1
|
Ramezan M, Arzhang P, Shin AC. Milk-derived bioactive peptides in insulin resistance and type 2 diabetes. J Nutr Biochem 2025:109849. [PMID: 39870329 DOI: 10.1016/j.jnutbio.2025.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Diabetes is a global health issue affecting over 6% of the world and 11 % of the US population. It is closely linked to insulin resistance, a pivotal factor in Type 2 diabetes development. This review explores a promising avenue for addressing insulin resistance through the lens of Milk-Derived Bioactive Peptides (MBAPs). Taken from casein or whey fractions of various milks, MBAPs exhibit diverse health-promoting properties. Specific interactions between these peptides and enzymes involved in glucose digestion and metabolism have been examined, leading to the identification of some key peptides exerting the effects. This review emphasizes the positive impact of MBAPs on glycemic control through various mechanisms. Different cell lines have been used to investigate MBAPs' effects on insulin signaling, inflammation, and oxidative stress. Preclinical in vivo studies have also shown that MBAPs lower glucose, stimulate insulin, and reduce inflammation. Human trials further substantiate these findings and suggest the potential utility of milk protein hydrolysates containing MBAPs in individuals with insulin resistance or T2D to improve insulin action and glucose homeostasis.
Collapse
Affiliation(s)
- Marjan Ramezan
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Pishva Arzhang
- Qods Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Andrew C Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
2
|
Dimitrova L, Mileva M, Georgieva A, Tzvetanova E, Popova M, Bankova V, Najdenski H. Redox-Modulating Capacity and Effect of Ethyl Acetate Roots and Aerial Parts Extracts from Geum urbanum L. on the Phenotype Inhibition of the Pseudomonas aeruginosa Las/RhI Quorum Sensing System. PLANTS (BASEL, SWITZERLAND) 2025; 14:213. [PMID: 39861566 PMCID: PMC11768107 DOI: 10.3390/plants14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance. Therefore, new preparations of natural origin are sought, such as plant extracts, which are phytocomplexes and to which it is practically impossible to develop resistance. Geum urbanum L. (Rosacea) is a perennial herb known for many biological properties. This study aimed to investigate the redox-modulating capacity and effect of ethyl acetate (EtOAc) extracts from roots (EtOAcR) and aerial parts (EtOAcAP) of the Bulgarian plant on the phenotype inhibition of the P. aeruginosa Las/RhI quorum sensing (QS) system, which primarily determines drug resistance in pathogenic bacteria, including biofilm formation, motility, and pigment production. We performed QS assays to account for the effects of the two EtOAc extracts. At sub-minimal inhibitory concentrations (sub-MICs) ranging from 1.56 to 6.25 mg/mL, the biofilm formation was inhibited 85% and 84% by EtOAcR and 62% and 39% by EtOAcAP extracts, respectively. At the same sub-MICs, the pyocyanin synthesis was inhibited by 17-27% after treatment with EtOAcAP and 26-30% with EtOAcR extracts. The motility was fully inhibited at 3.12 mg/mL and 6.25 mg/mL (sub-MICs). We investigated the inhibitory potential of lasI, lasR, rhiI, and rhiR gene expression in biofilm and pyocyanin probes with the PCR method. Interestingly, the genes were inhibited by two extracts at 3.12 mg/mL and 6.25 mg/mL. Antiradical studies, assessed by DPPH, CUPRAC, and ABTS radical scavenging methods and superoxide anion inhibition showed that EtOAcAP extract has effective antioxidant capacity. These results could help in the development of new phytocomplexes that could be applied as biocontrol agents to inhibit the phenotype of the P. aeruginosa QS system and other antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Lyudmila Dimitrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
| | - Almira Georgieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Elina Tzvetanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (V.B.)
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (V.B.)
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
| |
Collapse
|
3
|
Nguyen TAM, Phan HVT, Dao NVT, Nguyen TTV, Dong PSN, Dang LTC, Le HTT, Nguyen VK, Hoang LTTT. A systematic review on ethnobotany, phytochemistry, and pharmacology of Ehretia acuminata R. Br. (Boraginaceae), a medicinal plant. Nat Prod Res 2024:1-19. [PMID: 39731579 DOI: 10.1080/14786419.2024.2446704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
For the first time, critical review on E. acuminata R. Br. (Boraginaceae) is established. A glance over its botanical description, geographic distribution, subspecies classification and traditional uses revealed its application in medical and non-medical purposes by ethnic communities in Asia and Australia. Numerous classes of phytoconstituents have been screened and isolated from E. acuminata parts, including phenolics, alkaloids, terpenoids, glycosides, saponins, tannins, lignans, steroids, volatile oils, and fatty acid esters. Crude extracts prepared from different parts were acclaimed with considerable to significant performance in anti-oxidant, anti-inflammatory, anti-diabetic, antimicrobial, antiviral, analgesic effect, muscle relaxant, antispasmodic effects, hepatoprotective, wound healing, and photoprotective activities. However, no report linking these pharmacological activities with their isolated phytochemicals can be found which is required to authenticate its role in traditional medicine. Accordingly, the review provides a comprehensive and categorised overview towards current research of E. acuminata R. Br., their limitations, and possible perspectives for future research.
Collapse
Affiliation(s)
- Thi-Anh-Minh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Ngoc-Van-Trang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Thi-Thao-Van Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam
| | - Phan-Si-Nguyen Dong
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Lam-Tuan-Cuong Dang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huong-Thi-Thu Le
- Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Le-Thuy-Thuy-Trang Hoang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Kim GJ, Jang Y, Kwon KT, Kim JW, Kang SIL, Ko HC, Lee JY, Apostolidis E, Kwon YI. Jeju Citrus ( Citrus unshiu) Leaf Extract and Hesperidin Inhibit Small Intestinal α-Glucosidase Activities In Vitro and Postprandial Hyperglycemia in Animal Model. Int J Mol Sci 2024; 25:13721. [PMID: 39769483 PMCID: PMC11679778 DOI: 10.3390/ijms252413721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Citrus fruits are widely distributed in East Asia, and tea made from citrus peels has demonstrated health benefits, such as a reduction in fever, inflammation, and high blood pressure. However, citrus leaves have not been evaluated extensively for their possible health benefits. In this study, the α-glucosidase-inhibitory activity of Jeju citrus hot-water (CW) and ethyl alcohol (CE) extracts, along with hesperidin (HP) (a bioactive compound in citrus leaf extracts), was investigated, and furthermore, their effect on postprandial blood glucose reduction in an animal model was determined. The hesperidin contents of CW and CE were 15.80 ± 0.18 and 39.17 ± 0.07 mg/g-extract, respectively. Hesperidin inhibited α-glucosidase (IC50, 4.39), sucrase (0.50), and CE (2.62) and demonstrated higher α-glucosidase inhibitory activity when compared to CW (4.99 mg/mL). When using an SD rat model, during sucrose and starch loading tests with CE (p < 0.01) and HP (p < 0.01), a significant postprandial blood glucose reduction effect was observed when compared to the control. The maximum blood glucose levels (Cmax) of the CE administration group decreased by about 15% (from 229.3 ± 14.5 to 194.0 ± 7.4, p < 0.01) and 11% (from 225.1 ± 13.8 to 201.1 ± 7.2 hr·mg/dL, p < 0.05) in the sucrose and starch loading tests, respectively. Our findings suggest that citrus leaf extracts standardized to hesperidin may reduce postprandial blood glucose levels through the observed inhibitory effect against sucrase, which results in delayed carbohydrate absorption. Our findings provide a biochemical rationale for further evaluating the benefits of citrus leaves.
Collapse
Affiliation(s)
- Gi-Jung Kim
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Republic of Korea; (G.-J.K.); (Y.J.); (K.-T.K.); (J.-Y.L.)
| | - Yelim Jang
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Republic of Korea; (G.-J.K.); (Y.J.); (K.-T.K.); (J.-Y.L.)
| | - Kyoung-Tae Kwon
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Republic of Korea; (G.-J.K.); (Y.J.); (K.-T.K.); (J.-Y.L.)
| | - Jae-Won Kim
- Jeju Institute of Korean Medicine, Jujusi, Juju 63309, Republic of Korea; (J.-W.K.); (S.-I.K.); (H.-C.K.)
| | - Seong-IL Kang
- Jeju Institute of Korean Medicine, Jujusi, Juju 63309, Republic of Korea; (J.-W.K.); (S.-I.K.); (H.-C.K.)
| | - Hee-Chul Ko
- Jeju Institute of Korean Medicine, Jujusi, Juju 63309, Republic of Korea; (J.-W.K.); (S.-I.K.); (H.-C.K.)
| | - Jung-Yun Lee
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Republic of Korea; (G.-J.K.); (Y.J.); (K.-T.K.); (J.-Y.L.)
| | - Emmanouil Apostolidis
- Department Chemistry and Food Science, Framingham State University, Framingham, MA 01701, USA
| | - Young-In Kwon
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Republic of Korea; (G.-J.K.); (Y.J.); (K.-T.K.); (J.-Y.L.)
| |
Collapse
|
5
|
Yoon WJ, Min HJ, Cho HD, Kim HG, Park WL, Kim DH, Tachibana H, Seo KI. Bioactivity Evaluation and Phytochemical Characterization of Euonymus alatus (Thunb.) Siebold Leaf Extract. Biomedicines 2024; 12:2928. [PMID: 39767833 PMCID: PMC11673389 DOI: 10.3390/biomedicines12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Euonymus alatus (E. alatus) has traditionally been used for medicinal purposes, and its leaves are considered edible. While E. alatus is known for its diverse biological activities, the antioxidant, antidiabetic, and anticancer effects of its leaves extracted using different solvents have not been thoroughly investigated. METHODS This study examined the antioxidant, antidiabetic, anticancer, and life-prolonging effects of Euonymus alatus (E. alatus) leaf extract. RESULTS The phytochemical analysis showed that the ethanol extract contained the highest levels of polyphenols (347.2 mg/mL) and flavonoids (317.7 mg/mL) compared to the water and methanol extracts. In addition, specific phenolics, such as rutin, ellagic acid, and quercetin, were found in the ethanol extract. Antioxidant assays showed that the ethanol extract exhibited superior DPPH, ABTS radical, and H2O2-scavenging activities, as well as reducing power. In addition, the ethanol extract displayed strong α-glucosidase inhibitory activity in a dose-dependent manner. In cancer cell studies, the ethanol extract selectively inhibited the proliferation of MDA-MB-231 (breast) and LNCaP (prostate) cancer cells without affecting normal cells. Apoptosis induction was confirmed by nuclear condensation and increased caspase-3 activity. Furthermore, treatment with 30 mg/kg/day of the extract extended the lifespan of the tumor-bearing mice to 50 days, with no fatalities, indicating a dose-dependent protective effect. CONCLUSIONS E. alatus leaf ethanol extract has potential as an antioxidant, antidiabetic, anticancer, and life-prolonging agent.
Collapse
Affiliation(s)
- Won-Joo Yoon
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; (W.-J.Y.); (H.T.)
| | - Hye-Ji Min
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea; (H.-J.M.); (H.-G.K.); (W.-L.P.)
| | - Hyun-Dong Cho
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Hwi-Gon Kim
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea; (H.-J.M.); (H.-G.K.); (W.-L.P.)
| | - Wool-Lim Park
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea; (H.-J.M.); (H.-G.K.); (W.-L.P.)
| | - Du-Hyun Kim
- Department of Life Resources Industry, Dong-A University, Busan 49315, Republic of Korea;
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; (W.-J.Y.); (H.T.)
| | - Kwon-Il Seo
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea; (H.-J.M.); (H.-G.K.); (W.-L.P.)
| |
Collapse
|
6
|
Shah M, Ullah S, Halim SA, Khan A, Gibbons S, Csuk R, Murad W, Rehman NU, Al-Harrasi A. Two New α-Glucosidase Inhibitors from Haplophyllum tuberculatum: Inhibition Kinetics and Mechanistic Insights Through in Vitro and in Silico Approaches. Chem Biodivers 2024:e202402235. [PMID: 39715027 DOI: 10.1002/cbdv.202402235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Diabetes is a multifactorial global health disorder marked by unusually high plasma glucose levels, which can lead to serious consequences including diabetic neuropathy, kidney damage, retinopathy, and cardiovascular disease. One effective therapy approach for reducing hyperglycemia associated with type 2 diabetes is to target α-glucosidase, enzymes that catalyze starch breakdown in the intestine. In the current study, two new (1, 2) and nine known (3-11) compounds were isolated from the rutaceous plant Haplophyllum tuberculatum and characterized by extensive nuclear magnetic resonance spectroscopic techniques and high-resolution electrospray ionization mass spectrometry. After structural elucidation, nine compounds were evaluated for their ability to inhibit α-glucosidase, a target for the treatment of type-2 diabetes. Among them, three compounds (7, 5, and 2) exhibited notable inhibition with half-maximal inhibitory concentration (IC50) values of 3.42 ± 0.12, 5.79 ± 0.28, and 6.75 ± 1.18 µM, respectively, while the remaining six compounds (1, 3, 4, 6, 8, and 9) had a moderate activity with IC50 values ranging from 12.14 ± 0.35 to 24.60 ± 0.57 µM, compared to the standard drug acarbose (IC50 = 875.75 ± 1.24 µM). A kinetic study of compounds 5 and 7 exhibited the competitive type of inhibition with Ki values of 4.82 ± 0.0036 and 3.92 ± 0.0062 µM, respectively. Furthermore, a structure-based prediction of the compounds' binding mode suggested that these inhibitors fitted exceptionally well within the active site of the target enzyme, α-glucosidase, forming multiple hydrogen and hydrophobic interactions with its active site residues. In conclusion, compounds with potent α-glucosidase inhibitory activity are abundant in nature and can be explored and further developed for treating diabetes mellitus.
