1
|
Samantaray M, Pattabiraman R, Murthy TPK, Ramaswamy A, Murahari M, Krishna S, Kumar SB. Structure-based virtual screening of natural compounds against wild and mutant (R1155K, A1156T and D1168A) NS3-4A protease of Hepatitis C virus. J Biomol Struct Dyn 2024; 42:8505-8522. [PMID: 37646701 DOI: 10.1080/07391102.2023.2246583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
NS3-4A, a serine protease, is a primary target for drug development against Hepatitis C Virus (HCV). However, the effectiveness of potent next-generation protease inhibitors is limited by the emergence of mutations and resulting drug resistance. To address this, in this study a structure-based drug design approach is employed to screen a large library of 7320 natural compounds against both wild-type and mutant variants of NS3-4A protease. Telaprevir, a widely used protease inhibitor, was recruited as the control drug. The top 10 compounds with favorable binding affinities underwent drug-likeness evaluation. Based on ADMET studies, complexes of NP_024762 and NP_006776 were selected for molecular dynamic simulations. Principal component analysis (PCA) was employed to explore the conformational space and protein dynamics of the protein-ligand complex using a Free Energy Landscape (FEL) approach. The cosine values obtained from FEL analysis ranged from 0 to 1, and eigenvectors with cosine values below 0.2 were chosen for further analysis. To forecast binding free energies and evaluate energy contributions per residue, the MM-PBSA method was employed. The results highlighted the crucial role of amino acids in the catalytic domain for the binding of the protease with phytochemicals. Stable associations between the top compounds and the target protease were confirmed by the formation of hydrogen bonds in the binding pocket involving residues: His1057, Gly1137, Ser1139, and Ala1157. These findings suggest the potential of these compounds for further validation through biological evaluation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahesh Samantaray
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | - Ramya Pattabiraman
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - T P Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Amutha Ramaswamy
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Swati Krishna
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - S Birendra Kumar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Xu KH, Yang DF, Liu MY, Xu W, Li YH, Xiao WJ. Hepatoprotective effects and mechanisms of l-theanine and epigallocatechin gallate combined intervention in alcoholic fatty liver rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8230-8239. [PMID: 38873964 DOI: 10.1002/jsfa.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Chronic excessive alcohol consumption can lead to alcoholic fatty liver, posing substantial health risks. l-Theanine (LTA) and epigallocatechin gallate (EGCG) in tea exert antioxidant and hepatoprotective effects. However, the combined effects of LTA and EGCG on rats with alcoholic fatty liver, and the underlying mechanisms of such effects, remain unclear. In this study, Sprague Dawley (SD) rats were fed with alcohol for 6 weeks to induce alcoholic fatty liver. Subsequently, for another 6 weeks, the rats were administered LTA (200 mg kg-1 day-1), EGCG (200 mg kg-1 day-1), or a combination of LTA with EGCG (40 mg kg-1 day-1 l-Thea +160 mg kg-1 day-1 EGCG), respectively. RESULTS The combined use of LTA and EGCG for alcoholic fatty liver disease had more significant effects than their individual administration. This combination reduced the activity of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as well as the levels of hepatic triglyceride (TG), malondialdehyde (MDA), and reactive oxygen species (ROS) in the rats. The combined intervention also increased hepatic superoxide dismutase (SOD) and glutathione peroxidase activity. Reductions in hepatic fat accumulation and inflammatory responses were observed. The mechanism underlying these effects primarily involved the inhibition of fatty acid synthesis and the alleviation of lipid peroxidation through the downregulation of the mRNA and protein expression of TNF-α, SREBP1c, and CYP2E1 and the upregulation of the mRNA and protein expression of ADH1, ALDH2, Lipin-1, PPARαPPARα, AMPK, and PGC-1α, thereby promoting the oxidative decomposition of fatty acids and reducing the synthesis of cholesterol and glucose. CONCLUSION l-Theanine and EGCG appear to be able to alleviate alcoholic fatty liver by modulating lipid metabolism and ameliorating oxidative stress, indicating their potential as natural active ingredients in anti-alcoholic fatty liver food products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai-Hang Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Di-Fei Yang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Meng-Yuan Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yin-Hua Li
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Wen-Jun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
3
|
Fath EM, Bakery HH, El-Shawarby RM, Abosalem MES, Ibrahim SS, Ebrahim N, Hegazy AM. Silymarin ameliorates diazinon-induced subacute nephrotoxicity in rats via the Keap1-Nrf2/heme oxygenase-1 signaling pathway. Forensic Toxicol 2024:10.1007/s11419-024-00697-x. [PMID: 39117988 DOI: 10.1007/s11419-024-00697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE The goal of the current study was to clarify the potential molecular mechanism underlying the protective effects of silymarin (SIL) administration against diazinon-induced subacute nephrotoxicity, with a special emphasis on the role of the Kelch-like-associated protein-1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase-1 (HO-1) signaling pathway in minimizing the oxidative stress induced by diazinon (DZN). METHODS Five equal groups of thirty adult male Wistar rats were created at random. Group 1 (G1) was maintained under typical control conditions and administered saline intragastrically (I/G) once daily for 4 weeks; G2 was administered olive oil I/G for 4 weeks; G3 was I/G administered silymarin daily for 4 weeks; G4 was I/G administered diazinon daily for 4 weeks. G5 was I/G administered silymarin daily 1 h before the I/G administration of the diazinon for 4 weeks. Blood samples were collected at the end of the experiment for the determination of complete blood cell count, and kidney function tests. Kidney specimens were collected for the evaluation of the oxidative markers, mRNA gene expression, protein markers, and histopathological examination. RESULTS SIL reduced the renal dysfunction caused by DZN by restoring urea and creatinine levels, as well as oxidative indicators. Although the expression of Keap-1 was also elevated, overexpression of Nrf2 also enhanced the expression of HO-1, a crucial target enzyme of Nrf2. CONCLUSIONS SIL is hypothesized to potentially aid in the prevention and management of nephrotoxicity caused by DZN.
Collapse
Affiliation(s)
- Eman Mohamed Fath
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Hatem H Bakery
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Ragab M El-Shawarby
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Mohamed E S Abosalem
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Samar S Ibrahim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha, 13511, Egypt
- Faculty of Medicine, Benha National University, Obour City, Egypt
| | - Ahmed Medhat Hegazy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt.
| |
Collapse
|
4
|
Dos Santos AC, França TCS, Venzon L, Polli V, Polleti G, Trembulak E, Pilati SFM, da Silva LM. Are silymarin and N-acetylcysteine able to prevent liver damage mediated by multiple factors? Findings against ethanol plus LPS-induced liver injury in mice. J Biochem Mol Toxicol 2024; 38:e23560. [PMID: 37860953 DOI: 10.1002/jbt.23560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the effect of N-acetylcysteine (NAC) and silymarin (SIL) in the liver of mice exposed to ethanol and lipopolysaccharides (LPS). Mice were divided into four groups (n = 6): naive, vehicle, NAC (200 mg/kg), and SIL (200 mg/kg). Treatments were given orally (po) once daily for 10 days. Liver injury was induced by administration of ethanol (30%, po) for 10 days, once daily, followed by a single administration of LPS (2 mg/kg, ip) 24 h before euthanasia. After the treatment period, animals were euthanized, and liver and blood samples were collected. NAC, but not SIL, prevented the increase in oxalacetic glutamic transaminase (OGT) and pyruvic glutamic transaminase (PGT) serum levels. NAC and SIL did not restore levels of reduced glutathione or hepatic malonaldehyde. The treatments with NAC or SIL showed no difference in the activity of glutathione S-transferase, superoxide dismutase, and catalase compared to vehicle group. Myeloperoxidase and N-acetylglucosaminidase activities are increased, as well as the IL-6 and IL-10 levels in the liver. The treatment with NAC, but not SIL, reduced the N-acetylglucosamines activity and the IL-6 and IL-10 amount in the liver. Histological findings revealed microsteatosis in the vehicle group, which was not prevented by SIL but was partially reduced in animals receiving NAC. Unlike other liver injury models, NAC (200 mg/kg) or SIL (200 mg/kg) did not positively affect antioxidant patterns in liver tissue of animals exposed to ethanol plus LPS, but NAC treatment displays anti-inflammatory properties in this model.
