1
|
Chiang PT, Tsai LK, Tsai HH. New targets in spontaneous intracerebral hemorrhage. Curr Opin Neurol 2025; 38:10-17. [PMID: 39325041 PMCID: PMC11706352 DOI: 10.1097/wco.0000000000001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
PURPOSE OF REVIEW Intracerebral hemorrhage (ICH) is a devastating stroke with limited medical treatments; thus, timely exploration of emerging therapeutic targets is essential. This review focuses on the latest strategies to mitigate secondary brain injury post-ICH other than targeting surgery or hemostasis, addressing a significant gap in clinical practice and highlighting potential improvements in patient outcomes. RECENT FINDINGS Promising therapeutic targets to reduce secondary brain injury following ICH have recently been identified, including attenuation of iron toxicity and inhibition of ferroptosis, enhancement of endogenous resorption of hematoma, and modulation of perihematomal inflammatory responses and edema. Additionally, novel insights suggest the lymphatic system of the brain may potentially play a role in hematoma clearance and edema management. Various experimental and early-phase clinical trials have demonstrated these approaches may potentially offer clinical benefits, though most research remains in the preliminary stages. SUMMARY Continued research is essential to identify multifaceted treatment strategies for ICH. Clinical translation of these emerging targets could significantly enhance the efficacy of therapeutic interventions and potentially reduce secondary brain damage and improve neurological recovery. Future efforts should focus on large-scale clinical trials to validate these approaches, to pave the way for more effective treatment protocols for spontaneous ICH.
Collapse
Affiliation(s)
- Pu-Tien Chiang
- Department of Neurology, National Taiwan University Hospital
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital
| |
Collapse
|
2
|
Wang D, Wang J, Yan D, Wang M, Yang L, Demin KA, de Abreu MS, Kalueff AV. Minocycline reduces neurobehavioral deficits evoked by chronic unpredictable stress in adult zebrafish. Brain Res 2024; 1845:149209. [PMID: 39233136 DOI: 10.1016/j.brainres.2024.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Chronic stress-related brain disorders are widespread and debilitating, and often cause lasting neurobehavioral deficits. Minocycline, a common antibiotic and an established inhibitor of microglia, emerges as potential treatment of these disorders. The zebrafish (Danio rerio) is an important emerging model organism in translational neuroscience and stress research. Here, we evaluated the potential of minocycline to correct microglia-mediated behavioral, genomic and neuroimmune responses induced by chronic unpredictable stress (CUS) in adult zebrafish. We demonstrated that CUS evoked overt behavioral deficits in the novel tank, light-dark box and shoaling tests, paralleled by elevated stress hormones (CRH, ACTH and cortisol), and upregulated brain expression of the 'neurotoxic M1' microglia-specific biomarker gene (MHC-2) and pro-inflammatory cytokine genes (IL-1β, IL-6 and IFN-γ). CUS also elevated peripheral (whole-body) pro-inflammatory (IL-1β, IFN-γ) and lowered anti-inflammatory cytokines (IL-4 and IL-10), as well as reduced whole-brain serotonin, dopamine and norepinephrine levels, and increased brain dopamine and serotonin turnover. In contrast, minocycline attenuated most of these effects, also reducing CUS-elevated peripheral levels of IL-6 and IFN-γ. Collectively, this implicates microglia in zebrafish responses to chronic stress, and suggests glial pathways as potential evolutionarily conserved drug targets for treating stress-evoked neuropathogenesis. Our findings also support the growing translational value of zebrafish models for understanding complex molecular mechanisms of brain pathogenesis and its therapy.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Longen Yang
- School of Pharmacy, Southwest University, Chongqing, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
3
|
Song HY, Jin S, Lee S, Jalin AMA, Roh KH, Kim WK. The Therapeutic Effects of SP-8356, a Verbenone Derivative, with Multimodal Cytoprotective Mechanisms in an Ischemic Stroke Rat Model. Int J Mol Sci 2024; 25:12769. [PMID: 39684478 DOI: 10.3390/ijms252312769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
An ischemic cerebral stroke results from the interruption of blood flow to the brain, triggering rapid and complex cascades of excitotoxicity, oxidative stress, and inflammation. Current reperfusion therapies, including intravenous thrombolysis and mechanical thrombectomy, cause further brain injury due to reperfusion-induced cytotoxicity. To date, novel cytoprotective therapies that could address these challenges have yet to be developed, likely due to the limitations of targeting a single pathologic mechanism. To address these unmet clinical needs, we investigated a synthetic verbenone derivative, SP-8356, as a potential multi-target cytoprotective agent for acute ischemic strokes. In transient middle cerebral artery occlusion (MCAO) rats, SP-8356 significantly reduced brain infarct and edema volumes while improving acute neurological deficits in a dose-dependent manner. Furthermore, SP-8356 improved long-term outcomes, particularly by reducing mortality. These potent cytoprotective effects of SP-8356 were achieved by suppressing the excessive production of free radicals and pro-inflammatory cytokines, reducing the infiltration of inflammatory cells, and mitigating increases in blood-brain barrier permeability. Additional research is needed to determine whether co-administration of SP-8356 can extend the therapeutic time window of reperfusion therapies by mitigating ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hwa Young Song
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Central Research Institute, Shin Poong Pharmaceutical Company, Ltd., Ansan 15610, Republic of Korea
| | - Sejong Jin
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Sekwang Lee
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | | | - Kyung-Hye Roh
- Central Research Institute, Shin Poong Pharmaceutical Company, Ltd., Ansan 15610, Republic of Korea
| | - Won-Ki Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Wang L, Wang Y, Wu M, Jin X, Chen Y, Guo Z, Meng X, Zhang J, Ji F. Minocycline alleviates microglia ferroptosis by inhibiting HO-1 during cerebral ischemia-reperfusion injury. Inflamm Res 2024; 73:1727-1745. [PMID: 39112649 PMCID: PMC11445363 DOI: 10.1007/s00011-024-01927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVE Ischemic stroke is a leading cause of death and disability in individuals worldwide. Cerebral ischemia-reperfusion injury (CIRI) typically results in severe secondary injury and complications following reperfusion therapy. Microglia play critical roles in the inflammatory reaction of CIRI. However, less attention has been given to microglial death in this process. Our study aims to explore microglial death in CIRI and the effects and mechanism of minocycline treatment on microglia. METHODS A middle cerebral artery occlusion (MCAO) model was applied to induce CIRI in rats. At 0 h, 24 h and 48 h post-operation, rats were intraperitoneally injected with 45 mg/kg minocycline. Neurological deficit scoring, 2,3,5-triphenyltetrazolium chloride (TTC) staining, assessment of activated microglia and examination of mitochondrial structure were conducted and checked at 72 h after reperfusion. Additionally, an in vitro model of oxygen-glucose deprivation/reperfusion (OGD/R) model was established. BV-2 cells were treated with various pharmacological inhibitors of cell death or minocycline. Cell viability, lipid peroxidation, mitochondrial structure and function, and labile Fe2+ and ferroptosis-associated gene/protein levels were measured. Hemin was used for further validation after transcriptome analysis. RESULTS In the MCAO and OGD/R models, ferroptosis was identified as a major form of microglial death. Minocycline inhibited microglia ferroptosis by reducing HO-1 expression. In addition, minocycline improved mitochondrial membrane potential, mitochondrial structures and microglial survival in vivo. Minocycline also decreased labile Fe2+ levels, lipid peroxidation, and expression of ferritin heavy chain (FTH) and it improved mitochondrial structure and function in vitro. Upregulation of HO-1 counteracted the protective effect of minocycline. CONCLUSION Ferroptosis is a major form of microglial death in CIRI. The protective mechanism of minocycline in CIRI partially hinges on its ability to effectively ameliorate microglia ferroptosis by downregulating HO-1 expression. Consequently, targeting microglia ferroptosis is a promising treatment for CIRI.