Collapse
Affiliation(s)
- Muddaser Shah
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Saeed Ullah
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ajmal Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simon Gibbons
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - René Csuk
- Organic Chemistry, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
7
|
Assaggaf HM. Investigating the antidiabetic properties of Apium graveolens extract and its inhibition of enzymes associated with hyperglycemia. Int J Biol Macromol 2024; 290:138873. [PMID: 39706415 DOI: 10.1016/j.ijbiomac.2024.138873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Apium graveolens Linn., also known as celery, is a member of the Apiaceae family and has shown promising pharmacological properties, including diabetes. Indeed, the current investigation aimed to investigate the potential inhibitory effects of A. graveolens seed aqueous extract on the digestive enzymes involved in carbohydrate metabolism and its efficiency in reducing blood sugar levels in diabetic mice induced by streptozotocin. METHODS I administered oral doses of an aqueous extract from A. graveolens seeds to both normal and diabetic animals to evaluate acute toxicity and its potential antidiabetic effects. I observed the glycemia and body weight of the animals for four weeks. In vitro tests were also done to see how the seed extract affected the activities of α-amylase and α-glucosidase. Following administration of the extract, diabetic mice showed a notable reduction in blood glucose concentration. This reduction was similar to the standard metformin treatment after two and four weeks. Moreover, A. graveolens demonstrated significant inhibitory effects on α-amylase and α-glucosidase activity, with IC50 values of 840.15 ± 0.02 and 114.81 ± 0.05, respectively. At 500 mg/kg/day, histological analysis indicated degenerative alterations in pancreatic islet cells. These results indicate that the aqueous extract derived from the seeds of A. graveolens possesses promising antihyperglycemic properties in diabetic mice, along with notable inhibition of α-amylase and α-glucosidase activity. Further investigation is needed to characterize the active compounds present in A. graveolens seeds.
Collapse
Affiliation(s)
- Hamza Mohammad Assaggaf
- Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| |
Collapse
|
8
|
Gautam AR, Benjakul S, Kadam D, Tiwari B, Singh A. Enhanced Antioxidant and Digestive Enzyme Inhibitory Activities of Pacific White Shrimp Shell Protein Hydrolysates via Conjugation with Polyphenol: Characterization and Application in Surimi Gel. Foods 2024; 13:4022. [PMID: 39766965 PMCID: PMC11728318 DOI: 10.3390/foods13244022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Pacific white shrimp shell protein hydrolysates (SSPHs) produced using alcalase (UAH) and papain (UPH), and polyphenols (PPNs) conjugates were prepared using variable concentrations (0.5-3% w/v) of different polyphenols (EGCG, catechin, and gallic acid). When 2% (v/v) of a redox pair was used for conjugation, 0.5% (w/v) of PPNs resulted in the highest conjugation efficiency (CE), regardless of the polyphenol types. However, CE decreased further with increasing levels of PPNs (p < 0.05). SSPHs at 2% retained the highest CE when combined with the selected PPN and redox pair concentrations (p < 0.05). FTIR and 1H-NMR analysis confirmed the successful conjugation of PPNs with the SSPHs. Among all the conjugates, EGCG conjugated with UAH (A-E) or UPH (P-E) exhibited the highest DPPH/ABTS radical scavenging, and metal chelating activities, respectively. The highest FRAP activity was noticed for A-E conjugate followed by UAH-catechin (A-C) and UPH-catechin (P-C) conjugates. The A-C sample (6 mg/mL) demonstrated the strongest inhibition efficiency against α-amylase, α-glucosidase, and pancreatic lipase (89.29, 81.23, and 80.69%, respectively) than other conjugates (p < 0.05). When A-C conjugate was added into surimi gels prepared from Indian mackerel (IM) and threadfin bream (TH) mince at various levels (2-6%; w/w), gel strength, and water holding capacity was increased in a dose-dependent manner, regardless of surimi type. However, whiteness decreased with increasing A-C levels. After the in vitro digestion of surimi gels, antioxidant and enzyme inhibitory activities were also increased as compared to the digest prepared from control surimi gels (added without A-C conjugate). Thus, waste from the shrimp industry in conjugation with plant polyphenols could be utilized to produce antioxidant and antidiabetic or anti-obesity agents, which could be explored as a promising additive in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Akanksha R. Gautam
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.R.G.); (S.B.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.R.G.); (S.B.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Deepak Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Brijesh Tiwari
- Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.R.G.); (S.B.)
| |
Collapse
|
9
|
Cao P, Xiang S, Liu S, Feng Y, Zhang X, Wu Q, Hou J, Liu H, Cheng D, Liu X. Isolation of an α-glucosidase Inhibitor from Houttuynia cordata Thunb. and Its In vitro and In vivo Hypoglycemic Bioactivity. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:795-802. [PMID: 39133356 DOI: 10.1007/s11130-024-01217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
The Houttuynia cordata Thunb. belongs to the Saururaceae family and is a well-known medicine and food homologous plant. Herein, the isolation of an α-glucosidase inhibitor from Houttuynia cordata Thunb. and characterization of its in vitro and in vivo hypoglycemic bioactivities are reported. We optimized the extraction conditions and isolated neochlorogenic acid (nCGA), which has α-glucosidase inhibitory activity from Houttuynia cordata Thunb. for the first time. nCGA competed with glucose for the α-glucosidase binding site, with a 50% inhibitory concentration (IC50) of 0.711 mg/mL. In vivo experiments in zebrafish showed that effects of nCGA on blood glucose varied by its concentrations. In particular, 4 mg/L nCGA significantly decreased the blood glucose level and inhibited effects of α-glucosidase in zebrafish. This work provides a theoretical basis for the extraction of hypoglycemic active ingredients from Houttuynia cordata Thunb. and a foundation for the development of natural and effective α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Pei Cao
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, Hubei province, China
| | - Shiyin Xiang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine, Jing Brand Co., Ltd, Huangshi, 435002, Hubei province, China
| | - Shixin Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, Hubei province, China
| | - Yun Feng
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, Hubei province, China
| | - Xinyue Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, Hubei province, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, Hubei province, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, Hubei province, China
| | - Huan Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, Hubei province, China
| | - Dan Cheng
- Guangzhou NutraPio Health Industry Co., Ltd, Guangzhou, Guangdong Province, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, Hubei province, China.
| |
Collapse
|
10
|
An H, Lin B, Huang F, Wang N. Advances in the study of polysaccharides from Anemarrhena asphodeloides Bge.: A review. Int J Biol Macromol 2024; 282:136999. [PMID: 39476924 DOI: 10.1016/j.ijbiomac.2024.136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Anemarrhena asphodeloides Bge. (AA), a traditional Chinese medicine, is used clinically to treat inflammation, diabetes, osteoporosis, and tumors. Polysaccharides are the most abundant components in AA, and have antioxidant, immunomodulatory, anti-inflammatory, hypoglycemic, anti-osteoporosis, and laxative effects. It is necessary to conduct a comprehensive analysis on the structure and pharmacological activity of the polysaccharides from AA (PAAs). This review systematically summarizes the structural characteristics of PAAs, including the monosaccharide compositions, molecular weights, and backbone structures. We discuss the relationship between the structure and pharmacological activities of PAAs. The chemical modification methods of PAAs, including zinc chelation, carboxymethylation, and sulfation, are then reviewed. This review may offer new insights for research on the PAAs and polysaccharides with similar structures.
Collapse
Affiliation(s)
- Huan An
- Department of TCM literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Feihua Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Nani Wang
- Department of TCM literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
11
|
Kumari S, Saini R, Bhatnagar A, Mishra A. Exploring plant-based alpha-glucosidase inhibitors: promising contenders for combatting type-2 diabetes. Arch Physiol Biochem 2024; 130:694-709. [PMID: 37767958 DOI: 10.1080/13813455.2023.2262167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE This systematic review aimed to provide comprehensive details on the α-G inhibitory potential of various bioactive compounds derived from natural sources. METHODS A comprehensive literature search was conducted using various databases and search engines, including Science Direct, Google Scholar, SciFinder, Web of Science, and PubMed until May, 2023. RESULTS AND CONCLUSIONS The enzyme alpha-glucosidase (α-G) is found in the brush border epithelium of the small intestine and consists of duplicated glycoside hydrolase (GH31) domain. It involves the conversion of disaccharides and oligosaccharides into monosaccharides by acting on alpha (1 → 4) and (1 → 6) linked glucose residue. Once absorbed, glucose enters the bloodstream and elevates postprandial glucose, which is associated with the development of type 2 Diabetes (T2D). Epidemic obesity, cardiovascular disease, and nephropathy are linked to T2D. Traditional medicinal plants with α-G inhibitory potential are commonly used to treat T2D due to the adverse effects of currently used α-G inhibitors miglitol, acarbose, and voglibose. Various bioactive compounds derived from natural sources, including lupenone, Wilforlide A, Baicalein, Betulinic acid, Ursolic acid, Oleanolic acid, Katononic acid, Carnosol, Hypericin, Astilbin, lupeol, betulonic acid, Fagomine, Lactucaxanthin, Erythritol, GP90-1B, Procyanidins, Galangin, and vomifoliol retain α-G inhibitory potential for regulating hyperglycaemia.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
12
|
Fadzil MAM, Abu Seman N, Abd Rashed A. The Potential Therapeutic Use of Agarwood for Diabetes: A Scoping Review. Pharmaceuticals (Basel) 2024; 17:1548. [PMID: 39598457 PMCID: PMC11597494 DOI: 10.3390/ph17111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION In 2019, 9.3% (463 million) of adults worldwide had diabetes, according to the International Diabetes Federation (IDF). By 2030, the number will rise to 10.2% (578 million) and 10.9% (700 million) by 2045 if effective prevention methods are not implemented. Agarwood is a pathological product and valuable plant due to its numerous medicinal properties, and it is used as an essential ingredient in medicine. Therefore, we conducted this review to determine agarwood's potential health benefit effect on type 2 diabetes. RESULTS AND DISCUSSION Although no clinical trials were found, the evidence from in vitro and in vivo studies is promising. Agarwood has shown the ability to reduce the activity of α-glucosidase, α-amylase, and lipase, promote adiponectin secretion during adipogenesis, and reduce oxidative stress. Animal studies elucidated hypoglycaemic, antidyslipidemia, anti-obesity, and organ protective effects from agarwood. MATERIALS AND METHODS Original articles were searched in three databases (PubMed, Scopus, and Cochrane Library) using the medical subject heading (MeSH) term "diabetes" crossed with the term "agarwood" from 2008 to 2024. Synonyms and relevant search terms were also searched. CONCLUSIONS This effect underscores the need for further research and the potential for groundbreaking discoveries in the field of diabetes treatment.
Collapse
Affiliation(s)
- Mohammad Adi Mohammad Fadzil
- Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia (MOH), No. 1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia
| | - Norhashimah Abu Seman
- Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia (MOH), No. 1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia
| | - Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia (MOH), No. 1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia
| |
Collapse
|
13
|
Lucas M, Freitas M, Silva AMS, Fernandes E, Ribeiro D. Styrylchromones: Biological Activities and Structure-Activity Relationship. ChemMedChem 2024:e202400782. [PMID: 39480961 DOI: 10.1002/cmdc.202400782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Styrylchromones (SC) are a group of oxygen-containing heterocyclic compounds, which are characterized by the attachment of a styryl group to the chromone core. SC can be found in nature or can be chemically synthesized in the laboratory. As their presence in nature is scarce, the synthetic origin is the most common. Two types of SC are known: 2-styrylchromones and 3-styrylchromones. However, 2-styrylchromones are the most common, being more broadly found in nature and whose chemical synthesis is more commonly described. A wide variety of SC has been described in the literature, with different substituents in different positions, the majority of which are distributed on the A- and/or B-rings. Over the years, several biological activities have been attributed to SC. This work presents a comprehensive review of the biological activities attributed to SC and their structure-activity relationship, based on a published literature search, since 1989. The following biological activities are thoroughly reviewed and discussed in this review: antioxidant, antiallergic, antiviral, antibacterial, antifungal, anti-inflammatory and antitumoral, affinity and selectivity for A3 adenosine receptors, neuroprotective, and α-glucosidase inhibition. In general, SC are composed by a promising scaffold with great potential for the development of new drugs.