Collapse
Affiliation(s)
- Ana Caroline Dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Larissa Venzon
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Vitor Polli
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Gustavo Polleti
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Erica Trembulak
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Luísa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
- LaFaTI-Laboratório de Farmacologia do Trato Gastrointestinal e suas Interações, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
5
|
Bibi S, Nisar M, Rafique S, Waqas M, Zahoor M, Idrees M, Nazir N, Ihsan M, Salmen SH, Alharbi SA, Khan A, Al-Harrasi A. Harnessing Nature's Gifts: Salix nigra and Its Potential for Combating Hepatitis C Virus (HCV). ACS OMEGA 2023; 8:42987-42999. [PMID: 38024752 PMCID: PMC10653063 DOI: 10.1021/acsomega.3c06193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Hepatitis C virus (HCV) causes various liver complications, including fibrosis, cirrhosis, and steatosis, and finally progresses toward hepatocellular carcinoma (HCC). The current study aimed to explore the antiviral activity of the traditional Pakistani medicinal plant Salix nigra (S. nigra) known as black willow against the hepatitis C virus (HCV). The anti-HCV activity of S. nigra was established against stable Hep G2 cell lines expressing the HCV NS3 gene. Various plant-derived compounds with anti-HCV activity were identified, making phytotherapy a promising alternative to conventional treatments due to their cost-effectiveness and milder side effects. The two extraction methods (Maceration and Soxhlet) and four solvents (n-hexane, methanol, ethyl acetate, and water) were used to obtain crude extracts from S. nigra. Cytotoxicity testing showed that methanol (CC50 25 μg/mL) and water (CC50 30 μg/mL) extracts were highly toxic, while ethyl acetate and n-hexane (CC50 > 200 μg/mL) extracts were nontoxic at low concentrations (10-50 μg/mL), making them suitable for further anti-HCV investigations. Stable transfection of the NS3 gene was successfully performed in Hep G2 cells, creating a cellular expression system for studying virus-host interaction. The ethyl acetate extract of S. nigra exhibited significant inhibition of NS3 gene expression (mRNA and protein levels). The phytochemical analysis of S. nigra was also performed using the high-performance liquid chromatography (HPLC) technique. The phytochemical analysis identified several polyphenolic substances in the extracts of S. nigra. Our results concluded that the extracts of S. nigra have significantly reduced the expression of the NS3 gene at mRNA and protein levels. These findings contribute to the global efforts to combat hepatitis C by offering plant-based treatment options for HCV management.
Collapse
Affiliation(s)
- Sadia Bibi
- Department
of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Mohammad Nisar
- Department
of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Shazia Rafique
- Division
of Molecular Virology, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Waqas
- Department
of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra 2100, Pakistan
- Natural and
Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz, P.O Box 33, 616Nizwa, Sultanate of Oman
| | - Muhammad Zahoor
- Department
of Biochemistry, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Muhammad Idrees
- Division
of Molecular Virology, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 54590, Pakistan
| | - Nausheen Nazir
- Department
of Biochemistry, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Mohammad Ihsan
- Department
of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Saleh H. Salmen
- Department
of Botany and Microbiology, College of Science, King Saud University, PO Box −2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department
of Botany and Microbiology, College of Science, King Saud University, PO Box −2455, Riyadh 11451, Saudi Arabia
| | - Ajmal Khan
- Natural and
Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz, P.O Box 33, 616Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and
Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz, P.O Box 33, 616Nizwa, Sultanate of Oman
| |
Collapse
|
6
|
Sun KH, Lee MY, Jeon YJ. Inhibition of Phagocytosis by Silibinin in Mouse Macrophages. Curr Issues Mol Biol 2023; 45:8126-8137. [PMID: 37886956 PMCID: PMC10605117 DOI: 10.3390/cimb45100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
This study investigated the effects of silibinin, derived from milk thistle (Silybum marianum), on lipopolysaccharide (LPS)-induced morphological changes in mouse macrophages. Silibinin was treated at various doses and time points to assess its effects on macrophage activation, including morphological changes and phagocytosis. Silibinin effectively inhibited LPS-induced pseudopodia formation and size increase, while unstimulated cells remained round. Silibinin's impact on phagocytosis was dose- and time-dependent, showing a decrease. We explored its mechanism of action on kinases using a MAPK array. Among the three MAPK family members tested, silibinin had a limited effect on JNK and p38 but significantly inhibited ERK1/2 and related RSK1/2. Silibinin also inhibited MKK6, AKT3, MSK2, p70S6K, and GSK-3β. These findings highlight silibinin's potent inhibitory effects on phagocytosis and morphological changes in macrophages. We suggest its potential as an anti-inflammatory agent due to its ability to target key inflammatory pathways involving ERK1/2 and related kinases. Overall, this study demonstrates the promising therapeutic properties of silibinin in modulating macrophage function and inflammation.
Collapse
Affiliation(s)
- Kyung-Hoon Sun
- Department of Emergency Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Min-Young Lee
- Department of Pharmacology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Young-Jin Jeon
- Department of Pharmacology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
7
|
Pandey B, Baral R, Kaundinnyayana A, Panta S. Promising hepatoprotective agents from the natural sources: a study of scientific evidence. EGYPTIAN LIVER JOURNAL 2023. [DOI: 10.1186/s43066-023-00248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Abstract
Background
Natural bioactive components derived from plant secondary metabolites have been pronounced as valuable alternatives for anticipating and subsiding hepatotoxic effects and its chronic complications based on experimental verification. The focus of this review is to elucidate the commonly used modern medicine for the treatment of liver disease and how major phytoconstituents have been tested for hepatoprotective activity, mechanism of action of some promising agents from natural sources, and clinical trial data for treating in patients with different liver diseases by the aid of natural phytoconstituents.
Main text
The review shows fifteen major isolated phytoconstituents, their biological sources, chemical structures, utilized plant parts, type of extracts used, hepatoprotective assay method, and their possible mechanism of action on the hepatoprotection. Nine promising hepatoprotective leads from natural sources with their chemistry and hepatoprotective mechanism are mentioned briefly. The review further includes the recent clinical trial studies of some hepatoprotective leads and their clinical outcome with different liver disease patients. Scientific studies revealed that antioxidant properties are the central mechanism for the phytoconstituents to subside different disease pathways by upsurging antioxidant defense system of cells, scavenging free radicals, down surging lipid peroxidation, improving anti-inflammatory potential, and further protecting the hepatic cell injury. In this review, we summarize recent development of natural product-based hepatoprotective leads and their curative potential for various sort of liver diseases. Furthermore, the usefulness of hit and lead molecules from natural sources for significant clinical benefit to discover new drug molecule and downsizing the problems of medication and chemical-induced hepatotoxic effects is extrapolated.
Conclusion
Further research are encouraged to elucidate the pharmacological principle of these natural-based chemical agents which will stimulate future pharmaceutical development of therapeutically beneficial hepatoprotective regimens.
Collapse
|
8
|
Lin S, Huang L, Wu Y, Huang L, Wu P, Huang T, Li Z, Hu Y. Uncovering the protective mechanism of Pien-Tze-Huang in rat with alcoholic liver injury based on cytokines analysis and untargeted metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123626. [PMID: 36753840 DOI: 10.1016/j.jchromb.2023.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/17/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Pien-Tze-Huang (PTH) is a well-known traditional Chinese patent medicine with excellent liver-protection effect. However, the mechanism of hepatoprotective action has not yet been entirely elucidated. The aim of this study was to investigate the mechanism of protective effect of PTH on alcohol-induced liver injury in rats using cytokine analysis and untargeted metabolomics approaches. An alcoholic liver disease (ALD) model with SD rats was established, and PTH was administered according to the prescribed dose. The hepatoprotective effect of PTH was evaluated by pathological observation of liver tissue and changes in biochemical index activity and cytokines in serum. Serum samples were analyzed by ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS), and differentially expressed metabolites were screened by multivariate statistical analysis. KEGG combined with metabolic pathway analysis were used to evaluate the underlying metabolic pathways. Results showed liver histopathology injury was attenuated. The levels of IL-6, TNF-α and NF-κB were significantly decreased in rats intervened with PTH groups, suggesting that it may alleviate inflammation via suppressing the inflammatory cytokines signaling pathway. Eighty differentially expressed metabolites were found and identified. Pathway analysis indicated that the hepatoprotective effects of PTH occurred through the regulation of inflammatory cytokines signaling pathway, primary bile acid biosynthesis, vitamin B6 metabolism pathway, cholesterol metabolism, and tyrosine metabolism. PTH showed favorable hepatoprotective effect through multiple pathways. This study has great importance in fully revealing the mechanism of hepatoprotective action and can help improve the clinical application of PTH.
Collapse
Affiliation(s)
- Shouer Lin
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China; Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| | - Youjia Wu
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| | - Liying Huang
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China.
| | - Pingping Wu
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| | - Tingxuan Huang
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| | - Zhenyue Li
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| | - Yuhan Hu
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| |
Collapse
|
9
|
Mirzaei N, Jahanian Sadatmahalleh S, Rouholamin S, Nasiri M. A randomized trial assessing the efficacy of Silymarin on endometrioma-related manifestations. Sci Rep 2022; 12:17549. [PMID: 36266431 PMCID: PMC9584967 DOI: 10.1038/s41598-022-22073-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
To study the effect of silymarin on the Interleukin-6 (IL-6) level, size of endometrioma lesion, pain, sexual function, and Quality of Life (QoL) in women diagnosed with endometriosis. This randomized, double-blind placebo-controlled clinical trial was performed on 70 women with endometriosis which was divided into two groups of intervention and control. The intervention was 140 mg silymarin (or matching placebo) administered twice daily for 12 weeks. The volume of endometrioma lesions, the level of IL-6 concentration in serum, pain, sexual function, and QoL were analyzed before and after the intervention. The means of endometrioma volume (P = 0.04), IL-6 (P = 0.002), and pain (P < 0.001) were reduced significantly in the silymarin group after intervention. However, the QoL and female sexual function did not improve substantially in the two groups (P > 0.05). Silymarin significantly reduced interleukin-6 levels, sizes of endometrioma lesions, and pain-related symptoms. The trial has been registered in the Iranian Registry of Clinical Trials (IRCT20150905023897N5) on 4th February 2020 (04/02/2020) ( https://en.irct.ir/trial/42215 ) and the date of initial participant enrollment was 2nd March 2020 (02/03/2020).