Collapse
Affiliation(s)
- Lin Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yao Wang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Mengyue Wu
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
- Medical College, Yangzhou University, Yangzhou, 215000, Jiangsu, China
| | - Xing Jin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yifei Chen
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Zhenhuan Guo
- Department of Ophthalmology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Xiaowen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jianyou Zhang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
5
|
Gholami M, Ghelichkhani Z, Aghakhani R, Klionsky DJ, Motaghinejad O, Motaghinejad M, Koohi MK, Hassan J. Minocycline Acts as a Neuroprotective Agent Against Tramadol-Induced Neurodegeneration: Behavioral and Molecular Evidence. Int J Prev Med 2024; 15:47. [PMID: 39539580 PMCID: PMC11559692 DOI: 10.4103/ijpvm.ijpvm_10_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024] Open
Abstract
Background Previous evidence indicates that tramadol (TRA) can lead to neurodegenerative events and minocycline (MIN) has neuroprotective properties. Aim of the Study The current research evaluated the neuroprotective effects of MIN for TRA-promoted neurodegeneration. Methods Sixty adult male rats were placed into the following groups: 1 (received 0.7 ml/rat of normal saline, IP), 2 (received 50 mg/kg of TRA, i.p.), 3, 4, 5 (administered TRA as 50 mg/kg simultaneously with MIN at 20, 40, and 60 mg/kg, IP, respectively), and 6 (received MIN alone as 60 mg/kg, IP). The treatment procedure was 21 days. An open field test (OFT) was used to measure motor activity and anxiety-related behavior. Furthermore, oxidative stress; hippocampal inflammation; apoptotic parameters as well as activity of mitochondrial complexes I, II, III, and IV; ATP levels; and mitochondrial membrane potential (MMP) were evaluated. In addition, histomorphological alteration was assessed in two regions of the hippocampus: Cornu Ammonis (CA1) and dentate gyrus (DG). Results MIN treatment could inhibit TRA-induced anxiety and motor activity disturbances (P < 0.05). In addition, MIN could attenuate reactive oxygen species (ROS), H2O2, oxidized glutathione (GSSG), and malondialdehyde (MDA) level (P < 0.05), while there was increased reduced glutathione (GSH), total antioxidant capacity (TAC), ATP, MMP, and BCL2 levels (P < 0.05) and also elevation of SOD, GPX, GSR (P < 0.05), and mitochondrial complexes I, II, III, and IV activity (P < 0.05) in TRA-treated rats. In consistence with these findings, MIN could reduce TNF/TNF-α, IL1B/IL1-β, BAX, and CASP3 levels (P < 0.05) in TRA-treated rats. MIN also restored the quantitative (P < 0.05) and qualitative histomorphological sequels of TRA in both CA1 and DG areas of the hippocampus. Conclusions MIN probably has repositioning capability for inhibition of TRA-induced neurodegeneration via modulation of inflammation, oxidative stress, apoptosis, and mitochondrial disorders.
Collapse
Affiliation(s)
- Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Aghakhani
- Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | | | - Ozra Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalal Hassan
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Biancotti JC, Sescleifer AM, Sferra SR, Penikis AB, Halbert-Elliott KM, Bubb CR, Kunisaki SM. Maternal Minocycline as Fetal Therapy in a Rat Model of Myelomeningocele. J Surg Res 2024; 301:696-703. [PMID: 39168042 DOI: 10.1016/j.jss.2024.07.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION This study aimed to investigate whether the maternal administration of minocycline, a tetracycline antibiotic known to have anti-inflammatory and neuroprotective properties in models of neural injury, reduces inflammation and neural cell death in a fetal rat model of myelomeningocele (MMC). METHODS E10 pregnant rats were gavaged with olive oil or olive oil + retinoic acid to induce fetal MMC. At E12, the dams were exposed to regular drinking water or water containing minocycline (range, 40-140 mg/kg/day). At E21, fetal lumbosacral spinal cords were isolated for immunohistochemistry and quantitative gene expression studies focused on microglia activity, inflammation, and apoptosis (P < 0.05). RESULTS There was a trend toward decreased activated Iba1+ microglial cells within the dorsal spinal cord of MMC pups following minocycline exposure when compared to water (H2O) alone (P = 0.052). Prenatal minocycline exposure was correlated with significantly reduced expression of the proinflammatory cytokine, IL-6 (minocycline: 1.75 versus H2O: 3.52, P = 0.04) and apoptosis gene, Bax (minocycline: 0.71 versus H2O: 1.04, P < 0.001) among MMC pups. CONCLUSIONS This study found evidence that the maternal administration of minocycline reduces selected markers of inflammation and apoptosis within the exposed dorsal spinal cords of fetal MMC rats. Further study of minocycline as a novel prenatal treatment strategy to mitigate spinal cord damage in MMC is warranted.
Collapse
Affiliation(s)
- Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Anne M Sescleifer
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shelby R Sferra
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Annalise B Penikis
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kyra M Halbert-Elliott
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ciaran R Bubb
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
7
|
Gelen V, Özkanlar S, Kara A, Yeşildağ A. Citrate-coated silver nanoparticles loaded with agomelatine provide neuronal therapy in acute cerebral ischemia/reperfusion of rats by inhibiting the oxidative stress, endoplasmic reticulum stress, and P2X7 receptor-mediated inflammasome. ENVIRONMENTAL TOXICOLOGY 2024; 39:1531-1543. [PMID: 38009636 DOI: 10.1002/tox.24021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Cerebral ischemia and reperfusion are related to various situations like injuries after various traumas, oxidative stress, increased calcium ion, capillary hypoperfusion, microvascular hyperpermeability, leukocyte infiltration, and blood-brain barrier disruption. An antidepressant Agomelatine which is a melatonin receptor (MT1/MT2) agonist and serotonin receptor (5-HT2C) antagonist has been reported by studies to have antioxidant and anti-inflammatory effects. In our study, we aimed to detect the effects of citrate-coated silver nanoparticle-loaded agomelatine application on neurodegeneration, endoplasmic reticulum stress, autophagic and apoptotic cell death, inflammation, and P2X7R expression in the cerebral ischemia-reperfusion model to facilitate the passage of blood-brain barrier. Forty two Sprague-Dawley rats in total were divided into six equal groups (n:7) and applications were performed. Acute cerebral injury in the ischemia-reperfusion model was created 2 h after internal carotid artery ligation in rats and then at the 2nd hour of reperfusion citrate-coated silver nanoparticles loaded with Agomelatine were applied. Twenty four hours later, neurologic analysis on animals in experimental groups was performed, animals were decapitated and GSH, GPx, SOD, CAT, MDA, IL-1β, and TNF-α parameters were examined after taking blood and the cerebral tissue samples. As a result, it was determined that ischemia-reperfusion caused endoplasmic reticulum stress in the cerebral tissues and thus caused cellular injury.
