1
|
Trevisi E, Cattaneo L, Piccioli-Cappelli F, Mezzetti M, Minuti A. International Symposium on Ruminant Physiology: The immunometabolism of transition dairy cows from dry-off to early lactation: lights and shadows. J Dairy Sci 2025:S0022-0302(24)01444-9. [PMID: 39778800 DOI: 10.3168/jds.2024-25790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
The mismatch between the nutrient intake from the diet and the output by the mammary gland causes a negative energy balance in transition dairy cows, that, if excessive, can promote several metabolic disorders. Other relevant phenomena occur during transition, such as inflammation at calving and changes in immunocompetence, redox balance, and mineral metabolism. Despite the efforts, some aspects of the adaptive mechanisms observed in the transition period still need to be clarified. For instance, alterations of physiological responses even before the dry-off or during the dry period can affect the success of the whole transition period in certain cows. In this context, the mechanism regulating the inflammatory response around calving may play a pivotal role, as suggested by the variety of factors influencing it and its consequences, particularly feed intake depression, that can amplify and anticipate the negative energy balance. When this mechanism derails is still unclear, but detecting the triggers of diverted or abnormal physiological responses and where they stem (e.g., liver, rumen and gut epithelia, uterus, or mammary gland) will help to discover the weak points in the immune system and the possible ways of restoring it. Furthermore, the postpartum healthy cow appears to have an acute phase response at the liver level, despite a decrease in circulating proinflammatory cytokines. What is physiological and what is pathological in this context? To understand the latter, finding markers of an unsuccessful transition period that go beyond the energy deficit would be advisable. Future efforts should be dedicated to clarifying the causes of the acute phase response at calving, exploiting the potential of the system biology. Moreover, it would be helpful, for both basic and applied research, to define biomarkers associated with pathological responses (i.e., cytokines and acute phase proteins) and to introduce in the genetic selection phenotypes related to the ability of cows to adapt to the immunometabolic stress typical of the transition period.
Collapse
Affiliation(s)
- Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy.
| | - Luca Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Matteo Mezzetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
2
|
Vasconcelos MW, Vieira Dada JM, Pereira VA, Zandi-Karimi A, de Castilhos Ghisi N, Oliveira De Barros FR. Scientific knowledge about gene expression in ruminants under heat stress - A scientometric review. J Therm Biol 2024; 127:104028. [PMID: 39721159 DOI: 10.1016/j.jtherbio.2024.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/11/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Heat stress can alter the expression of genes in the individual's molecular response. The identification of these genes makes it possible to better understand the molecular response, identifying biomarker genes and indirect response pathways that can help with genetic improvement studies, animal welfare, separating more thermotolerant varieties and mitigating the effects of heat stress. The aim of this scientometric review was to characterize the state of the art of scientific research into gene expression in ruminants under heat stress, to define the most studied species, biology systems and genes, as well as the related biological pathways and processes. The articles for the dataset were compiled in the Web of Science database, refined individually and analyzed using the CiteSpace, RStudio, Excel and GraphPad Prism programs and the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. The publications formed a data set containing 271 articles and an H-index of 37. The number of publications increased from 2011. The countries with the highest frequency of publications are India, the United States, China and Brazil, the ruminant species are cattle, buffaloes, sheep and goats, all zootechnical interest, and biology systems was reproduction, blood and lactation, due to the economic importance of the quality and quantity of production, to the ease of collecting and possibility of studies in vitro. Cattle have been extensively studied in comparison to other ruminants. The HSP70 gene has been the most studied, followed by the HSP family, HSF, BAX, TLR and BCL-2, these genes can be molecular markers of heat stress. The main pathways and biological processes of genes were in cattle the cancer pathway; in goats the Mixed, incl. myd88-dependent toll-like receptor signaling pathway, and lipopolys; in sheep the oxidoreductase; and in buffalo it was the BCL-2 family. The molecular responses are still recent and have not been established.
Collapse
Affiliation(s)
| | - Julia Morgana Vieira Dada
- Graduate Program in Animal Science (PPZ) - Unioeste/Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, Paraná, Brazil.
| | - Vitória Alves Pereira
- Graduate Program in Animal Science (PPZ) - Unioeste/Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, Paraná, Brazil.
| | - Ali Zandi-Karimi
- Graduate Program in Animal Science (PPZ) - Unioeste/Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, Paraná, Brazil.
| | - Nédia de Castilhos Ghisi
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal Do Paraná, Campus Dois Vizinhos (UTFPR-DV), Brazil.
| | | |
Collapse
|
3
|
Solarczyk P, Gołębiewski M, Slósarz J, Natalello A, Musati M, Menci R, Sakowski T, Tucki K, Puppel K. Effect of Age at First Calving on the Reproduction Parameters, Metabolic Profile, and Fatty Acid Composition of Polish Holstein Friesian (PHF) and Crossbreds PHF × Swedish Red (SRB) Cattle. Metabolites 2024; 14:583. [PMID: 39590819 PMCID: PMC11596136 DOI: 10.3390/metabo14110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The high dairy production of Polish Holstein Friesian (PHF) cows determines high energy requirements in the early stages of lactation. Unfortunately, it is very often difficult to meet this demand through feedstuffs; therefore, homeostasis may be disturbed and metabolic diseases may occur, causing a majority of cows' health problems. Breeders are, therefore, looking for alternatives to the PHF breed using crossbreeding. METHODS This experiment involved 30 PHF cows and 30 PHF × Swedish Red (SRB) crossbred hybrid cows, divided into two age groups, <2 years and >2 years, at first calving. Milk and blood samples were collected at 35 ± 5 days postpartum for analysis. Data on reproductive performance were also analyzed. RESULTS This study revealed lower milk production for the crossbreds hybrid (27.44 kg compared to 32.08 kg), with a higher basic composition content than PHF cows (fat: 3.97% compared to 3.83%, protein: 3.53% compared to 3.27%). The heifers of the crossbreds hybrid reached sexual maturity earlier but did not affect the lower age at first calving. Dividing the cows into age categories provided a more detailed perspective of the impact of genotypic differences on reproductive and metabolic profiles in PHF and PHF × SRB cattle. The findings highlight the importance of considering age-specific effects when assessing the performance and health of dairy cattle with diverse genotypes. CONCLUSIONS The choice between PHF and PHF × SRB should depend on the specific goals and priorities of the cattle farming operation. Factors such as overall milk yield requirements, market demands, reproductive management strategies, and health considerations should be carefully evaluated to determine the most suitable breed for a given farming context.
Collapse
Affiliation(s)
- Paweł Solarczyk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Antonio Natalello
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Martino Musati
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Ruggero Menci
- FiBL France, Research Institute of Organic Agriculture, Pôle Bio 150, Avenue de Judée, 26400 Eurre, France
| | - Tomasz Sakowski
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Karol Tucki
- Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland
| | - Kamila Puppel
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
4
|
Upadhyay VR, Ashutosh, Shashank CG, Singh NP. Deciphering the immune responses in late gestation Sahiwal cows under different microclimate and its carryover effect on progenies. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1885-1895. [PMID: 38861181 DOI: 10.1007/s00484-024-02716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The current investigation aimed to comprehend the inflammatory and related immune responses in intrauterine calves subjected to heat stress (HS) during late gestation. For this purpose, 48 Sahiwal cows in late gestation were chosen and categorized into four equal groups: naturally heat stressed (NHS), cooling-treated (CLT), spring, and winter, and likewise their neonate calves born in summer (IUHS - intrauterine heat stressed and IUCL - intrauterine cooled), spring, and winter seasons. Environmental parameters were recorded, and the temperature-humidity index (THI) was calculated daily throughout the study period. The average THI values ranged between 84.18 (summer-NHS), 73.88 (summer-CLT), 78.92 (spring), and 64.91 (winter). NHS and spring groups exhibited thermal stress based on THI (> 76.00). Various treatments significantly (P < 0.01) impacted parameters like rectal temperature (RT), respiratory rate (RR), pulse rate (PR), and skin temperature (ST) in Sahiwal cows and their calves during the study, except for heart rate (HR). Blood samples collected during different seasons and from cows housed in a climatic chamber were used to extract plasma. Plasma cortisol, interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and thiobarbituric acid reactive substances (TBARS) levels were notably higher (P < 0.05) in the NHS compared to the CLT group. Conversely, total antioxidant capacity (TAC) and immunoglobulin G (IgG) levels were higher (P < 0.05) in the CLT and winter groups. IUHS calves exhibited significantly (P < 0.05) lower overall mean plasma TAC and IgG levels but higher inflammatory and oxidative biomarkers, such as IL-6, TNF-α, and TBARS. Additionally, significant impacts on body weight were observed for factors such as interval (P < 0.01) and the interaction between treatment and interval (P < 0.05), exhibiting consistently lower body weight in IUHS calves throughout the study period. These findings suggest that late gestation heat stress may lead to physiological alterations in future calves. Strategies aimed at mitigating heat stress during late gestation should be considered not only for the productivity and well-being of the pregnant dam but also for the development and future performance of the calf.
Collapse
Affiliation(s)
- Vishwa Ranjan Upadhyay
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
- ICAR-National Research Centre on Camel, Bikaner, Rajasthan, 334001, India.
| | - Ashutosh
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - N P Singh
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
5
|
Opgenorth J, Mayorga EJ, Abeyta MA, Rodriguez-Jimenez S, Goetz BM, Freestone AD, Baumgard LH. Intravenous lipopolysaccharide challenge in early- versus mid-lactation dairy cattle. II: The production and metabolic responses. J Dairy Sci 2024; 107:6240-6251. [PMID: 38460878 DOI: 10.3168/jds.2023-24351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024]
Abstract
Most immunometabolic research uses mid-lactation (ML) cows. Cows in early lactation (EL) are in a presumed state of immune suppression/dysregulation and less is known about how they respond to a pathogen. Study objectives were to compare the production and metabolic responses to i.v. LPS and to differentiate between the direct effects of immune activation and the indirect effects of illness-induced hypophagia in EL and ML cows. Cows in EL (n = 11; 20 ± 2 DIM) and ML (n = 12; 131 ± 31 DIM) were enrolled in a 2 × 2 factorial design containing 2 experimental periods (P). During P1 (3 d), cows were fed ad libitum and baseline data were collected. At the initiation of P2 (3 d), cows were randomly assigned to 1 of 2 treatments by lactation stage (LS): (1) EL (EL-LPS; n = 6) or ML (ML-LPS; n = 6) cows administered i.v. a single bolus of 0.09 µg LPS/kg of BW; Escherichia coli O55:B5 or (2) pair-fed (PF) EL (EL-PF; n = 5) or ML (ML-PF; n = 6) cows administered i.v. saline. Administering LPS decreased DMI and this was more severe in EL-LPS than ML-LPS cows (34% and 11% relative to baseline, respectively). By design, P2 DMI patterns were similar in the PF groups compared with their LPS counterparts. Milk yield decreased following LPS (42% on d 1 relative to P1) and despite an exacerbated decrease in EL-LPS cows on d 1 (25% relative to ML-LPS), remained similar between LS from d 2 to 3. The EL-LPS cows had increased milk fat content, but no difference in protein and lactose percentages compared with ML-LPS cows. Further, cumulative ECM yield was increased (21%) in EL-LPS compared with ML-LPS cows. During P2, EL-LPS cows had a more intense increase in MUN and BUN than ML-LPS and EL-PF cows. Administering LPS did not cause hypoglycemia in either EL-LPS or ML-LPS cows, but glucose was increased (33%) in EL-LPS compared with EL-PF. Hyperinsulinemia occurred after LPS, and insulin was further increased in ML-LPS than EL-LPS cows (2.2-fold at 12 h peak). During P2, circulating glucagon increased only in EL-LPS cows (64% relative to all other groups). Both EL groups had increased NEFA at 3 and 6 h after LPS from baseline (56%), but NEFA in EL-LPS cows gradually returned to baseline thereafter and were reduced relative to EL-PF until 36 h (50% from 12 to 24 h). Alterations in BHB did not differ between ML groups, but EL-LPS had reduced BHB compared with EL-PF from 24 to 72 h (51%). Results indicate that there are distinct LS differences in the anorexic and metabolic responses to immune activation. Collectively, EL cows are more sensitive to the catabolic effects of LPS than ML cows, but these exacerbated metabolic responses appear coordinated to fuel an augmented immune system while simultaneously supporting milk synthesis.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
6
|