Collapse
Affiliation(s)
- Negin Mirzaei
- grid.412266.50000 0001 1781 3962Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Al-Ahmad Highway, Nasr Bridge, Tehran, 14115-111 Iran
| | - Shahideh Jahanian Sadatmahalleh
- grid.412266.50000 0001 1781 3962Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Al-Ahmad Highway, Nasr Bridge, Tehran, 14115-111 Iran
| | - Safoura Rouholamin
- grid.411036.10000 0001 1498 685XDepartment of Obstetrics and Gynecology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Hezar-Jerib Ave., Isfahan, 81746 73461 Iran
| | - Malihe Nasiri
- grid.411600.2Department of Basic Sciences, Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Salvoza N, Giraudi PJ, Tiribelli C, Rosso N. Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates. Int J Mol Sci 2022; 23:2764. [PMID: 35269912 PMCID: PMC8911502 DOI: 10.3390/ijms23052764] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
The booming prevalence of nonalcoholic fatty liver disease (NAFLD) in adults and children will threaten the health system in the upcoming years. The "multiple hit" hypothesis is the currently accepted explanation of the complex etiology and pathophysiology of the disease. Some of the critical pathological events associated with the development of NAFLD are insulin resistance, steatosis, oxidative stress, inflammation, and fibrosis. Hence, attenuating these events may help prevent or delay the progression of NAFLD. Despite an increasing understanding of the mechanisms involved in NAFLD, no approved standard pharmacological treatment is available. The only currently recommended alternative relies on lifestyle modifications, including diet and physical activity. However, the lack of compliance is still hampering this approach. Thus, there is an evident need to characterize new therapeutic alternatives. Studies of food bioactive compounds became an attractive approach to overcome the reticence toward lifestyle changes. The present study aimed to review some of the reported compounds with beneficial properties in NAFLD; namely, coffee (and its components), tormentic acid, verbascoside, and silymarin. We provide details about their protective effects, their mechanism of action in ameliorating the critical pathological events involved in NAFLD, and their clinical applications.
Collapse
Affiliation(s)
- Noel Salvoza
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
- Philippine Council for Health Research and Development, DOST Compound, Bicutan, Taguig 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Natalia Rosso
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| |
Collapse
|
11
|
Stephen Robert J, Peddha MS, Srivastava AK. Effect of Silymarin and Quercetin in a Miniaturized Scaffold in Wistar Rats against Non-alcoholic Fatty Liver Disease. ACS OMEGA 2021; 6:20735-20745. [PMID: 34423182 PMCID: PMC8374897 DOI: 10.1021/acsomega.1c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/26/2021] [Indexed: 05/02/2023]
Abstract
Silymarin and quercetin (SQ) are known antioxidants with substantial free radical scavenging activities. The efficacy of SQ activity is restricted due to poor absorption and availability. This study aims to increase the hepatoprotective activity of SQ by a newer delivery technique. We have optimized a technique, miniaturized scaffold (MS), for the delivery of active compounds of SQ. SQ molecules were embedded in MS and characterized by morphology, particle size, miniaturization efficiency, and functional group. Further, the hepatoprotective effects of MSQ were investigated through in vitro and in vivo methods. Hepatotoxicity was induced in rats by carbon tetrachloride (CCl4), and subsequently, hepatotoxic rats were treated with the miniaturized scaffold of SQ (MSQ) for 8 weeks. The body weight were significantly high in groups fed with MSQ. A substantial decrease in triglyceride, total cholesterol, low-density lipoprotein, alanine aminotransferase, and aspartate aminotransferase activities were observed in rats treated with MSQ. Similarly, rats treated with MSQ exhibited lower lipid accumulation in the hepatocytes. The experiments clearly demonstrated the efficacy of MSQ as a superior hepatoprotective agent against non-alcoholic fatty liver disease simulated through toxicity induced by CCl4.
Collapse
Affiliation(s)
- Jaisheela
Marry Stephen Robert
- Department
of Food Safety and Analytical Quality Control Laboratory, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muthukumar Serva Peddha
- Department
of Biochemistry, CSIR- Central Food Technological
Research Institute, Mysuru, 570 020 Karnataka, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alok Kumar Srivastava
- Department
of Food Safety and Analytical Quality Control Laboratory, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- .
Phone: 91-821-2514972. Fax: 91-821-2517233
| |
Collapse
|
12
|
Yan J, Nie Y, Luo M, Chen Z, He B. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease? Front Pharmacol 2021; 12:694475. [PMID: 34290612 PMCID: PMC8287649 DOI: 10.3389/fphar.2021.694475] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol intake is a direct cause of alcoholic liver disease (ALD). ALD usually manifests as fatty liver in the initial stage and then develops into alcoholic hepatitis (ASH), fibrosis and cirrhosis. Severe alcoholism induces extensive hepatocyte death, liver failure, and even hepatocellular carcinoma (HCC). Currently, there are few effective clinical means to treat ALD, except for abstinence. Natural compounds are a class of compounds extracted from herbs with an explicit chemical structure. Several natural compounds, such as silymarin, quercetin, hesperidin, and berberine, have been shown to have curative effects on ALD without side effects. In this review, we pay particular attention to natural compounds and developing clinical drugs based on natural compounds for ALD, with the aim of providing a potential treatment for ALD.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minmin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Bae J, Choi WS, Shin CY, Sohn UD. Modulation of the TLR4/MyD88/NF- κB Pathway by Humulus japonicus Extract Protects Against Alcohol-Induced Liver Injury in a Rat Model. J Med Food 2020; 24:18-27. [PMID: 33290158 DOI: 10.1089/jmf.2019.4650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alcohol induces liver injury related to oxidative stress and inflammatory responses. The purpose of this study was to investigate the hepatoprotective effect of Humulus japonicus extract (HJE) against alcohol-induced liver injury. Furthermore, we investigated the mechanisms of the protective effect of HJE on alcohol-induced liver injury. The pretreatment of HJE decreased the levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, and total cholesterol in the plasma, suppressed the malondialdehyde, myeloperoxidase, and enhanced the activities of superoxide dismutase, glutathione, and catalase. The inhibitory effect of HJE against oxidative stress may be associated with the upregulation of nuclear factor erythroid 2-related factor 2 and its target gene heme oxygenase-1. Moreover, HJE inhibited the pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-1 beta) by downregulating toll-like receptor 4, myeloid differentiation primary response 88, and nuclear factor kappa B p65. These findings provide evidence for the elucidation of the hepatoprotective mechanisms for HJE.
Collapse
Affiliation(s)
- Jinhyung Bae
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | - Uy Dong Sohn
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
14
|
Sahin E, Bagci R, Bektur Aykanat NE, Kacar S, Sahinturk V. Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice. J Food Biochem 2020; 44:e13194. [PMID: 32189355 DOI: 10.1111/jfbc.13194] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an important health problem. The prevalence of NAFLD is increasing, especially in the Western countries. Although there are several intracellular pathways in NAFLD, endoplasmic reticulum (ER) stress has recently gained importance. Silymarin is an important liver-protective biological molecule. In light of this information, we investigated mice for the effect of silymarin on ER stress in the NAFLD model. In our study, the mice were randomly divided into six groups: Control, silymarin 100 and 200 mg/kg sham, fructose-induced NAFLD, and NAFLD + silymarin groups. After the last administrations, liver and blood samples were taken and hematoxylin-eosin, as well as Oil red O staining, were performed. As a result, the body and liver weights, lipid profile, AST, ALT, and glucose levels, along with the ER stress markers, increased in the NAFLD-only group. Silymarin treatments reversed most of these changes. Particularly, 200 mg/kg silymarin was more effective. PRACTICAL APPLICATIONS: According to the results, silymarin attenuated NAFLD by decreasing the ER stress proteins GRP78 and XBP-1. Silymarin may be therapeutic in the treatment of NAFLD as well as other ER-stress-based diseases. Silymarin can also be taken with food for prophylactic purposes.
Collapse
Affiliation(s)
- Erhan Sahin
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ridvan Bagci
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nuriye Ezgi Bektur Aykanat
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sedat Kacar
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Varol Sahinturk
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
15
|
Shi T, Wu L, Ma W, Ju L, Bai M, Chen X, Liu S, Yang X, Shi J. Nonalcoholic Fatty Liver Disease: Pathogenesis and Treatment in Traditional Chinese Medicine and Western Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8749564. [PMID: 31998400 PMCID: PMC6969649 DOI: 10.1155/2020/8749564] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is one of the most important causes of liver disease worldwide and probably destined to become the leading cause of end-stage liver disease in the coming decades, affecting both adults and children. Faced with the severe challenges for the prevention and control of NAFLD, this article discusses the understanding and mechanism of NAFLD from Chinese and Western medicine. Moreover, the progress regarding its treatment in both Chinese and Western medicine is also summarized. Both Chinese medicine and Western medicine have their own characteristics and clinical efficacy advantages in treating diseases. The purpose of this article is to hope that Chinese and Western medicine have complementary advantages, complementing each other to improve clinical NAFLD therapy prevention and treatment methods to receive more and more attention throughout the global medical community.