Collapse
Affiliation(s)
- Mariana Lucas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE & QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Rua Capitão João d'Ávila-Pico da Urze, 9700-042, Angra do Heroísmo, Açores, Portugal
| |
Collapse
|
14
|
Floris S, Pintus F, Fais A, Era B, Raho N, Siguri C, Orrù G, Fais S, Tuberoso CIG, Olla S, Di Petrillo A. Biological Potential of Asphodelus microcarpus Extracts: α-Glucosidase and Antibiofilm Activities In Vitro. Molecules 2024; 29:5063. [PMID: 39519706 PMCID: PMC11547317 DOI: 10.3390/molecules29215063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes (T2D), characterized by insulin resistance and β-cell dysfunction, requires continuous advancements in management strategies, particularly in controlling postprandial hyperglycemia to prevent complications. Current antidiabetics, which have α-amylase and α-glucosidase inhibitory activities, have side effects, prompting the search for better alternatives. In addition, diabetes patients are particularly vulnerable to yeast infections because an unusual sugar concentration promotes the growth of Candida spp. in areas like the mouth and genitalia. Asphodelus microcarpus contains bioactive flavonoids with potential enzyme inhibitory properties. This study investigates α-amylase and α-glucosidase inhibitory activities and antioxidant and antimycotic capacity of ethanolic extracts from different parts of A. microcarpus. Results show that extracts significantly inhibit α-glucosidase, with the IC50 value being up to 25 times higher than for acarbose, while exerting low α-amylase activity. The extracts also demonstrated strong antioxidant properties and low cytotoxicity. The presence of phenolic compounds is likely responsible for the observed biological activities. Molecular docking analysis of 11 selected compounds identified emodin and luteolin as significant inhibitors of α-glucosidase. Additionally, the extracts demonstrated significant antibiofilm action against an MDR strain of Candida albicans. These findings suggest that A. microcarpus is a promising source of natural compounds for T2D management.
Collapse
Affiliation(s)
- Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Nicola Raho
- Gastroenterology Unit, Department of Medical Science and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (N.R.); (A.D.P.)
| | - Chiara Siguri
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), 09042 Monserrato, Italy;
| | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.O.); (S.F.)
| | - Sara Fais
- Department of Surgical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.O.); (S.F.)
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Stefania Olla
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), 09042 Monserrato, Italy;
| | - Amalia Di Petrillo
- Gastroenterology Unit, Department of Medical Science and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (N.R.); (A.D.P.)
| |
Collapse
|
15
|
Nkoana JK, Mphahlele MJ, More GK, Choong YS. Exploring the 3,5-Dibromo-4,6-dimethoxychalcones and Their Flavone Derivatives as Dual α-Glucosidase and α-Amylase Inhibitors with Antioxidant and Anticancer Potential. Antioxidants (Basel) 2024; 13:1255. [PMID: 39456508 PMCID: PMC11505200 DOI: 10.3390/antiox13101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The rising levels of type 2 diabetes mellitus (T2DM) and the poor medical effects of the commercially available antidiabetic drugs necessitate the development of potent analogs to treat this multifactorial metabolic disorder. It has been demonstrated that targeting two or more biochemical targets associated with the onset and progression of diabetes along with oxidative stress and/or cancer could be a significant strategy for treating complications related to this metabolic disorder. The 3,5-dibromo-4,6-dimethoxychalcones (2a-f) and the corresponding flavone derivatives (3a-f) were synthesized and characterized using spectroscopic (NMR, HR-MS and FT-IR) techniques. The inhibitory effect of both series of compounds against α-glucosidase and α-amylase was evaluated in vitro through enzymatic assays. Selected compounds were also evaluated for potential to activate or inhibit superoxide dismutase. Compound 3c was selected as a representative model for the flavone series and evaluated spectrophotometrically for potential to coordinate Cu(II) and/or Zn(II) ions implicated in the metal-catalyzed free radical generation. A plausible mechanism for metal-chelation of the test compounds is presented. Furthermore, the most active compounds from each series against the test carbohydrate-hydrolyzing enzymes were selected and evaluated for their antigrowth effect on the human breast (MCF-7) and lung (A549) cancer cell lines and for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The parent chalcone 2a and flavone derivatives 3a, 3c and 3e exhibited relatively high inhibitory activity against the MCF-7 cells with IC50 values of 4.12 ± 0.55, 8.50 ± 0.82, 5.10 ± 0.61 and 6.96 ± 0.66 μM, respectively. The chalcones 2a and 2c exhibited significant cytotoxicity against the A549 cells with IC50 values of 7.40 ± 0.67 and 9.68 ± 0.80 μM, respectively. Only flavone 3c exhibited relatively strong and comparable cytotoxicity against the MCF-7 and A549 cell lines with IC50 values of 6.96 ± 0.66 and 6.42 ± 0.79 μM, respectively. Both series of compounds exhibited strong activity against the MCF-7 and A549 cell lines compared to the analogous quercetin (IC50 = 35.40 ± 1.78 and 35.38 ± 1.78 μM, respectively) though moderate compared to nintedanib (IC50 = 0.53 ± 0.11 and 0.74 ± 0.15 μM, respectively). The test compounds generally exhibited reduced cytotoxicity against the Vero cells compared to this anticancer drug. Molecular docking revealed strong alignment of the test compounds with the enzyme backbone to engage in hydrogen bonding interaction/s and hydrophobic contacts with the residues in the active sites of α-glucosidase and α-amylase. The test compounds possess favorable drug-likeness properties, supporting their potential as therapeutic candidates against T2DM.
Collapse
Affiliation(s)
- Jackson K. Nkoana
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Garland K. More
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, George Town 11800, Penang, Malaysia;
| |
Collapse
|
16
|
Wu X, Liu H, Han J, Zhou Z, Chen J, Liu X. Introducing Bacillus natto and Propionibacterium shermanii into soymilk fermentation: A promising strategy for quality improvement and bioactive peptide production during in vitro digestion. Food Chem 2024; 455:139585. [PMID: 38850988 DOI: 10.1016/j.foodchem.2024.139585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 06/10/2024]
Abstract
Herein, the texture properties, polyphenol contents, and in vitro protein digestion characteristics of soymilk single- or co-fermented by non-typical milk fermenter Bacillus natto (B. natto), Propionibacterium freudenreichii subsp. shermanii (P. shermanii), and traditional milk fermenter were evaluated. Co-fermenting procedure containing B. natto or P. shermanii could raise the amounts of gallic acid, caffeic acid, and GABA when compared to the unfermented soymilk. Co-fermented soymilk has higher in vitro protein digestibility and nutritional protein quality. Through peptidomic analysis, the co-work of P. shermanii and Lactobacillus plantarum (L. plantarum) may release the highest relative percentage of bioactive peptides, while the intervention of B. natto and Streptococcus thermophilus (S. thermophilus) resulted in more differentiated peptides. The multi-functional bioactive peptides were mainly released from glycine-rich protein, β-conglycinin alpha subunit 1, and ACB domain-containing protein. These findings indicated the potential usage of B. natto/S. thermophilus or P. shermanii/L. plantarum in bio-enhanced soymilk fermentation.
Collapse
Affiliation(s)
- Xiaohui Wu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Honghong Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junqing Han
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhitong Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Yimam MA, Andreini M, Carnevale S, Muscaritoli M. The role of algae, fungi, and insect-derived proteins and bioactive peptides in preventive and clinical nutrition. Front Nutr 2024; 11:1461621. [PMID: 39449824 PMCID: PMC11499197 DOI: 10.3389/fnut.2024.1461621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
The current global trend in the nutrition, epidemiologic and demographic transitions collectively alarms the need to pursue a sustainable protein diet that respects ecosystem and biodiversity from alternative sources, such as algae, fungi and edible insects. Then, changing the nutrition reality is extremely important to impede the global syndemic of obesity, undernutrition and climate change. This review aims to synthesize the published literature on the potential roles of alternative proteins and their derived bioactive peptides in preventive and clinical nutrition, identify research gaps and inform future research areas. Google Scholar and PubMed databases from their inception up to 30 June 2024 were searched using keywords to access pertinent articles published in English language for the review. Overall, proteins derived from algae, fungi, and edible insects are high-quality proteins as animal sources and demonstrate significant potential as a sustainable source of bioactive peptides, which are metabolically potent and have negligible adverse effects. They show promise to prevent and treat diseases associated with oxidative stress, obesity, diabetes, cancer, cardiovascular disease (especially hypertension), and neurodegenerative diseases. Given the abundance of algae, fungi and insect peptides performed in vitro or in vivo animals, further clinical studies are needed to fully establish their safety, efficacy and practical application in preventive and clinical nutrition. Additionally, social and behavioral change communication strategies would be important to increase health awareness of nutritional benefits and promote consumer acceptance of alternative protein sources.
Collapse
Affiliation(s)
- Mohammed Ahmed Yimam
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Department of Public Health, College of Health Science, Woldia University, Woldia, Ethiopia
| | - Martina Andreini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Zumaidar Z, Asmilia N, Saudah S, Husnah M. In Vitro Alpha-Glucosidase Inhibitory Effect of Etlingera Elatior Ethanol Extract Growing in Gayo Highland, Aceh Province, Indonesia. F1000Res 2024; 13:489. [PMID: 39429642 PMCID: PMC11487234 DOI: 10.12688/f1000research.149029.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background The prevalence of diabetes mellitus (DM) is increasing overtime, potentially leading to various severe health complications and mortality. Despite therapeutic agents have currently been developed, unexpected adverse effects are inevitable. Hence, safe and effective medications such as those of plant origin are critical to prevent unexpected complication in DM sufferers. Etlingera elatior has been widely used as spice and traditional medicine to treat diabetes in Aceh Province, Indonesia. However, study regarding α-glucosidase inhibitory effect of E. elatior growing in Gayo highlands, Aceh, Indonesia, is completely lacking. The aim of this study was to evaluate in vitro α-glucosidase inhibitory effect of E. elatior ethanol extracts (EEEE) growing in Gayo highlands, Aceh Province, Indonesia. Methods Antioxidant activity was determined using DPPH procedure, whereas α-glucosidase inhibition assay was carried out using spectrophotometric method. Data analysis was performed using One-Way Analysis of Variance (ANOVA), followed by Duncan's multiple range test at α=0.05. Results Phytochemical analysis revealed the presence of total phenolic (TPC), total flavonoid (TFC), and total tannin (TTC) content in all E. elatior plant parts, in which the highest TPC was found in the stem (158.38 GAE/g), whereas the highest TFC and TTC was obtained in the rhizome extracts. The extract of fruit showed the strongest antioxidant activities, followed by the stem and leaf, with IC 50 of 2.381 μg/mL, 6.966 μg/mL, and 19.365 μg/mL, respectively. All E. elatior extracts revealed a significant inhibitory activity against α-glucosidase at the concentration of 500 μg/mL, in which the stem extract showed the most effective α-glucosidase inhibitory effect with IC 50 value of 5.15 μg/mL, suggesting its promising potential as antidiabetic agent. Conclusions This study highlights E. elatior potency as a novel source of antioxidant and natural antidiabetic compounds that are useful for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Zumaidar Zumaidar
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Nuzul Asmilia
- Clinical Laboratory, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Saudah Saudah
- Faculty of Teacher Training and Education, Universitas Serambi Mekkah, Banda Aceh, Aceh, 23245, Indonesia
| | - Milda Husnah
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| |
Collapse
|
19
|
Benjamin MAZ, Mohd Mokhtar RA, Iqbal M, Abdullah A, Azizah R, Sulistyorini L, Mahfudh N, Zakaria ZA. Medicinal plants of Southeast Asia with anti-α-glucosidase activity as potential source for type-2 diabetes mellitus treatment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118239. [PMID: 38657877 DOI: 10.1016/j.jep.2024.118239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus, a widespread chronic illness, affects millions worldwide, and its incidence is increasing alarmingly, especially in developing nations. Current pharmacological treatments can be costly and have undesirable side effects. To address this, medicinal plants with antidiabetic effects, particularly targeting α-glucosidase for controlling hyperglycaemia in type-2 diabetes mellitus (T2DM), hold promise for drug development with reduced toxicity and adverse reactions. AIM OF THIS REVIEW This review aims to succinctly collect information about medicinal plant extracts that exhibit antidiabetic potential through α-glucosidase inhibition using acarbose as a standard reference in Southeast Asia. The characteristics of this inhibition are based on in vitro studies. MATERIALS AND METHODS Relevant information on medicinal plants in Southeast Asia, along with α-glucosidase inhibition studies using acarbose as a positive control, was gathered from various scientific databases, including Scopus, PubMed, Web of Science, and Google Scholar. RESULTS About 49 papers were found from specific counties in Southeast Asia demonstrated notable α-glucosidase inhibitory potential of their medicinal plants, with several plant extracts showcasing activity comparable to or surpassing that of acarbose. Notably, 19 active constituents were identified for their α-glucosidase inhibitory effects. CONCLUSIONS The findings underscore the antidiabetic potential of the tested medicinal plant extracts, indicating their promise as alternative treatments for T2DM. This review can aid in the development of potent therapeutic medicines with increased effectiveness and safety for the treatment of T2DM.