Collapse
Affiliation(s)
- Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Seçkin Özkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Adem Kara
- Department of Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ali Yeşildağ
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| |
Collapse
|
8
|
Zhan Q, Kong F. Mechanisms associated with post-stroke depression and pharmacologic therapy. Front Neurol 2023; 14:1274709. [PMID: 38020612 PMCID: PMC10651767 DOI: 10.3389/fneur.2023.1274709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Stroke is one of the most common cerebrovascular diseases, which is the cause of long-term mental illness and physical disability, Post-stroke depression (PSD) is the most common neuropsychiatric complication after stroke, and its mechanisms are characterized by complexity, plurality, and diversity, which seriously affects the quality of survival and prognosis of patients. Studies have focused on and recognized neurotransmitter-based mechanisms and selective serotonin-reuptake inhibitors (SSRIs) can be used to treat PSD. Neuroinflammation, neuroendocrinology, neurotrophic factors, and the site of the stroke lesion may affect neurotransmitters. Thus the mechanisms of PSD have been increasingly studied. Pharmacological treatment mainly includes SSRIs, noradrenergic and specific serotonergic antidepressant (NaSSA), anti-inflammatory drugs, vitamin D, ect, which have been confirmed to have better efficacy by clinical studies. Currently, there is an increasing number of studies related to the mechanisms of PSD. However, the mechanisms and pharmacologic treatment of PSD is still unclear. In the future, in-depth research on the mechanisms and treatment of PSD is needed to provide a reference for the prevention and treatment of clinical PSD.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fanyi Kong
- Neurosurgery, Affiliated First Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Bergold PJ, Furhang R, Lawless S. Treating Traumatic Brain Injury with Minocycline. Neurotherapeutics 2023; 20:1546-1564. [PMID: 37721647 PMCID: PMC10684850 DOI: 10.1007/s13311-023-01426-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury (TBI) results in both rapid and delayed brain damage. The speed, complexity, and persistence of TBI present large obstacles to drug development. Preclinical studies from multiple laboratories have tested the FDA-approved anti-microbial drug minocycline (MINO) to treat traumatic brain injury. At concentrations greater than needed for anti-microbial action, MINO readily inhibits microglial activation. MINO has additional pleotropic effects including anti-inflammatory, anti-oxidant, and anti-apoptotic activities. MINO inhibits multiple proteins that promote brain injury including metalloproteases, caspases, calpain, and polyADP-ribose-polymerase-1. At these elevated doses, MINO is well tolerated and enters the brain even when the blood-brain barrier is intact. Most preclinical studies with a first dose of MINO at less than 1 h after injury have shown improved multiple outcomes after TBI. Fewer studies with more delayed dosing have yielded similar results. A small number of clinical trials for TBI have established the safety of MINO and suggested some drug efficacy. Studies are also ongoing that either improve MINO pharmacology or combine MINO with other drugs to increase its therapeutic efficacy against TBI. This review builds upon a previous, recent review by some of the authors (Lawless and Bergold, Neural Regen Res 17:2589-92, 2022). The present review includes the additional preclinical studies examining the efficacy of minocycline in preclinical TBI models. This review also includes recommendations for a clinical trial to test MINO to treat TBI.
Collapse
Affiliation(s)
- Peter J Bergold
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA.
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA.
| | - Rachel Furhang
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA
| | - Siobhán Lawless
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA
| |
Collapse
|
10
|
Chen R, Qian L, Fu J, Qin J, Chen X, Xu X. Downregulation of Preso protects against ischemic/reperfusion-mediated neuronal injury through regulating PSD95-nNOS/YAP pathways. Neurochem Int 2023; 169:105586. [PMID: 37442439 DOI: 10.1016/j.neuint.2023.105586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Cerebral ischemic/reperfusion (I/R) injury has become a great challenge harming patients' life. This study aims to explore the regulatory role of Preso during cerebral I/R injury and to elucidate the potential mechanism. Here, we established a middle cerebral artery occlusion/reperfusion (MCAO/IR) rat model and an oxygen-glucose deprivation/reoxygenation (OGD/R)-mediated PC12 cell model to evaluate the expression and role of Preso following cerebral I/R injury. Histopathological injury and infarct size were assessed by hematoxylin and eosin (HE) and 2,3,5-Triphenyltertrazolium chloride (TTC) staining. Double immunofluorescence staining was performed to assess neuronal apoptosis in brain tissues. Cell counting kit-8 (CCK-8) and flow cytometry were performed to evaluate cell viability and apoptosis, respectively. The reactive oxygen species (ROS) and nitric oxide (NO) levels were detected using their respective detection kits, and the expression of corresponding proteins was examined adopting Western blot. The results showed that Preso was upregulated in OGD/R-induced PC12 cells and MCAO rats. Preso knockdown significantly reduced OGD/R-caused viability loss, apoptosis and oxidative stress in PC12 cells, and reduced infarct size, attenuated histological injury, and inhibited apoptosis and oxidative stress in the brain tissues from MCAO rats, as well as inhibiting the expression of postsynaptic density protein-95 (PSD95) and nitric oxide synthase (nNOS) and repressing YAP phosphorylation in vitro. In addition, the protective role of Preso knockdown against cerebral I/R injury was partly strengthened by IC87201, the nNOS/PSD95 interaction inhibitor, or weakened by Verteporfin (Vert), an inhibitor of YAP. In conclusion, Perso knockdown might exert a protective role against cerebral I/R injury via regulating PSD95-nNOS and YAP pathways, providing a potential therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Rundong Chen
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Lei Qian
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jin Fu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiajun Qin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xianzhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xiaolong Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
11
|
Zhao K, Wang P, Tang X, Chang N, Shi H, Guo L, Wang B, Yang P, Zhu T, Zhao X. The mechanisms of minocycline in alleviating ischemic stroke damage and cerebral ischemia-reperfusion injury. Eur J Pharmacol 2023; 955:175903. [PMID: 37422120 DOI: 10.1016/j.ejphar.2023.175903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Stroke is a group of diseases resulting from cerebral vascular rupture or obstruction and subsequent brain blood circulation disorder, leading to rapid neurological deficits. Ischemic stroke accounts for the majority of all stroke cases. The current treatments for ischemic stroke mainly include t-PA thrombolytic therapy and surgical thrombectomy. However, these interventions aimed at recanalizing cerebral vessels can paradoxically lead to ischemia-reperfusion injury, which exacerbates the severity of brain damage. Minocycline, a semi-synthetic tetracycline antibiotic, has been shown to possess a wide range of neuroprotective effects independent of its antibacterial activity. Here we summarize the mechanisms underlying the protective effects of minocycline against cerebral ischemia-reperfusion injury based on the pathogenesis of cerebral ischemia-reperfusion injury, including its modulation of oxidative stress, inflammatory response, excitotoxicity, programmed cell death and blood-brain barrier injury, and also introduce the role of minocycline in alleviating stroke-related complications, in order to provide a theoretical basis for the clinical application of minocycline in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Kemeng Zhao
- Basic Medical College, Xinxiang Medical University, Xinxiang, China; College of First Clinical, Xinxiang Medical University, Xinxiang, China
| | - Pengwei Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, 453100, Henan, China