Opgenorth J, Mayorga EJ, Abeyta MA, Goetz BM, Rodriguez-Jimenez S, Freestone AD, McGill JL, Baumgard LH. Intravenous lipopolysaccharide challenge in early- versus mid-lactation dairy cattle. I: The immune and inflammatory responses. J Dairy Sci 2024; 107:6225-6239. [PMID: 38428491 DOI: 10.3168/jds.2023-24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Cows in early lactation (EL) are purportedly immune suppressed, which renders them more susceptible to disease. Thus, the study objective was to compare key biomarkers of immune activation from i.v. LPS between EL and mid-lactation (ML) cows. Multiparous EL (20 ± 2 DIM; n = 11) and ML (131 ± 31 DIM; n = 12) cows were enrolled in a 2 × 2 factorial design and assigned to 1 of 2 treatments by lactation stage (LS): (1) EL (EL-LPS; n = 6) or ML (ML-LPS; n = 6) cows administered a single LPS bolus from Escherichia coli O55:B5 (0.09 µg/kg of BW), or (2) pair-fed (PF) EL (EL-PF; n = 5) or ML (ML-PF; n = 6) cows administered i.v. saline. After LPS administration, cows were intensely evaluated for 3 d to analyze their response and recovery to LPS. Rectal temperature increased in LPS relative to PF cows (1.1°C in the first 9 h), and the response was more severe in EL-LPS relative to ML-LPS cows (2.3 vs. 1.3°C increase at 4 h post-LPS; respectively). Respiration rate increased only in EL-LPS cows (47% relative to ML-LPS in the first hour post-LPS). Circulating tumor necrosis factor-α, IL-6, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, and IFN-γ-inducible protein-10 increased within the first 6 h after LPS and these changes were exacerbated in EL-LPS relative to ML-LPS cows (6.3-fold, 4.8-fold, 57%, 93%, 10%, and 61%, respectively). All cows administered LPS had decreased circulating iCa relative to PF cows (34% at the 6 h nadir), but the hypocalcemia was more severe in EL-LPS than ML-LPS cows (14% at 6 h nadir). In response to LPS, neutrophils decreased regardless of LS, then increased into neutrophilia by 24 h in all LPS relative to PF cows (2-fold); however, the neutrophilic phase was augmented in EL- compared with ML-LPS cows (63% from 24 to 72 h). Lymphocytes and monocytes rapidly decreased then gradually returned to baseline in LPS cows regardless of LS; however, monocytes were increased (57%) at 72 h in EL-LPS relative to ML-LPS cows. Platelets were reduced (46%) in LPS relative to PF cows throughout the 3-d following LPS, and from 24 to 48 h, platelets were further decreased (41%) in EL-LPS compared with ML-LPS. During the 3-d following LPS, serum amyloid A (SAA), LPS-binding protein (LBP), and haptoglobin (Hp) increased in LPS compared with PF groups (9-fold, 72%, and 153-fold, respectively), and the LBP and Hp responses were more exaggerated in EL-LPS than ML-LPS cows (85 and 79%, respectively) whereas the SAA response did not differ by LS. Thus, our data indicates that EL immune function does not appear "suppressed," and in fact many aspects of the immune response are seemingly functionally robust.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
7
|
Stingelin LA, Schell CE, Palmeira M, Araujo GDM, Casas BAD, Moreira F, Alvarado-Rincón JA, Schneider A, Peripolli V, Schwegler E. Metabolic and productive parameters of lactating dairy cows under heat stress conditions supplemented with plant polyphenol extract. Trop Anim Health Prod 2024; 56:176. [PMID: 38795263 DOI: 10.1007/s11250-024-04031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/16/2024] [Indexed: 05/27/2024]
Abstract
The impact of heat stress on dairy cattle leads to significant economic losses and a negative impact on the welfare of the animals. The objective of this research was to evaluate the effect of the nutritional additive (Thermoplus®) in dairy cows under postpartum heat stress conditions, and its effects on the metabolic profile, production and quality of milk. Eighteen lactating Holstein cows (8 multiparous and ten primiparous), in a free-stall system, with a mean body condition score (BCS) of 3.14 ± 0.05, live weight of 624.55 ± 18, 61 kg, with initial mean days in milk (DIM) of 90 ± 10.11, were selected. The animals were grouped into a control (CG, n = 9) and a treatment (TG, n = 9). Both groups underwent 14 days of diet adaptation, the TG received the basal diet supplemented with 50 g of the additive, once a day, individually, while the control group received only the total diet. Data collection of metabolic and productive parameters were evaluated on days -14 (before adaptation), 1 (after the diet adaptation period), 16, 30, and 44. Milk, blood, and body condition score (BCS) were collected once a day, and heart rate, respiratory rate, and rectal temperature were collected twice a day. Serum concentrations of albumin, calcium, magnesium, glucose, gamma-glutamyl transferase (GGT), beta-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFAs), and paraoxonase-1 (PON-1) were evaluated. In the milk, the percentage of fat, protein, lactose, and total solids were determined in each sampling. Milk yield was measured daily. Humidity and ambient temperature values were collected on the days of the collection every 30 min, from 5:30 am to 5:00 pm, to calculate the temperature-humidity index (THI). Statistical analyzes were performed using the SAS software (version 9.3, SAS Institute Inc., Cary, NC, USA). The THI ranged from 62.22 to 79.47. Our findings showed that when the THI was greater than 72, the animals in the TG were able to maintain milk yield (Odds ratio (OD) = -0.0577,), and the animals in the CG had a greater chance of reducing it (OD = -0.2301). Multiparous cows in the TG had higher milk yield than CG (32.57 ± 0.34 vs 30.50 ± 0.36 kg per day; P = 0.0078) and lower SCC (34.110 ± 6,940 vs 665.50 ± 214.41 cells per ml; P = 0.03), with the same percentages of total solids (P > 0.05). In multiparous metabolic markers, TG when compared CG had higher albumin concentrations (2.50 ± 0.07 vs 2.12 ± 0.07 g/dl; < 0.001), equal PON-1 (P > 0.05), and higher BHBA levels (0.49 ± 0.03 vs 0.39 ± 0.04 mmol/l). Primiparous from the CG had higher concentrations of NEFA (0.18 ± 0.02 mmol/l) than multiparous from the same group (0.09 ± 0.02 mmol/l) P = 0.0265. The use of the plant polyphenol extract in postpartum Holstein cows challenged by heat stress had beneficial effects on the production and health of the mammary gland in multiparous cows without decreasing milk solids. The non-reduction of the activities of the acute phase proteins indicates an immunomodulatory and inflammatory-reducing effect of the product used.
Collapse
Affiliation(s)
- Luciano Adnauer Stingelin
- Professional Master's Degree in Animal Production and Health (PPGPSA), Instituto Federal Catarinense, Campus Araquari, Araquari, SC, Brazil
- CCPA Group France, Janze, Breizh, France
| | | | - Maila Palmeira
- Professional Master's Degree in Animal Production and Health (PPGPSA), Instituto Federal Catarinense, Campus Araquari, Araquari, SC, Brazil
- Instituto Federal Catarinense, Campus Araquari, Araquari, SC, Brazil
| | | | | | - Fabiana Moreira
- Professional Master's Degree in Animal Production and Health (PPGPSA), Instituto Federal Catarinense, Campus Araquari, Araquari, SC, Brazil
- Instituto Federal Catarinense, Campus Araquari, Araquari, SC, Brazil
| | | | | | - Vanessa Peripolli
- Professional Master's Degree in Animal Production and Health (PPGPSA), Instituto Federal Catarinense, Campus Araquari, Araquari, SC, Brazil
- Instituto Federal Catarinense, Campus Araquari, Araquari, SC, Brazil
| | - Elizabeth Schwegler
- Professional Master's Degree in Animal Production and Health (PPGPSA), Instituto Federal Catarinense, Campus Araquari, Araquari, SC, Brazil.
- Instituto Federal Catarinense, Campus Araquari, Araquari, SC, Brazil.
| |
Collapse
|
8
|
Li L, Bai S, Zhao H, Tan J, Wang Y, Zhang A, Jiang L, Zhao Y. Dietary Supplementation with Naringin Improves Systemic Metabolic Status and Alleviates Oxidative Stress in Transition Cows via Modulating Adipose Tissue Function: A Lipid Perspective. Antioxidants (Basel) 2024; 13:638. [PMID: 38929076 PMCID: PMC11200899 DOI: 10.3390/antiox13060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Dairy cows face metabolic challenges around the time of calving, leading to a negative energy balance and various postpartum health issues. Adipose tissue is crucial for cows during this period, as it regulates energy metabolism and supports immune function. Naringin, one of the main flavonoids in citrus fruit and their byproducts, is a potent antioxidant and anti-inflammatory phytoconstituent. The study aimed to evaluate the effects of supplemental naringin on performance, systemic inflammation, oxidative status, and adipose tissue metabolic status. A total of 36 multiparous Holstein cows (from ~21 d prepartum through 35 d postpartum) were provided a basal control (CON) diet or a CON diet containing naringin (NAR) at 30 g/d per cow. Supplemental NAR increased the yield of raw milk and milk protein, without affecting dry matter intake. Cows fed NAR showed significantly lower levels (p < 0.05) of serum non-esterified fatty acid (NEFA), C-reactive protein, IL-1β, IL-6, malonaldehyde, lipopolysaccharide (LPS), aspartate aminotransferase, and alanine aminotransferase, but increased (p < 0.05) glutathione peroxidase activity relative to those fed CON. Supplemental NAR increased (p < 0.05) adipose tissue adiponectin abundance, decreased inflammatory responses, and reduced oxidative stress. Lipidomic analysis showed that cows fed NAR had lower concentrations of ceramide species (p < 0.05) in the serum and adipose tissue than did the CON-fed cows. Adipose tissue proteomics showed that proteins related to lipolysis, ceramide biosynthesis, inflammation, and heat stress were downregulated (p < 0.05), while those related to glycerophospholipid biosynthesis and the extracellular matrix were upregulated (p < 0.05). Feeding NAR to cows may reduce the accumulation of ceramide by lowering serum levels of NEFA and LPS and increasing adiponectin expression, thereby decreasing inflammation and oxidative stress in adipose tissue, ultimately improving their systemic metabolic status. Including NAR in periparturient cows' diets improves lactational performance, reduces excessive lipolysis in adipose tissue, and decreases systemic and adipose tissue inflammation and oxidative stress. Integrating lipidomic and proteomic data revealed that reduced ceramide and increased glycerophospholipids may alleviate metabolic dysregulations in adipose tissue, which in turn benefits systemic metabolic status.
Collapse
Affiliation(s)
- Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Sarula Bai
- Beijing Sunlon Livestock Development Co., Ltd., Beijing 100076, China;
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ying Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ao Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| |
Collapse
|
9
|
El-Sayed A, Ebissy E, Mohamed R, Ateya A. Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) administration on gene expression, metabolic, antioxidants and immunological profiles during transition period in dromedary camels. BMC Vet Res 2024; 20:101. [PMID: 38481237 PMCID: PMC10936106 DOI: 10.1186/s12917-024-03959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Nutrition has a primary role for optimum expression of genetic potential, and most of the farmers have limited resources of green fodder. Hence, a fat-soluble vitamin, especially vitamin A and E and trace elements remained most critical in the animal's ration and affects their productive and reproductive performance adversely. Animals cannot be able to produce these vitamins in their bodies; hence, an exogenous regular supply is needed to fulfil the physiological needs and to maintain high production performance. This study elucidated effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) administration on gene expression, metabolic, antioxidants and immunological parameters in dromedary camels during transition period. RESULTS At 0 day, there were no appreciable differences in the expression patterns of the metabolic (IGF-I, ACACA, SCD, FASN, LPL, and BTN1A1) genes between the control and treatment groups, despite lower levels. A substantial variation in the mRNA levels of SOD1, SOD3, PRDX2, PRDX3, PRDX4, PRDX6, and AhpC/TSA was observed between the control and treatment groups, according to the antioxidant markers. In comparison to the control group, the treatment group displayed a significant up-regulation at 0 and 21 days. The treatment and control groups exhibited substantial differences in the mRNA values of IL-1α, IL-1β, IL-6, and TNFα, as indicated by immunological markers. In comparison to the control group, there was a noticeable down-regulation in the treatment group at 0 and + 21 days. But IL10 produced the opposite pattern. No significant difference was observed in glucose, cholesterol, triglyceride, HDL, total protein, NEFA, BHBA, cortisol and IGF-1 levels between control and treatment group. The activity of serum GPx, SOD and TAC was significantly affected by time and treatment x time in supplemented groups as compared with control group. IL-1, IL-1, IL-6, and TNF were noticeably greater in the control group and lower in the treatment group. Additionally, in all groups, the concentration of all pro-inflammatory cytokines peaked on the day of delivery and its lowest levels showed on day 21 following calving. The IL-10 level was at its peak 21 days prior to calving and was lowest on calving day. CONCLUSION The results demonstrated a beneficial effect of antioxidant vitamins and trace elements on the metabolic, antioxidant and immunological markers in dromedary camels throughout their transition period.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt.
| | - Eman Ebissy
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Ragab Mohamed
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Ferronato G, Cattaneo L, Amato A, Minuti A, Loor JJ, Trevisi E, Cavallo C, Attard G, Elolimy AA, Liotta L, Lopreiato V. Residual feed intake is related to metabolic and inflammatory response during the preweaning period in Italian Simmental calves. J Dairy Sci 2024; 107:1685-1693. [PMID: 37944812 DOI: 10.3168/jds.2023-23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/24/2023] [Indexed: 11/12/2023]
Abstract
Residual Feed Intake (RFI) is defined as the difference between measured and predicted intake. Understanding its biological regulators could benefit farm profit margins. The most-efficient animals (M-Eff) have observed intake smaller than predicted resulting in negative RFI, whereas the least-efficient (L-Eff) animals have positive RFI. Hence, this observational study aimed at retrospectively comparing the blood immunometabolic profile in calves with divergent RFI during the preweaning period. Twenty-two Italian Simmental calves were monitored from birth through 60 d of age. Calves received 3 L of colostrum from their respective dams. From 2 to 53 d of age, calves were fed a milk replacer twice daily, whereas from 54 to 60 d (i.e., weaning) calves were stepped down to only one meal in the morning. Calves had ad libitum access to concentrate and intakes were recorded daily. The measurement of BW and blood samples were performed at 0, 1, 7, 14, 21, 28, 35, 45, 54, and 60 d of age. Calves were ranked and categorized as M-Eff or L-Eff according to the median RFI value. Median RFI was -0.06 and 0.04 kg of DMI/d for M-Eff and L-Eff, respectively. No evidence for group differences was noted for colostrum and plasma IgG concentrations. Although growth rate was not different, as expected, (0.67 kg/d [95% CI = 0.57-0.76] for both L-Eff and M-Eff) throughout the entire preweaning period (0-60 d), starter intake was greater in L-Eff compared with M-Eff calves (+36%). Overall, M-Eff calves had a greater gain-to-feed ratio compared with L-Eff calves (+16%). Plasma ceruloplasmin, myeloperoxidase, and reactive oxygen metabolites concentrations were greater in L-Eff compared with M-Eff calves. Compared with L-Eff, M-Eff calves had an overall greater plasma concentration of globulin, and γ-glutamyl transferase (indicating a better colostrum uptake) and Zn at 1 d. Retinol and urea were overall greater in L-Eff. The improved efficiency in nutrient utilization observed in M-Eff was paired with a lower grade of oxidative stress and systemic inflammation. L-Eff may have had greater energy expenditure to support the activation of the immune system.