Collapse
Affiliation(s)
- Mohammad Amil Zulhilmi Benjamin
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Ruzaidi Azli Mohd Mokhtar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Mohammad Iqbal
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Azmahani Abdullah
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Kuala Nerus, Terengganu, Malaysia
| | - Roro Azizah
- Department of Environmental Health, Faculty of Public Health, Universitas Airlangga Kampus C, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Kota Surabaya, Jawa Timur, 60115, Indonesia
| | - Lilis Sulistyorini
- Department of Environmental Health, Faculty of Public Health, Universitas Airlangga Kampus C, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Kota Surabaya, Jawa Timur, 60115, Indonesia
| | - Nurkhasanah Mahfudh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. Dr. Soepomo Sh, Warungboto, Kec. Umbulharjo, Kota Yogyakarta, Daerah Istimewa Yogyakarta, 55164, Indonesia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia; Department of Environmental Health, Faculty of Public Health, Universitas Airlangga Kampus C, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Kota Surabaya, Jawa Timur, 60115, Indonesia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. Dr. Soepomo Sh, Warungboto, Kec. Umbulharjo, Kota Yogyakarta, Daerah Istimewa Yogyakarta, 55164, Indonesia.
| |
Collapse
|
20
|
Doorandishan M, Pirhadi S, Gholami M, Jassbi AR. In silico studies of bis-spiro- and Furano-Labdane diterpenoids from Rydingia persica Scheen ( Otostegia persica) as α-glucosidase enzyme inhibitor. Nat Prod Res 2024:1-8. [PMID: 39105435 DOI: 10.1080/14786419.2024.2386118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
The inhibition potential of α-glucosidase enzyme by crude- dichloromethane, methanol, and ethanol -extracts of Rydingia persica were evaluated using colorimetric method. We have isolated four labdane diterpenoids: 15, 16- epoxy-3α, 7β, 9α -trihydroxylabdan-13- (16), 14-dien-6-one (1), 15, 16- epoxy-3α, 7α, 9α -trihydroxylabdan-13- (16), 14-dien-6-one (2), 9, 13, 15, 16-diepoxy- 3α, 7β, 15α (β)- trihydroxy-labdan- 6 one (3, 4) from the most potent enzyme inhibitor fraction; the ethyl acetate soluble part of ethanol extract of the aerial parts of R. persica. The structures of the compounds were elucidated by their 1H and13C NMR and ESIMS spectral data analyses. The enzyme inhibition potential of the compounds was evaluated against acetylcholine esterase (AChE) and α-glucosidase by simulation studies. The predicted binding energy of most diterpenes towards mouse AChE enzyme was low, while the binding energy of diterpenes towards α-glucosidase enzyme was moderate to potent.
Collapse
Affiliation(s)
- Mina Doorandishan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Faculty of Sciences, Department of Chemistry, Golestan University, Gorgan, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Gholami
- Faculty of Sciences, Department of Chemistry, Golestan University, Gorgan, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Soliman TN, Karam-Allah AA, Abo-Zaid EM, Mohammed DM. Efficacy of nanoencapsulated Moringa oleifera L. seeds and Ocimum tenuiflorum L. leaves extracts incorporated in functional soft cheese on streptozotocin-induced diabetic rats. PHYTOMEDICINE PLUS 2024; 4:100598. [DOI: 10.1016/j.phyplu.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
|
22
|
Oh KI, Lim E, Uprety LP, Jeong J, Jeong H, Park E, Jeong SY. Anti-adipogenic and anti-obesity effects of morroniside in vitro and in vivo. Biomed Pharmacother 2024; 176:116762. [PMID: 38788597 DOI: 10.1016/j.biopha.2024.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Obesity is a multifaceted medical condition characterized by the pathological accumulation of excessive lipids in the body. We investigated the effects of morroniside, a bioactive compound derived from Cornus officinalis, on adipogenesis. We used a preadipocyte 3T3-L1 stable cell line and primary cultured adipose-derived stem cells (ADSCs) in vitro and ovariectomized (OVX) and a high-fat diet (HFD)-fed obese mouse model in vivo. Preadipocyte 3T3-L1 cells and ADSCs incubated with morroniside during adipocyte differentiation and obese mice subjected to OVX and HFD received oral morroniside treatment for 12 weeks. Morroniside treatment significantly reduced adipocyte differentiation and fatty acid accumulation and downregulated adipogenesis-related gene expression, concomitant with a decrease in triglyceride content and an increase in glycerol release in cells. The results of the in vivo study showed that morroniside ameliorated obesity-related phenotypes by reducing body weight gain, hepatic steatosis, and adipose tissue in obese mice. These findings suggest that morroniside is a promising compound for preventing and treating obesity.
Collapse
Affiliation(s)
- Kang-Il Oh
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea
| | - Eunguk Lim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea
| | - Laxmi Prasad Uprety
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea
| | - Junhwan Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea
| | - Hyesoo Jeong
- Nine B Co., Ltd., Daejeon 34121, the Republic of Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea.
| |
Collapse
|
23
|
Ruiz-Saavedra S, Salazar N, Suárez A, Diaz Y, González Del Rey C, González S, de Los Reyes-Gavilán CG. Human fecal alpha-glucosidase activity and its relationship with gut microbiota profiles and early stages of intestinal mucosa damage. Anaerobe 2024; 87:102853. [PMID: 38614290 DOI: 10.1016/j.anaerobe.2024.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVES We investigated potential relationships among initial lesions of the intestinal mucosa, fecal enzymatic activities and microbiota profiles. METHODS Fecal samples from 54 volunteers were collected after recruitment among individuals participating in a colorectal cancer (CRC) screening program in our region (Northern Spain) or attending for consultation due to clinical symptoms; intestinal mucosa samples were resected during colonoscopy. Enzymatic activities were determined in fecal supernatants by a semi-quantitative method. The fecal microbiota composition was determined by 16S rRNA gene-based sequencing. The results were compared between samples from clinical diagnosis groups (controls and polyps), according with the type of polyp (hyperplastic polyps or conventional adenomas) and considering the grade of dysplasia for conventional adenomas (low and high grade dysplasia). RESULTS High levels of α-glucosidase activity were more frequent among samples from individuals diagnosed with intestinal polyps, reaching statistical significance for conventional adenomas and for low grade dysplasia adenomas when compared to controls. Regarding the microbiota profiles, higher abundance of Christensenellaceae_R-7 group and Oscillospiraceae_UCG-002 were found in fecal samples displaying low α-glucosidase activity as compared with those with higher activity as well as in controls with respect to conventional adenomas. A relationship was evidenced among intestinal mucosal lesions, gut glucosidase activities and intestinal microbiota profiles. CONCLUSIONS Our findings suggest a relationship among altered fecal α-glucosidase levels, the presence of intestinal mucosal lesions, which can be precursors of CRC, and shifts in defined microbial groups of the fecal microbiota.
Collapse
Affiliation(s)
- Sergio Ruiz-Saavedra
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Adolfo Suárez
- Digestive Service, Central University Hospital of Asturias (HUCA), Oviedo, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ylenia Diaz
- Digestive Service, Carmen and Severo Ochoa Hospital, Cangas del Narcea, Spain
| | - Carmen González Del Rey
- Department of Anatomical Pathology, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Sonia González
- Department of Functional Biology, University of Oviedo, Oviedo, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
24
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
25
|
Ushasree MV, Jia Q, Do SG, Lee EY. New opportunities and perspectives on biosynthesis and bioactivities of secondary metabolites from Aloe vera. Biotechnol Adv 2024; 72:108325. [PMID: 38395206 DOI: 10.1016/j.biotechadv.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Historically, the genus Aloe has been an indispensable part of both traditional and modern medicine. Decades of intensive research have unveiled the major bioactive secondary metabolites of this plant. Recent pandemic outbreaks have revitalized curiosity in aloe metabolites, as they have proven pharmacokinetic profiles and repurposable chemical space. However, the structural complexity of these metabolites has hindered scientific advances in the chemical synthesis of these compounds. Multi-omics research interventions have transformed aloe research by providing insights into the biosynthesis of many of these compounds, for example, aloesone, aloenin, noreugenin, aloin, saponins, and carotenoids. Here, we summarize the biological activities of major aloe secondary metabolites with a focus on their mechanism of action. We also highlight the recent advances in decoding the aloe metabolite biosynthetic pathways and enzymatic machinery linked with these pathways. Proof-of-concept studies on in vitro, whole-cell, and microbial synthesis of aloe compounds have also been briefed. Research initiatives on the structural modification of various aloe metabolites to expand their chemical space and activity are detailed. Further, the technological limitations, patent status, and prospects of aloe secondary metabolites in biomedicine have been discussed.
Collapse
Affiliation(s)
- Mrudulakumari Vasudevan Ushasree
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Qi Jia
- Unigen, Inc., 2121 South street suite 400 Tacoma, Washington 98405, USA
| | - Seon Gil Do
- Naturetech, Inc., 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungcheongbuk-do 27858, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
26
|
Aguilar-Guadarrama AB, Díaz-Román MA, Osorio-García M, Déciga-Campos M, Rios MY. Chemical Constituents from Agave applanata and Its Antihyperglycemic, Anti-inflammatory, and Antimicrobial Activities Associated with Its Tissue Repair Capability. PLANTA MEDICA 2024; 90:397-410. [PMID: 38365219 DOI: 10.1055/a-2270-5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Agave applanata is a Mexican agave whose fresh leaves are employed to prepare an ethanol tonic used to relieve diabetes. It is also applied to skin to relieve varicose and diabetic foot ulcers, including wounds, inflammation, and infections. In this study, the chemical composition of this ethanol tonic is established and its association with antihyperglycemic, anti-inflammatory, antimicrobial, and wound healing activities is discussed. The fresh leaves of A. applanata were extracted with ethanol : H2O (85 : 15). A fraction of this extract was lyophilized, and the remainder was partitioned into CH2Cl2, n-BuOH, and water. CH2Cl2 and n-BuOH fractions were subjected to a successive open column chromatography process. The structure of the isolated compounds was established using nuclear magnetic resonance and mass spectrometry spectra. The antihyperglycemic activity was evaluated through in vivo sucrose and glucose tolerance experiments, as well as ex vivo intestinal absorption and hepatic production of glucose. Wound healing and edema inhibition were assayed in mice. The minimum inhibitory concentrations (MICs) of the hydroalcoholic extract, its fractions, and pure compounds were determined through agar microdilution against the most isolated pathogens from diabetic foot ulcers. Fatty acids, β-sitosterol, stigmasterol, hecogenin (1: ), N-oleyl-D-glucosamine, β-daucosterol, sucrose, myo-inositol, and hecogenin-3-O-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)-β-D-glucopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-β-D-galactopyranoside (2: ) were characterized. This research provides evidence for the pharmacological importance of A. applanata in maintaining normoglycemia, showing anti-inflammatory activity and antimicrobial effects against the microorganisms frequently found in diabetic foot ulcers. This plant plays an important role in wound healing and accelerated tissue reparation.