| | - Xiaoguang Tang
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Na Chang
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Haonan Shi
- Sanquan Medical College, Xinxiang Medical University, Xinxiang, China
| | - Longfei Guo
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Bingyi Wang
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Pengfei Yang
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Tiantian Zhu
- College of Pharamacy, Xinxiang Medical University, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Xinghua Zhao
- Basic Medical College, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
12
|
Shayan M, Mehri S, Razavi BM, Hosseinzadeh H. Minocycline as a Neuroprotective Agent in Arsenic-Induced Neurotoxicity in PC12 Cells. Biol Trace Elem Res 2023; 201:2955-2962. [PMID: 35939230 DOI: 10.1007/s12011-022-03376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022]
Abstract
Arsenic is a naturally occurring metalloid that exists in water, soil, food, and air. Humans can be exposed to arsenic through occupational, medical, or nutritional routes. Both acute and chronic forms of toxicity with severe outcomes are likely following arsenic exposure. Neurotoxicity is one of the serious manifestations of arsenic toxicity. In our study, the effect of minocycline, a widely used antimicrobial agent with antioxidant aspects and the ability to cross the blood-brain barrier, was evaluated against arsenic-induced neurotoxicity. PC12 cell line was used as the cellular model of this study. Cells were pre-treated with minocycline (50 nM-1 µM) for 2 h, and then incubated for 24 h after adding sodium arsenite (10 µM). The MTT assay and fluorimetry were performed to study cytotoxicity and reactive oxygen species generation, respectively. Finally, Western blotting was done to determine the levels of caspase-8, Bax, Bcl-2, and caspase-3. Once exposed to arsenic, the cell viability was significantly reduced, the intracellular oxidative balance was significantly disrupted, and the levels of proteins caspase-8, Bax/Bcl-2, and caspase-3 were significantly increased. Minocycline not only attenuated arsenic-induced cytotoxicity and reduced oxidative stress, but also led to lower levels of caspase-8, Bax/Bcl-2, and caspase-3 proteins compared with the arsenic-treated cells. Minocycline can significantly protect cells against arsenic-induced neurotoxicity by antioxidant and anti-apoptosis properties via both intrinsic and extrinsic caspase-dependent apoptotic pathways; therefore, at this point, it's worth considering it as a promising agent for the treatment of arsenic toxicity.
Collapse
Affiliation(s)
- Mersedeh Shayan
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Neuroprotective Strategies for Ischemic Stroke-Future Perspectives. Int J Mol Sci 2023; 24:ijms24054334. [PMID: 36901765 PMCID: PMC10002358 DOI: 10.3390/ijms24054334] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Ischemic stroke is the main cause of death and the most common cause of acquired physical disability worldwide. Recent demographic changes increase the relevance of stroke and its sequelae. The acute treatment for stroke is restricted to causative recanalization and restoration of cerebral blood flow, including both intravenous thrombolysis and mechanical thrombectomy. Still, only a limited number of patients are eligible for these time-sensitive treatments. Hence, new neuroprotective approaches are urgently needed. Neuroprotection is thus defined as an intervention resulting in the preservation, recovery, and/or regeneration of the nervous system by interfering with the ischemic-triggered stroke cascade. Despite numerous preclinical studies generating promising data for several neuroprotective agents, successful bench-to-bedside translations are still lacking. The present study provides an overview of current approaches in the research field of neuroprotective stroke treatment. Aside from "traditional" neuroprotective drugs focusing on inflammation, cell death, and excitotoxicity, stem-cell-based treatment methods are also considered. Furthermore, an overview of a prospective neuroprotective method using extracellular vesicles that are secreted from various stem cell sources, including neural stem cells and bone marrow stem cells, is also given. The review concludes with a short discussion on the microbiota-gut-brain axis that may serve as a potential target for future neuroprotective therapies.
Collapse
|
14
|
Zhu F, Xiong J, Yi F, Luo E, Huang C, Li R. Albiflorin relieves cerebral ischemia-reperfusion injury by activating Nrf2/HO-1 pathway. Histol Histopathol 2023; 38:233-245. [PMID: 36121178 DOI: 10.14670/hh-18-518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Our work aims to investigate the functions of a natural compound, Albiflorin (AF) in cerebral ischemia-reperfusion (IR) injury. The cerebral IR models were established by OGD/R in PC12 cells and MCAO/IR in rats. The cells in a glucose-free medium were placed in an anaerobic chamber containing 95% N₂ and 5% CO₂ for 3h at 37°C, returned to a normal medium, and incubated for 24h to accomplish OGD/R. Focal cerebral ischemia was conducted by thread occlusion of the right middle cerebral artery for 2h followed by 24h reperfusion in rats. CCK-8 assay indicated that AF had no toxicity to PC12 cells. Flow cytometry, Western blot, or TUNEL showed that AF treatment reduced apoptosis of cells or rat brain tissues. qRT-PCR and ELISA showed that AF decreased IL-1β, IL-6, and TNF-α levels in vitro and in vivo. Elevated levels of MDA, SOD, and ROS induced by IR injury were mitigated by AF in vitro and in vivo. HE and TTC staining revealed that AF ameliorated pathological injury in MCAO/IR rats. Western blot showed that Nrf2, NQO1, and HO-1 expression was activated by AF, and ML385 treatment suppressed the inhibition effects of AF in cerebral IR injury models. Overall, AF alleviates cerebral IR injury via regulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Neurology, Pingxiang People's Hospital, Jiangxi Province, PR China
| | - Jianzhong Xiong
- Department of rehabilitation, Pingxiang People's Hospital, Jiangxi Province, PR China
| | - Fei Yi
- Department of Neurology, Pingxiang People's Hospital, Jiangxi Province, PR China
| | - Ermin Luo
- Department of Neurology, Pingxiang People's Hospital, Jiangxi Province, PR China
| | - Chun Huang
- Department of Neurology, Pingxiang People's Hospital, Jiangxi Province, PR China
| | - Runying Li
- Department of Stomatology, Pingxiang People's Hospital, Jiangxi Province, PR China.
| |
Collapse
|
15
|
Cardioprotective effects of minocycline against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2023; 158:114055. [PMID: 36495663 DOI: 10.1016/j.biopha.2022.114055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox)-induced cardiotoxicity has limited its use. Inflammation, oxidative stress, and apoptosis have important roles in Dox-induced cardiotoxicity. Minocycline (Min) is an antibiotic with anti-inflammatory, anti-oxidant and anti-apoptotic properties. Here, the cardioprotective effects of Min against Dox-induced cardiotoxicity in adult male rats were evaluated. METHODS Forty-two adult male rats were divided into six groups including control group (normal saline), Dox group, Min groups (Min 45 mg/kg and Min 90 mg/kg), and treatment groups (Dox + Min 45 mg/kg and Dox + Min 90 mg/kg). Dox (2.5 mg/kg) was administered three times a week for two weeks, and Min once a day for three weeks via intraperitoneal route. Cardiac tissue sections were stained with hematoxylin and eosin for histological examination. The activities of lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB) in serum as well as the activity of catalase and superoxide dismutase (SOD) in cardiac tissue were measured. Cardiac tissue levels of malondialdehyde (MDA), TNF-α, and IL-1β were also measured using ELISA. RESULTS Compared with the Dox group, treatment with Min significantly decreased the activity of LDH and CK-MB. Min also increased the activity of catalase and SOD in the tissue samples. The results showed that the levels of MDA, TNF-α, and IL-1β in cardiac tissue samples were significantly lower in the Min groups compared with the Dox group. In addition, histopathological results showed that Min reduced the tissue damage caused by Dox. CONCLUSION Min reduced Dox-induced cardiotoxicity. The anti-oxidant and anti-inflammatory properties of Min may contribute to its protective effects.