Collapse
Affiliation(s)
- Tingting Shi
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Li Wu
- Center of Clinical Evaluation, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, Zhejiang, China
| | - Wenjun Ma
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Liping Ju
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Minghui Bai
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Xiaowei Chen
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Shourong Liu
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Xingxin Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Kunming 650500, Yunnan, China
| | - Junping Shi
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Sieniawska E, Maciejewska-Turska M, Świątek Ł, Xiao J. Plant-based Food Products for Antimycobacterial Therapy. EFOOD 2020. [DOI: 10.2991/efood.k.200418.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
17
|
Liu X, Wang Y, Wu D, Li S, Wang C, Han Z, Wang J, Wang K, Yang Z, Wei Z. Magnolol Prevents Acute Alcoholic Liver Damage by Activating PI3K/Nrf2/PPARγ and Inhibiting NLRP3 Signaling Pathway. Front Pharmacol 2019; 10:1459. [PMID: 31920652 PMCID: PMC6915046 DOI: 10.3389/fphar.2019.01459] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver damage (ALD) is a toxic liver damage caused by excessive drinking. Oxidative stress is one of the most crucial pathogenic factors leading to ALD. Magnolol is one of the main active constituents of traditional Chinese medicine Magnolia officinalis, which has been reported to possess many pharmacological effects including anti-inflammatory, anti-oxidant, and anti-tumor. However, the effects of magnolol on ALD remain unclear. In this study, we firstly evaluated the protective effects of magnolol on ALD, and then tried to clarify the mechanism underlying the pharmacological activities. AST, ALT, GSH-Px, and SOD were detected by respective kits. Histopathological changes of liver tissue were analyzed by H&E staining. The activities of PI3K, Nrf2, and NLRP3 signaling pathways activation were detected by western blotting analysis. It was showed that alcohol-induced ALT and AST levels were significantly reduced by magnolol, but the antioxidant enzymes of GSH-Px and SOD levels were significantly increased. Magnolol attenuated alcohol-induced pathologic damage such as decreasing hepatic cord swelling, hepatocyte necrosis, and inflammatory cell infiltration. Furthermore, it was found that magnolol inhibited oxidative stress through up-regulating the activities of HO-1, Nrf2, and PPARγ and the phosphorylation of PI3K and AKT. And magnolol also decreased inflammatory response by inhibiting the activation of NLRP3inflammasome, caspase-1, and caspase-3 signaling pathway. Above results showed that magnolol could prevent alcoholic liver damage, and the underlying mechanism was through activating PI3K/Nrf2/PPARγ signaling pathways as well as inhibiting NLRP3 inflammasome, which also suggested magnolol might be used as a potential drug for ALD.
Collapse
Affiliation(s)
- Xiao Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanan Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Di Wu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuangqiu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chaoqun Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen Han
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingjing Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kai Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
18
|
Mangwani N, Singh PK, Kumar V. Medicinal plants: Adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. J Ayurveda Integr Med 2019; 11:522-528. [PMID: 31679802 PMCID: PMC7772497 DOI: 10.1016/j.jaim.2019.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/29/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
The effectiveness of herbs for the management of chemically induced hepatotoxicity has been discussed by many researchers. However, there is a paucity of compressive literature on the significance of hepatoprotective plants for the management of anti-TB drug induced toxicity. Anti-TB drugs have been reported to causes hepatic damage, due to which, many patients across the globe discontinued the treatment. Medicinal plants have multiple therapeutic effects. The assessment of biological activity of plants against Mycobacterium and its use for hepatic recovery provides an effective treatment approach. Traditionally used medicinal plants are the rich source of phytochemicals and secondary metabolites. These compounds can restore normal function, enzymatic activity and structure of hepatic cells against anti-TB drug induced hepatotoxicity. The present review covers comprehensive details on different hepatoprotective and antimycobacterial plants studied during past few decades so that potential adjuvants can be studied for Tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Neelam Mangwani
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| | - Pawan Kumar Singh
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India.
| | - Vipin Kumar
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| |
Collapse
|
19
|
Pingili R, Pawar AK, Challa SR. Quercetin reduced the formation of
N
‐acetyl‐
p
‐benzoquinoneimine, a toxic metabolite of paracetamol in rats and isolated rat hepatocytes. Phytother Res 2019; 33:1770-1783. [DOI: 10.1002/ptr.6365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/24/2019] [Accepted: 03/16/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Ravindrababu Pingili
- Research and Development, Department of PharmacyJawaharlal Nehru Technological University Kakinada India
- Department of PharmacologyKVSR Siddhartha College of Pharmaceutical Sciences Vijayawada India
| | - A. Krishnamanjari Pawar
- Department of Pharmaceutical Analysis, University College of Pharmaceutical SciencesAndhra University Visakhapatnam India
| | - Siva Reddy Challa
- Department of PharmacologyKVSR Siddhartha College of Pharmaceutical Sciences Vijayawada India
| |
Collapse
|
20
|
Abdulrazzaq AM, Badr M, Gammoh O, Abu Khalil AA, Ghanim BY, Alhussainy TM, Qinna NA. Hepatoprotective Actions of Ascorbic Acid, Alpha Lipoic Acid and Silymarin or Their Combination Against Acetaminophen-Induced Hepatotoxicity in Rats. ACTA ACUST UNITED AC 2019; 55:medicina55050181. [PMID: 31117289 PMCID: PMC6571961 DOI: 10.3390/medicina55050181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Background and objectives: Ascorbic acid, alpha lipoic acid (ALA) and silymarin are well-known antioxidants that have hepatoprotective effects. This study aims to investigate the effects of these three compounds combined with attenuating drug-induced oxidative stress and cellular damage, taking acetaminophen (APAP)-induced toxicity in rats as a model both in vivo and in vitro. Materials and Methods: Freshly cultured primary rat hepatocytes were treated with ascorbic acid, ALA, silymarin and their combination, both with and without the addition of APAP to evaluate their in vitro impact on cell proliferation and mitochondrial activity. In vivo study was performed on rats supplemented with the test compounds or their combination for one week followed by two toxic doses of APAP. Results: Selected liver function tests and oxidative stress markers including superoxide dismutase (SOD), malondialdehyde (MDA) and oxidized glutathione (GSSG) were detected. The in vivo results showed that all three pretreatment compounds and their combination prevented elevation of SOD and GSSG serum levels indicating a diminished burden of oxidative stress. Moreover, ascorbic acid, ALA and silymarin in combination reduced serum levels of liver enzymes; however, silymarin markedly maintained levels of all parameters to normal ranges. Silymarin either alone or combined with ascorbic acid and ALA protected cultured rat hepatocytes and increased cellular metabolic activity. The subjected agents were capable of significantly inhibiting the presence of oxidative stress induced by APAP toxicity and the best result for protection was seen with the use of silymarin. Conclusions: The measured liver function tests may suggest an augmented hepatoprotection of the combination preparation than when compared individually.
Collapse
Affiliation(s)
- Anmar M Abdulrazzaq
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| | - Mujtaba Badr
- University of Petra Pharmaceutical Center (UPPC), University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| | - Omar Gammoh
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, P.O. Box 2882, Madaba 11821, Jordan.
| | - Asad A Abu Khalil
- University of Petra Pharmaceutical Center (UPPC), University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| | - Tawfiq M Alhussainy
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| | - Nidal A Qinna
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan.
- University of Petra Pharmaceutical Center (UPPC), University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| |
Collapse
|
21
|
Hepato-protective effect of curcumin and silymarin against Eimeria stiedae in experimentally infected rabbits. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Pingili RB, Pawar AK, Challa SR. Effect of chrysin on the formation of N-acetyl-p-benzoquinoneimine, a toxic metabolite of paracetamol in rats and isolated rat hepatocytes. Chem Biol Interact 2019; 302:123-134. [PMID: 30794797 DOI: 10.1016/j.cbi.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Paracetamol (N-acetyl-para amino phenol) is the most commonly used analgesic and antipyretic around the world. Its causes hepatotoxicity and nephrotoxicity at overdose or even at therapeutic doses. It is primarily metabolized by glucuronidation and sulfate conjugation. It is also metabolized by cytochrome-P450 system (CYP2E1, CYP1A2 and CYP 3A4), leading to the formation of N-acetyl-p-benzoquinoneimine (NAPQI). The present study was planned to investigate the influence of chrysin (known CYP2E1 and CYP3A4 inhibitor) on the bioactivation of paracetamol to NAPQI using rat liver microsomes in vitro and rats in vivo. Paracetamol (80 mg/kg) was administered orally without or with silymarin (100 mg/kg), a known CYP2E1 inhibitor and chrysin (100 and 200 mg/kg) to rats for 15 consecutive days. The area under the plasma concentration-time curve (AUC0-∞) and the peak plasma concentration (Cmax) of paracetamol were dose-dependently increased with chrysin (100 and 200 mg/kg) compared to paracetamol control group. On the other hand, the AUC0-∞ and Cmax of NAPQI were decreased significantly with chrysin (100 and 200 mg/kg). The elevated liver and kidney function markers were significantly reduced by chrysin and silymarin compared to paracetamol control group (P < 0.01). Histopathological studies of liver and kidney also well correlated with liver and kidney function tests. Chrysin also reduced the formation of NAPQI in the incubation samples of rat hepatocytes. The present study (both in vivo and in vitro) results revealed that chrysin might be inhibited the CYP2E1, CYP1A2 and CYP3A4-mediated metabolism of paracetamol; thereby decreased the formation of NAPQI and protected the liver and kidney.