Collapse
Affiliation(s)
| | - Mónica Aideé Díaz-Román
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, México
| | - Maribel Osorio-García
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, México
| | - Myrna Déciga-Campos
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - María Yolanda Rios
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, México
| |
Collapse
|
27
|
Akash MSH, Yaqoob S, Rehman K, Hussain A, Chauhdary Z, Nadeem A, Shahzad A, Shah MA, Panichayupakaranant P. Biochemical Investigation of Therapeutic Efficacy of Berberine-Enriched Extract in Streptozotocin-Induced Metabolic Impairment. ACS OMEGA 2024; 9:15677-15688. [PMID: 38585081 PMCID: PMC10993375 DOI: 10.1021/acsomega.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Metabolic disorders pose significant global health challenges, necessitating innovative therapeutic approaches. This study focused on the multifaceted therapeutic potential of berberine-enriched extract (BEE) in mitigating metabolic impairment induced by streptozotocin (STZ) in a rat model and compared the effects of BEE with berberine (BBR) and metformin (MET) to comprehensively evaluate their impact on various biochemical parameters. Our investigation reveals that BEE surpasses the effects of BBR and MET in ameliorating metabolic impairment, making it a promising candidate for managing metabolic disorders. For this, 30 male Wistar rats were divided into five groups (n = 6): control (CN), STZ, STZ + MET, STZ + BBR, and STZ + BEE. The treatment duration was extended over 4 weeks, during which various biochemical parameters were monitored, including fasting blood glucose (FBG), lipid profiles, inflammation, liver and kidney function biomarkers, and gene expressions of various metabolizing enzymes. The induction of metabolic impairment by STZ was evident through an elevated FBG level and disrupted lipid profiles. The enriched extract effectively regulated glucose homeostasis, as evidenced by the restoration of FBG levels, superior to both BBR and MET. Furthermore, BEE demonstrated potent effects on insulin sensitivity, upregulating the key genes involved in carbohydrate metabolism: GCK, IGF-1, and GLUT2. This highlights its potential in enhancing glucose utilization and insulin responsiveness. Dyslipidemia, a common occurrence in metabolic disorders, was effectively managed by BEE. The extract exhibited superior efficacy in regulating lipid profiles. Additionally, BEE exhibited significant anti-inflammatory properties, surpassing the effects of BBR and MET in lowering the levels of inflammatory biomarkers (IL-6 and TNF-α), thereby ameliorating insulin resistance and systemic inflammation. The extract's superior hepatoprotective and nephroprotective effects, indicated by the restoration of liver and kidney function biomarkers, further highlight its potential in maintaining organ health. Moreover, BEE demonstrated potent antioxidant properties, reducing oxidative stress and lipid peroxidation in liver tissue homogenates. Histopathological examination of the pancreas underscored the protective effects of BEE, preserving and recovering pancreatic β-cells damaged by STZ. This collective evidence positions BEE as a promising therapeutic candidate for managing metabolic disorders and offers potential benefits beyond current treatments. In conclusion, our findings emphasize the remarkable therapeutic efficacy of BEE and provide a foundation for further research into its mechanisms, long-term safety, and clinical translation.
Collapse
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Department
of Pharmaceutical Chemistry, Government
College University, Faisalabad 38000, Punjab, Pakistan
| | - Sahrish Yaqoob
- Department
of Pharmaceutical Chemistry, Government
College University, Faisalabad 38000, Punjab, Pakistan
| | - Kanwal Rehman
- Department
of Pharmacy, The Women University, Multan 6000, Pakistan
| | - Amjad Hussain
- Institute
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmaceutical Chemistry, Government
College University, Faisalabad 38000, Punjab, Pakistan
| | - Ahmed Nadeem
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asif Shahzad
- Department
of Biochemistry and Molecular Biology, Kunming
Medical University, Yunnan 650031, China
| | | | - Pharkphoom Panichayupakaranant
- Department
of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| |
Collapse
|
28
|
Wiyono N, Yudhani RD, Wasita B, Suyatmi S, Wardhani LO, Pesik RN, Yarsa KY, Rahayu RF. Exploring the therapeutic potential of functional foods for diabetes: A bibliometric analysis and scientific mapping. NARRA J 2024; 4:e382. [PMID: 38798856 PMCID: PMC11125297 DOI: 10.52225/narra.v4i1.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/26/2024] [Indexed: 05/29/2024]
Abstract
The incidence of diabetes is increasingly becoming a global health burden. Meanwhile, in recent years, functional foods have been intensively investigated for diabetes management. These foods provide health benefits due to their bioactive compounds that enhance the metabolism and lower the risk of chronic diseases, such as diabetes. The aim of this study was to explore the keywords, countries/territories, publication numbers, institutions, authors, and journals associated with functional foods for the management of diabetes using a comprehensive bibliometric analysis method. Scopus database was used to compile the information, followed by VOSviewer for comprehensive bibliometric data analysis. A total of 1,226 Scopus articles that met the inclusion criteria were analyzed. The results showed that the greatest expansion in research occurred in 2012, and China was identified as the most productive nation in this field. In addition, Food and Function was found as the most recognized journal in this area, and Singh, R.B. as well as Zengin, G. made the greatest contribution. The bibliometric data also illustrated several mechanisms of functional foods for diabetes management, including antioxidant activity, effect on the gastrointestinal microbiomes, and inhibitor α-amylase. These results underscore the immense potential of functional foods in the diabetes management and provide guidance for future research on this subject.
Collapse
Affiliation(s)
- Nanang Wiyono
- Research Group Brain, Degenerative Disease and Cancer, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Ratih D. Yudhani
- Research Group Brain, Degenerative Disease and Cancer, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Brian Wasita
- Research Group Brain, Degenerative Disease and Cancer, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Suyatmi Suyatmi
- Research Group Brain, Degenerative Disease and Cancer, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Histology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Lusi O. Wardhani
- Research Group Brain, Degenerative Disease and Cancer, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Riza N. Pesik
- Research Group Brain, Degenerative Disease and Cancer, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Kristanto Y. Yarsa
- Research Group Brain, Degenerative Disease and Cancer, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Surgery, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Rachmi F. Rahayu
- Research Group Brain, Degenerative Disease and Cancer, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Radiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
29
|
Hameed S, Saleem F, Özil M, Baltaş N, Salar U, Ashraf S, Ul-Haq Z, Taha M, Khan KM. Indenoquinoxaline-phenylacrylohydrazide hybrids as promising drug candidates for the treatment of type 2 diabetes: In vitro and in silico evaluation of enzyme inhibition and antioxidant activity. Int J Biol Macromol 2024; 263:129517. [PMID: 38266833 DOI: 10.1016/j.ijbiomac.2024.129517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
Existing drugs that are being used to treat type-2 diabetes mellitus are associated with several side effects; thus, exploring potential drug candidates is still an utter need these days. Hybrids of indenoquinoxaline and hydrazide have never been explored as antidiabetic agents. In this study, a series of new indenoquinoxaline-phenylacrylohydrazide hybrids (1-30) were synthesized, structurally characterized, and evaluated for α-amylase and α-glucosidase inhibitory activities, as well as for their antioxidant properties. All scaffolds exhibited varying degrees of inhibitory activity against both enzymes, with IC50 values ranging from 2.34 to 61.12 μM for α-amylase and 0.42 to 54.72 μM for α-glucosidase. Particularly, compounds 10, 16, 17, 18, 24, and 25 demonstrated the highest efficacy in inhibiting α-amylase, while compounds 6, 7, 8, 10, 12, 14, 13, 16, 17, 18, 24, and 25 were the most effective α-glucosidase inhibitors, compared to standard acarbose. Moreover, most of these compounds displayed substantial antioxidant potential compared to standard butylated hydroxytoluene (BHT). Kinetics studies revealed competitive inhibition modes by compounds. Furthermore, a comprehensive in silico study and toxicity prediction were also conducted, further validating these analogs as potential drug candidates. The structured compounds demonstrated enhanced profiles, underscoring their potential as primary candidates in drug discovery.
Collapse
Affiliation(s)
- Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Pakistan Academy of Science, 3-Constitution Avenue, G-5/2, Islamabad 44000, Pakistan.
| |
Collapse
|
30
|
Fabian MCP, Astorga RMN, Atis AAG, Pilapil LAE, Hernandez CC. Anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark through bioassay-guided fractionation and liquid chromatography-tandem mass spectrometry. Front Pharmacol 2024; 15:1349725. [PMID: 38523640 PMCID: PMC10957545 DOI: 10.3389/fphar.2024.1349725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Women have been found to be at a higher risk of morbidity and mortality from type 2 diabetes mellitus (T2DM) and asthma. α-Glucosidase inhibitors have been used to treat T2DM, and arachidonic acid 15-lipoxygenase (ALOX15) inhibitors have been suggested to be used as treatments for asthma and T2DM. Compounds that inhibit both enzymes may be studied as potential treatments for people with both T2DM and asthma. This study aimed to determine potential anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark. A bioassay-guided fractionation framework was used to generate bioactive fractions from C. intermedia stem and D. dao bark. Subsequently, dereplication through ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and database searching was performed to putatively identify the components of one bioactive fraction from each plant. Seven compounds were putatively identified from the C. intermedia stem active fraction, and six of these compounds were putatively identified from this plant for the first time. Nine compounds were putatively identified from the D. dao bark active fraction, and seven of these compounds were putatively identified from this plant for the first time. One putative compound from the C. intermedia stem active fraction (corilagin) has been previously reported to have inhibitory activity against both α-glucosidase and 15-lipoxygenase-1. It is suggested that further studies on the potential of corilagin as an anti-diabetic and anti-inflammatory treatment should be pursued based on its several beneficial pharmacological activities and its low reported toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Christine Chichioco Hernandez
- Bioorganic and Natural Products Laboratory, Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
31
|
Alruwad MI, Salah El Dine R, Gendy AM, Sabry MM, El Hefnawy HM. Exploring the Biological and Phytochemical Potential of Jordan's Flora: A Review and Update of Eight Selected Genera from Mediterranean Region. Molecules 2024; 29:1160. [PMID: 38474670 DOI: 10.3390/molecules29051160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Jordan's flora is known for its rich diversity, with a grand sum of 2978 plant species that span 142 families and 868 genera across four different zones. Eight genera belonging to four different plant families have been recognized for their potential natural medicinal properties within the Mediterranean region. These genera include Chrysanthemum L., Onopordum Vaill. Ex. L., Phagnalon Cass., and Senecio L. from the Asteraceae family, in addition to Clematis L. and Ranunculus L. from the Ranunculaceae family, Anchusa L. from the Boraginaceae family, and Eryngium L. from the Apiaceae family. The selected genera show a wide variety of secondary metabolites with encouraging pharmacological characteristics including antioxidant, antibacterial, cytotoxic, anti-inflammatory, antidiabetic, anti-ulcer, and neuroprotective actions. Further research on these genera and their extracts will potentially result in the formulation of novel and potent natural pharmaceuticals. Overall, Jordan's rich flora provides a valuable resource for exploring and discovering new plant-based medicines.
Collapse
Affiliation(s)
- Manal I Alruwad
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Riham Salah El Dine
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Abdallah M Gendy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Manal M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Hala M El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
32
|
Mohd Radzuan SN, Phongphane L, Abu Bakar MH, Che Omar MT, Nor Shahril NS, Supratman U, Harneti D, Wahab HA, Azmi MN. Synthesis, biological activities, and evaluation molecular docking-dynamics studies of new phenylisoxazole quinoxalin-2-amine hybrids as potential α-amylase and α-glucosidase inhibitors. RSC Adv 2024; 14:7684-7698. [PMID: 38444963 PMCID: PMC10912921 DOI: 10.1039/d3ra08642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
New phenylisoxazole quinoxalin-2-amine hybrids 5a-i were successfully synthesised with yields of 53-85% and characterised with various spectroscopy methods. The synthesised hybrids underwent in vitro α-amylase and α-glucosidase inhibitory assays, with acarbose as the positive control. Through the biological study, compound 5h exhibits the highest α-amylase inhibitory activity with IC50 = 16.4 ± 0.1 μM while compounds 5a-c, 5e and 5h exhibit great potential as α-glucosidase inhibitors, with 5c being the most potent (IC50 = 15.2 ± 0.3 μM). Among the compounds, 5h exhibits potential as a dual inhibitor for both α-amylase (IC50 = 16.4 ± 0.1 μM) and α-glucosidase (IC50 = 31.6 ± 0.4 μM) enzymes. Through the molecular docking studies, the inhibition potential of the selected compounds is supported. Compound 5h showed important interactions with α-amylase enzyme active sites and exhibited the highest binding energy of -8.9 ± 0.10 kcal mol-1, while compound 5c exhibited the highest binding energy of -9.0 ± 0.20 kcal mol-1 by forming important interactions with the α-glucosidase enzyme active sites. The molecular dynamics study showed that the selected compounds exhibited relative stability when binding with α-amylase and α-glucosidase enzymes. Additionally, compound 5h demonstrated a similar pattern of motion and mechanism of action as the commercially available miglitol.