Collapse
|
16
|
Du J, Gu H, Cai S. LncRNA Small Nucleolar RNA Host Gene 11 (SNHG11) Participates in Hypoxia/Reoxygenation-Induced Adrenal Phaeochromocytoma (PC12) Cell Damage in a ceRNA-Dependent Manner. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
How to prevent cerebral ischemia-reperfusion injury (CI/R) is critical for treating ischemic stroke. LncRNA SNHG11 can participate in several diseases by competing endogenous RNA (ceRNA), but its’ role in CI/R is unclear. Hypoxia/reoxygenation model (H/R group) cells were set
and separated into control team; H/R team; H/R+SNHG11 team and H/R+si-SNHG11 team followed by analysis of LncRNA SNHG11 by real-time PCR, LncRNA SNHG11 subcellular distribution by FISH assay, MTT assay for cell proliferation, flow cytometry for apoptosis, ROS and LDH content and PTEN expression
by Western blot. In H/R group, SNHG11 level significantly increased and cell proliferation significantly decreased, along with increased cell apoptosis, ROS activity, LDH content and PTEN expression in comparison of control group (P-value less than 0.05); The foregoing variation was
promoted further by the H/R group after overexpression of SNHG11 (P-value below 0.05) and reversed after transfection of SNHG1 siRNA (P <0.05). LncRNA SNHG11 is mainly localized on the cell membrane. miR-16 is a SNHG11 targeted miRNA. Transfection of miR-16 mimics into PC12
cells in H/R group can significantly promote cell proliferation, inhibit apoptosis, reduce ROS activity, LDH content and PTEN expression versus the H/R group (P-value less than 0.05). SNHG11 level in H/R condition is increased and might target miR-16 to regulate PTEN expression and
oxidative stress, leading to apoptosis and damage.
Collapse
Affiliation(s)
- Jinlong Du
- Department of Critical Care Medicine, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Huiqin Gu
- Department of Critical Care Medicine, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Shan Cai
- Department of Critical Care Medicine, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| |
Collapse
|
17
|
de Medeiros Borges H, Dagostin CS, Córneo E, Dondossola ER, Bernardo HT, Pickler KDP, da Costa Pereira B, de Oliveira MA, Scussel R, Michels M, Machado-de-Ávila RA, Dal-Pizzol F, Rico EP. Zebrafish as a potential model for stroke: A comparative study with standardized models. Life Sci 2022; 312:121200. [PMID: 36435227 DOI: 10.1016/j.lfs.2022.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022]
Abstract
Animal models of cerebral ischemia have improved our understanding of the pathophysiology and mechanisms involved in stroke, as well as the investigation of potential therapies. The potential of zebrafish to model human diseases has become increasingly evident. The availability of these models allows for an increased understanding of the role of chemical exposure in human conditions and provides essential tools for mechanistic studies of disease. To evaluate the potential neuroprotective properties of minocycline against ischemia and reperfusion injury in zebrafish and compare them with other standardized models. In vitro studies with BV-2 cells were performed, and mammalian transient middle cerebral artery occlusion (tMCAO) was used as a comparative standard with the zebrafish stroke model. Animals were subjected to ischemia and reperfusion injury protocols and treated with minocycline. Infarction size, cytokine levels, oxidative stress, glutamate toxicity, and immunofluorescence for microglial activation, and behavioral test results were determined and compared. Administration of minocycline provided significant protection in the three stroke models in different parameters analyzed. Both experimental models complement each other in their particularities. The proposal also strengthens the findings in the literature in rodent models and allows the validation of alternative models so that they can be used in further research involving diseases with ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Heloisa de Medeiros Borges
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Caroline Serafim Dagostin
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Karolyne De Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Bárbara da Costa Pereira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mariane Amanda de Oliveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Gabbia Biotechnology Company, Barra Velha, Santa Catarina, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
18
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
19
|
Shi Y, Han L, Zhang X, Xie L, Pan P, Chen F. Selenium Alleviates Cerebral Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Fusion and Ferroptosis. Neurochem Res 2022; 47:2992-3002. [PMID: 35725978 PMCID: PMC9470641 DOI: 10.1007/s11064-022-03643-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
To clarify the potential role of selenium (Se) on cerebral ischemia/reperfusion (I/R) injury, we utilized mouse middle cerebral artery occlusion (MCAO) followed by reperfusion as an animal model and oxygen-glucose deprivation and reoxygenation (OGD/R) to treat N2a cells as a cell model, respectively. MCAO model was established in mice and then divided into different groups with or without Se treatment. TTC staining was used to observe whether the cerebral I/R modeling was successful, and the apoptosis level was determined by TUNEL staining. The expression of GPx-4 and p22phox was assessed by western blot. In vitro experiments, the OGD/R induced oxidative stress in N2a cells was assessed by levels of GSH/GSSG, malondialdehyde, superoxide dismutase and iron content, respectively. QRT-PCR was used to detect the mRNA levels of Cox-2, Fth1, Mfn1 and mtDNA in N2a cells. JC-1 staining and flow cytometry was performed to detect the mitochondrial membrane potential. Se treatment alleviated cerebral I/R injury and improved the survival rate of mice. Additionally, Se treatment apparently attenuated oxidative stress and inhibited iron accumulation in MCAO model mice and OGD/R model of N2a cells. In terms of its mechanism, Se could up-regulate Mfn1 expression to alleviate oxidative stress and ferroptosis by promoting mitochondrial fusion in vivo and vitro. These findings suggest that Se may have great potential in alleviating cerebral I/R injury.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| | - Lijian Han
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| | - Xianxian Zhang
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| | - Lili Xie
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| | - Pinglei Pan
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| | - Fei Chen
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| |
Collapse
|
20
|