Collapse
Affiliation(s)
- Giulia Ferronato
- Department of Civil Engineering, Architecture, Environment, Land Planning and Mathematics (DICATAM), Università degli Studi di Brescia, 25121 Brescia, Italy
| | - Luca Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - Annalisa Amato
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Carmelo Cavallo
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| | - George Attard
- Department of Rural Sciences and Food Systems, University of Malta, 2080 Msida, Malta
| | - Ahmed A Elolimy
- Animal Production Department, National Research Centre, Giza 12622, Egypt
| | - Luigi Liotta
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| |
Collapse
|
11
|
Cattaneo L, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Effect of supplementing live Saccharomyces cerevisiae yeast on performance, rumen function, and metabolism during the transition period in Holstein dairy cows. J Dairy Sci 2023; 106:4353-4365. [PMID: 37080789 DOI: 10.3168/jds.2022-23046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 04/22/2023]
Abstract
Dairy cows have to face several nutritional challenges during the transition period, and live yeast supplementation appears to be beneficial in modulating rumen activity. In this study, we evaluated the effects of live yeast supplementation on rumen function, milk production, and metabolic and inflammatory conditions. Ten Holstein multiparous cows received either live Saccharomyces cerevisiae (strain Sc47; SCY) supplementation from -21 to 21 d from calving (DFC) or a control diet without yeast supplementation. Feed intake, milk yield, and rumination time were monitored until 35 DFC, and rumen fluid, feces, milk, and blood samples were collected at different time points. Compared with the control diet, SCY had increased dry matter intake (16.7 vs. 19.1 ± 0.8 kg/d in wk 2 and 3) and rumination time postpartum (449 vs. 504 ± 19.9 min/d in wk 5). Milk yield tended to be greater in SCY (40.1 vs. 45.2 ± 1.7 kg/d in wk 5), protein content tended to be higher, and somatic cell count was lower. In rumen fluid, acetate molar proportion was higher and that of propionate lower at 21 DFC, resulting in increased acetate:propionate and (acetate + butyrate):propionate ratios. Cows in the SCY group had lower fecal dry matter but higher acetate and lower propionate proportions on total volatile fatty acids at 3 DFC. Plasma analysis revealed a lower degree of inflammation after calving in SCY (i.e., lower haptoglobin concentration at 1 and 3 DFC) and a likely better liver function, as suggested by the lower γ-glutamyl transferase, even though paraoxonase was lower at 28 DFC. Plasma IL-1β concentration tended to be higher in SCY, as well as Mg and P. Overall, SCY supplementation improved rumen and hindgut fermentation profiles, also resulting in higher dry matter intake and rumination time postpartum. Moreover, the postcalving inflammatory response was milder and liver function appeared to be better. Altogether, these effects also led to greater milk yield and reduced the risk of metabolic diseases.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - V Lopreiato
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| | - F Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
12
|
Somagond YM, Alhussien MN, Dang AK. Repeated injection of multivitamins and multiminerals during the transition period enhances immune response by suppressing inflammation and oxidative stress in cows and their calves. Front Immunol 2023; 14:1059956. [PMID: 36845154 PMCID: PMC9950815 DOI: 10.3389/fimmu.2023.1059956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Periparturient dairy cows undergo major physiological and metabolic changes as well as immunosuppression, associated with decrease in plasma concentrations of various minerals and vitamins. The present study was conducted to investigate effects of repeated injections of vitamins and minerals on oxidative stress, innate and adaptive immune response in periparturient dairy cows and their offspring. Experiment was carried out on 24 peripartum Karan-Fries cows, randomly divided into four groups (n=6): control, Multi-mineral (MM), Multi-vitamin (MV) and Multi-minerals and Multi-vitamin (MMMV). Five ml of MM (Zinc 40 mg/ml, Manganese 10 mg/ml, Copper 15 mg/ml, Selenium 5 mg/ml) and five ml of MV (Vitamin E 5 mg/ml, Vitamin A 1000 IU/ml, B-Complex 5 mg/ml, and Vitamin D3 500 IU/ml) were injected intramuscularly (IM) to the MM and MV groups. MMMV group cows were injected with both. In all treatment groups, injections and blood sampling were carried out on 30th, 15th, 7th days before and after expected date of parturition and at calving. In calves, blood was collected at calving and on 1, 2, 3, 4, 7, 8, 15, 30 and 45 days post-calving. Colostrum/milk were collected at calving and at days 2, 4, and 8 post-calving. A lower percentage of total neutrophils and immature neutrophils, higher percentage of lymphocytes together with increased phagocytic activity of neutrophils and proliferative capacity of lymphocytes found in blood of MMMV cows/calves. Lower relative mRNA expression of TLRs and CXCRs and higher mRNA expression of GR-α, CD62L, CD11b, CD25 and CD44 found in blood neutrophils of MMMV groups. Total antioxidant capacity was higher, activity of antioxidant enzymes (SOD and CAT), TBARS levels were lower in the blood plasma of treated cows/calves. In both cows/calves, plasma pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-8, IL-17A, IFN-γ and TNF-α) increased, whereas anti-inflammatory cytokines (IL-4 and IL-10) decreased in MMMV groups. Total immunoglobulins increased in colostrum/milk of MMMV injected cows and plasma of their calves. Results indicate that repeated injections of multivitamins and multiminerals to peripartum dairy cows could be a major strategy to improve immune response and decrease in inflammation and oxidative stress in transition dairy cows and their calves.
Collapse
Affiliation(s)
- Yallappa M. Somagond
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India,Reproductive Biotechnology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India,*Correspondence: Ajay Kumar Dang, ;
| |
Collapse
|
13
|
Arfuso F, Minuti A, Liotta L, Giannetto C, Trevisi E, Piccione G, Lopreiato V. Stress and inflammatory response of cows and their calves during peripartum and early neonatal period. Theriogenology 2023; 196:157-166. [PMID: 36423510 DOI: 10.1016/j.theriogenology.2022.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Stress, inflammatory response, and their relationship were investigated in Simmental cows during the transition period (N = 8; 5 multiparous and 3 primiparous) and in their calves (N = 8; 5 heifers and 3 bulls). From cows, blood was collected at days -21 (±4), 0, +1, +7, and +21 days relative to calving. From calves, blood was collected after birth before colostrum intake (0) and then at 1, 7, and 15 days of age. Cortisol, Interleukin 6 (IL-6) and haptoglobin concentration was assessed by ELISA technique; white blood cells (WBC) were assessed using an ADVIA 2120 Hematology System machine. One-way ANOVA showed an effect of time for all the investigated parameters (P < 0.001) except for lymphocytes in peripartal cows. At calving and 1 d after, cortisol concentration was negatively correlated with levels of IL-6, WBC, and monocytes, whereas levels of IL-6 were positively correlated with WBC, neutrophils, and monocytes count. Cortisol, IL-6, haptoglobin, WBC and all leukocyte populations were affected by the age of neonatal calves (P < 0.001) except for neutrophils. A negative correlation between cortisol and IL-6, neutrophils, monocytes and haptoglobin was found at 15 days of age. A positive correlation between IL-6 and haptoglobin at day 15 of age, and with neutrophils and monocytes at days 7 and 15 of age was found. A positive correlation was obtained between cortisol levels measured in cows around calving and those obtained in calves after birth before colostrum intake (r = 0.83), and between IL-6 concentrations obtained from cows at calving and 1 d after and those obtained in calves at day 1 of age, after the colostrum intake (r = 0.93 and 0.79, respectively). The study suggests that immune function of peripartal cows is in an active state and that, in addition to other well-known factors driving the changes of parameters herein investigated, cortisol could have a role in the immune-modulatory adjustment during peripartum in cows. Furthermore, it can be hypothesized that cortisol is transferred from the cow to newborn calf through the placenta only and not through colostrum, whereas IL-6 levels in calves during the 24 h after birth seem to be influenced by IL-6 values measured in cows around calving due to its transfer through colostrum.
Collapse
Affiliation(s)
- Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168, Messina, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168, Messina, Italy.
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168, Messina, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168, Messina, Italy
| |
Collapse
|
14
|
Daneshvar D, Ghasemi E, Hashemzadeh F, Mahdavi AH, Khorvash M. Nutrient intake, digestibility, and serum metabolites in dairy cows fed diets differing in starch concentration with palmitic acid or stearic acid supplementation postpartum. Trop Anim Health Prod 2022; 54:284. [PMID: 36076113 DOI: 10.1007/s11250-022-03296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
The present study determined the effect of supplementing palmitic acid (PA) and stearic acid (SA) on the nutrient intake, digestibility, and serum metabolites of dairy cows fed two different starch levels during the postpartum period. Forty-four multiparous Holstein cows were used in a completed randomized block based on their parity and previous milk yield. Dietary treatments were arranged in a 2 × 2 arrangement with two dietary starch levels (HS: 260 g/kg of diet dry matter (DM) vs LS: 210 g/kg of diet DM) and two fat supplements rich in PA or SA at 15 g/kg of diet DM. Increasing the starch concentration of the postpartum diet improved organic matter (OM), ether extract (EE), crude protein (CP), and starch intake. Moreover, HS diets resulted in higher apparent digestibility of OM and CP but lower starch digestibility than LS diets. Feeding HS diets increased fecal starch output compared with LS diets. There was starch levels and FA supplements interaction for serum albumin and total antioxidant capacity (TAC), with higher concentrations in HSSA and LSPA compared to HSPA and LSSA. Significant correlations between performance and blood metabolites were observed in weeks 3 and 4. In week 3, a negative correlation was observed between serum TAC with milk protein (r = - 0.51) and lactose percentage (r = - 0.49) in the HS diet. However, non-esterified FA was correlated with the fat to protein ratio in the LS diet (r = 0.54). Moreover, in week 4, serum TAC was negatively related to the body condition score of the cows fed LS diet (r = 0.50), while there was no relationship for cows fed HS diets. In conclusion, feeding HS diets to postpartum cows increased nutrient intake and the digestibility of OM and CP compared with LS diets. The addition of SA to the HS diet may be more beneficial than PA in improving the oxidative status of dairy cows in the postpartum period.
Collapse
Affiliation(s)
- Danial Daneshvar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 - 83111, Iran.
| | - Ebrahim Ghasemi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 - 83111, Iran
| | - Farzad Hashemzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 - 83111, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 - 83111, Iran
| | - Mohammad Khorvash
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 - 83111, Iran
| |
Collapse
|
15
|
Du X, Liu M, Tai W, Yu H, Hao X, Loor JJ, Jiang Q, Fang Z, Gao X, Fan M, Gao W, Lei L, Song Y, Wang Z, Zhang C, Liu G, Li X. Tumor necrosis factor-α promotes lipolysis and reduces insulin sensitivity by activating nuclear factor kappa B and c-Jun N-terminal kinase in primary bovine adipocytes. J Dairy Sci 2022; 105:8426-8438. [PMID: 35965124 DOI: 10.3168/jds.2022-22009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022]
Abstract
Sustained lipolysis and insulin resistance increase the risk of metabolic dysfunction in dairy cows during the transition period. Proinflammatory cytokines are key regulators of adipose tissue metabolism in nonruminants, but biological functions of these molecules in ruminants are not well known. Thus, the objective of this study was to investigate whether tumor necrosis factor-α (TNF-α) could affect insulin sensitivity and lipolysis in bovine adipocytes as well as the underlying mechanisms. Bovine adipocytes (obtained from the omental and mesenteric adipose depots) isolated from 5 Holstein female calves (1 d old) with similar body weight (median: 36.9 kg, range: 35.5-41.2 kg) were differentiated and used for (1) treatment with different concentrations of TNF-α (0, 0.1, 1, or 10 ng/mL) for 12 h; (2) pretreatment with 10 μM lipolytic agonist isoproterenol (ISO) for 3 h, followed by treatment with or without 10 ng/mL TNF-α for 12 h; and (3) pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 (20 μM for 2 h) and nuclear factor kappa B (NF-κB) inhibitor BAY 11-7082 (10 μM for 1 h) followed by treatment with or without 10 ng/mL TNF-α for 12 h. The TNF-α increased glycerol content in supernatant, decreased triglyceride content and insulin-stimulated phosphorylation of protein kinase B suggesting activation of lipolysis and impairment of insulin sensitivity. The TNF-α reduced cell viability, upregulated mRNA abundance of Caspase 3 (CASP3), an apoptosis marker, and increased activity of Caspase 3. In addition, increased phosphorylation of NF-κB and JNK, upregulation of mRNA abundance of interleukin-6 (IL-6), TNFA, and suppressor of cytokine signaling 3 (SOCS3) suggested that TNF-α activated NF-κB and JNK signaling pathways. Furthermore, ISO plus TNF-α-activated NF-κB and JNK signaling pathway to a greater extent than TNF-α alone. Combining TNF-α and ISO aggravated TNF-α-induced apoptosis, insulin insensitivity and lipolysis. In the absence of TNF-α, inhibition of NF-κB and JNK did not alter glycerol content in supernatant, triglyceride content or insulin-stimulated phosphorylation of protein kinase B. In the presence of TNF-α, inhibition of NF-κB and JNK alleviated TNF-α-induced apoptosis, insulin insensitivity and lipolysis. Overall, TNF-α impairs insulin sensitivity and induces lipolysis and apoptosis in bovine adipocytes, which may be partly mediated by activation of NF-κB and JNK. Thus, the data suggested that NF-κB and JNK are potential therapeutic targets for alleviating lipolysis dysregulation and insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Wenjun Tai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Hao Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xue Hao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinxing Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Minghe Fan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
16
|
Brink AA, Weber WJ, Lippolis JD, Cole JB, Godden SM, Seykora A, Crooker BA. Effect of Holstein genotype on ex-vivo cytokine response to lipopolysaccharide (LPS) and lipoteichoic acid (LTA) during the periparturient period. Vet Immunol Immunopathol 2022; 251:110463. [PMID: 35878562 DOI: 10.1016/j.vetimm.2022.110463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Effects of Holstein genotype on innate immune response were assessed with ex-vivo lipopolysaccharide (LPS) and lipoteichoic acid (LTA) stimulation of whole blood from unselected (UH, n = 10) and contemporary (CH, n = 11) Holsteins that differ in production by more than 4,500 kg/lactation. Blood was collected at -14, 7, 28, and 49 days in milk (DIM), mixed with a pathogen-associated molecular pattern (PAMP) molecule (0.01 or 1.0 µg LPS or 10 or 100 µg LTA per mL blood) and incubated (4 h, 37 °C). Plasma cytokines were quantified by ELISA, log10-transformed and analyzed by repeated measures with DIM as the repeated effect. Cytokine responses increased with PAMP dose and decreased as DIM increased. There was a genotype by LPS dose interaction for IL-1β as response to the low dose was greater in UH but did not differ between genotypes for the high dose. The IL-1β response was greater while the IL-6 response to LTA tended to be greater in UH than in CH cows. The more negative energy balance of CH cows did not impact genotype difference in cytokine responses. Results indicate selection since the mid-1960s has decreased ex-vivo, whole blood cytokine response of CH cows to LPS and to LTA.