Collapse
Affiliation(s)
- Ravindra Babu Pingili
- Research and Development, Department of Pharmacy, Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India; Department of Pharmacology, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India.
| | - A Krishnamanjari Pawar
- Department of Pharmaceutical Analysis, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Siva R Challa
- Department of Pharmacology, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India.
| |
Collapse
|
23
|
Mollazadeh H, Mahdian D, Hosseinzadeh H. Medicinal plants in treatment of hypertriglyceridemia: A review based on their mechanisms and effectiveness. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:43-52. [PMID: 30668411 DOI: 10.1016/j.phymed.2018.09.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hypertriglyceridemia (HTg) defines as high amounts of triglyceride (TG) in the blood which can lead to serious complications over time. HTg is usually a part of metabolic disorders such as diabetes mellitus, metabolic syndrome, and dyslipidemia. Different medications have been used to treat HTg but experimentally, many herbs have been recommended for treating HTg as an adjuvant therapy. In most cases, the recommendations are based on animal studies and limited evidences exist about their mechanisms and clinical usefulness. PURPOSE This review focused on the herbs which have been shown TG lowering effect. METHOD The search was done in PubMed, Science Direct, Scopus, Web of Science and Google Scholar databases a 20-year period between 1997 to 2017 with keywords search of medicinal plant, plant extract, hypertriglyceridemia, dyslipidemia, hyperlipidemia, lipoprotein lipase and apolipoprotein. RESULTS According to the results, many plants showed positive effects but Allium sativum, Nigella sativa, Curcuma longa, Anethum graveolens and Commiphora mukul had the best TG lowering effect with exact mechanisms of action. CONCLUSION It seems that use of these plants as complementary therapeutics or extraction of their active ingredients along with currently available drugs will improve the management of HTg in patients.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Davood Mahdian
- Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamic and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Insights into hepatic and renal FXR/DDAH-1/eNOS pathway and its role in the potential benefit of rosuvastatin and silymarin in hepatic nephropathy. Exp Mol Pathol 2018; 105:293-310. [DOI: 10.1016/j.yexmp.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/05/2018] [Accepted: 10/06/2018] [Indexed: 12/23/2022]
|
25
|
Ou Q, Weng Y, Wang S, Zhao Y, Zhang F, Zhou J, Wu X. Silybin Alleviates Hepatic Steatosis and Fibrosis in NASH Mice by Inhibiting Oxidative Stress and Involvement with the Nf-κB Pathway. Dig Dis Sci 2018; 63:3398-3408. [PMID: 30191499 DOI: 10.1007/s10620-018-5268-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Silybin is the major biologically active compound of silymarin, the standardized extract of the milk thistle (Silybum marianum). Increasing numbers of studies have shown that silybin can improve nonalcoholic steatohepatitis (NASH) in animal models and patients; however, the mechanisms underlying silybin's actions remain unclear. METHODS Male C57BL/6 mice were fed a methionine-choline deficient (MCD) diet for 8 weeks to induce the NASH model, and silybin was orally administered to the NASH mice. The effects of silybin on lipid accumulation, hepatic fibrosis, oxidative stress, inflammation-related gene expression and nuclear factor kappa B (NF-κB) activities were evaluated by biochemical analysis, immunohistochemistry, immunofluorescence, quantitative real-time PCR and western blot. RESULTS Silybin treatment significantly alleviated hepatic steatosis, fibrosis and inflammation in MCD-induced NASH mice. Moreover, silybin inhibited HSC activation and hepatic apoptosis and prevented the formation of MDBs in the NASH liver. Additionally, silybin partly reversed the abnormal expression of lipid metabolism-related genes in NASH. Further study showed that the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway played important roles in the silybin-derived antioxidant effect, as evidenced by the upregulation of Nrf2 target genes in the silybin treatment group. In addition, silybin significantly downregulated the expression of inflammation-related genes and suppressed the activity of NF-κB signaling. CONCLUSIONS Silybin was effective in preventing the MCD-induced increases in hepatic steatosis, fibrosis and inflammation. The effect was related to alteration of lipid metabolism-related gene expression, activation of the Nrf2 pathway and inhibition of the NF-κB signaling pathway in the NASH liver.
Collapse
Affiliation(s)
- Qiang Ou
- The Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 200235, China
| | - Yuanyuan Weng
- Department of Clinical Laboratory, Core Facility, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Siwei Wang
- Department of Clinical Laboratory, Core Facility, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Yajuan Zhao
- The Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 200235, China
| | - Feng Zhang
- Department of Clinical Laboratory, Core Facility, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China.
| | - Jianhua Zhou
- The Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 200235, China. .,The Central Laboratory of the Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 201508, China.
| | - Xiaolin Wu
- The Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 200235, China. .,The Central Laboratory of the Eighth People's Hospital of Shanghai, No. 8 Caobao Road, Shanghai, 201508, China.
| |
Collapse
|
26
|
Bae J, Min YS, Nam Y, Lee HS, Sohn UD. Humulus japonicusExtracts Protect Against Lipopolysaccharide/d-Galactosamine-Induced Acute Liver Injury in Rats. J Med Food 2018; 21:1009-1015. [DOI: 10.1089/jmf.2018.4178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jinhyung Bae
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Young Sil Min
- Department of Medical Plant Science, Jung Won University, Goesan-Gun, Korea
| | - Yoonjin Nam
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyun Seok Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
27
|
Gharbia S, Balta C, Herman H, Rosu M, Váradi J, Bácskay I, Vecsernyés M, Gyöngyösi S, Fenyvesi F, Voicu SN, Stan MS, Cristian RE, Dinischiotu A, Hermenean A. Enhancement of Silymarin Anti-fibrotic Effects by Complexation With Hydroxypropyl (HPBCD) and Randomly Methylated (RAMEB) β-Cyclodextrins in a Mouse Model of Liver Fibrosis. Front Pharmacol 2018; 9:883. [PMID: 30150935 PMCID: PMC6099081 DOI: 10.3389/fphar.2018.00883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
Silymarin (Sy) shows limited water solubility and poor oral bioavailability. Water-soluble hydroxypropyl (HPBCD) and randomly methylated (RAMEB) β-cyclodextrins were designed to enhance anti-fibrotic efficiency of silymarin in CCl4-induced liver fibrosis in mice. Experimental fibrosis was induced by intraperitoneal injection with 2 ml/kg CCl4 (20% v/v) twice a week, for 7 weeks. Mice were orally treated with 50 mg/kg of Sy-HPBCD, Sy-RAMEB and free silymarin. For assessment of the spontaneous reversion of fibrosis, CCl4 treated animals were investigated after 2 weeks of recovery time. The CCl4 administration increased hepatic oxidative stress, augmented the expression of transforming growth factor-β1 (TGF-β1) and Smad 2/3, and decreased Smad 7 expression. Furthermore, increased α-smooth muscle actin (α-SMA) expression indicated activation of hepatic stellate cells (HSCs), while up-regulation of collagen I (Col I) and matrix metalloproteinases (MMPs) expression led to an altered extracellular matrix enriched in collagen, confirmed as well by trichrome staining and electron microscopy analysis. Treatment with Sy-HPBCD and Sy-RAMEB significantly reduced liver injury, attenuating oxidative stress, restoring antioxidant balance in the hepatic tissue, and significantly decreasing collagen deposits in the liver. The levels of pro-fibrogenic markers' expression were also significantly down-regulated, whereas in the group for spontaneous regression of fibrosis, they remained significantly higher, even at 2 weeks after CCl4 administration was discontinued. The recovery was significantly lower for free silymarin group compared to silymarin/β cyclodextrins co-treatments. Sy-HPBCD was found to be the most potent anti-fibrotic complex. We demonstrated that Sy-HPBCD and Sy-RAMEB complexes decreased extracellular matrix accumulation by inhibiting HSC activation and diminished the oxidative damage. This might occur via the inhibition of TGF-β1/Smad signal transduction and MMP/tissue inhibitor of MMPs (TIMP) rebalance, by blocking the synthesis of Col I and decreasing collagen deposition. These results suggest that complexation of silymarin with HPBCD or RAMEB represent viable options for the its oral delivery, of the flavonoid as a potential therapeutic entity candidate, with applications in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Sami Gharbia
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cornel Balta
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Hildegard Herman
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Szilvia Gyöngyösi
- Department of Solid State Physics, University of Debrecen, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Sorina N Voicu
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Roxana E Cristian
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Hermenean
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania.,Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| |
Collapse
|
28
|
Kabil SL, Mahmoud NM. Canagliflozin protects against non-alcoholic steatohepatitis in type-2 diabetic rats through zinc alpha-2 glycoprotein up-regulation. Eur J Pharmacol 2018; 828:135-145. [PMID: 29608898 DOI: 10.1016/j.ejphar.2018.03.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Elevated blood glucose and insulin resistance are triggering factors for non-alcoholic steatohepatitis (NASH). We investigated the effects of the Sodium Glucose co-Transporter 2 (SGLT2) inhibitor canagliflozin on NASH development in rats with type 2 diabetes mellitus as well as the possible underlying mechanisms and for the first time the effect of canagliflozin on the hepatic zinc-α2-glycoprotein (ZAG) levels. Rats were treated with nicotinamide and streptozotocin to reduce the insulin secretory capacity then fed high fat diet for 8 weeks. The diabetic high fat diet rats were divided into three groups; untreated group, canagliflozin 10 mg/kg treated group and canagliflozin 20 mg/kg treated group during this period. The elevated blood glucose and glycated haemoglobin (HbA1c) levels in the diabetic high fat diet rats were significantly reduced by canagliflozin. Moreover, the diabetic high fat diet induced NASH development as evidenced by liver weight gain, hepatic lipid accumulation and low hepatic ZAG expression as well as increased serum alanine aminotransferase; all these changes were reversed in rats treated with canagliflozin. Additionally, canagliflozin succeeded to upregulate the hepatic ZAG levels in both normal and diabetic high fat fed rats, lower the serum and hepatic inflammatory cytokines levels as well as lower the serum caspase-3 levels and enhanced hepatic Bcl-2 expression. Also, canagliflozin attenuated hepatic oxidative stress and elevated the antioxidant enzymes activity as well as the total antioxidant capacity. All these effects of canagliflozin were dose dependant. CONCLUSION SGLT2 inhibitor-canagliflozin- has beneficial effects in treatment of NASH associated with diabetes mellitus.