Amirahmadi S, Farimani FD, Akbarian M, Mirzavi F, Eshaghi Ghalibaf MH, Rajabian A, Hosseini M. Minocycline attenuates cholinergic dysfunction and neuro-inflammation-mediated cognitive impairment in scopolamine-induced Alzheimer's rat model. Inflammopharmacology 2022; 30:2385-2397. [PMID: 36138304 DOI: 10.1007/s10787-022-01071-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Minocycline, a semisynthetic tetracycline-derived antibiotic, has various pharmacological effect such as anti-inflammatory, anti-oxidative stress, and anti-apoptotic effects. The current study investigated the involvement of neuro-inflammatory, oxidative stress, and cholinergic markers in neuroprotection by minocycline against scopolamine-induced brain damage. METHODS Minocycline was administered (oral, 10, 15, and 30 mg/kg, daily) to groups of amnesic rats for 21 days. Passive avoidance memory and spatial learning and memory were assessed. Following that, oxidative stress, cholinergic function, and neuro-inflammation markers were evaluated in the brain tissue. RESULTS According to our biochemical data, treatment of the scopolamine-injured rats with minocycline decreased the levels of malondialdehyde and acetylcholinesterase (AChE) as well as mRNA expression of AChE and neuro-inflammation markers (tumor necrosis factor-α, interleukin (IL)-1β, IL-6). It also increased the total thiol levels and superoxide dismutase activity as well as mRNA expression of cholinergic receptor M1 (ChRM1). Moreover, minocycline modified distance and latencies in Morris water maze, prolonged latency to enter the black zone and light time while decreasing time spent and frequency of entries to darkness. CONCLUSION Taken together, the data indicate that treatment with minocycline improved memory dysfunction mediated possibly through restoring AChE and ChRM1 levels, oxidant/antioxidant balance, as well as inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Sabiheh Amirahmadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahsan Akbarian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Gajbhiye S, Bhangre A, Tripathi RK, Jalgaonkar S, Shankar A, Koli PG. Evaluation of Antidepressant Effect of Minocycline in Alcohol Abstinence-Induced Depression Model in Mice. Cureus 2022; 14:e28711. [PMID: 36211101 PMCID: PMC9529019 DOI: 10.7759/cureus.28711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
|
22
|
Aghajani Shahrivar A, Khakpourian Z, Majdi F, Sobhani S, Coleman-Fuller N, Gholami M, Motaghinejad M. Hypothesized neuroprotective effect of minocycline against COVID-19-induced stroke and neurological dysfunction: possible role of matrix metalloprotease signaling pathway. Biologia (Bratisl) 2022; 77:3027-3035. [PMID: 35966933 PMCID: PMC9360701 DOI: 10.1007/s11756-022-01162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19) is a respiratory disease that causes dysfunction in respiration. Since late 2019, this virus has infected and killed millions of people around the world and imposed many medical and therapeutic problems in the form of a pandemic. According to recent data, COVID-19 disease can increase the risk of stroke, which can be deadly or cause many neurological disorders after the disease. During the last two years, many efforts have been made to introduce new therapies for management of COVID-19-related complications, including stroke. To achieve this goal, several conventional drugs have been investigated for their possible therapeutic roles. Minocycline, a broad-spectrum, long-acting antibiotic with anti-inflammatory and antioxidant properties, is one such conventional drug that should be considered for treating COVID-19-related stroke, as indirect evidence indicates that it exerts neuroprotective effects, can modulate stroke occurrence, and can play an effective and strategic role in management of the molecular signals caused by stroke and its destructive consequences. The matrix metalloprotease (MMP) signaling pathway is one of the main signaling pathways involved in the occurrence and exacerbation of stroke; however, its role in COVID-19-induced stroke and the possible role of minocycline in the management of this signaling pathway in patients with COVID-19 is unclear and requires further investigation. Based on this concept, we hypothesize that minocycline might act via MMP signaling as a neuroprotective agent against COVID-19-induced neurological dysfunction, particularly stroke.
Collapse
Affiliation(s)
- Ali Aghajani Shahrivar
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Khakpourian
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Majdi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarvenaz Sobhani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108 USA
| | - Mina Gholami
- College of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Network Pharmacology and Bioinformatics Methods Reveal the Mechanism of Berberine in the Treatment of Ischaemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5160329. [PMID: 35815278 PMCID: PMC9259241 DOI: 10.1155/2022/5160329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
Abstract
Aim To elucidate the mechanism of action of berberine on ischaemic stroke based on network pharmacology, bioinformatics, and experimental verification. Methods Berberine-related long noncoding RNAs (lncRNAs) were screened from public databases. Differentially expressed lncRNAs in ischaemic stroke were retrieved from the Gene Expression Omnibus (GEO) database. GSE102541 was comprehensively analysed using GEO2R. The correlation between lncRNAs and ischaemic stroke was evaluated by the mammalian noncoding RNA-disease repository (MNDR) database. The component-target-disease network and protein-protein interaction (PPI) network of berberine in the treatment of ischaemic stroke were constructed by using network pharmacology. We then performed gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses. Finally, according to the molecular docking analysis and the binding probability between the lncRNA and key proteins, the effectiveness of the results was further verified by in vitro experiments. Results After matching stroke-related lncRNAs with berberine-related lncRNAs, four genes were selected as potential targets of berberine in the treatment of ischaemic stroke. Subsequently, lncRNA H19 was identified as the potential crucial regulatory lncRNA of berberine. Here, 52 target proteins of berberine in the treatment of ischaemic stroke were identified through database mining. Through topological analysis, 20 key targets were identified which were enriched in inflammation, apoptosis, and immunity. Molecular docking results showed that MAPK8, JUN, and EGFR were central genes. Finally, in vitro experiments demonstrated that lncRNA H19, p-JNK1/JNK1, p-c-Jun/c-Jun, and EGFR expressions were significantly increased in hypoxia-treated SH-SY5Y cells and were restored by berberine treatment. Conclusion The potential targets and biological effects of berberine in the treatment of ischaemic stroke were predicted in this study. The lncRNA H19/EGFR/JNK1/c-Jun signalling pathway may be a key mechanism of berberine-induced neuroprotection in ischaemic stroke.
Collapse
|
24
|
Abdelbasset WK, Jasim SA, Rudiansyah M, Huldani H, Margiana R, Jalil AT, Mohammad HJ, Ridha HS, Yasin G. Treatment of pilocarpine-induced epileptic seizures in adult male mice. BRAZ J BIOL 2022; 84:e260091. [PMID: 35584460 DOI: 10.1590/1519-6984.260091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 01/09/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders affecting most social, economic and biological aspects of human life. Most patients with epilepsy have uncontrolled seizures and drug side effects despite the medications. Patients with epilepsy often have problems with attention, memory, and information processing speed, which may be due to seizures, underlying causes, or anticonvulsants. Therefore, improving seizure control and reducing or changing the anti-epileptic drugs can solve these problems, but these problems will not be solved in most cases. In this work, we looked at the effects of pioglitazone, a Peroxisome Proliferator-Activated Receptor agonist used to treat type 2 diabetes, on pilocarpine-induced seizures in mice. The Racine scale was used to classify pilocarpine-induced convulsions. After that, all of the animals were beheaded, and the brain and hippocampus were dissected. Finally, biochemical techniques were used to determine the levels of Malondialdehyde and Catalase activity, as well as Superoxide Dismutase and Glutathione Reductase in the hippocampus. The results of this investigation suggest that pioglitazone's antioxidant action may play a key role in its neuroprotective properties against pilocarpine-induced seizure neuronal damage.