Collapse
Affiliation(s)
| | - Lacksany Phongphane
- School of Chemical Sciences, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Mohammad Tasyriq Che Omar
- Biological Section, School of Distance Education, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Nor Shafiqah Nor Shahril
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Mohamad Nurul Azmi
- School of Chemical Sciences, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| |
Collapse
|
33
|
Akar Z, Akay S, Ejder N, Özad Düzgün A. Determination of the Cytotoxicity and Antibiofilm Potential Effect of Equisetum arvense Silver Nanoparticles. Appl Biochem Biotechnol 2024; 196:909-922. [PMID: 37273097 DOI: 10.1007/s12010-023-04587-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
This study aimed to synthesize and characterize silver nanoparticles (AgNPs) by green synthesis from Equisetum arvense (Ea) extracts and to investigate their cytotoxicity, antibiofilm activity, and α-glucosidase enzyme inhibition. Diverse characterization techniques were applied to verify the production of nanoparticles. SEM examination confirmed that the size of nanoparticles is in the range of 40-60 nm. Also, interactions between silver and natural compounds of plant extract were confirmed through FT-IR and EDX analyses. It was determined that Equisetum arvense silver nanoparticles had antibiofilm activity against three different clinical strains with high biofilm-forming ability. AgNPs reduced the biofilm-forming capacity of clinical A. baumannii isolate with strong biofilm-forming capacity by approximately twofold, while the capacity of clinical K.pneumonaie and E.coli isolates decreased by 1.5 and 1.2 fold, respectively. The α-glucosidase enzyme inhibition potential of the AgNPs, which is determined as 93.50%, was higher than the plant extract with, and the α- 30.37%. MTT was performed to assess whether incubation of nanoparticles with A549 and ARPE-19 cell lines affected their viability, and a dramatic reduction in cell growth inhibition of both A549 and ARPE-19 cells was observed. It has been shown that A549 cells treated with 200 and 150 µg/mL nanoparticles had less cell proliferation compared to control cells at 24-h and 48-h incubation time. According to these results, Ea-derived AgNPs appear to have potential anticancer activity against A549 cancer cells. Investigating the effects of green synthesis nanoparticles on microbial biofilm and various tumors may be important for developing new therapies. The outcomes of this study have showed that Ea-AgNPsmay have a high potential both in the treatment of pathogenic strains that form biofilms, as well as in anticancer therapy use.
Collapse
Affiliation(s)
- Zeynep Akar
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey
| | - Seref Akay
- Department of Genetics and Bioengineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkey
| | - Nebahat Ejder
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Azer Özad Düzgün
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey.
| |
Collapse
|
34
|
Katturajan R, Shivaji P, Nithiyanandam S, Parthasarathy M, Magesh S, Vashishth R, Radhakrishnan V, Prince SE. Antioxidant and Antidiabetic Potential of Ormocarpum cochinchinense (Lour.) Merr. Leaf: An Integrated In vitro and In silico Approach. Chem Biodivers 2024; 21:e202300960. [PMID: 38217335 DOI: 10.1002/cbdv.202300960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
Diabetes is a prevalent metabolic disorder associated with various complications. Inhibition of α-glucosidase and α-amylase enzymes is an effective strategy for managing non-insulin-dependent diabetes mellitus. This study aimed to investigate the antioxidant and antidiabetic potential of Ormocarpum cochinchinense leaf through in vitro and in silico approaches. The methanol extract exhibited the highest phenolic and flavonoid content over solvent extracts aqueous, acetone, hexane, and chloroform, the same has been correlating with strong antioxidant activity. Furthermore, the methanol extract demonstrated significant inhibitory effects on α-amylase and α-glucosidase enzymes, indicating its potential as an antidiabetic agent. Molecular docking analysis identified compounds, including myo-inositol, with favorable binding energies comparable to the standard drug metformin. The selected compounds displayed strong binding affinity towards α-amylase and α-glucosidase enzymes. Structural dynamics analysis revealed that myo-inositol formed a more stable complex with the enzymes. These findings suggest that O. cochinchinense leaf possesses antioxidant and antidiabetic properties, making it a potential source for developing therapeutic agents.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | - Priyadharshini Shivaji
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | - Sangeetha Nithiyanandam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | - Manisha Parthasarathy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | | | - Rahul Vashishth
- Department of Biosciences, School of Biosciences and Technology, VIT, Vellore, 632014
| | - Vidya Radhakrishnan
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| |
Collapse
|
35
|
Tasleem M, Ullah S, Halim SA, Urooj I, Ahmed N, Munir R, Khan A, El-Kott AF, Taslimi P, Negm S, Al-Harrasi A, Shafiq Z. Synthesis of 3-hydroxy-2-naphthohydrazide-based hydrazones and their implications in diabetic management via in vitro and in silico approaches. Arch Pharm (Weinheim) 2024; 357:e2300544. [PMID: 38013251 DOI: 10.1002/ardp.202300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Diabetes mellitus (DM) has prevailed as a chronic health condition and has become a serious global health issue due to its numerous consequences and high prevalence. We have synthesized a series of hydrazone derivatives and tested their antidiabetic potential by inhibiting the essential carbohydrate catabolic enzyme, "α-glucosidase." Several approaches including fourier transform infrared, 1 H NMR, and 13 C NMR were utilized to confirm the structures of all the synthesized derivatives. In vitro analysis of compounds 3a-3p displayed more effective inhibitory activities against α-glucosidase with IC50 in a range of 2.80-29.66 µM as compared with the commercially available inhibitor, acarbose (IC50 = 873.34 ± 1.67 M). Compound 3h showed the highest inhibitory potential with an IC50 value of 2.80 ± 0.03 µM, followed by 3i (IC50 = 4.13 ± 0.06 µM), 3f (IC50 = 5.18 ± 0.10 µM), 3c (IC50 = 5.42 ± 0.11 µM), 3g (IC50 = 6.17 ± 0.15 µM), 3d (IC50 = 6.76 ± 0.20 µM), 3a (IC50 = 9.59 ± 0.14 µM), and 3n (IC50 = 10.01 ± 0.42 µM). Kinetics analysis of the most potent compound 3h revealed a concentration-dependent form of inhibition by 3h with Ki value = 4.76 ± 0.0068 µM. Additionally, an in silico docking approach was applied to predict the binding patterns of all the compounds, which indicates that the hydrazide and the naphthalene-ol groups play a vital role in the binding of the compounds with the essential residues (i.e., Glu277 and Gln279) of the α-glucosidase enzyme.
Collapse
Affiliation(s)
- Mussarat Tasleem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ifra Urooj
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Nadeem Ahmed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Rabia Munir
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
36
|
Van PCP, Ngo Van H, Quang MB, Duong Thanh N, Nguyen Van D, Thanh TD, Tran Minh N, Thi Thu HN, Quang TN, Thao Do T, Thanh LP, Do Thi Thu H, Le Tuan AH. Stigmastane-type steroid saponins from the leaves of Vernonia amygdalina and their α-glucosidase and xanthine oxidase inhibitory activities. Nat Prod Res 2024; 38:601-606. [PMID: 36924396 DOI: 10.1080/14786419.2023.2188589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Two new vernonioside K (1) and vernonioside L (2) and four known Δ7,9(11) stigmastane-type steroidal saponins-vernonioside B2 (3), vernoniacum B (4), vernonioside B1 (5), and vernoamyoside A (6)-were isolated from the leaves of Vernonia amygdalina. Their structures were determined by comprehensive spectroscopic analysis with one-dimensional nuclear magnetic resonance, two-dimensional nuclear magnetic resonance, and high-resolution mass spectrometry. All isolated compounds (1-6) were evaluated to determine their inhibitory effects on α-glucosidase and xanthine oxidase. Among them, two new compounds 1 and 2 showed significant inhibition of α-glucosidase with IC50 values of 78.56 ± 7.28 and 14.74 ± 1.57 (μM), respectively, comparable with acarbose as a positive control (127.53 ± 1.73 μM); none of these compounds inhibited xanthine oxidase activity. Compounds 1 and 2 are promising candidates for the development of antidiabetic agents from natural sources.
Collapse
Affiliation(s)
- PCong Pham Van
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, Hanoi, Vietnam
- Center for Research and Technology Transfer, VAST, Hanoi, Vietnam
| | - Hieu Ngo Van
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, Hanoi, Vietnam
- Center for Research and Technology Transfer, VAST, Hanoi, Vietnam
| | - Minh Bui Quang
- Center for Research and Technology Transfer, VAST, Hanoi, Vietnam
| | - Nam Duong Thanh
- Center for Research and Technology Transfer, VAST, Hanoi, Vietnam
| | - Dan Nguyen Van
- Center for Research and Technology Transfer, VAST, Hanoi, Vietnam
| | - Tuan Do Thanh
- Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Ngoc Tran Minh
- Traditional medicinal administration, Ministry of Health, Ba Dinh, Hanoi, Vietnam
| | | | | | - Thi Thao Do
- Institute of Biotechnology, VAST, Cau Giay, Hanoi, Vietnam
| | | | - Hien Do Thi Thu
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, Hanoi, Vietnam
- Center for Research and Technology Transfer, VAST, Hanoi, Vietnam
| | - Anh Hoang Le Tuan
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, Hanoi, Vietnam
- Center for Research and Technology Transfer, VAST, Hanoi, Vietnam
| |
Collapse
|
37
|
Sonia H, Chelleng N, Afzal NU, Manna P, Puzari M, Chetia P, Tamuly C. Anti-diabetic and anti-urease inhibition potential of Amomum dealbatum Roxb. seeds through a bioassay-guided approach. Nat Prod Res 2024:1-6. [PMID: 38189677 DOI: 10.1080/14786419.2023.2301679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Using HPLC-PDA and HRMS analysis, five compounds p-coumaric acid, sinapic acid, quercetin, trans-ferulic and gallic acid were identified in seeds of Amomum dealbatum Roxb. The GC-MS analysis identified 1-dodecanol, phenol, 3,5-bis(1,1-dimethylethyl), Oleic Acid and 1-Heptacosanol which possess anti-diabetic properpties. A bioassay-guided technique was used to determine the degree of inhibition that A. dealbatum seeds crude methanol extract and its most active sub-fraction had against the α-glucosidase and Helicobacter pylori urease enzymes. In the Rat L6 myoblast cell line, glucose absorption through the GLUT4 transporter of most active subfraction (EASF80) was examined. According to a molecular docking investigation, these compounds strongly interacted with the GLUT4 transporter, H pylori and α-glucosidase enzyme. Sinapic acid interacted most strongly with the H. pylori urease enzyme while gallic acid interacted with both the α-glucosidase enzyme and the GLUT4 transporter. Additionally, a molecular docking simulation study was carried out to recognise the stability of the complexes.
Collapse
Affiliation(s)
- Hage Sonia
- CSIR-North East Institute of Science and Technology, Arunachal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Nilamoni Chelleng
- CSIR-North East Institute of Science and Technology, Arunachal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Nazim Uddin Afzal
- CSIR-North East Institute of Science and Technology, Arunachal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Prasenjit Manna
- Academy of Scientific and Innovative Research, Ghaziabad, India
- CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Minakshi Puzari
- Department of Life Sciences, Dibrugarh University, Dibrugarh, India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, India
| | - Chandan Tamuly
- CSIR-North East Institute of Science and Technology, Arunachal, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
38
|
Trentin R, Moschin E, Custódio L, Moro I. Bioprospection of the Antarctic Diatoms Craspedostauros ineffabilis IMA082A and Craspedostauros zucchelli IMA088A. Mar Drugs 2024; 22:35. [PMID: 38248660 PMCID: PMC10820014 DOI: 10.3390/md22010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
In extreme environments such as Antarctica, a diverse range of organisms, including diatoms, serve as essential reservoirs of distinctive bioactive compounds with significant implications in pharmaceutical, cosmeceutical, nutraceutical, and biotechnological fields. This is the case of the new species Craspedostauros ineffabilis IMA082A and Craspedostauros zucchellii IMA088A Trentin, Moschin, Lopes, Custódio and Moro (Bacillariophyta) that are here explored for the first time for possible biotechnological applications. For this purpose, a bioprospection approach was applied by preparing organic extracts (acetone and methanol) from freeze-dried biomass followed by the evaluation of their in vitro antioxidant properties and inhibitory activities on enzymes related with Alzheimer's disease (acetylcholinesterase: AChE, butyrylcholinesterase: BChE), Type 2 diabetes mellitus (T2DM, α-glucosidase, α-amylase), obesity (lipase) and hyperpigmentation (tyrosinase). Extracts were then profiled by ultra-high-performance liquid chromatography-mass spectrometry (UPLC-HR-MS/MS), while the fatty acid methyl ester (FAME) profiles were established by gas chromatography-mass spectrometry (GC-MS). Our results highlighted strong copper chelating activity of the acetone extract from C. ineffabilis and moderate to high inhibitory activities on AChE, BChE, α-amylase and lipase for extracts from both species. The results of the chemical analysis indicated polyunsaturated fatty acids (PUFA) and their derivatives as the possible compounds responsible for the observed activities. The FAME profile showed saturated fatty acids (SFA) as the main group and methyl palmitoleate (C16:1) as the predominant FAME in both species. Overall, our results suggest both Antarctic strains as potential sources of interesting molecules with industrial applications. Further studies aiming to investigate unidentified metabolites and to maximize growth yield and natural compound production are required.
