
46
|
Natural Autoantibodies in Chronic Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21031138. [PMID: 32046322 PMCID: PMC7037933 DOI: 10.3390/ijms21031138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
In autoantibody-mediated autoimmune diseases, pathogenic autoantibodies generated by a failure of central or peripheral tolerance, have different effects mediated by a variety of mechanisms. Interestingly, even non-autoimmune chronic diseases have a set of disease-specific natural autoantibodies that are maintained for a long time. Because most of these natural autoantibodies target intracellular proteins or long non-coding RNAs, they are speculated to be non-pathological and have some important as yet unrecognized physiological functions such as debris clearance. Recently, we revealed a set of disease-specific natural autoantibodies of chronic pulmonary diseases with unknown etiology by protein arrays that enable detection of specific autoantibodies against >8000 targets. Surprisingly, some of the targeted antigens of disease-specific autoantibodies were subsequently reported by other laboratories as strongly associated with the disease, suggesting that these antigens reflect the pathology of each disease. Furthermore, some of these autoantibodies that target extracellular antigens might modify the original course of each disease. Here, we review the disease-specific natural autoantibodies of chronic pulmonary diseases, including chronic fibrosing idiopathic interstitial pneumonias, sarcoidosis, and autoimmune pulmonary alveolar proteinosis, and discuss their utility and effects.
Collapse
|
47
|
Cohen JA, Edwards TN, Liu AW, Hirai T, Jones MR, Wu J, Li Y, Zhang S, Ho J, Davis BM, Albers KM, Kaplan DH. Cutaneous TRPV1 + Neurons Trigger Protective Innate Type 17 Anticipatory Immunity. Cell 2019; 178:919-932.e14. [PMID: 31353219 DOI: 10.1016/j.cell.2019.06.022] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/03/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022]
Abstract
Cutaneous TRPV1+ neurons directly sense noxious stimuli, inflammatory cytokines, and pathogen-associated molecules and are required for innate immunity against some skin pathogens. Important unanswered questions are whether TRPV1+ neuron activation in isolation is sufficient to initiate innate immune responses and what is the biological function for TRPV1+ neuron-initiated immune responses. We used TRPV1-Ai32 optogenetic mice and cutaneous light stimulation to activate cutaneous neurons in the absence of tissue damage or pathogen-associated products. We found that TRPV1+ neuron activation was sufficient to elicit a local type 17 immune response that augmented host defense to C. albicans and S. aureus. Moreover, local neuron activation elicited type 17 responses and augmented host defense at adjacent, unstimulated skin through a nerve reflex arc. These data show the sufficiency of TRPV1+ neuron activation for host defense and demonstrate the existence of functional anticipatory innate immunity at sites adjacent to infection that depends on antidromic neuron activation.
Collapse
Affiliation(s)
- Jonathan A Cohen
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tara N Edwards
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew W Liu
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Toshiro Hirai
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Marsha Ritter Jones
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jianing Wu
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing 100084, China; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yao Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shiqun Zhang
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jonhan Ho
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kathryn M Albers
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
48
|
Abstract
Pain is a hallmark of tissue injury, inflammatory diseases, pathogen invasion and neuropathy. It is mediated by nociceptor sensory neurons that innervate the skin, joints, bones, muscles and mucosal tissues and protects organisms from noxious stimuli. Nociceptors are sensitized by inflammatory mediators produced by the immune system, including cytokines, lipid mediators and growth factors, and can also directly detect pathogens and their secreted products to produce pain during infection. Upon activation, nociceptors release neuropeptides from their terminals that potently shape the function of innate and adaptive immune cells. For some pathogens, neuron-immune interactions enhance host protection from infection, but for other pathogens, neuron-immune signalling pathways can be exploited to facilitate pathogen survival. Here, we discuss the role of nociceptor interactions with the immune system in pain and infection and how understanding these pathways could produce new approaches to treat infectious diseases and chronic pain.
Collapse
|
49
|
Kerage D, Sloan EK, Mattarollo SR, McCombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol 2019; 332:99-111. [PMID: 30999218 DOI: 10.1016/j.jneuroim.2019.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Neurotransmitters and neurochemicals can act on lymphocytes by binding to receptors expressed by lymphocytes. This review describes lymphocyte expression of receptors for a selection of neurotransmitters and neurochemicals, the anatomical locations where lymphocytes can interact with neurotransmitters, and the effects of the neurotransmitters on lymphocyte function. Implications for health and disease are also discussed.
Collapse
Affiliation(s)
- Daniel Kerage
- The University of Queensland Diamantina Institute, Brisbane, Australia; Transplant Research Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| | | | - Pamela A McCombe
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia; Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.
| |
Collapse
|
50
|
Li J, Chen Y, Chen QY, Liu D, Xu L, Cheng G, Yang X, Guo Z, Zeng Y. Role of transient receptor potential cation channel subfamily V member 1 (TRPV1) on ozone-exacerbated allergic asthma in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:586-594. [PMID: 30708321 DOI: 10.1016/j.envpol.2019.01.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Around the globe, worsening air pollution is spawning major public health and environmental concerns, especially in the poorest and most populous cities. As a major secondary air pollutant, ozone is a potential risk factor for exacerbated asthma, although the underlying mechanisms remain uncertain. In this study, we aim to investigate the role of ozone on asthma exacerbation using a classic asthmatic model with allergic airway inflammation by treating Balb/c mice with ovalbumin (OVA). Our study shows ozone exposure significantly exacerbated OVA-induced asthmatic phenotypes, including serum immunoglobulin, Th cytokines, inflammatory cell counts, mucus production, airway remodeling, and airway hyper-responsiveness (AHR). Interestingly, expression of transient receptor potential cation channel subfamily V member1 (TRPV1) was also significantly elevated in ozone-exacerbated asthmatic mice and that treatment with TRPV1 antagonist effectively suppressed AHR, airway inflammation and remodeling. The underlying mechanisms of these effects may be associated with suppression of neuropeptide calcitonin gene-related peptide (CGRP) and thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine. Base on the role of TRPV1 in allergic asthma, this study further revealed that inhibition of TRPV1 by TRPV1 antagonist has significant anti-inflammatory effects on ozone-induced asthma exacerbation in this study. Induction of TRPV1 expression may be an important mechanism underlying the increased risks for asthma after exposure to environmental pollutants.
Collapse
Affiliation(s)
- Jinquan Li
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China; Big Data Science and Engineering Research Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yushan Chen
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge, Tuxedo, NY 10987, United States
| | - Dan Liu
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lang Xu
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Guirong Cheng
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Yan Zeng
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Big Data Science and Engineering Research Institute, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|