Collapse
Affiliation(s)
- Soad L Kabil
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Nevertyty M Mahmoud
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
29
|
Jardim ACG, Shimizu JF, Rahal P, Harris M. Plant-derived antivirals against hepatitis c virus infection. Virol J 2018; 15:34. [PMID: 29439720 PMCID: PMC5812025 DOI: 10.1186/s12985-018-0945-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a worldwide public health burden and it is estimated that 185 million people are or have previously been infected worldwide. There is no effective vaccine for prevention of HCV infection; however, a number of drugs are available for the treatment of infection. The availability of direct-acting antivirals (DAAs) has dramatically improved therapeutic options for HCV genotype 1. However, the high costs and potential for development of resistance presented by existing treatment demonstrate the need for the development of more efficient new antivirals, or combination of therapies that target different stages of the viral lifecycle. Over the past decades, there has been substantial study of compounds extracted from plants that have activity against a range of microorganisms that cause human diseases. An extensive variety of natural compounds has demonstrated antiviral action worldwide, including anti-HCV activity. In this context, plant-derived compounds can provide an alternative approach to new antivirals. In this review, we aim to summarize the most promising plant-derived compounds described to have antiviral activity against HCV.
Collapse
Affiliation(s)
- Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Avenida Amazonas, Bloco 4C – sala 216. Umuarama, Uberlândia, MG CEP: 38405-302 Brazil
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Jacqueline Farinha Shimizu
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Avenida Amazonas, Bloco 4C – sala 216. Umuarama, Uberlândia, MG CEP: 38405-302 Brazil
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Paula Rahal
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
30
|
Wang F, Zhou RJ, Zhao X, Ye H, Xie ML. Apigenin inhibits ethanol-induced oxidative stress and LPS-induced inflammatory cytokine production in cultured rat hepatocytes. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
31
|
Wang L, Huang QH, Li YX, Huang YF, Xie JH, Xu LQ, Dou YX, Su ZR, Zeng HF, Chen JN. Protective effects of silymarin on triptolide-induced acute hepatotoxicity in rats. Mol Med Rep 2018; 17:789-800. [PMID: 29115625 PMCID: PMC5780159 DOI: 10.3892/mmr.2017.7958] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/31/2017] [Indexed: 02/06/2023] Open
Abstract
Silymarin has been used in the treatment of a number of liver diseases for a long time, but its efficacy in preventing triptolide induced acute hepatotoxicity has not been reported previously. The present study aimed to assess the protective effect of silymarin against triptolide (TP)-induced hepatotoxicity in rats. Rats were orally administrated with silymarin (50, 100 and 200 mg/kg) for 7 days and received intraperitoneal TP (2 mg/kg) on the day 8. Hepatic injuries were comprehensively evaluated in terms of serum parameters, morphological changes, oxidative damage, inflammation and apoptosis. The results demonstrated that TP-induced increases in serum parameters, including alanine transaminase, aspartate aminotransferase, alkaline phosphatase, total cholesterol and γ-glutamyl transpeptidase, which were determined using a biochemical analyzer, and histopathological alterations and hepatocyte apoptosis as determined by hematoxylin and eosin and TUNEL staining, respectively, were prevented by silymarin pretreatment in a dose-dependent manner. TP-induced depletions in the activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, glutathione S-transferase and catalase, and glutathione levels, were also significantly reversed by silymarin, as determined using specific kits. Additionally, silymarin dose-dependently exhibited inhibitory effects on malonaldehyde content in the liver. The production of proinflammatory cytokines was investigated using ELISA kits, and the results demonstrated that silymarin dose-dependently inhibited the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10 and IL-1β in the liver. To determine the mechanism of silymarin, western blot analysis was performed to investigate the protein expression of phosphorylated (p)-p38 and p-c-Jun N-terminal kinase (JNK) of the TNF-α induced inflammatory response and apoptotic pathways. Silymarin significantly blocked p38 and JNK phosphorylation and activation. Additionally, the expression of the proapoptotic proteins cytochrome c, cleaved caspase-3 and Bcl-2-associated X was also reduced following treatment with silymarin, as determined by ELISA, western blotting and immunohistochemistry, respectively. In conclusion, silymarin was demonstrated to dose-dependently protect rat liver from TP-induced acute hepatotoxicity, with the high dose (200 mg/kg) achieving a superior effect. This protective effect may be associated with the improvement of antioxidant and anti-inflammatory status, as well as the prevention of hepatocyte apoptosis. Therefore, silymarin may have the potential to be applied clinically to prevent TP-induced acute hepatotoxicity.
Collapse
Affiliation(s)
- Lan Wang
- Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qiong-Hui Huang
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yong-Xian Li
- Department of Spine Surgery, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yan-Feng Huang
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jian-Hui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Lie-Qiang Xu
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yao-Xing Dou
- Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, Guangdong 523808, P.R. China
| | - Hui-Fang Zeng
- Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jian-Nan Chen
- Higher Education Institute and Development Research of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
32
|
Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4287890. [PMID: 29456571 PMCID: PMC5804110 DOI: 10.1155/2017/4287890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/08/2017] [Accepted: 11/28/2017] [Indexed: 01/30/2023]
Abstract
The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD). Alcohol was administered to healthy female rats starting from 6% (v/v) and gradually increased to 20% (v/v) by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity). Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.
Collapse
|
33
|
Darvishi-Khezri H, Salehifar E, Kosaryan M, Karami H, Mahdavi M, Alipour A, Aliasgharian A. Iron-chelating effect of silymarin in patients with β-thalassemia major: A crossover randomised control trial. Phytother Res 2017; 32:496-503. [DOI: 10.1002/ptr.5995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/13/2017] [Accepted: 10/29/2017] [Indexed: 01/01/2023]
Affiliation(s)
| | - Ebrahim Salehifar
- Department of Clinical Pharmacology, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| | - Mehrnoush Kosaryan
- Department of Pediatrics, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| | - Hossein Karami
- Department of Pediatrics, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| | - Mohammadreza Mahdavi
- PhD in Medical Genetics, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| | - Abbas Alipour
- Department of Community Medicine, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| | - Aily Aliasgharian
- Student Research Committee, MSc in Medical Microbiology, Thalassemia Research Center, Hemoglobinopathy Institute; Mazandaran University of Medical Sciences; Mazandaran Sari Iran
| |
Collapse
|
34
|
Darvishi-Khezri H, Salehifar E, Kosaryan M, Karami H, Alipour A, Shaki F, Aliasgharian A. The impact of silymarin on antioxidant and oxidative status in patients with β-thalassemia major: A crossover, randomized controlled trial. Complement Ther Med 2017; 35:25-32. [DOI: 10.1016/j.ctim.2017.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
|
35
|
Wang F, Liu JC, Zhou RJ, Zhao X, Liu M, Ye H, Xie ML. Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Chem Biol Interact 2017; 275:171-177. [DOI: 10.1016/j.cbi.2017.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
|
36
|
Marcolino Assis-Júnior E, Melo AT, Pereira VBM, Wong DVT, Sousa NRP, Oliveira CMG, Malveira LRC, Moreira LS, Souza MHLP, Almeida PRC, Lima-Júnior RCP. Dual effect of silymarin on experimental non-alcoholic steatohepatitis induced by irinotecan. Toxicol Appl Pharmacol 2017; 327:71-79. [DOI: 10.1016/j.taap.2017.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 01/09/2023]
|
37
|
Youn CK, Cho SI, Lee MY, Jeon YJ, Lee SK. Inhibition of ERK1/2 by silymarin in mouse mesangial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:117-124. [PMID: 28066148 PMCID: PMC5214903 DOI: 10.4196/kjpp.2017.21.1.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 01/31/2023]
Abstract
The present study aimed to show that pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-1β] synergistically induce the production of nitric oxide (NO) production in mouse mesangial cells, which play an important role in inflammatory glomerular injury. We also found that co-treatment with cytokines at low doses (TNF-α; 5 ng/ml, IFN-γ; 5 ng/ml, and IL-1β; 1.25 U/ml) synergistically induced NO production, whereas treatment with each cytokine alone did not increase NO production at doses up to 100 ng/ml or 50 U/ml. Silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), attenuates cytokine mixture (TNF-α, IFN-γ, and IL-1β)-induced NO production. Western blot and RT-PCR analyses showed that silymarin inhibits inducible nitric oxide synthase (iNOS) expression in a dose-dependent manner. Silymarin also inhibited extracellular signal-regulated protein kinase-1 and -2 (ERK1/2) phosphorylation. Collectively, we have demonstrated that silymarin inhibits NO production in mouse mesangial cells, and may act as a useful anti-inflammatory agent.