Collapse
Affiliation(s)
- Riccardo Trentin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Emanuela Moschin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Isabella Moro
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
39
|
Petrova AV, Khusnutdinova EF, Lobov AN, Zakirova LM, Ha NTT, Babkov DA. Selective synthesis of A-ring Е-arylidene derivatives from β-sitosterol and their activity. Nat Prod Res 2024; 38:52-59. [PMID: 35895012 DOI: 10.1080/14786419.2022.2103555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
A series of 24-ethylcholest-4-ene-3,6-dione 2E-arylidene-derivatives has been synthesized by a Claisen-Schmidt reaction from a natural phytosterol β-sitosterol with yields of 80-85%. The structure of the obtained compounds was confirmed by NMR spectroscopy, including two-dimensional correlation experiments. The synthesized compounds were evaluated for their in vitro cytotoxicity and α-glucosidase inhibitory activity. It was established that compound 3 with pyridin-3-ylmethylene moiety exhibited a selective cytotoxic effect against the U251 cancer cell line with 99.31% inhibition of cancer cell growth. Compounds with pyridin-4-ylmethylene 4 and furan-2-ylmethylene-5 fragments were the most active inhibitors of α-glucosidase with IC50 64.00 and 38.95 µM, being 3- and 5-times more active than acarbose. Binding mode to α-glucosidase and ADMET characteristics for the lead molecule 5 were proposed computationally. To sum up, an efficient approach to the derivatives with promising antidiabetic activity based on available natural product β-sitosterol is suggested.
Collapse
Affiliation(s)
- A V Petrova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - E F Khusnutdinova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - A N Lobov
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - L M Zakirova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - N T T Ha
- Institute of Chemistry, Vietnamese Academy of Science and Technology, Hanoi, Viet Nam
| | - D A Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Volgograd, Russian Federation
| |
Collapse
|
40
|
Patel P, Shah D, Bambharoliya T, Patel V, Patel M, Patel D, Bhavsar V, Padhiyar S, Patel B, Mahavar A, Patel R, Patel A. A Review on the Development of Novel Heterocycles as α-Glucosidase Inhibitors for the Treatment of Type-2 Diabetes Mellitus. Med Chem 2024; 20:503-536. [PMID: 38275074 DOI: 10.2174/0115734064264591231031065639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 01/27/2024]
Abstract
One of the most effective therapeutic decencies in the treatment of Type 2 Diabetes Mellitus is the inhibition of α-glucosidase enzyme, which is present at the brush border of the intestine and plays an important role in carbohydrate digestion to form mono-, di-, and polysaccharides. Acarbose, Voglibose, Miglitol, and Erniglitate have been well-known α-glucosidase inhibitors in science since 1990. However, the long synthetic route and side effects of these inhibitors forced the researchers to move their focus to innovate simple and small heterocyclic scaffolds that work as excellent α-glucosidase inhibitors. Moreover, they are also effective against the postprandial hyperglycemic condition in Type 2 Diabetes Mellitus. In this aspect, this review summarizes recent progress in the discovery and development of heterocyclic molecules that have been appraised to show outstanding inhibition of α-glucosidase to yield positive effects against diabetes.
Collapse
Affiliation(s)
- Prexa Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | - Vidhi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Dharti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | | | | | - Anjali Mahavar
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, Gujarat, India
| | - Riddhisiddhi Patel
- Department of Pharmaceutical Science, Saurashtra University, Rajkot, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| |
Collapse
|
41
|
Sivaraman SA, Sabareesh V. An Update on Dipeptidyl Peptidase-IV Inhibiting Peptides. Curr Protein Pept Sci 2024; 25:267-285. [PMID: 38173201 DOI: 10.2174/0113892037287976231212104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Diabetes is a chronic metabolic disorder. According to the International Diabetes Federation, about 537 million people are living with diabetes. The two types of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), among which the population affected by T2DM is relatively higher. A major reason for T2DM is that insulin stimulation is hampered due to the inactivation of incretin hormones. Dipeptidyl peptidase-IV (DPP-IV) is a serine protease that is directly involved in the inactivation of incretin hormones, e.g., glucagon-like peptide-1 (GLP-1). Therefore, the inhibition of DPP-IV can be a promising method for managing T2DM, in addition to other enzyme inhibition strategies, such as inhibition of α-amylase and α -glucosidase. Currently, about 12 different gliptin drugs are available in the market that inhibit DPP-IV in a dose-dependent manner. Instead of gliptins, 'peptides' can also be employed as an alternative and promising way to inhibit DPP-IV. Peptide inhibitors of DPP-IV have been identified from various plants and animals. Chemically synthesized peptides have also been experimented for inhibiting DPP-IV. Most peptides have been analysed by biochemical assays, whereas some in vitro assays have also been reported. Molecular docking analysis has been applied to comprehend the mechanism of inhibition. In this review, certain aspects of natural as well as synthetic peptides are described that have been proven to inhibit DPP-IV.
Collapse
Affiliation(s)
- Sachithanantham Annapoorani Sivaraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Varatharajan Sabareesh
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| |
Collapse
|
42
|
El-Shibani F, Sulaiman GM, Abouzied AS, Al Ali A, Abdulkarim AK, Alamami AD, Asiri M, Mohammed HA. Polyphenol Fingerprint, Biological Activities, and In Silico Studies of the Medicinal Plant Cistus parviflorus L. Extract. ACS OMEGA 2023; 8:48269-48279. [PMID: 38144113 PMCID: PMC10733917 DOI: 10.1021/acsomega.3c07545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/28/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Cistus parviflorus L. (Cistaceae) is a medicinal plant with several folkloric applications, including being used for urinary tract infections and as a food additive. In this study, the polyphenolic diversity and the antioxidant, antidiabetic, and antimicrobial activities of the C. parviflorus methanolic extract were evaluated. Spectrophotometric and HPLC-based analyses using standard polyphenolic compounds were conducted to measure the phenolics and flavonoids in the plant extract. The in vitro DPPH, ORAC, FRAP, and α-glucosidase assays were used to evaluate the plant's antioxidant and antidiabetic activities. Furthermore, disc diffusion and MIC-based microdilution tests were applied to evaluate the antimicrobial activity of the plant against broad-spectrum microorganisms. The analysis revealed the existence of high phenolic and flavonoid quantities that were measured at 302.59 ± 0.6 μg GAE and 134.3 ± 0.5 μg RE, respectively. The HPLC-based analysis revealed the existence of 18 phenolic acids and 8 flavonoids. The major phenolic acid was ellagic acid (169.03 ppm), while catechin was the major flavonoid (91.80 ppm). Remarkable antioxidant activity was measured using three different assays: DPPH, ORAC, and FRAP. Furthermore, strong inhibition of α-glucosidase compared to acarbose was recorded for the plant extract (IC50 0.924 ± 0.6). The results showed that C. parviflorus's extract had a strong anti-Escherichia coli effect with MIC value of 0.98 μg\mL and IZD value of 32.2 ± 0.58 mm compared to 25.3 ± 0.18 mm for gentamycin, the positive control. Moreover, Aspergillus niger, Aspergillus fumigatus, Staphylococcus aureus, Streptococcus pyogenes, and Salmonella typhimurium all showed significant growth inhibition in response to the extract, a result that may be related to the use of the plant in traditional medicine to treat urinary tract infections. The docking study indicated the higher binding affinity of the major identified compounds, i.e., ellagic acid, rutin, naringin, catechin, and punicalagin, to the S. aureus gyrase-DNA complex, which might suggest the possible mechanisms of the plant as antimicrobial agents.
Collapse
Affiliation(s)
- Fatma
A.A El-Shibani
- Department
of Pharmacognosy, Faculty of Pharmacy, Benghazi
University, Benghazi 16063, Libya
- Department of Pharmacognosy, Faculty of Pharmacy, Assalam International University, Benghazi, Libya
| | - Ghassan M. Sulaiman
- Division
of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Amr S. Abouzied
- Department
of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department
of Pharmaceutical Chemistry, National Organization
for Drug Control and Research (NODCAR), Giza 12553, Egypt
| | - Amer Al Ali
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Abdulnaser Kh Abdulkarim
- Department
of Basic Medical Science, Faculty of Pharmacy, University of Tripoli, Tripoli 1955, Libya
| | - Abdullah D. Alamami
- Department
of Basic Medical Science, Faculty of Pharmacy, University of Benghazi, Benghazi 16063, Libya
| | - Mohammed Asiri
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Hamdoon A. Mohammed
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department
of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| |
Collapse
|
43
|
Kumar TK, Siva B, Kiranmai B, Alli VJ, Jadav SS, Reddy AM, Boustie J, Le Devehat F, Tiwari AK, Suresh Babu K. Salazinic Acid and Norlobaridone from the Lichen Hypotrachyna cirrhata: Antioxidant Activity, α-Glucosidase Inhibitory and Molecular Docking Studies. Molecules 2023; 28:7840. [PMID: 38067568 PMCID: PMC10708527 DOI: 10.3390/molecules28237840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The present study was intended for the identification of secondary metabolites in acetone extract of the lichen Hypotrachyna cirrhata using UPLC-ESI-QToF-MS/MS and the detection of bioactive compounds. This study led to the identification of 22 metabolites based on their MS/MS spectra, accurate molecular masses, molecular formula from a comparison of the literature database (DNP), and fragmentation patterns. In addition, potent antioxidant and α-glucosidase inhibitory potentials of acetone extract of H. cirrhata motivated us to isolate 10 metabolites, which were characterized as salazinic acid (11), norlobaridone (12), atranorin (13), lecanoric acid (14), lichesterinic acid (15), protolichesterinic acid (16), methyl hematommate (17), iso-rhizonic acid (18), atranol (19), and methylatratate (20) based on their spectral data. All these isolates were assessed for their free radicals scavenging, radical-induced DNA damage, and intestinal α-glucosidase inhibitory activities. The results indicated that norlobaridone (12), lecanoric acid (14), methyl hematommate (17), and atranol (19) showed potent antioxidant activity, while depsidones (salazinic acid (11), norlobaridone (12)) and a monophenolic compound (iso-rhizonic acid, (18)) displayed significant intestinal α-glucosidase inhibitory activities (p < 0.001), which is comparable to standard acarbose. These results were further correlated with molecular docking studies, which indicated that the alkyl chain of norlobaridione (12) is hooked into the finger-like cavity of the allosteric pocket; moreover, it also established Van der Waals interactions with hydrophobic residues of the allosteric pocket. Thus, the potency of norlobaridone to inhibit α-glucosidase enzyme might be associated with its allosteric binding. Also, MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) binding free energies of salazinic acid (11) and norlobaridone (12) were superior to acarbose and may have contributed to their high activity compared to acarbose.
Collapse
Affiliation(s)
- Tatapudi Kiran Kumar
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bandi Siva
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
| | - Basani Kiranmai
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
| | - Vidya Jyothi Alli
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
| | - Surender Singh Jadav
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
| | | | - Joël Boustie
- CNRS (Centre National de la Recherché Scientifique), ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, University of Rennes, 35000 Rennes, France;
| | - Françoise Le Devehat
- CNRS (Centre National de la Recherché Scientifique), ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, University of Rennes, 35000 Rennes, France;
| | - Ashok Kumar Tiwari
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; (T.K.K.); (B.S.); (B.K.); (V.J.A.); (S.S.J.); (A.K.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
44
|
Lin Q, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Tian Y, Jin Z. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Crit Rev Food Sci Nutr 2023; 63:12126-12135. [PMID: 35822304 DOI: 10.1080/10408398.2022.2098687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes is caused by persistently high blood sugar levels, which leads to metabolic dysregulation and an increase in the risk of chronic diseases such as diabetes and obesity. High levels of rapidly digestible starches within foods may contribute to high blood sugar levels. Amylase inhibitors can reduce amylase activity, thereby inhibiting starch hydrolysis, and reducing blood sugar levels. Currently, amylase inhibitors are usually chemically synthesized substances, which can have undesirable side effects on the human body. The development of amylase inhibitors from food-grade ingredients that can be incorporated into the human diet is therefore of great interest. Several classes of phytochemicals, including polyphenols and flavonoids, have been shown to inhibit amylase, including certain types of food-grade nanoparticles. In this review, we summarize the main functions and characteristics of amylases within the human body, as well as their interactions with amylase inhibitors. A strong focus is given to the utilization of nanoparticles as amylase inhibitors. The information covered in this article may be useful for the design of functional foods that can better control blood glucose levels, which may help reduce the risk of diabetes and other diet-related diseases.