Collapse
Affiliation(s)
- Amber A Brink
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Wanda J Weber
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010, USA
| | - John B Cole
- Animal Genomics and Improvement Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, USA
| | - Sandra M Godden
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Anthony Seykora
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Brian A Crooker
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
17
|
Hassan FU, Nadeem A, Javed M, Saif-ur-Rehman M, Shahzad MA, Azhar J, Shokrollahi B. Nutrigenomic Interventions to Address Metabolic Stress and Related Disorders in Transition Cows. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2295017. [PMID: 35726316 PMCID: PMC9206560 DOI: 10.1155/2022/2295017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022]
Abstract
For dairy cattle, the period involving a shift from late pregnancy to early lactation termed transition or periparturient is an excruciating phase. Health-related disorders are likely to happen in this time frame. Timely postpartum and metabolic adjustments to this new physical state demands correct management strategies to fulfill the cow's needs for a successful transition to this phase. Among the management strategies, one of the most researched methods for managing transition-related stress is nutritional supplementation. Dietary components directly or indirectly affect the expression of various genes that are believed to be involved in various stress-related responses during this phase. Nutrigenomics, an interdisciplinary approach that combines nutritional science with omics technologies, opens new avenues for studying the genome's complicated interactions with food. This revolutionary technique emphasizes the importance of food-gene interactions on various physiological and metabolic mechanisms. In animal sciences, nutrigenomics aims to promote the welfare of livestock animals and enhance their commercially important qualities through nutritional interventions. To this end, an increasing volume of research shows that nutritional supplementation can be effectively used to manage the metabolic stress dairy cows undergo during the transition period. These nutritional supplements, including polyunsaturated fatty acids, vitamins, dietary amino acids, and phytochemicals, have been shown to modulate energy homeostasis through different pathways, leading to addressing metabolic issues in transition cows.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Asif Nadeem
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Maryam Javed
- Institute of Biochemistry & Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | | | - Jahanzaib Azhar
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Borhan Shokrollahi
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
18
|
Giannuzzi D, Toscano A, Pegolo S, Gallo L, Tagliapietra F, Mele M, Minuti A, Trevisi E, Ajmone Marsan P, Schiavon S, Cecchinato A. Associations between Milk Fatty Acid Profile and Body Condition Score, Ultrasound Hepatic Measurements and Blood Metabolites in Holstein Cows. Animals (Basel) 2022; 12:ani12091202. [PMID: 35565628 PMCID: PMC9104722 DOI: 10.3390/ani12091202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Dairy cows have high incidences of metabolic disturbances, which often lead to disease, having a subsequent significant impact on productivity and reproductive performance. As the milk fatty acid (FA) profile represents a fingerprint of the cow’s nutritional and metabolic status, it could be a suitable indicator of metabolic status at the cow level. In this study, we obtained milk FA profile and a set of metabolic indicators (body condition score, ultrasound liver measurements, and 29 hematochemical parameters) from 297 Holstein–Friesian cows. First, we applied a multivariate factor analysis to detect latent structure among the milk FAs. We then explored the associations between these new synthetic variables and the morphometric, ultrasonographic and hematic indicators of immune and metabolic status. Significant associations were exhibited by the odd-chain FAs, which were inversely associated with β-hydroxybutyrate and ceruloplasmin, and positively associated with glucose, albumin, and γ-glutamyl transferase. Short-chain FAs were inversely related to predicted triacylglycerol liver content. Rumen biohydrogenation intermediates were associated with glucose, cholesterol, and albumin. These results offer new insights into the potential use of milk FAs as indicators of variations in energy and nutritional metabolism in early lactating dairy cows.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
- Correspondence:
| | - Alessandro Toscano
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Marcello Mele
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, 56124 Pisa, Italy;
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DIANA), The Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.M.); (E.T.); (P.A.M.)
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), The Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.M.); (E.T.); (P.A.M.)
| | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA), The Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.M.); (E.T.); (P.A.M.)
- Nutrigenomics and Proteomics Research Center, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| |
Collapse
|
19
|
Yoo D, Kim H, Moon J, Kim J, Kim H, Seo J. Effects of Red Ginseng Byproducts on Rumen Fermentation, Growth Performance, Blood Metabolites, and mRNA Expression of Heat Shock Proteins in Heat-Stressed Fattening Hanwoo Steers. Vet Sci 2022; 9:vetsci9050220. [PMID: 35622748 PMCID: PMC9143152 DOI: 10.3390/vetsci9050220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this study was to evaluate the effects of dietary supplementation with red ginseng byproduct (RGB) on rumen fermentation, growth performance, blood metabolites, and mRNA expression of heat shock proteins (HSP) in fattening Hanwoo steers under heat stress. Two experimental total mixed rations (TMR) were prepared: (1) a TMR meeting the requirement of fattening beef having an average daily gain (ADG) 0.8 kg/day (CON) and (2) a TMR that included 2% RGB on a dry matter (DM) basis (GINSENG). In vitro rumen fermentation and in vivo growth experiments were conducted using two experimental diets. A total of 22 Hanwoo steers were distributed to two treatments (CON vs. GINSENG) in a completely randomized block design according to body weight (BW). The experiment was conducted during the summer season for five weeks. The final BW, ADG, DM intake, and feed conversion ratio did not differ between treatments in the growth trial. In the mRNA expression results, only HSP 90 showed an increasing tendency in the GINSENG group. The use of 2%DM RGB did not improve the growth performance or alleviate heat stress in fattening Hanwoo steers during the summer season.
Collapse
Affiliation(s)
- Daekyum Yoo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea; (D.Y.); (H.K.); (J.M.)
| | - Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea; (D.Y.); (H.K.); (J.M.)
| | - Joonbeom Moon
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea; (D.Y.); (H.K.); (J.M.)
| | - Jongnam Kim
- Department of Food and Nutrition, Dongseo University, Busan 47011, Korea;
| | - Hyeran Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Jeonju-si 55365, Korea;
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea; (D.Y.); (H.K.); (J.M.)
- Correspondence: ; Tel.: +82-55-350-5513
| |
Collapse
|
20
|
Guo J, Xu L, Khalouei H, Fehr K, Senaratne V, Ghia JE, Yoon I, Khafipour E, Plaizier JC. Saccharomyces cerevisiae fermentation products reduce bacterial endotoxin concentrations and inflammation during grain-based subacute ruminal acidosis in lactating dairy cows. J Dairy Sci 2022; 105:2354-2368. [PMID: 34998547 DOI: 10.3168/jds.2021-20572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/13/2021] [Indexed: 01/03/2023]
Abstract
Subacute ruminal acidosis (SARA) is a metabolic disorder in dairy cows that is associated with dysbiosis of rumen and hindgut microbiomes, translocation of immunogenic compounds from the gut lumen into blood circulation, and systemic inflammatory response. In this study we hypothesized that Saccharomyces cerevisiae fermentation products (SCFP) attenuate the increases in ruminal and peripheral bacterial endotoxin concentrations and the inflammation resulting from repeated induction of SARA. Lactating Holstein dairy cows (parity 2 and 3+, n = 32) were fed diets with or without SCFP (all from Diamond V) and subjected to 2 episodes of SARA challenges. Cows received a basal total mixed ration (TMR) containing 34% neutral detergent fiber and 18.6% starch, dry matter (DM) basis. Treatments were randomly assigned to control (basal TMR and 140 g/d of ground corn with no SCFP) or 1 of 3 SCFP treatments: basal TMR and 14 g/d Original XPC (SCFPa), 19 g/d NutriTek (SCFPb-1×), or 38 g/d NutriTek (SCFPb-2×) mixed with 126, 121, or 102 g/d of ground corn, respectively. Treatments were implemented from 4 wk before until 12 wk after parturition. During wk 5 (SARA1) and wk 8 of lactation (SARA2), grain-based SARA challenges were conducted by gradually replacing 20% of DM of the basal TMR over 3 d with pellets containing 50% wheat and 50% barley. Ruminal fluid, fecal, and blood samples were collected weekly during Pre-SARA1 (wk 4, as baseline), Post-SARA1 (wk 7), and Post-SARA2 (wk 10 for blood and wk 12 for rumen and fecal parameters) stages, and twice a week during the challenges SARA1 and SARA2. Rumen papillae samples were taken only during Pre-SARA1 and Post-SARA2. We measured the concentrations of free lipopolysaccharides (LPS) in the rumen fluid and feces; free LPS and lipoteichoic acid (LTA) endotoxins in peripheral plasma; interleukin (IL)-1β and IL-6 in peripheral serum; acute-phase proteins, serum amyloid A (SAA), and LPS-binding protein in peripheral plasma; haptoglobin (Hp) in peripheral serum; and myeloperoxidase (MPO) in rumen papillae. Induction of SARA episodes increased free LPS concentrations in rumen fluid and tended to increase LTA in peripheral plasma. The SARA episodes increased concentration of circulating SAA and tended to increase that of IL-1β compared with Pre-SARA1. Induction of SARA did not affect the concentrations of circulating IL-6, Hp, and MPO. The SCFP supplementation reduced plasma concentrations of LTA and SAA and serum concentration of IL-1β compared with control. Additionally, SCFPb-2× tended to reduce ruminal LPS in second-parity cows compared with control. Overall, SCFP supplementation appeared to stabilize the rumen environment and reduce proinflammatory status, hence attenuating adverse digestive and inflammatory responses associated with SARA episodes.
Collapse
Affiliation(s)
- J Guo
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada
| | - L Xu
- Department of Animal Science, Nanjing Agricultural University, Jiangsu, 210095, China
| | - H Khalouei
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada
| | - K Fehr
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada
| | - V Senaratne
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada
| | - J E Ghia
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; Department of Internal Medicine, Section of Gastroenterology, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - I Yoon
- Diamond V, Cedar Rapids, IA 52404
| | - E Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada.
| | - J C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada.
| |
Collapse
|
21
|
Spaans OK, Kuhn-Sherlock B, Hickey A, Crookenden MA, Heiser A, Burke CR, Phyn CVC, Roche JR. Temporal profiles describing markers of inflammation and metabolism during the transition period of pasture-based, seasonal-calving dairy cows. J Dairy Sci 2022; 105:2669-2698. [PMID: 34998544 DOI: 10.3168/jds.2021-20883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022]
Abstract
The physiology of the dairy cow while transitioning from pregnancy to lactation is complex, with multifactorial processes studied extensively for the role they play in manifestation of disease along with associated economic losses and compromised animal welfare. Manuscripts outlining associations among nutrition, production, physiology, and genetics variables and transition cow disorders are common in literature, with blood analytes that are central to energy metabolism (e.g., nonesterified fatty acids; NEFA, β-hydroxybutyrate; BHB) often reported. Immunity and inflammation have increasingly been explored in the pathogenesis and persistence of disorders, with cytokines and acute phase proteins well documented. However, most of these studies have involved cows fed total mixed rations, which may not always reflect profiles of blood analytes and other physiological indicators of transition cow health in grazing cows consuming fresh pasture. Considering the comparatively lesser characterization of these analytes and markers in pasture-based, seasonal-calving dairy cows, we compiled a database consisting of 2,610 cow lactations that span 20 yr of transition cow research in New Zealand. Using this database, analyte profiles from approximately 28 d precalving to 35 d postcalving were identified in dairy cows with a range of genetics, milk production potentials, and pasture-based farm management systems. These profiles characterize changes in energy reserves and metabolism (NEFA, BHB, glucose, insulin, growth hormone, insulin-like growth factor-1, leptin, body condition score, body weight), liver function (globulin, aspartate aminotransferase, glutamate dehydrogenase, gamma-glutamyl transpeptidase, bilirubin, cholesterol, liver triacylglycerides), protein metabolism (albumin, total protein, albumin:globulin ratio, creatinine, urea, creatine kinase), mineral balance (calcium, magnesium, phosphate, potassium, sodium, chloride, bicarbonate), inflammation (IL-1β, IL-6, haptoglobin, reactive oxygen species, total antioxidant capacity), and uterine health (polymorphonuclear cells, macrophage cells, vaginal discharge score). Temporal changes are generally consistent with previously characterized homeorhetic changes experienced by the dairy cow during the transition from pregnancy to lactation in both pastoral and housed systems. Some of the profiles had not previously been presented for pastoral systems, or in some cases, presented for either system. Our results indicate that moderate-yielding dairy cows undergo similar homeorhetic changes to high-yielding housed cows; however, differences in diet composition result in greater BHB concentrations than expected, based on their milk production and NEFA concentrations. In addition, most cows were able to transition to a state of higher energy requirement following calving, albeit with an increased metabolic challenge in the liver, and only a small percentage of cows were classified with severe hepatic lipidosis or severe hyperketonemia. Increases in metabolic function of the liver were accompanied by changes in indicators of the immune system and changes in mineral balance that, combined, probably reflect the innate response to the transition from gestation to lactation.