Collapse
Affiliation(s)
- Cha Kyung Youn
- Department of Premedical Sciences, Chosun University College of Medicine, Gwangju 61452, Korea
| | - Sung Il Cho
- Department of Otolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju 61452, Korea
| | - Min Young Lee
- Department of Pharmacology, Chosun University College of Medicine, Gwangju 61452, Korea
| | - Young Jin Jeon
- Department of Pharmacology, Chosun University College of Medicine, Gwangju 61452, Korea
| | - Seog Ki Lee
- Department of Thoracic and Cardiovascular Surgery, Chosun University College of Medicine, Gwangju 61452, Korea
| |
Collapse
|
38
|
Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo. Molecules 2016; 21:molecules21111456. [PMID: 27809254 PMCID: PMC6274176 DOI: 10.3390/molecules21111456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.
Collapse
|
39
|
Li Q, Chen P, Fan Y, Wang X, Xu K, Li L, Tang B. Multicolor Fluorescence Detection-Based Microfluidic Device for Single-Cell Metabolomics: Simultaneous Quantitation of Multiple Small Molecules in Primary Liver Cells. Anal Chem 2016; 88:8610-6. [DOI: 10.1021/acs.analchem.6b01775] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qingling Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Peilin Chen
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Yuanyuan Fan
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Xu Wang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Kehua Xu
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Lu Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
40
|
Clichici S, Olteanu D, Filip A, Nagy AL, Oros A, Mircea PA. Beneficial Effects of Silymarin After the Discontinuation of CCl4-Induced Liver Fibrosis. J Med Food 2016; 19:789-97. [PMID: 27441792 DOI: 10.1089/jmf.2015.0104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Silymarin (Si) is a herbal product with hepatoprotective potential, well-known for its antioxidant, anti-inflammatory, and immunomodulatory properties. We have recently demonstrated that the usual therapeutic doses of Si are capable of inhibiting the progression of incipient liver fibrosis. We aimed at further investigating the benefits of Si administration upon liver alterations after the hepatotoxin discontinuation, using CCl4 to induce liver injuries on rats. CCl4 administration induces first of all oxidative stress, but other mechanisms, such as inflammation and liver fibrosis are also triggered. Fifty Wistar rats were randomly divided into five groups (n = 10). The control group received sunflower oil twice a week for 8 weeks. Carboxymethyl cellulose group received sunflower oil twice a week, for 8 weeks and CMC daily, for the next 2 weeks. CCl4 group received CCl4 in sunflower oil, by gavage, twice a week, for 8 weeks. CCl4 + Si 50 group received CCl4 twice a week, for 8 weeks, and then 50 mg/body weight (b.w.) Silymarin for the next 2 weeks. CCl4 + Si 200 group was similar to the previous group, but with Si 200 mg/b.w. Ten weeks after the experiment had begun, we assessed inflammation (IL-6, MAPK, NF-κB, pNF-κB), fibrosis (hyaluronic acid), TGF-β1, MMP-9, markers of hepatic stellate cell activation (α-SMA expression), and proliferative capacity (proliferating cell nuclear antigen). Our data showed that Silymarin administered after the toxic liver injury is capable of reducing inflammation and liver fibrosis. The benefits were more important for the higher dose than for the usual therapeutic dose.
Collapse
Affiliation(s)
- Simona Clichici
- 1 Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Diana Olteanu
- 1 Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Adriana Filip
- 1 Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Andras-Laszlo Nagy
- 2 Department of Pathology, University of Agricultural Sciences and Veterinary Medicine , Cluj-Napoca, Romania
| | - Adrian Oros
- 3 Department of Veterinary Toxicology, University of Agricultural Sciences and Veterinary Medicine , Cluj-Napoca, Romania
| | - Petru A Mircea
- 4 Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| |
Collapse
|
41
|
Kelany ME, Abdallah MA. Protective effects of combined β-caryophyllene and silymarin against ketoprofen-induced hepatotoxicity in rats. Can J Physiol Pharmacol 2016; 94:739-44. [DOI: 10.1139/cjpp-2015-0607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ketoprofen (Ket), widely utilized in treatment of many inflammatory disorders, is found to induce liver toxicity especially with overdose. This study aimed to evaluate the possible protective effects of concomitant β-caryophyllene (Cary) and silymarin (Sily) against Ket-induced hepatotoxicity in rats. Forty adult male albino rats were divided into 5 groups (each n = 8): the control group received distilled water for 6 weeks; the Ket-treated group received distilled water for 5 weeks and Ket in a dose of 8 mg·kg−1·day−1 p.o. for the 6th week; the Cary + Ket treated group received Cary in a dose of 200 mg·kg−1·day−1 orally for 6 weeks and Ket for the 6th week; the Sily + Ket treated group received Sily in the dose of 150 mg·kg−1·day−1 for 6 weeks and Ket for the 6th week; and the Cary + Sily + Ket treated group received Sily and Cary for 6 weeks and Ket for the 6th week. At end of the experiment, serum ALT, AST, and albumin and liver total antioxidant capacity (t.TAC) and malondialdehyde (t.MDA) were measured in all rats. Ket increased serum ALT and AST and t.MDA and decreased t.TAC. Cary and Sily improved these changes. Combined Cary and Sily restored these liver changes to nearly normal. Combined Cary and Sily is hepatoprotective, with the ability to scavenge oxidants against Ket-induced hepatotoxicity in rats.
Collapse
|
42
|
Kim MS, Ong M, Qu X. Optimal management for alcoholic liver disease: Conventional medications, natural therapy or combination? World J Gastroenterol 2016; 22:8-23. [PMID: 26755857 PMCID: PMC4698510 DOI: 10.3748/wjg.v22.i1.8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/07/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is the principal factor in the pathogenesis of chronic liver diseases. Alcoholic liver disease (ALD) is defined by histological lesions on the liver that can range from simple hepatic steatosis to more advanced stages such as alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma and liver failure. As one of the oldest forms of liver injury known to humans, ALD is still a leading cause of liver-related morbidity and mortality and the burden is exerting on medical systems with hospitalization and management costs rising constantly worldwide. Although the biological mechanisms, including increasing of acetaldehyde, oxidative stress with induction of cytochrome p450 2E1, inflammatory cytokine release, abnormal lipid metabolism and induction of hepatocyte apoptosis, by which chronic alcohol consumption triggers serious complex progression of ALD is well established, there is no universally accepted therapy to prevent or reverse. In this article, we have briefly reviewed the pathogenesis of ALD and the molecular targets for development of novel therapies. This review is focused on current therapeutic strategies for ALD, including lifestyle modification with nutrition supplements, available pharmacological drugs and new agents that are under development, liver transplantation, application of complementary medicines, and their combination. The relevant molecular mechanisms of each conventional medication and natural agent have been reviewed according to current available knowledge in the literature. We also summarized efficacy vs safety on conventional and herbal medicines which are specifically used for the prevention and treatment of ALD. Through a system review, this article highlighted that the combination of pharmaceutical drugs with naturally occurring agents may offer an optimal management for ALD and its complications. It is worthwhile to conduct large-scale, multiple centre clinical trials to further prove the safety and benefits for the integrative therapy on ALD.
Collapse
|
43
|
Neha, Jaggi AS, Singh N. Silymarin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:25-44. [PMID: 27771919 DOI: 10.1007/978-3-319-41342-6_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silymarin is the active constituent of Silybum marianum (milk thistle) which is a C-25 containing flavonolignan. Milk thistle has a lot of traditional values, being used as a vegetable, as salad, as bitter tonic, and as galactogogue in nursing mothers and in various ailments such as liver complications, depression, dyspepsia, spleenic congestions, varicose veins, diabetes, amenorrhea, uterine hemorrhage, and menstrual problems. In this present chapter, a comprehensive attempt has been made to discuss the potential of silymarin in chronic disorders. An insight into modulation of cellular signaling by silymarin and its implication in various disorders such as liver disorders, inflammatory disorders, cancer, neurological disorders, skin diseases, and hypercholesterolemia is being provided.