Collapse
Affiliation(s)
- W K Abdelbasset
- Prince Sattam bin Abdulaziz University, College of Applied Medical Sciences, Department of Health and Rehabilitation Sciences, Al Kharj, Saudi Arabia.,Cairo University, Kasr Al-Aini Hospital, Department of Physical Therapy, Giza, Egypt
| | - S A Jasim
- Al-Maarif University College, Medical Laboratory Techniques Department, Al-anbar-Ramadi, Iraq
| | - M Rudiansyah
- Universitas Lambung Mangkurat, Faculty of Medicine, Department of Internal Medicine, Ulin Hospital, Banjarmasin, Indonesia
| | - H Huldani
- Lambung Mangkurat University, Department of Physiology, Magister Management, Magister Immunology, Banjarmasin, South Borneo, Indonesia
| | - R Margiana
- Universitas Indonesia, Faculty of Medicine, Department of Anatomy, Jakarta, Indonesia.,Universitas Indonesia, Faculty of Medicine, Master's Programme Biomedical Sciences, Jakarta, Indonesia
| | - A T Jalil
- Yanka Kupala State University of Grodno, Faculty of Biology and Ecology, Grodno, Belarus.,The Islamic University, College of Technical Engineering, Najaf, Iraq
| | - H J Mohammad
- Al-Manara College for Medical Sciences, Maysan, Iraq
| | - H Sh Ridha
- Al-Nisour University College, Baghdad, Iraq
| | - G Yasin
- Bahauddin Zakariya University, Department of Botany, Multan, Pakistan
| |
Collapse
|
25
|
Sobot NM, Sobot TS, Jeremic JN, Bolevich SB, Bolevich SS, Mitrovic SL, Fisenko VP, Inic SG, Samanovic ADM, Rankovic MR, Srejovic IM, Zivkovic VI, Jakovljevic VL. Minocycline as heart conditioning agent in experimental type 2 diabetes mellitus - an antibacterial drug in heart protection. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:429-444. [PMID: 35113200 DOI: 10.1007/s00210-021-02179-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Cardiovascular diseases, and among them certainly myocardial infarction, remain leading cause of death worldwide. Diabetes increases risk of occurrence as well as adverse outcome of myocardial infarction. Conditioning maneuvers are the most attractive method for alleviating both the consequences of ischemia and reperfusion. Minocycline is a tetracycline derivative which exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. The aim of this study was to assess the protective ability of preconditioning and postconditioning of isolated hearts from healthy and rats with experimentally induced type 2 diabetes with minocycline on functional recovery and redox status after ischemia and reperfusion. The hearts from healthy and diabetic rats were excised and retrogradely perfused according to the Langendorff technique. Using sensor in the left ventricle, the cardiodynamic parameters were recorded and in the samples of the coronary venous effluent oxidative stress biomarkers were analyzed. Minocycline was injected directly into the coronary vessels, in preconditioning 5 min before global ischemia, and in postconditioning during the first 5 min of reperfusion. Results of this study clearly show beneficial effects of minocycline applied both before ischemia and in the first minutes of reperfusion fashion in both healthy and diabetic rat hearts. The most prominent protective effect regarding oxidative stress is related to the decreased production of superoxide anion radical due postconditioning with minocycline in diabetic hearts. Cardiodynamic parameters were significantly improved in minocycline conditioned groups. Superoxide anion radical stands out as the most susceptible to changes induced by minocycline.
Collapse
Affiliation(s)
- Nikola M Sobot
- Clinic for Cardiac Surgery, University Clinical Centre of the Republic of Srpska, Dvanaest beba st. bb, 78000, Banja Luka, Bosnia and Herzegovina
| | - Tanja S Sobot
- Department of Physiology, University of Banja Luka, Save Mrkalja st. 14, 78000, Banja Luka, Bosnia and Herzegovina
| | - Jovana N Jeremic
- Department of Pharmacy, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia
| | - Sergey B Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya st. 8, Moscow, 119991, Russia
| | - Stefani S Bolevich
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya st. 8, Moscow, 119991, Russia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya st. 8, Moscow, 119991, Russia
| | - Slobodanka Lj Mitrovic
- Department of Pathology, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia
| | - Vladimir P Fisenko
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya st. 8, Moscow, 119991, Russia
| | - Sofija G Inic
- University of Pristina With Temporary Headquarters in Kosovksa Mitrovica Anri Dinana St. Bb, 38220, Kosovska Mitrovica, Serbia
| | | | - Marina R Rankovic
- Department of Physiology, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia
| | - Ivan M Srejovic
- Department of Physiology, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia
| | - Vladimir I Zivkovic
- Department of Physiology, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia
| | - Vladimir Lj Jakovljevic
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya st. 8, Moscow, 119991, Russia.
- Department of Physiology, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia.
| |
Collapse
|
26
|
Phosphorylation at Ser 727 Increases STAT3 Interaction with PKCε Regulating Neuron–Glia Crosstalk via IL-6-Mediated Hyperalgesia In Vivo and In Vitro. Mediators Inflamm 2022; 2022:2782080. [PMID: 35125963 PMCID: PMC8816592 DOI: 10.1155/2022/2782080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 01/06/2023] Open
Abstract
Methods A rat hyperalgesia model was induced using an intraplantar injection of Freund's complete adjuvant (FCA) or an intrathecal injection of IL-6. Mechanical allodynia was evaluated using von Frey filament tests after intrathecal injections of T-5224 (c-Fos/AP-1 inhibitor), minocycline (Mino, a specific microglia inhibitor), L-2-aminoadipic acid (LAA, an astroglial toxin), PKCε inhibitor peptide, APTSTAT3-9R (STAT3 inhibitor), or anti-IL-6 antibody. The c-Fos, GFAP, Iba-1, PKCε, STAT3, pSTAT3Tyr705 and pSTAT3Ser727, and IL-6 expression at the spinal cord level was assessed by Western blot analysis. The interactive effects of PKCε and STAT3 were determined using immunofluorescence staining and immunoprecipitation in vivo and in vitro. Interleukin-6 promoter activity was examined using luciferase assays. Results T-5224, Mino, and LAA attenuated FCA- or IL-6-mediated inflammatory pain, with a decrease in c-Fos, GFAP, Iba-1, PKCε, and IL-6 expression. PKCε inhibitor peptide and APTSTAT3-9R reversed FCA-induced nociceptive behavior, while decreasing pSTAT3Ser727, IL-6, c-Fos, GFAP, and Iba-1 expression and PKCε and STAT3 coexpression. Interleukin-6 promoter activity increased in the presence of PKCε and STAT3. The interaction with PKCε increased on phosphorylating STAT3 at Ser727 but not at Tyr705. Conclusion STAT3 phosphorylation at Ser 727 and the interaction with PKCε contribute to hyperalgesia via the IL-6-mediated signaling pathway, thus regulating neuron–glia crosstalk during inflammatory pain.
Collapse
|
27
|
Mobile Single-Lead Electrocardiogram Technology for Atrial Fibrillation Detection in Acute Ischemic Stroke Patients. J Clin Med 2022; 11:jcm11030665. [PMID: 35160117 PMCID: PMC8836576 DOI: 10.3390/jcm11030665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: AliveCor KardiaMobile (KM) is a portable electrocardiography recorder for detection of atrial fibrillation (AF). The aim of the study was to define the group of acute ischemic stroke (AIS) patients who can use the KM device and assess the diagnostic test accuracy. (2) Methods: the AIS patients were recruited to the study. Thirty-second single-lead electrocardiogram (ECG) usages were recorded on demand for three days using KM portable device. Each KM ECG record was verified by a cardiologist. The feasibility was evaluated using operationalization criteria. (3) Results: the recruitment rate among AIS patients was 26.3%. The withdrawal rate before the start of the intervention was 26%. The withdrawal rate after the start of the intervention was 6%. KM device detected AF in 2.8% of AIS patients and in 2.2% of ECG records. Cardiologist confirmed the AF in 0.3% AIS patients. Sensitivity and specificity of KM for AF was 100% and 98.3%, respectively. (4) Conclusions: the results of this study suggest that it is feasible to use KM device to detect AF in the selected AIS patients (younger and in better neurological condition). KM detected AF in the selected AIS patients with high specificity and sensitivity.