Collapse
Affiliation(s)
- O K Spaans
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240.
| | - B Kuhn-Sherlock
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - A Hickey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand 1142
| | - M A Crookenden
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand 4442
| | - A Heiser
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand 4442
| | - C R Burke
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - C V C Phyn
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - J R Roche
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand 1142
| |
Collapse
|
22
|
Hassanabadi M, Mohri M, Seifi HA. Effects of vitamin D3 injection in close-up period on insulin resistance and energy balance in transition dairy cows. Vet Med Sci 2021; 8:741-751. [PMID: 34919352 PMCID: PMC8959338 DOI: 10.1002/vms3.692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Many studies in dairy cows are towards calcium homeostasis and there is a lack of knowledge about the effect of vitamin D in preventing insulin resistance and improving energy balance in the transition period of dairy cows. Methods The trial was conducted in a commercial dairy farm with about 1500 lactating cows in Tehran province, Iran. Twenty‐four Holstein cows had been randomly selected and divided into control and treatment groups. In the treatment group, 12 cows, received a single dose of 8,000,000 IU vitamin D3 intramuscularly and in the control group, 12 cows were injected placebo (distilled water) 2–8 days before the expected calving time. Blood samples were collected between 8 and 10 AM 2 h after feeding on 21 and 7 days before calving and 1,3,7,15 and 30 days after calving. 25(OH)vitamin D, insulin‐like growth factor 1 (IGF‐1), insulin, nonesterified fatty acid (NEFA), β‐hydroxybutyric acid (BHBA), albumin, total protein, glucose, urea, triglyceride, cholesterol and aspartate amino transferase (AST) were measured by commercially available kits. The insulin resistance index was calculated. Results Vitamin D3 injection significantly affected the amounts of 25(OH) vitamin D, urea, insulin and insulin resistance index (p ≤ 0.05). On the other hand, the amounts of glucose, NEFA, BHBA concentration and AST activity were higher in control group (p ≤ 0.05). Time had a significant effect on the amounts of most measured variables except IGF‐1 and insulin. There were no group and time interactions for measured variables. Conclusion It seems that injection of vitamin D3 in close up period influenced lipolysis potentially modifying energy metabolism and resulted in reducing insulin resistance.
Collapse
Affiliation(s)
- Morteza Hassanabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Mohri
- Department of Clinical Sciences and Center of Excellence in Ruminant Abortion and Neonatal Mortality, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam A Seifi
- Department of Clinical Sciences and Center of Excellence in Ruminant Abortion and Neonatal Mortality, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
23
|
Preliminary Evidence of Endotoxin Tolerance in Dairy Cows during the Transition Period. Genes (Basel) 2021; 12:genes12111801. [PMID: 34828407 PMCID: PMC8618052 DOI: 10.3390/genes12111801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 11/24/2022] Open
Abstract
The blastogenic response of bovine peripheral blood mononuclear cells (PBMCs) to lipopolysaccharides (LPS) has been investigated for a long time in our laboratories. In particular, a possible correlation between the blastogenic response to LPS and the disease resistance of dairy cows has been suggested in previous studies. Isolated PBMCs from eight cows at three different time points during the transition period (T0 = 15 days before calving; T1 = 7 days post-calving; T2 = 21 days post-calving) were cultured in the presence or absence of LPS, and the blastogenic response was assayed 72 h after in vitro stimulation. Moreover, the gene expression of proinflammatory cytokines and kynurenine pathway molecules was investigated by real-time RT-PCR on both unstimulated and stimulated PBMCs. The cows were retrospectively divided into healthy and diseased, based on the development of peripartum diseases (subclinical ketosis and placenta retention). The comparison between healthy and diseased cows suggested that healthy animals seemed to better control the response to LPS. On the contrary, diseased animals showed a much higher inflammatory response to LPS. Moreover, cows were retrospectively classified as high and low responders based on the in vitro proliferative response of PBMCs to LPS, using the median value as a threshold. Unstimulated PBMCs of low responders showed higher expression of the proinflammatory cytokines Interleukin 1-β (IL-1β), Interleukin 6 (IL-6) and Tumor Necrosis Factor-α (TNF-α), compared to high responders. Our preliminary data suggest that, during the peripartum period, high responders seem to be more tolerant to endotoxins and develop a lower inflammatory response to different stressors. Instead, low responders could be more prone to the development of unwanted inflammatory conditions in response to mild/moderate stressors.
Collapse
|
24
|
The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation. DAIRY 2021. [DOI: 10.3390/dairy2040048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent research on the transition period (TP) of dairy cows has highlighted the pivotal role of immune function in affecting the severity of metabolic challenges the animals face when approaching calving. This suggests that the immune system may play a role in the etiology of metabolic diseases occurring in early lactation. Several studies have indicated that the roots of immune dysfunctions could sink way before the “classical” TP (e.g., 3 weeks before and 3 weeks after calving), extending the time frame deemed as “risky” for the development of early lactation disorders at the period around the dry-off. Several distressing events occurring during the TP (i.e., dietary changes, heat stress) can boost the severity of pre-existing immune dysfunctions and metabolic changes that physiologically affect this phase of the lactation cycle, further increasing the likelihood of developing diseases. Based on this background, several operational and nutritional strategies could be adopted to minimize the detrimental effects of immune dysfunctions on the adaptation of dairy cows to the new lactation. A suitable environment (i.e., optimal welfare) and a balanced diet (which guarantees optimal nutrient partitioning to improve immune functions in cow and calf) are key aspects to consider when aiming to minimize TP challenges at the herd level. Furthermore, several prognostic behavioral and physiological indicators could help in identifying subjects that are more likely to undergo a “bad transition”, allowing prompt intervention through specific modulatory treatments. Recent genomic advances in understanding the linkage between metabolic disorders and the genotype of dairy cows suggest that genetic breeding programs aimed at improving dairy cows’ adaptation to the new lactation challenges (i.e., through increasing immune system efficiency or resilience against metabolic disorders) could be expected in the future. Despite these encouraging steps forward in understanding the physiological mechanisms driving metabolic responses of dairy cows during their transition to calving, it is evident that these processes still require further investigation, and that the TP—likely extended from dry-off—continues to be “the final frontier” for research in dairy sciences.
Collapse
|
25
|
Ghavipanje N, Fathi Nasri MH, Farhangfar SH, Ghiasi SE, Vargas-Bello-Pérez E. Pre- and Post-partum Berberine Supplementation in Dairy Goats as a Novel Strategy to Mitigate Oxidative Stress and Inflammation. Front Vet Sci 2021; 8:743455. [PMID: 34722705 PMCID: PMC8552069 DOI: 10.3389/fvets.2021.743455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
As in dairy cattle, goats during the transition period face risk factors, in particular negative energy balance (NEB), inflammation, and impairment of the antioxidant response. The current study determined the effects of pre- and post-partum berberine (BBR) supplementation on antioxidant status and inflammation response during the transition period in dairy goats. Twenty-four primiparous Saanen goats were randomly divided into four groups: control (CON, without BBR) and supplemented with 1 g/day BBR (BBR1), 2 g/day BBR (BBR2), or 4 g/day BBR (BBR4). The blood samples were collected weekly from 21 days pre-partum to 21 days post-partum. Compared with CON, supplementation with either BBR2 or BBR4 decreased (P ≤ 0.05) the levels of plasma non-esterified fatty acids (NEFA) at kidding and thereafter an increased (P ≤ 0.05) the plasma levels of glucose and insulin. Following BBR ingestion, blood antioxidant status elevated throughout the transition period, so that total antioxidant capacity (TAC), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase activity were increased (P ≤ 0.05) and plasma malondialdehyde (MDA) was decreased (P ≤ 0.05). Likewise, paraoxonase (PON) was reduced (P ≤ 0.05) in goats fed BBR2 and BBR4. The levels of haptoglobin, ceruloplasmin, and bilirubin were reduced (P ≤ 0.05) by BBR2 and BBR4 immediately before kidding and thereafter. The results demonstrated that supplementation of either 2 or 4 g/day BBR enhanced antioxidant capacity and immune function of transition goats and improved post-partum performance showing its beneficial effect to mitigate oxidative stress and inflammation during the transition period in dairy goats.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | | | | | - Seyyed Ehsan Ghiasi
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
26
|
WANKHADE PRATIKRAMESH, MANIMARAN AYYASAMY, KUMARESAN ARUMUGAM, PATBANDHA TAPASK, SIVARAM MUNIANDY, JEYAKUMAR SAKTHIVEL, RAJENDRAN DURAISAMY. Prediction of postpartum performances of transition Zebu (Bos indicus) cows using receiver operating characteristics analysis. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i3.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Receiver Operating Characteristics (ROC) analysis is a popular method to discriminate between the two conditions of tested animals. In this study, we estimated accuracy and threshold values of metabolic (Dry matter Intake; DMI and Body Condition Score: BCS, NEFA and BHBA) and immune indicators (Haptoglobin: Hp, Serum Amyloid A: SAA, IL-6, TNF-a, IL-1b, and IL-8) during transition period (–21, –14, –7, 0, +3, +7, +14 and +21 days) to predict the high yielding (HY) and pregnant Deoni cows. ROC analysis revealed that SAA (–21 d), IL-6 (–21 and –7 d), BCS (–7 d) and BHBA (–7 d) during pre-partum period, differentiated HY from low or medium yielder (LY/MY) cows with moderate to excellent accuracy (AUC >0.8). During postpartum period, IL-6 (+7 d), TNF-a (+21 d), DMI (+21 d), NEFA (+14 d and +21 d) and BHBA (+21 d) levels had moderate to excellent accuracy to differentiate HY from LY or MY cows. IL-6 (–14 d and –7 d), TNF-a (–14 d) and DMI (–21 d; above 2 kg/100 kg BW) during pre-partum period while, SAA (+3 d and +7 d), IL-6 (+3 and +21 d) and TNF-a (+7 and +21 d) during postpartum period were significantly predicted the pregnant cows with moderate to excellent accuracy. Altogether, it is concluded that SAA, IL-6 and TNF-a levels had higher accuracy in discrimination of HY and pregnant cows from LY or MY and non-pregnant cows, respectively. Therefore, their corresponding threshold values could be used for predicting HY and pregnant Zebu (Deoni) cows.
Collapse
|
27
|
Amadori M, Spelta C. The Autumn Low Milk Yield Syndrome in High Genetic Merit Dairy Cattle: The Possible Role of a Dysregulated Innate Immune Response. Animals (Basel) 2021; 11:ani11020388. [PMID: 33546430 PMCID: PMC7913622 DOI: 10.3390/ani11020388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Milk yield worldwide is dominated by few cosmopolitan dairy cattle breeds producing high production levels in the framework of hygiene standards that have dramatically improved over the years. Yet, there is evidence that such achievements have gone along with substantial animal health and welfare problems for many years, exemplified by reduced life expectancy and high herd replacement rates. Also, these animals are very susceptible to diverse environmental stressors, among which hot summer climate plays a central role in the occurrence of diverse disease cases underlying early cull from the herd. Milk production is also affected by heat stress, both directly and indirectly, as shown by low milk yield in the following autumn period. This article highlights the low milk yield syndrome and sets it into a conceptual framework, based on the crucial role of the innate immune system in the response to non-infectious stressors and in adaptation physiology at large. Abstract The analysis of milk yield data shows that high genetic merit dairy cows do not express their full production potential in autumn. Therefore, we focused on metabolic stress and inflammatory response in the dry and peripartum periods as possible causes thereof. It was our understanding that some cows could not cope with the stress imposed by their physiological and productive status by means of adequate adaptation strategies. Accordingly, this study highlights the noxious factors with a potential to affect cows in the above transition period: hot summer climate, adverse genetic traits, poor coping with unfavorable environmental conditions, outright production diseases and consequences thereof. In particular, the detrimental effects in the dry period of overcrowding, photoperiod change and heat stress on mammary gland development and milk production are highlighted in the context of the autumn low milk yield syndrome. The latter could be largely accounted for by a “memory” effect on the innate immune system induced in summer by diverse stressors after dry-off, according to strong circumstantial and indirect experimental evidence. The “memory” effect is based on distinct epigenetic changes of innate immunity genes, as already shown in cases of bovine mastitis. Following a primary stimulation, the innate immune system would be able to achieve a state known as “trained immunity”, a sort of “education” which modifies the response to the same or similar stressors upon a subsequent exposure. In our scenario, the “education” of the innate immune system would induce a major shift in the metabolism of inflammatory cells following their reprogramming. This would entail a higher basal consumption of glucose, in competition with the need for the synthesis of milk. Also, there is strong evidence that the inflammatory response generated in the dry period leads to a notable reduction of dry matter intake after calving, and to a reduced efficiency of oxidative phosphorylation in mitochondria. On the whole, an effective control of the stressors in the dry period is badly needed for better disease control and optimal production levels in dairy cattle.