Collapse
Affiliation(s)
- Neha
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002, Punjab, India
| | - Amteshwar S Jaggi
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
44
|
Rui BB, Chen H, Jang L, Li Z, Yang JM, Xu WP, Wei W. Melatonin Upregulates the Activity of AMPK and Attenuates Lipid Accumulation in Alcohol-induced Rats. Alcohol Alcohol 2015; 51:11-9. [PMID: 26564773 DOI: 10.1093/alcalc/agv126] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Melatonin is supposed to be an effective hepatoprotective agent. The effects and mechanisms of melatonin on alcoholic fatty liver (AFL) have not been well explored. The aim of this study was to investigate the preventive and therapeutic effects of melatonin on alcohol-induced fatty liver rats. METHODS The AFL rats were induced by intragastric infusion of alcohol plus a high-fat diet for 6 weeks, and melatonin (10, 20, 40 mg/kg) was administered by gastric perfusion. We also established fatty acid overload cell model in HepG2 cells to investigate the effect of melatonin on AMP-activated protein kinase (AMPK) activity. RESULTS The results showed that melatonin (20 and 40 mg/kg) administration significantly reduced alcohol-induced hepatic steatosis with lowering activities of serum alanine aminotransferase, aspartate aminotransferase and levels of serum and hepatic triglyceride. The activity of superoxide dismutase was increased and the content of malondialdehyde was decreased in liver homogenates of rats treated with melatonin. Melatonin increased the phosphorylation of AMPK in the liver tissues of alcohol-induced rats as well. Additionally, in vitro studies showed that melatonin increased the expression of melatonin1A receptor (MT1R), whereas luzindole, a receptor antagonist of melatonin, had no effect on its expression. In addition, melatonin reduced the levels of adenosine 3',5'-cyclic monophosphate (cAMP) and increased the phosphorylation of AMPK, and melatonin treatment could markedly reverse these effects. CONCLUSION In conclusion, melatonin could protect against liver injury caused by alcohol gastric perfusion. The effect may be related to alleviating lipid peroxidation and upregulating the activity of AMPK mediated by MT1R signaling pathway.
Collapse
Affiliation(s)
- Bei-bei Rui
- Anhui No. 2 Province People's Hospital, Hefei, Anhui 200041, China
| | - Hao Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Lei Jang
- Anhui No. 2 Province People's Hospital, Hefei, Anhui 200041, China
| | - Zhen Li
- Anhui No. 2 Province People's Hospital, Hefei, Anhui 200041, China
| | - Jing-mo Yang
- Anhui Provincial Cancer Hospital, Hefei, Anhui 230001, China
| | - Wei-ping Xu
- Anhui Medical University affiliated Provincial Hospital, Hefei, Anhui 230001, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| |
Collapse
|
45
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
46
|
Lee HI, Lee MK. Coordinated regulation of scopoletin at adipose tissue-liver axis improved alcohol-induced lipid dysmetabolism and inflammation in rats. Toxicol Lett 2015; 237:210-8. [PMID: 26115886 DOI: 10.1016/j.toxlet.2015.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/05/2023]
Abstract
There is increasing evidence that alcohol-induced white adipose tissue (WAT) dysfunction contributes to disturbance of hepatic lipid metabolism. This study investigated the effects of scopoletin on lipid homeostasis and inflammation at the WAT and liver in chronic alcohol-fed rats. Rats were fed a liquid diet containing 5% alcohol with or without two doses of scopoletin (0.001% and 0.005%) for 8 weeks. Scopoletin decreased serum triglyceride and cytokines (TNFα and IL-6) levels and hepatic and WAT lipid levels, whereas it increased WAT adiponectin mRNA and serum adiponectin levels, up-regulated hepatic gene and protein expression of AdipoR2 and activated AMPK. Additionally, scopoletin inhibited the expression of lipogenic genes (SREBP-1c and Fasn) and increased the expression of fatty acid oxidative genes (PPARα, Acsl1, CPT, Acox, and Acaa1a) in both WAT and liver. Alcohol led to significant up-regulation of WAT lipolysis and hepatic Cidea gene expression, whereas it decreased the WAT Cidea gene level; however, scopoletin reversed these changes. Scopoletin significantly down-regulated TLR4 signaling genes such as MyD88, TRIF, NFκB, TNFα and IL-6 in WAT and liver. These results indicated that coordinated regulation of scopoletin at the WAT-liver axis may play an important role in improvement of alcohol-induced lipid dysregulation and inflammation.
Collapse
Affiliation(s)
- Hae-In Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 540-950, South Korea.
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 540-950, South Korea
| |
Collapse
|
47
|
Kim EJ, Lee MY, Jeon YJ. Silymarin Inhibits Morphological Changes in LPS-Stimulated Macrophages by Blocking NF-κB Pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:211-8. [PMID: 25954125 PMCID: PMC4422960 DOI: 10.4196/kjpp.2015.19.3.211] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/15/2015] [Accepted: 02/21/2015] [Indexed: 12/20/2022]
Abstract
The present study showed that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibited lipopolysaccharide (LPS)-induced morphological changes in the mouse RAW264.7 macrophage cell line. We also showed that silymarin inhibited the nuclear translocation and transactivation activities of nuclear factor-kappa B (NF-κB), which is important for macrophage activation-associated changes in cell morphology and gene expression of inflammatory cytokines. BAY-11-7085, an NF-κB inhibitor, abrogated LPS-induced morphological changes and NO production, similar to silymarin. Treatment of RAW264.7 cells with silymarin also inhibited LPS-stimulated activation of mitogen-activated protein kinases (MAPKs). Collectively, these experiments demonstrated that silymarin inhibited LPS-induced morphological changes in the RAW264.7 mouse macrophage cell line. Our findings indicated that the most likely mechanism underlying this biological effect involved inhibition of the MAPK pathway and NF-κB activity. Inhibition of these activities by silymarin is a potentially useful strategy for the treatment of inflammation because of the critical roles played by MAPK and NF-κB in mediating inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Eun Jeong Kim
- Department of Pharmacology, School of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Min Young Lee
- Department of Pharmacology, School of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Young Jin Jeon
- Department of Pharmacology, School of Medicine, Chosun University, Gwangju 501-759, Korea
| |
Collapse
|
48
|
Yang Y, Han Z, Wang Y, Wang L, Pan S, Liang S, Wang S. Plasma metabonomic analysis reveals the effects of salvianic acid on alleviating acute alcoholic liver damage. RSC Adv 2015. [DOI: 10.1039/c5ra00823a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study analysed acute alcohol-induced metabolic changes and explored the metabolic regulation mechanism of SA treatment by using 1H NMR-based metabonomics.
Collapse
Affiliation(s)
- Yongxia Yang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Zhihui Han
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- Department of Traditional Chinese Medicine
| | - Yaling Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- Department of Traditional Chinese Medicine
| | - Linlin Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- Department of Traditional Chinese Medicine
| | - Sina Pan
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- Department of Traditional Chinese Medicine
| | - Shengwang Liang
- Department of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Shumei Wang
- Department of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| |
Collapse
|
49
|
Dietary umbelliferone attenuates alcohol-induced fatty liver via regulation of PPARα and SREBP-1c in rats. Alcohol 2014; 48:707-15. [PMID: 25262573 DOI: 10.1016/j.alcohol.2014.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study investigated the effects of umbelliferone (UF) on alcoholic fatty liver and its underlying mechanism. Rats were fed a Lieber-DeCarli liquid diet with 36% of calories as alcohol with or without UF (0.05 g/L) for 8 weeks. Pair-fed rats received an isocaloric carbohydrate liquid diet. UF significantly reduced the severity of alcohol-induced body weight loss, hepatic lipid accumulation and droplet formation, and dyslipidemia. UF decreased plasma AST, ALT, and γGTP activity. UF significantly reduced hepatic cytochrome P450 2E1 activities and increased alcohol dehydrogenase and aldehyde dehydrogenase 2 activities compared to the alcohol control group, which resulted in a lower plasma acetaldehyde level in the rats that received UF. Chronic alcohol exposure inhibited hepatic AMPK activation compared to the pair-fed rats, which was reversed by UF supplementation. UF also significantly suppressed the lipogenic gene expression (SREBP-1c, SREBP-2, FAS, CIDEA, and PPARγ) and elevated the fatty acid oxidation gene expression (PPARα, Acsl1, CPT, Acox, and Acaa1a) compared to the alcohol control group, which could lead to inhibition of FAS activity and stimulation of CPT and fatty acid β-oxidation activities in the liver of chronic alcohol-fed rats. These results indicated that UF attenuated alcoholic steatosis through down-regulation of SREBP-1c-mediated lipogenesis and up-regulation of PPARα-mediated fatty acid oxidation. Therefore, UF may provide a promising natural therapeutic strategy against alcoholic fatty liver.
Collapse
|
50
|
Kim EJ, Kim J, Lee MY, Sudhanva MS, Devakumar S, Jeon YJ. Silymarin Inhibits Cytokine-Stimulated Pancreatic Beta Cells by Blocking the ERK1/2 Pathway. Biomol Ther (Seoul) 2014; 22:282-7. [PMID: 25143805 PMCID: PMC4131525 DOI: 10.4062/biomolther.2014.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022] Open
Abstract
We show that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibits cytokine mixture (CM: TNF-α, IFN-γ, and IL-1β)-induced production of nitric oxide (NO) in the pancreatic beta cell line MIN6N8a. Immunostaining and Western blot analysis showed that silymarin inhibits iNOS gene expression. RT-PCR showed that silymarin inhibits iNOS gene expression in a dose-dependent manner. We also showed that silymarin inhibits extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) phosphorylation. A MEK1 inhibitor abrogated CM-induced nitrite production, similar to silymarin. Treatment of MIN6N8a cells with silymarin also inhibited CM-stimulated activation of NF-κB, which is important for iNOS transcription. Collectively, we demonstrate that silymarin inhibits NO production in pancreatic beta cells, and silymarin may represent a useful anti-diabetic agent.
Collapse
Affiliation(s)
- Eun Jeong Kim
- Department of Pharmacology, School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Jeeho Kim
- Department of Pharmacology, School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Min Young Lee
- Department of Pharmacology, School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | - Young Jin Jeon
- Department of Pharmacology, School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| |
Collapse
|