Collapse
Affiliation(s)
- Qianzhu Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
45
|
Atiq-Ur-Rehman. GC-MS analysis of n-hexane extract of Fagonia indica Burm.f. with hypoglycaemic potential. Nat Prod Res 2023; 37:3702-3710. [PMID: 35776099 DOI: 10.1080/14786419.2022.2092731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022]
Abstract
The present study was aimed at gas chromatography-mass spectrometry (GC-MS) analytical investigation of n-hexane extract of the aerial parts of Fagonia indica to identify hypoglycaemic compounds. Also, to investigate this extract for lactase enzyme inhibition responsible for hypoglycaemic activity. Phytochemical screening, GC-MS analysis and lactase inhibition of n-hexane extract was performed by the standard methods. GC-MS analytical study identified 15 compounds in this extract. The maximum percentage of lactase enzyme inhibition of n-hexane extract was 26.21 ± 1.25% (IC50 value of 311.2 ± 16.09 μg/mL) at 100 μg/mL concentration. The standard acarbose showed lactase inhibition of 63.21 ± 0.92% (IC50 value of 32.51 ± 0.85 µg/mL) at the same concentration. n-Hexane extract can be a potential source in the management of diabetes due to the presence of biologically active hypoglycaemic compounds.
Collapse
Affiliation(s)
- Atiq-Ur-Rehman
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Faculty of Pharmacy, Hajvery University Lahore, Lahore, Pakistan
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
46
|
Bastos RG, Rodrigues SDO, Marques LA, Oliveira CMD, Salles BCC, Zanatta AC, Rocha FD, Vilegas W, Pagnossa JP, de A Paula FB, da Silva GA, Batiha GE, Aggad SS, Alotaibi BS, Yousef FM, da Silva MA. Eugenia sonderiana O. Berg leaves: Phytochemical characterization, evaluation of in vitro and in vivo antidiabetic effects, and structure-activity correlation. Biomed Pharmacother 2023; 165:115126. [PMID: 37494787 DOI: 10.1016/j.biopha.2023.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023] Open
Abstract
Several medicinal plants have drawn the attention of researchers by its phytochemical composition regarding their potential for treating chronic complications of diabetes mellitus. In this context, plants of the Myrtaceae family popularly used in Brazil for the treatment of diabetes mellitus, including Eugenia sonderiana, have shown beneficial effects due to the presence of phenolic compounds and saponins in their chemical constitution. Thus, the present work aimed to perform the phytochemical characterization of the hydroethanolic extract of E. sonderiana leaves using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS), along with in vitro and in vivo studies of antidiabetic activity. The chemical characterization revealed the presence of phenolic compounds, flavonoids, neolignans, tannins, and saponins. In addition, the extract exhibited minimum inhibitory concentrations of alpha-amylase and alpha-glycosidase higher than the acarbose in the in vitro tests. Also, the in vivo tests revealed a slight increase in body mass in diabetic rats, as well as a significant decrease in water and feed consumption provided by the extract. Regarding serum biochemical parameters, the extract showed significant activity in decreasing the levels of glucose, hepatic enzymes, and triglycerides, in addition to maintaining HDL cholesterol levels within normal ranges, protecting the cell membranes against oxidative damage. Thus, the extract of E. sonderiana leaves was considered promising pharmaceutical ingredient in the production of a phytotherapy medication.
Collapse
Affiliation(s)
- Renan G Bastos
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Sarah de O Rodrigues
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, Brazil
| | | | - Carla M de Oliveira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Bruno C C Salles
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Ana C Zanatta
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | | | - Wagner Vilegas
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, Brazil
| | - Jorge P Pagnossa
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, Brazil
| | - Fernanda B de A Paula
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Geraldo A da Silva
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Sarah S Aggad
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. box 84428, Riyadh 11671, Saudi Arabia
| | - Fatimah M Yousef
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marcelo A da Silva
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil.
| |
Collapse
|
47
|
Álvarez-Almazán S, Solís-Domínguez LC, Duperou-Luna P, Fuerte-Gómez T, González-Andrade M, Aranda-Barradas ME, Palacios-Espinosa JF, Pérez-Villanueva J, Matadamas-Martínez F, Miranda-Castro SP, Mercado-Márquez C, Cortés-Benítez F. Anti-Diabetic Activity of Glycyrrhetinic Acid Derivatives FC-114 and FC-122: Scale-Up, In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2023; 24:12812. [PMID: 37628991 PMCID: PMC10454726 DOI: 10.3390/ijms241612812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the most common diseases and the 8th leading cause of death worldwide. Individuals with T2D are at risk for several health complications that reduce their life expectancy and quality of life. Although several drugs for treating T2D are currently available, many of them have reported side effects ranging from mild to severe. In this work, we present the synthesis in a gram-scale as well as the in silico and in vitro activity of two semisynthetic glycyrrhetinic acid (GA) derivatives (namely FC-114 and FC-122) against Protein Tyrosine Phosphatase 1B (PTP1B) and α-glucosidase enzymes. Furthermore, the in vitro cytotoxicity assay on Human Foreskin fibroblast and the in vivo acute oral toxicity was also conducted. The anti-diabetic activity was determined in streptozotocin-induced diabetic rats after oral administration with FC-114 or FC-122. Results showed that both GA derivatives have potent PTP1B inhibitory activity being FC-122, a dual PTP1B/α-glucosidase inhibitor that could increase insulin sensitivity and reduce intestinal glucose absorption. Molecular docking, molecular dynamics, and enzymatic kinetics studies revealed the inhibition mechanism of FC-122 against α-glucosidase. Both GA derivatives were safe and showed better anti-diabetic activity in vivo than the reference drug acarbose. Moreover, FC-114 improves insulin levels while decreasing LDL and total cholesterol levels without decreasing HDL cholesterol.
Collapse
Affiliation(s)
- Samuel Álvarez-Almazán
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Luz Cassandra Solís-Domínguez
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Paulina Duperou-Luna
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Teresa Fuerte-Gómez
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Martin González-Andrade
- Laboratory of Biosensors and Molecular Modelling, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - María E. Aranda-Barradas
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Juan Francisco Palacios-Espinosa
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Jaime Pérez-Villanueva
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Félix Matadamas-Martínez
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Susana Patricia Miranda-Castro
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Crisóforo Mercado-Márquez
- Isolation and Animal Facility Unit, Facultad de Estudios Superiores Cuautitlán 28, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Francisco Cortés-Benítez
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| |
Collapse
|
48
|
Kęska P, Stadnik J, Łupawka A, Michalska A. Novel α-Glucosidase Inhibitory Peptides Identified In Silico from Dry-Cured Pork Loins with Probiotics through Peptidomic and Molecular Docking Analysis. Nutrients 2023; 15:3539. [PMID: 37630730 PMCID: PMC10460020 DOI: 10.3390/nu15163539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetes mellitus is a serious metabolic disorder characterized by abnormal blood glucose levels in the body. The development of therapeutic strategies for restoring and maintaining blood glucose homeostasis is still in progress. Synthetic alpha-amylase and alpha-glucosidase inhibitors can improve blood glucose control in diabetic patients by effectively reducing the risk of postprandial hyperglycemia. Peptides of natural origin are promising compounds that can serve as alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Potential alpha-glucosidase-inhibiting peptides obtained from aqueous and saline extracts from dry-cured pork loins inoculated with probiotic LAB were evaluated using in vitro and in silico methods. To identify the peptide sequences, liquid chromatography-mass spectrometry was used. For this purpose, in silico calculation methods were used, and the occurrence of bioactive fragments in the protein followed the ADMET approach. The most promising sequences were molecularly docked to test their interaction with the human alpha-glycosidase molecule (PDB ID: 5NN8). The docking studies proved that oligopeptides VATPPPPPPPK, DIPPPPM, TPPPPPPG, and TPPPPPPPK obtained by hydrolysis of proteins from ripening dry-cured pork loins showed the potential to bind to the human alpha-glucosidase molecule and may act effectively as a potential antidiabetic agent.
Collapse
Affiliation(s)
| | - Joanna Stadnik
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | | | | |
Collapse
|
49
|
Radi FZ, Bencheikh N, Bouhrim M, Saleh A, Al kamaly O, Parvez MK, Elbouzidi A, Bnouham M, Zair T. Phytochemical Analysis, Antioxidant, and Antihyperglycemic Activities of Crataegus monogyna Jacq Aqueous Extract. Nat Prod Commun 2023; 18. [DOI: 10.1177/1934578x231195157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Objective This study aims to evaluate the phytochemical composition, antioxidant, and antihyperglycemic (in vivo, in vitro, and in silico) activities and acute toxicity of Crataegus monogyna Jacq ( C monogyna) aqueous extracts. Methods The study analyzed the aqueous extract of C monogyna through various methods such as phytochemical screening, and the high-performance liquid chromatography-ultraviolet (HPLC-UV)-visible analysis. The extract was also tested for antioxidant potential, acute toxicity, antihyperglycemic effect, and inhibitory effect on the pancreatic α-amylase enzyme. Additionally, the study used the molecular docking approach to identify the most potent ligands in the extract. Results The phytochemical screening of the aqueous extract of C monogyna showed the presence of flavonoids, tannins, coumarins, sterol, and triterpene. The extract was rich in total polyphenols (1.65 ± 0.04 mg gallic acid equivalent per gram of extract [GAE/g] DM), total flavonoids (0.33 ± 0.03 EQ/g DM), and condensed tannins (0.28 ± 0.01 EC/mg DM). HPLC-UV-visible analysis identified 9 phenolic compounds, with high levels of gallic acid and caffeic acid. The C monogyna extract has a high antioxidant activity with an IC50 of 9.23 ± 0.01 mg/mL by DPPH and 8.32 ± 0.02 mg/mL by FRAP. The aqueous extract of C monogyna was not toxic to albino mice. The glucose tolerance test showed a significant antihyperglycemic effect, with an IC50 of 0.070 ± 0.008 mg/mL for the inhibition of pancreatic α-amylase activity by the aqueous extract of C monogyna. The in vivo inhibitory effect of the extract on the pancreatic α-amylase enzyme was confirmed. Two flavonoids, catechin, and rutin, were identified as potent inhibitors of the activity of α-amylase in the in silico part of the study, compared to the native ligand, Acarbose. Conclusion The study found that C monogyna has significant antioxidant and antihyperglycemic properties. The presence of catechin and rutin may contribute to these effects. The results suggest that C monogyna could be used as a dietary supplement to prevent and treat diabetes.
Collapse
Affiliation(s)
- Fatima Z. Radi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Noureddine Bencheikh
- Laboratory of Bioressources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohamed First, Oujda, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology. University Sultan Moulay Slimane Faculty of Sciences and Technology, Beni Mellal, Morocco
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, University of Lille, Faculty of Pharmacy, Lille, France
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioressources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohamed First, Oujda, Morocco
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University of Meknes, Meknes, Morocco
| |
Collapse
|
50
|
Nor I, Wirasutisna KR, Hartati R, Insanu M. The α-glucosidase inhibitory activity of avicularin and 4-O-methyl gallic acid isolated from Syzygium myrtifolium leaves. Saudi Pharm J 2023; 31:101677. [PMID: 37448844 PMCID: PMC10336581 DOI: 10.1016/j.jsps.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes Mellitus is the main cause of death on a global scale. In 2019, there were 463 million people with diabetes, and WHO predicts that by 2030, there will be 578 million. As an antidiabetic agent, α-glucosidase inhibitors are one of the methods employed to reduce the prevalence of diabetes. Diabetes is traditionally treated with Syzygium as a primary material, medicine, fruit, ornamental plant, and source of carpentry. This investigation aimed to examine the inhibitory effect of seven species of Syzygium against α-glucosidase enzyme using an in vitro assay and isolate active substances and ascertain their concentrations in each sample. As a solvent, ethanol was used in maceration to extract the substance. Afterward, the extract underwent a series of fractionation techniques, including liquid-liquid extraction, vacuum liquid chromatography, column chromatography, and preparative Thin Layer Chromatography (TLC) for purification and isolation. The compound's structures were elucidated using TLC, UV-Visible spectrophotometry, and nuclear magnetic resonance (NMR) spectroscopy. Based on concentrations of 100 and 200 µg/mL, Syzygium myrtifolium exhibited the most significant inhibitory effect, followed by other species of Syzygium. The proportion of ethyl acetate had the strongest activity (IC50 0.40 ± 0.02 µg/mL) contrasted to positive control acarbose (IC50 55.39 ± 0.67 g/mL) and quercitrin (IC50 6.47 ± 0.40 µg/mL). Avicularin and 4-O-methyl gallic acid were discovered in the ethyl acetate fraction of Syzygium myrtifolium with IC50 values of 17.05 ± 0.75 µg/mL and 25.19 ± 0.21 µg/mL, respectively. As α-glucosidase inhibitory, the results of this study indicate Syzygium myrtifolium can be used as a dietary supplement to manage hyperglycemia.
Collapse
Affiliation(s)
- Islan Nor
- Departement of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Faculty of Pharmacy, University of Muhammadiyah Banjarmasin, Banjarmasin, Indonesia
| | - Komar Ruslan Wirasutisna
- Departement of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Rika Hartati
- Departement of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Muhamad Insanu
- Departement of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|