Collapse
Affiliation(s)
- Massimo Amadori
- RNIV, Italian Society of Veterinary Immunology, 25125 Brescia, Italy
- Correspondence:
| | - Chiara Spelta
- Private Veterinary Practitioner, 27100 Pavia, Italy;
| |
Collapse
|
28
|
Ma Y, Feng Y, Song L, Li M, Dai H, Bao H, Zhang G, Zhao L, Zhang C, Yi J, Liang Y. Green tea polyphenols supplementation alters immunometabolism and oxidative stress in dairy cows with hyperketonemia. ACTA ACUST UNITED AC 2020; 7:206-215. [PMID: 33997349 PMCID: PMC8110852 DOI: 10.1016/j.aninu.2020.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/27/2020] [Accepted: 06/05/2020] [Indexed: 12/04/2022]
Abstract
Peripartal cows often experience negative energy balance, and are therefore prone to suffering from metabolic diseases such as hyperketonemia, which causes financial losses in dairy farms. This study aimed to investigate the effect of green tea polyphenol (GTP) supplementation during the periparturient period on production performance, oxidative stress and immunometabolism in dairy cows with hyperketonemia. One hundred Holstein cows were assigned to GTP (0.2 g/kg DM; n = 50) or control (without GTP; n = 50) group based on body weight, previous milk yield, and parity on d 15 before expected parturition. Subsequently, 10 cows with hyperketonemia were selected from each group, according to blood β-hydroxybutyric acid (BHBA) concentration between 1.2 and 2.9 mmol/L from 2 to 3 d postpartum. All cows were fed a close-up diet and a lactation diet with or without GTP supply from 15 d prepartum until 30 d postpartum. Milk and blood samples were obtained from 20 cows selected with hyperketonemia on 10, 20, and 30 d postpartum. Compared with control cows, greater milk yield and lower somatic cell count were observed in GTP cows. The GTP group had lower concentrations of BHBA, free fatty acids, cholesterol, triglyceride, reactive oxygen species, malondialdehyde, and hydrogen peroxide, greater concentrations of glucose, lower activities of aspartate aminotransferase, alanine aminotransferase, and glutamyl transpeptidase, alongside greater activities of superoxide dismutase, glutathione peroxidase, and total antioxidant capacity. Additionally, GTP supplementation up-regulated concentrations of interleukin-6 and interleukin-10, but down-regulated concentrations of tumor necrosis factor-α, interleukin-1β, interleukin-2, interleukin-8, and interferon-γ in plasma. Greater concentrations of plasma immunoglobulin G were also detected in the GTP group. Overall, the data suggested that GTP supplementation from 15 d prepartum to 30 d postpartum improved the milk yield and health status in cows with hyperketonemia during early lactation.
Collapse
Affiliation(s)
- Yanfen Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Ying Feng
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
- College of Food Engineering & Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liwen Song
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Muyang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Hongyu Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Bao
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Guijie Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Chunhua Zhang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Jing Yi
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA
- Corresponding author.
| |
Collapse
|
29
|
Chromium yeast alleviates heat stress by improving antioxidant and immune function in Holstein mid-lactation dairy cows. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Gnott M, Vogel L, Kröger-Koch C, Dannenberger D, Tuchscherer A, Tröscher A, Trevisi E, Stefaniak T, Bajzert J, Starke A, Mielenz M, Bachmann L, Hammon HM. Changes in fatty acids in plasma and association with the inflammatory response in dairy cows abomasally infused with essential fatty acids and conjugated linoleic acid during late and early lactation. J Dairy Sci 2020; 103:11889-11910. [PMID: 32981719 DOI: 10.3168/jds.2020-18735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022]
Abstract
Dairy cows are exposed to increased inflammatory processes in the transition period from late pregnancy to early lactation. Essential fatty acids (EFA) and conjugated linoleic acid (CLA) are thought to modulate the inflammatory response in dairy cows. The present study investigated the effects of a combined EFA and CLA infusion on the fatty acid (FA) status in plasma lipids, and whether changes in the FA pattern were associated with the acute phase and inflammatory response during late pregnancy and early lactation. Rumen-cannulated Holstein cows (n = 40) were assigned from wk 9 antepartum to wk 9 postpartum to 1 of 4 treatment groups. Cows were abomasally supplemented with coconut oil (CTRL, 76 g/d), linseed and safflower oil (EFA, 78 g/d of linseed oil and 4 g/d of safflower oil; ratio of oils = 19.5:1; n-6:n-3 FA ratio = 1:3), Lutalin (CLA, 38 g/d; isomers cis-9,trans-11 and trans-10,cis-12; each 10 g/d), or both (EFA+CLA). Blood samples were taken to measure changes in FA in blood plasma on d -63, -42, 1, 28, and 56, and in plasma lipid fractions (cholesterol esters, free fatty acids, phospholipids, and triglycerides) on d -42, 1, and 56 relative to calving, and in erythrocyte membrane (EM) on d 56 after calving. Traits related to the acute phase response and inflammation were measured in blood throughout the study. Liver samples were obtained for biopsy on d -63, -21, 1, 28, and 63 relative to calving to measure the mRNA abundance of genes related to the inflammatory response. The concentrations of α-linolenic acid and n-3 FA metabolites increased in lipid fractions (especially phospholipids) and EM due to EFA supplementation with higher α-linolenic acid but lower n-3 metabolite concentrations in EFA+CLA than in EFA treatment only. Concentration of linoleic acid decreased in plasma fat toward calving and increased during early lactation in all groups. Concentration of plasma arachidonic acid was lower in EFA- than in non-EFA-treated groups in lipid fractions and EM. The cis-9,trans-11 CLA increased in all lipid fractions and EM after both CLA treatments. Plasma haptoglobin was lowered by EFA treatment before calving. Plasma bilirubin was lower in EFA and CLA than in CTRL at calving. Plasma concentration of IL-1β was higher in EFA than in CTRL and EFA+CLA at certain time points before and after calving. Plasma fibrinogen dropped faster in CLA than in EFA and EFA+CLA on d 14 postpartum. Plasma paraoxonase tended to be elevated by EFA treatment, and was higher in EFA+CLA than in CTRL on d 49. Hepatic mRNA abundance revealed time changes but no treatment effects with respect to the inflammatory response. Our data confirmed the enrichment of n-3 FA in EM by EFA treatment and the inhibition of n-3 FA desaturation by CLA treatment. The elevated n-3 FA status and reduced n-6:n-3 ratio by EFA treatment indicated a more distinct effect on the inflammatory response during the transition period than the single CLA treatment, and the combined EFA+CLA treatment caused minor additional changes on the anti-inflammatory response.
Collapse
Affiliation(s)
- M Gnott
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Vogel
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - D Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - T Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-375 Wroclaw, Poland
| | - J Bajzert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-375 Wroclaw, Poland
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - M Mielenz
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Bachmann
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
31
|
Quantitative mass spectrometry-based analysis of proteins related to cattle and their products - Focus on cows' milk beta-casein proteoforms. Methods 2020; 186:112-118. [PMID: 32956783 DOI: 10.1016/j.ymeth.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/29/2022] Open
Abstract
Modern mass spectrometers can accurately measure thousands of compounds in complex mixtures over a given liquid chromatograph method, depending on desired outcome and method duration. This stream of analytical chemistry has wide ranging application across food, pharma, environmental, forensics, clinical and research. With consistent pressure on both the ruminant production and product industries to face new and substantial challenges, liquid chromatography-mass spectrometry (LC-MS) is an ideal tool to identify, detect and quantify markers of breeding, production and adaption to support both research and industry to overcome these challenges. Herein, we provide a description of the theoretical basis and framework for LC-MS as a rapidly developing technique and highlight its application in measuring cattle and cattle product traits through protein quantitation with specific focus on beta-casein proteoforms.
Collapse
|
32
|
Lopreiato V, Vailati-Riboni M, Parys C, Fernandez C, Minuti A, Loor JJ. Methyl donor supply to heat stress-challenged polymorphonuclear leukocytes from lactating Holstein cows enhances 1-carbon metabolism, immune response, and cytoprotective gene network abundance. J Dairy Sci 2020; 103:10477-10493. [PMID: 32952025 DOI: 10.3168/jds.2020-18638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Mechanisms controlling immune function of dairy cows are dysregulated during heat stress (HS). Methyl donor supply-methionine (Met) and choline (Chol)-positively modulates innate immune function, particularly antioxidant systems of polymorphonuclear leukocytes (PMN). The objective of this study was to investigate the effect of Met and Chol supply in vitro on mRNA abundance of genes related to 1-carbon metabolism, inflammation, and immune function in short-term cultures of PMN isolated from mid-lactating Holstein cows in response to heat challenge. Blood PMN were isolated from 5 Holstein cows (153 ± 5 d postpartum, 34.63 ± 2.73 kg/d of milk production; mean ± SD). The PMN were incubated for 2 h at thermal-neutral (37°C; TN) or heat stress (42°C; HS) temperatures with 3 levels of Chol (0, 400, or 800 μg/mL) or 3 ratios of Lys:Met (Met; 3.6:1, 2.9:1, or 2.4:1). Supernatant concentrations of IL-1β, IL-6, and tumor necrosis factor-α were measured via bovine-specific ELISA. Fold-changes in mRNA abundance were calculated separately for Chol and Met treatments to obtain the fold-change response at 42°C (HS) relative to 37°C (TN). Data were subjected to ANOVA using PROC MIXED in SAS (SAS Institute Inc., Cary, NC). Orthogonal contrasts were used to determine the linear or quadratic effect of Met and Chol for mRNA fold-change and supernatant cytokine concentrations. Compared with PMN receiving 0 μg of Chol/mL, heat-stressed PMN supplemented with Chol at 400 or 800 μg/mL had greater fold-change in abundance of CBS, CSAD, GSS, GSR, and GPX1. Among genes associated with inflammation and immune function, fold-change in abundance of TLR2, TLR4, IRAK1, IL1B, and IL10 increased with 400 and 800 μg of Chol/mL compared with PMN receiving 0 μg of Chol/mL. Fold-change in abundance of SAHH decreased linearly at increasing levels of Met supply. A linear effect was detected for MPO, NFKB1, and SOD1 due to greater fold-change in abundance when Met was increased to reach Lys:Met ratios of 2.9:1 and 2.4:1. Although increasing Chol supply upregulated BAX, BCL2, and HSP70, increased Met supply only upregulated BAX. Under HS conditions, enhancing PMN supply of Chol to 400 μg/mL effectively increased fold-change in abundance of genes involved in antioxidant production (conferring cellular processes protection from free radicals and reactive oxygen species), inflammatory signaling, and innate immunity. Although similar outcomes were obtained with Met supply at Lys:Met ratios of 2.9:1 and 2.4:1, the response was less pronounced. Both Chol and Met supply enhanced the cytoprotective characteristics of PMN through upregulation of heat shock proteins. Overall, the modulatory effects detected in the present experiment highlight an opportunity to use Met and particularly Chol supplementation during thermal stress.
Collapse
Affiliation(s)
- V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang 63457, Germany
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
33
|
Pulina G, Tondo A, Danieli PP, Primi R, Matteo Crovetto G, Fantini A, Macciotta NPP, Atzori AS. How to manage cows yielding 20,000 kg of milk: technical challenges and environmental implications. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1805370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Giuseppe Pulina
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | | | - Pier Paolo Danieli
- Dipartimento di Scienze Agrarie e Forestali, University of Tuscia, Viterbo, Italy
| | - Riccardo Primi
- Dipartimento di Scienze Agrarie e Forestali, University of Tuscia, Viterbo, Italy
| | | | | | | | | |
Collapse
|
34
|
Mezzetti M, Bionaz M, Trevisi E. Interaction between inflammation and metabolism in periparturient dairy cows. J Anim Sci 2020; 98:S155-S174. [PMID: 32810244 DOI: 10.1093/jas/skaa134] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
35
|
Pascottini OB, Leroy JLMR, Opsomer G. Metabolic Stress in the Transition Period of Dairy Cows: Focusing on the Prepartum Period. Animals (Basel) 2020; 10:E1419. [PMID: 32823892 PMCID: PMC7460369 DOI: 10.3390/ani10081419] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
All modern, high-yielding dairy cows experience a certain degree of reduced insulin sensitivity, negative energy balance, and systemic inflammation during the transition period. Maladaptation to these changes may result in excessive fat mobilization, dysregulation of inflammation, immunosuppression, and, ultimately, metabolic or infectious disease in the postpartum period. Up to half of the clinical diseases in the lifespan of high-yielding dairy cows occur within 3 weeks of calving. Thus, the vast majority of prospective studies on transition dairy cows are focused on the postpartum period. However, predisposition to clinical disease and key (patho)physiological events such as a spontaneous reduction in feed intake, insulin resistance, fat mobilization, and systemic inflammation already occur in the prepartum period. This review focuses on metabolic, adaptive events occurring from drying off until calving in high-yielding cows and discusses determinants that may trigger (mal)adaptation to these events in the late prepartum period.
Collapse
Affiliation(s)
- Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
- Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Jo L. M. R. Leroy
- Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| |
Collapse
|
36
|
Bronzo V, Lopreiato V, Riva F, Amadori M, Curone G, Addis MF, Cremonesi P, Moroni P, Trevisi E, Castiglioni B. The Role of Innate Immune Response and Microbiome in Resilience of Dairy Cattle to Disease: The Mastitis Model. Animals (Basel) 2020; 10:E1397. [PMID: 32796642 PMCID: PMC7459693 DOI: 10.3390/ani10081397] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
Animal health is affected by many factors such as metabolic stress, the immune system, and epidemiological features that interconnect. The immune system has evolved along with the phylogenetic evolution as a highly refined sensing and response system, poised to react against diverse infectious and non-infectious stressors for better survival and adaptation. It is now known that high genetic merit for milk yield is correlated with a defective control of the inflammatory response, underlying the occurrence of several production diseases. This is evident in the mastitis model where high-yielding dairy cows show high disease prevalence of the mammary gland with reduced effectiveness of the innate immune system and poor control over the inflammatory response to microbial agents. There is growing evidence of epigenetic effects on innate immunity genes underlying the response to common microbial agents. The aforementioned agents, along with other non-infectious stressors, can give rise to abnormal activation of the innate immune system, underlying serious disease conditions, and affecting milk yield. Furthermore, the microbiome also plays a role in shaping immune functions and disease resistance as a whole. Accordingly, proper modulation of the microbiome can be pivotal to successful disease control strategies. These strategies can benefit from a fundamental re-appraisal of native cattle breeds as models of disease resistance based on successful coping of both infectious and non-infectious stressors.
Collapse
Affiliation(s)
- Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Vincenzo Lopreiato
- Dipartimento di Scienze animali, Alimentazione e Nutrizione, Facoltà di Agraria, Scienze Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.L.); (E.T.)
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Massimo Amadori
- Rete Nazionale di Immunologia Veterinaria, 25125 Brescia, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Paola Cremonesi
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), 26900 Lodi, Italy; (P.C.); (B.C.)
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA
| | - Erminio Trevisi
- Dipartimento di Scienze animali, Alimentazione e Nutrizione, Facoltà di Agraria, Scienze Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.L.); (E.T.)
| | - Bianca Castiglioni
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), 26900 Lodi, Italy; (P.C.); (B.C.)
| |
Collapse
|
37
|
Changes of plasma fibronectin and fibronectin-fibrin complexes in dams of stillborn dairy calves. Ir Vet J 2020; 73:17. [PMID: 32788999 PMCID: PMC7416392 DOI: 10.1186/s13620-020-00171-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/02/2020] [Indexed: 01/16/2023] Open
Abstract
Background Fibronectin (FN) is a large (450–500 kDa), multidomain and multifunctional glycoprotein existing in mammalian tissues. Some fibronectin (FN) molecular forms might be involved in biological processes occurring within the perinatal period, such as tissue remodeling, coagulation, and repair. Results In this study fibronectin (FN) and fibrinogen (Fb) concentrations and FN-fibrin complexes occurrence and its relative amounts with increasing high molecular masses were respectively determined by ELISA, heat precipitation, and SDS-agarose-immunoblotting methods. Plasma samples from three groups of dams with: 1) singleton stillborn calf without or with negligible autolytic changes in internal organs (DSBn), 2) singleton stillborn calf with advanced autolytic changes in internal organs (DSBa), 3) singleton live-born control calf (DC), and 4) a group of cows during mid to late lactation (LC) were analyzed. Maternal plasma FN concentration in the DSBn and DSBa groups was significantly lower than in the LC group. The plasma samples of DSBa showed a significantly lower FN concentration than in the DC group. Plasma Fb concentration was significantly higher in the DSBa and DSBn, than in the LC group. FN immunoblotting of the cow plasma samples revealed, besides an FN-dimer band, the presence of supramolecular FN-fibrin bands corresponding to FN-fibrin complexes with increasing molecular masses: up to 5 bands from 750 kDa to 1900 kDa in the DSBn and DSBa plasma samples, two bands of 750 and 1000 kDa in the DC group, and only the smallest one of 750 kDa in the LC group. Conclusions The observed low FN concentration and occurrence of supramolecular FN-fibrin complexes (1000 kDa and more) in the maternal plasma comparing to cows in lactation might have been associated with periparturient changes in tissues. The presence in maternal plasma of high-molecular FN-fibrin complexes (1300–1900 kDa) arouse the question if this is the consequence of calf perinatal mortality.
Collapse
|
38
|
Cabiddu A, Dattena M, Decandia M, Molle G, Lopreiato V, Minuti A, Trevisi E. The effect of parity number on the metabolism, inflammation, and oxidative status of dairy sheep during the transition period. J Dairy Sci 2020; 103:8564-8575. [PMID: 32684448 DOI: 10.3168/jds.2019-18114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/04/2020] [Indexed: 11/19/2022]
Abstract
The objective of this study was to evaluate whether dairy sheep during the transition period are affected by their parity numbers with regard to (1) body weight (BW), body condition score (BCS), and production performance (milk yield and composition) and (2) metabolic, inflammation, and stress biomarkers. For this purpose, 30 Sarda dairy ewes [15 primiparous (PRP) and 15 multiparous (MUP) ewes] were recruited on d 90 of gestation. Each group was homogeneous according to age, BW, and BCS. Sampling was carried out at -60, -30, -7, 0, +30, and +60 d from lambing. The MUP ewes showed a higher BW (46.32 vs. 38.71 kg) and larger litter size (1.45 vs. 1.06 kg) but a lower BCS (2.47 vs. 2.70) than the PRP ewes. Furthermore, the MUP ewes had lower concentrations of glucose (3.49 vs. 4.27 mol/L), cholesterol (1.63 vs. 1.81 mmol/L), free fatty acids (0.47 vs. 0.62 mmol/L), and triglycerides (0.22 vs. 0.25 mmol/L) compared with PRP ewes. With regard to inflammation and oxidative stress parameters, the PRP group had higher haptoglobin (0.48 vs. 0.18 g/L) and paraoxonase (187.90 vs. 152.11 U/L) activity than the MUP group. Overall, the MUP ewes were characterized by greater milk production performance and greater feed intake, resulting in a better energy balance, than the PRP ewes. Interestingly, these findings highlighted a different metabolic and inflammatory response over the transition period between PRP and MUP ewes, with the latter displaying lower concentrations of inflammatory-related biomarkers.
Collapse
Affiliation(s)
- A Cabiddu
- Agris Sardegna, Agricultural Research Agency of Sardinia Loc., Bonassai, 07040, Olmedo, Sassari, Italy.
| | - M Dattena
- Agris Sardegna, Agricultural Research Agency of Sardinia Loc., Bonassai, 07040, Olmedo, Sassari, Italy
| | - M Decandia
- Agris Sardegna, Agricultural Research Agency of Sardinia Loc., Bonassai, 07040, Olmedo, Sassari, Italy
| | - G Molle
- Agris Sardegna, Agricultural Research Agency of Sardinia Loc., Bonassai, 07040, Olmedo, Sassari, Italy
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
39
|
Mezzetti M, Minuti A, Bionaz M, Piccioli-Cappelli F, Trevisi E. Effects of Aloe arborescens Whole Plant Homogenate on Lipid Metabolism, Inflammatory Conditions and Liver Function of Dairy Cows during the Transition Period. Animals (Basel) 2020; 10:ani10050917. [PMID: 32466290 PMCID: PMC7278487 DOI: 10.3390/ani10050917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary This study highlights the positive effect of an Aloe arborescens Mill. whole plant homogenate on the liver and renal function of dairy cows during the peripartum period. Such positive effects could depend on both anti-hyperlipidemic and anti-inflammatory effects of Aloe that could have mitigated hepatic stresses that typically occur in early lactation. Our findings suggest Aloe arborescens supplementation to be an effective strategy to ameliorate adverse metabolic conditions in transition cows, indicating it as a preventive nutraceutical strategy against metabolic disorders. Abstract The anti-hyperlipidemic and anti-inflammatory effects exerted by Aloe on monogastric mammals suggest it as a potential strategy to address the tremendous metabolic alterations that affect dairy cows during their transition to calving. A group of 20 multiparous Italian Holstein dairy cows were housed in freestalls and allocated into two homogeneous groups to receive either 200 g/d of water (CTR) or 200 g/day of Aloe arborescens Mill. whole plant homogenate through a rumen tube (AAM) between −14 and 14 days from calving (DFC). From −14 to 35 DFC, the BCS, and milk yield were measured, and blood samples were collected to assess the hematochemical profile. Data underwent ANOVA testing using a mixed model for repeated measurements, including the treatment and time and their interactions as fixed effects. Compared to CTR cows, AAM cows had a less pronounced BCS loss in early lactation (p < 0.01), indicating less mobilization of body reserves. Compared to CTR cows, AAM cows had a lower plasma concentration of nonesterified fatty acids and beta hydroxybutyrate (p < 0.01 and = 0.01 respectively) that, paired with the lower butterfat content and fat/protein ratio in their milk (p = 0.03 and < 0.01 respectively), indicates that Aloe reduced the mobilization of body fats. AAM cows had a reduced concentration of myeloperoxidase in plasma and a lower SCC in milk compared to CTR cows (p = 0.02 for both), indicating an anti-inflammatory effect of Aloe. Furthermore, AAM cows had a lower plasma concentration of ceruloplasmin (p < 0.05) and higher plasma concentration of cholesterol, retinol, and paraoxonase compared to CTR cows (p < 0.01, < 0.01 and < 0.05 respectively), indicating Aloe was effective in mitigating the acute phase response in early lactation. Finally, AAM cows had lower plasma creatinine concentrations around calving (p < 0.05), a lower concentration of plasma bilirubin, and a higher concentration of plasma tocopherol compared to CTR cows (p = 0.01 for both). These data suggest Aloe has anti-hyperlipidemic and anti-inflammatory effects on transition dairy cows that could have ameliorated liver and kidney function disruption and increased the availability of body antioxidants in early lactation.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (A.M.); (F.P.-C.)
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (A.M.); (F.P.-C.)
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (A.M.); (F.P.-C.)
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (A.M.); (F.P.-C.)
- Correspondence: ; Tel.: +39-0523-599278; Fax: +39-0523-599276
| |
Collapse
|
40
|
Review: Pro-inflammatory cytokines and hypothalamic inflammation: implications for insufficient feed intake of transition dairy cows. Animal 2020; 14:s65-s77. [PMID: 32024569 PMCID: PMC7003138 DOI: 10.1017/s1751731119003124] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Improvements in feed intake of dairy cows entering the early lactation period potentially decrease the risk of metabolic disorders, but before developing approaches targeting the intake level, mechanisms controlling and dysregulating energy balance and feed intake need to be understood. This review focuses on different inflammatory pathways interfering with the neuroendocrine system regulating feed intake of periparturient dairy cows. Subacute inflammation in various peripheral organs often occurs shortly before or after calving and is associated with increased pro-inflammatory cytokine levels. These cytokines are released into the circulation and sensed by neurons located in the hypothalamus, the key brain region regulating energy balance, to signal reduction in feed intake. Besides these peripheral humoral signals, glia cells in the brain may produce pro-inflammatory cytokines independent of peripheral inflammation. Preliminary results show intensive microglia activation in early lactation, suggesting their involvement in hypothalamic inflammation and the control of feed intake of dairy cows. On the other hand, pro-inflammatory cytokine-induced activation of the vagus nerve transmits signalling to the brain, but this pathway seems not exclusively necessary to signal feed intake reduction. Yet, less studied in dairy cows so far, the endocannabinoid system links inflammation and the hypothalamic control of feed intake. Distinct endocannabinoids exert anti-inflammatory action but also stimulate the posttranslational cleavage of neuronal proopiomelanocortin towards β-endorphin, an orexigen promoting feed intake. Plasma endocannabinoid concentrations and hypothalamic β-endorphin levels increase from late pregnancy to early lactation, but less is known about the regulation of the hypothalamic endocannabinoid system during the periparturient period of dairy cows. Dietary fatty acids may modulate the formation of endocannabinoids, which opens new avenues to improve metabolic health and immune status of dairy cows.
Collapse
|
41
|
Zheng T, Moustafa Y, Finn C, Scott S, Haase CJ, Carpinelli NA, Osorio JS, McKinstry KK, Strutt TM, Huo Q. A rapid blood test to monitor immunity shift during pregnancy and potential application for animal health management. SENSORS INTERNATIONAL 2020; 1. [PMID: 35600205 PMCID: PMC9122116 DOI: 10.1016/j.sintl.2020.100009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The immune health of a farm animal can have significant impact on its overall health, welfare and productivity. One of the most vulnerable physiological states for both humans and animals is pregnancy. Many systemic changes correlate with the gravid state, including shifts in the immune system that may impact the ability to respond optimally to pathogen challenge. Because of this, it would be beneficial to be able to monitor the immune health of the pregnant animals closely. Recently, we developed a new nanoparticle-enabled rapid blood test that can detect ongoing immune responses from both laboratory and farm animals. Here, we report that this novel test reveals highly repeatable and acute changes associated with pregnancy and peri-parturition period in laboratory mice and in cattle. We hypothesize that the test score change reflects changes in the immune status of the gravid females related to the humoral immune response. The test is easy to conduct, of low cost, with results obtained in less than 20 min. This rapid test could be potentially used as an onsite test in local farms and small clinics for animal health management.
Collapse
Affiliation(s)
- Tianyu Zheng
- Nano Discovery Inc., 1060 Woodcock Road Suite 131, Orlando, FL, 32803, USA
| | - Yasmine Moustafa
- Department of Chemistry and NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL, 32826, USA
| | - Caroline Finn
- Burnett School of Biomedical Science, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Sydney Scott
- Department of Chemistry and NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL, 32826, USA
| | - Christopher J Haase
- CJ Haase Veterinary & Immunological Service, 407 Prairie St, Reeseville, WI, 53579, USA
| | - Nathaly A Carpinelli
- Dairy and Food Science Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Johan S Osorio
- Dairy and Food Science Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Karl K McKinstry
- Burnett School of Biomedical Science, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Tara M Strutt
- Burnett School of Biomedical Science, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Qun Huo
- Department of Chemistry and NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL, 32826, USA
| |
Collapse
|
42
|
Albornoz RI, Sordillo LM, Contreras GA, Nelli R, Mamedova LK, Bradford BJ, Allen MS. Diet starch concentration and starch fermentability affect markers of inflammatory response and oxidant status in dairy cows during the early postpartum period. J Dairy Sci 2020; 103:352-367. [PMID: 31733858 DOI: 10.3168/jds.2019-16398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
Our objective was to evaluate the effects of diet starch concentration and starch fermentability on inflammatory response markers and oxidant status during the early postpartum (PP) period and its carryover effects. Fifty-two multiparous Holstein cows were used in a completely randomized block design experiment with a 2 × 2 factorial arrangement of treatments. Treatments were starch concentration and starch fermentability of diets; diets were formulated to 22% (low starch, LS) or 28% (high starch, HS) starch with dry-ground corn (DGC) or high-moisture corn (HMC) as the primary starch source. Treatments were fed from 1 to 23 d PP and then switched to a common diet until 72 d PP to measure carryover (CO) effects. Treatment period (TP) diets were formulated to 22% forage neutral detergent fiber and 17% crude protein. The diet for the CO period was formulated to 20% forage neutral detergent fiber, 17% crude protein, and 29% starch. Coccygeal blood was collected once a week during the TP and every second week during the CO period. Liver and adipose tissue biopsies were performed within 2 d PP and at 20 ± 3 d PP. Blood plasma was analyzed for concentrations of albumin, haptoglobin, reactive oxygen and nitrogen species (RONS), and antioxidant potential (AOP), with lipopolysaccharide-binding protein (LBP) and TNFα evaluated during the TP only. Oxidative stress index (OSi) was calculated as RONS/AOP. Abundance of mRNA from genes involved in inflammation and glucose metabolism in liver and genes involved in lipogenesis in adipose tissue were determined. Data were analyzed separately for the TP and CO periods. During the TP, treatments interacted to affect concentrations of TNFα, haptoglobin, and LBP, with HMC increasing their concentrations for HS (9.38 vs. 7.45 pg/mL, 0.45 vs. 0.37 mg/mL, and 5.94 vs. 4.48 μg/mL, respectively) and decreasing their concentrations for LS (4.76 vs. 12.9 pg/mL, 0.27 vs. 0.41 mg/mL, and 4.30 vs. 5.87 μg/mL, respectively) compared with DGC. Effects of treatments diminished over time for LBP and haptoglobin with no differences by the end of the TP and no main CO effects of treatment for haptoglobin. The opposite treatment interaction was observed for albumin, with HMC tending to decrease its concentration for HS (3.24 vs. 3.34 g/dL) and increase its concentration for LS (3.35 vs. 3.29 g/dL) compared with DGC, with no carryover effect. Feeding DGC increased the OSi during the first week of the TP compared with HMC, with this effect diminishing over time; during the CO period HMC increased OSi for HS and decreased it for LS compared with DGC, with this effect diminishing toward the end of CO. Feeding HMC increased the abundance of genes associated with inflammation and gluconeogenesis in liver for HS and decreased it for LS compared with DGC. Feeding HS increased the mRNA abundance of genes associated with adipose tissue lipogenesis compared with LS. Results during the TP suggest that feeding LS-DGC and HS-HMC elicited a more pronounced inflammatory response and induced an upregulation of genes associated with inflammation and gluconeogenesis in liver, without effects on OSi, but effects on plasma markers of inflammation diminished during the CO period.
Collapse
Affiliation(s)
- R I Albornoz
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - G A Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - R Nelli
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - L K Mamedova
- Department of Animal Science and Industry, Kansas State University, Manhattan 66506
| | - B J Bradford
- Department of Animal Science and Industry, Kansas State University, Manhattan 66506
| | - M S Allen
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
43
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Trevisi E. Inflammatory status and metabolic changes at dry-off in high-yield dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1691472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
44
|
Grewal S, Aggarwal A, Alhussien MN. Integrated effects of season and parturition-associated stress on the inflammatory response and metabolic status in Sahiwal (Bos Indicus) cows. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1627657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sonika Grewal
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Anjali Aggarwal
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
45
|
Haubold S, Kröger-Koch C, Starke A, Tuchscherer A, Tröscher A, Kienberger H, Rychlik M, Bernabucci U, Trevisi E, Hammon HM. Effects of abomasal infusion of essential fatty acids and conjugated linoleic acid on performance and fatty acid, antioxidative, and inflammatory status in dairy cows. J Dairy Sci 2019; 103:972-991. [PMID: 31704022 DOI: 10.3168/jds.2019-17135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022]
Abstract
The objective of this study was to test the effects of essential fatty acids (EFA), particularly α-linolenic acid, and conjugated linoleic acid (CLA) supplementation on fatty acid (FA) composition, performance, and systemic and hepatic antioxidative and inflammatory responses in dairy cows. Four cows (126 ± 4 d in milk) were investigated in a 4 × 4 Latin square and were abomasally infused with 1 of the following for 6 wk: (1) coconut oil (control treatment, CTRL; 38.3 g/d; providing saturated FA), (2) linseed and safflower oil (EFA treatment; 39.1 and 1.6 g/d, respectively; providing mainly α-linolenic acid), (3) Lutalin (BASF, Ludwigshafen, Germany; CLA treatment; cis-9,trans-11 and trans-10,cis-12 CLA, 4.6 g/d each), (4) or EFA+CLA. The initial dosage was doubled every 2 wk, resulting in 3 dosages (dosage 1, 2, and 3). Cows were fed a corn silage-based total mixed ration with a high n-6/n-3 FA ratio. Dry matter intake and milk yield were recorded daily, and milk composition was measured weekly. The FA compositions of milk fat and blood plasma were analyzed at wk 0, 2, 4, and 6. The plasma concentration and hepatic mRNA abundance of parameters linked to the antioxidative and inflammatory response were analyzed at wk 0 and 6 of each treatment period. Infused FA increased in blood plasma and milk of the respective treatment groups in a dose-dependent manner. The n-6/n-3 FA ratio in milk fat was higher in CTRL and CLA than in EFA and EFA+CLA. The sum of FA <C16 in milk fat decreased in CLA and EFA+CLA in a dosage-dependent manner. Energy-corrected milk and milk fat decreased in CLA and EFA+CLA in a dosage-dependent manner and were higher in EFA and CTRL than in CLA at dosages 2 and 3. Energy balance tended to be highest in CLA cows. Milk protein content was lower in CLA and EFA+CLA than in CTRL. Milk urea concentration decreased in CLA and EFA+CLA in a dosage-dependent manner and was lower in CLA and EFA+CLA than in EFA and CTRL at dosages 2 and 3. Milk citrate concentration increased in CLA in a dosage-dependent manner and was higher in CLA and EFA+CLA than in EFA and CTRL. Glutathione peroxidase activity in blood plasma was lower in CTRL than in EFA, and plasma concentration of β-carotene increased in EFA and EFA+CLA with dosage. Increased milk citrate pointed at reduced de novo FA synthesis and a better antioxidative status in milk due to CLA treatment. Supplementation with CLA may also affect milk protein synthesis, but EFA and CLA treatment did not influence the inflammatory status in a consistent manner in mid-lactating cows.
Collapse
Affiliation(s)
- S Haubold
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Kröger-Koch
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - A Tuchscherer
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - H Kienberger
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, 85354 Freising, Germany
| | - M Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - U Bernabucci
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
46
|
Minuti A, Jahan N, Lopreiato V, Piccioli-Cappelli F, Bomba L, Capomaccio S, Loor JJ, Ajmone-Marsan P, Trevisi E. Evaluation of circulating leukocyte transcriptome and its relationship with immune function and blood markers in dairy cows during the transition period. Funct Integr Genomics 2019; 20:293-305. [DOI: 10.1007/s10142-019-00720-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 11/28/2022]
|
47
|
Paiano RB, Lahr FC, Silva LSB, Marques DS, Ferreira CA, Birgel DB, Bisinotto RS, Birgel Junior EH. Haematological and biochemical profiles during the puerperium in dairy cows - Short communication. Acta Vet Hung 2019; 67:377-384. [PMID: 31549539 DOI: 10.1556/004.2019.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The main aim of the current study was to assess the prevalence of anaemia in Holstein dairy cows during the puerperium, and the haematological and biochemical profile of dairy cows with and without anaemia. The study was conducted in seven dairy herds in São Paulo State, Brazil. The evaluated sample comprised a total of 336 Holstein cows. Blood samples were collected at postpartum day 25 ± 3. Haematological analysis included white blood cell, red blood cell and platelet count, haematocrit value, haemoglobin concentration, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration. The biochemical profile encompassed cholesterol, non-esterified fatty acids, β-hydroxybutyrate, albumin, globulin, fibrinogen, calcium and total bilirubin concentrations. The prevalence of anaemia was 16.3% in all herds, and this was not affected by clinical diseases, milk production, parity and body score condition. Moreover, anaemic cows had lower red blood cell count, haematocrit, haemoglobin, serum cholesterol and calcium concentrations and higher white blood cell and platelet counts, mean corpuscular haemoglobin, red cell distribution width, non-esterified fatty acids, β-hydroxybutyrate, fibrinogen and globulin concentrations when compared with non-anaemic cows. The results indicate changes in energy balance and an inflammatory process in anaemic cows.
Collapse
Affiliation(s)
- Renan B. Paiano
- 1Department of Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Sciences, University of São Paulo, 05508270 São Paulo, Brazil
| | - Fábio C. Lahr
- 2Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Lucas S. B. Silva
- 2Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Diego S. Marques
- 2Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | - Daniela B. Birgel
- 2Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Rafael S. Bisinotto
- 4Department of Animal Science, Florida University, Gainesville, Florida, USA
| | - Eduardo H. Birgel Junior
- 2Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
48
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Gabai G, Trevisi E. Administration of an Immune Stimulant during the Transition Period Improved Lipid Metabolism and Rumination without Affecting Inflammatory Status. Animals (Basel) 2019; 9:ani9090619. [PMID: 31466285 PMCID: PMC6770279 DOI: 10.3390/ani9090619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Immune stimulants are widely used to address immune dysfunctions that occur in transitioning dairy cows, reducing the likelihood they will develop infectious diseases. This study elucidates the effectiveness of an immune stimulant in promoting rumination recovery, reducing lipid mobilization and ketogenesis, and affecting the levels of circulating antioxidant systems in early lactation. These findings highlight the stimulant’s potential effect in treating metabolic disorders of the transition period in dairy cows. Abstract Omnigen-AF (OAF) increases leukocyte functions in immunosuppressed animal models and reduces incidence of infectious diseases in early lactating dairy cows, although its mode of action is still unclear. This study aims to provide a wider perspective of the metabolic effect of OAF to test its potential as a strategy to address metabolic disorders of the transition period. A group of 10 Holstein dairy cows were divided into 2 groups: The treated group (IMS; 5 cows) received 32.5 g of OAF twice a day (65 g d−1) as top-dress in the morning and afternoon feeds from −55 to 42 days from calving (DFC), whereas the control group (CTR; 5 cows) received no supplementation. From −62 to 42 DFC, body condition score, body weight, dry matter intake, rumination time and milk yield were measured; blood samples were collected weekly to assess a wide hematochemical profile and to test white blood cell functions by ex-vivo challenge assays. At 30 DFC, rumen fluid was collected and analyzed for pH, volatile fatty acids composition, urea nitrogen, and lactate contents. Data were submitted to ANOVA using a mixed model for repeated measures, including treatment, time, and their interaction as fixed effects. OAF decreased blood nonesterified fatty acids and beta hydroxybutyrate concentrations and increased rumination time in early lactation. Leukocytes from IMS cows had lower lactate production and lower glucose consumption after ex-vivo stimulation. OAF did not reduce the acute phase response indicators and reduced the blood concentrations of albumin and antioxidants after calving, suggesting impairment of hepatic functions related to protein synthesis and antioxidant management. Nevertheless, the lack of effect on bilirubin and liver enzymes refutes the possibility of severe liver damage occurring with OAF supplementation. Positive effects in reducing mobilization of body fats and ketogenesis and in increasing rumination time after calving suggest OAF effectiveness in preventing metabolic disorders of the transition period.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro (PD), Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
49
|
Mezzetti M, Piccioli-Cappelli F, Bani P, Amadori M, Calamari L, Minuti A, Loor JJ, Bionaz M, Trevisi E. Monensin controlled-release capsule administered in late-pregnancy differentially affects rumination patterns, metabolic status, and cheese-making properties of the milk in primiparous and multiparous cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1645623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Bani
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Massimo Amadori
- Laboratorio di Immunologia Cellulare, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Luigi Calamari
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
50
|
Pascottini OB, Carvalho MR, Van Schyndel SJ, Ticiani E, Spricigo JW, Mamedova LK, Ribeiro ES, LeBlanc SJ. Feed restriction to induce and meloxicam to mitigate potential systemic inflammation in dairy cows before calving. J Dairy Sci 2019; 102:9285-9297. [PMID: 31400891 DOI: 10.3168/jds.2019-16558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023]
Abstract
Most dairy cows experience a transient decrease in feed intake in the 1 to 2 wk before calving, which has been associated with systemic inflammation (SI), indicated by increased blood haptoglobin (Hp) concentration. We aimed to characterize the association between prepartum decrease in feed intake and the onset of SI and, if present, the ability of meloxicam (MEL), a non-steroidal anti-inflammatory drug, to mitigate SI. Holstein cows (n = 45) were assigned to control (n = 13), feed restriction (FR) untreated (FR-U; n = 15), and FR treated with MEL (FR-T; n = 17) groups. Daily feed intake was measured from -22 d from expected parturition until 35 d postpartum. Control cows were fed ad libitum, whereas FR-U and FR-T cows were reduced to 60% of their average intake for 4 consecutive days (-15 to -12 d from expected calving). The FR-T cows received MEL (0.5 mg/kg of body weight) once daily for 4 consecutive days (-13 to -10 d from expected calving). Blood samples were collected -22, -15, -14, -13, -12, -10, -7, -5, -3, 0, 1, 3, 5, 7, 15, 22, and 35 d relative to calving to measure serum concentrations of total calcium, total protein, albumin, globulin, cholesterol, urea, glucose, gamma-glutamyl transferase, aspartate aminotransferase, glutamate dehydrogenase, β-hydroxybutyrate, nonesterified fatty acids, Hp, and insulin-like growth factor-1. Serum concentrations of lipopolysaccharide-binding protein were measured -22, -15, -14, -13, -12, and -10 d from expected calving. Simplified glucose tolerance tests were performed on -15, -12, -5, 1, and 5 d relative to calving. Mixed linear regression models were used to assess the effects of FR and MEL on each metabolite. The interaction between treatment group and blood sampling day was forced into each model. All models accounted for body condition score, parity, and the cow as a random effect. Nonesterified fatty acids concentrations in both the FR-U and FR-T groups significantly increased from the second until the last day of FR. Feed restriction increased urea concentrations compared with the control group on -14 d but decreased urea concentrations on -10 d from expected calving. Control cows had greater β-hydroxybutyrate concentrations compared with FR cows on 15, 21, and 35 d postpartum. For all other metabolites, no differences were found. This model of FR produced substantial fat mobilization but based on serum Hp and lipopolysaccharide-binding protein concentrations did not generate measurable SI; therefore, we were unable to evaluate the ability of MEL to mitigate SI.
Collapse
Affiliation(s)
- O Bogado Pascottini
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - M R Carvalho
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - S J Van Schyndel
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - E Ticiani
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J W Spricigo
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - S J LeBlanc
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|