Collapse
|
28
|
Chen X, Shen X, Lai J, Yao Z, Peng X, Wu L, Ou Y, Wu H, Zhu H, Deng Y. Influence of Melatonin on Behavioral and Neurological Function of Rats with Focal Cerebral Ischemia-Reperfusion Injury via the JNK/FoxO3a/Bim Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8202975. [PMID: 35082916 PMCID: PMC8786518 DOI: 10.1155/2022/8202975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the influence of melatonin on behavioral and neurological function of rats with focal cerebral ischemia-reperfusion injury via the JNK/FoxO3a/Bim pathway. METHODS One hundred and twenty healthy male SD rats were randomized into the model group (Model: the middle cerebral artery occlusion (MCAO) model was constructed and received an equal volume of normal saline containing 5% DMSO), sham operation group (Sham: received no treatment except normal feeding), and low, medium, and high dose of melatonin group (L-MT, M-MT, and H-MT intraperitoneally injected 10, 20, and 40 mg/kg melatonin 30 min after IR, respectively), with 24 rats in each group. Following 24 h of reperfusion, the rats in each of the above groups were tested for neurological deficit symptoms and behavioral changes to screen the rats included in the study. HE and TUNEL stainings were performed to observe pathological changes. Levels of oxidative stress-related indexes, inflammatory factor-related indexes, nuclear factor-κB p65 (NF-κB p65), and interferon-γ (IFN-γ) in the rat brain were measured by ELISA. The JNK/FoxO3a/Bim pathway-related proteins as well as Bcl-2, Caspase-3, and Bax were examined using Western blot. RESULTS Detection of behavioral indicators showed that the MACO model was successfully constructed in rats. L-MT, M-MT, and L-MT groups presented reduced malondialdehyde (MDA), reactive oxygen species (ROS), tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, IL-1β, IFN-γ, NF-κB p65, and apoptosis compared with the Model group (P < 0.05), and the improvement degree was better in the M-MT group versus the L-HT group. Bcl-2 protein expression in the brain tissue of L-MT, M-MT, and H-MT groups increased significantly, while Bax, Caspase-3, p-JNK, p-FoxO3a, and Bim protein expression declined markedly, versus the Model group (P < 0.05). The changes of indexes were greater in the M-MT group compared with that in the L-MT group. No significant difference was observed in all the above indexes between the M-MT group and the H-MT group (P > 0.05). CONCLUSIONS In the MACO rat model, melatonin can effectively reduce Bax and Caspase-3 levels by modulating the JNK/FoxO3a/Bim pathway, inhibit neuronal apoptosis, and alleviate neurological deficits by reducing the release of proinflammatory mediators, with anti-inflammatory and antioxidant effects. In addition, 20 mg/kg is the optimal melatonin concentration.
Collapse
Affiliation(s)
- Xingwang Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 Guangdong, China
- Department of Critical Care and Emergency, Department of Cardiology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104 Guangdong, China
| | - Xueyuan Shen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510515 Guangdong, China
- Department of Critical Care and Emergency, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510515 Guangdong, China
| | - Jianbo Lai
- Department of Critical Care and Emergency, Department of Cardiology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104 Guangdong, China
| | - Zhijun Yao
- Department of Critical Care and Emergency, Department of Cardiology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104 Guangdong, China
| | - Xian Peng
- Department of Critical Care and Emergency, Department of Cardiology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104 Guangdong, China
| | - Long Wu
- Department of Critical Care and Emergency, Department of Cardiology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104 Guangdong, China
| | - Yuantong Ou
- Department of Critical Care and Emergency, Department of Cardiology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104 Guangdong, China
| | - Huachu Wu
- Department of Critical Care and Emergency, Department of Cardiology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104 Guangdong, China
| | - Haofeng Zhu
- Furong Community Health Service Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104 Guangdong, China
| | - Yiyu Deng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 Guangdong, China
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangzhou, 510515 Guangdong, China
| |
Collapse
|
29
|
Khaje Roshanaee M, Abtahi-Eivary SH, Shokoohi M, Fani M, Mahmoudian A, Moghimian M. Protective Effect of Minocycline on Bax and Bcl-2 Gene Expression, Histological Damages and Oxidative Stress Induced by Ovarian Torsion in Adult Rats. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2022; 16:30-35. [PMID: 35103429 PMCID: PMC8808255 DOI: 10.22074/ijfs.2021.522550.1069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Minocycline is a widely used bacteriostatic antibiotic with various functions. The aim of this study was to investigate impact of apoptotic genes in ovary of the torsion/detorsion treated rat model by minocycline. MATERIALS AND METHODS This experimental study was performed in 32 female Wistar rats classified in four groups, including: i. sham, ii. TD: torsion/detorsion group received normal saline, iii. TDM: torsion/detorsion group treated with 40 mg/kg Minocycline, and iv. MC: healthy group received 40 mg/kg Minocycline. After treatment period (7 days), histoplogical parameters, oxidative stress markers and hormone profile of serum as well as the expression of Bax and Bcl-2 genes were measured in the ovary of rats. RESULTS Levels of superoxide dismutase (SOD), glutathione peroxidase (GPX) and estrogen were decreased in the TD group and significantly increased in the treated groups (P=0.001). Levels of malondialdehyde (MDA) and testosterone were increased in the TD group and decreased in the treated groups (P=0.001). Expression level of Bax was elevated in the TD group, while it was attenuated in the treated groups (P=0.001). Expression level of Bcl-2 was significantly increased in treated groups (P=0.001). CONCLUSION Minocycline can repair oxidative damage in ovarian tissue and regulate apoptotic-related gene expressions.
Collapse
Affiliation(s)
| | | | - Majid Shokoohi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Fani
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Azamsadat Mahmoudian
- Department of Obstetrics and Gynecology, School of Medicine, Allameh Bohlool Gonabadi Hospital, Gonabad University of Medical
Sciences, Gonabad, Iran
| | - Maryam Moghimian
- Department of Physiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran,P.O.Box: 397Department of PhysiologySchool of Medi- cineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
30
|
Lwin T, Yang JL, Ngampramuan S, Viwatpinyo K, Chancharoen P, Veschsanit N, Pinyomahakul J, Govitrapong P, Mukda S. Melatonin ameliorates methamphetamine-induced cognitive impairments by inhibiting neuroinflammation via suppression of the TLR4/MyD88/NFκB signaling pathway in the mouse hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110109. [PMID: 32941923 DOI: 10.1016/j.pnpbp.2020.110109] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that causes significant health issues due to high prevalence of its illegal use. Chronic use of METH is associated with cognitive impairments in both human and animal studies, but the underlying mechanism remains unclear. METH-induced neuroinflammation is, potentially, one of the factors that causes cognitive impairments. Therefore, the present study aimed to assess whether melatonin could provide protection against inflammation, in a manner comparable to the anti-inflammatory agent, minocycline, with consequent improvements of METH-induced cognitive impairments and associated abnormalities in the mouse hippocampus. Results from the Morris water maze (MWM) test and the novel object recognition test (NORT) showed that melatonin given after METH injections could ameliorate both METH-induced spatial and recognition memory impairments. These memory impairments are associated with changes in the neuroinflammatory profiles, including IL-6, IL-1β, and TNF-α, both in the blood serum and hippocampus of adult mice. METH-treated mice also exhibited reactive astrocytes and activated microglia in the hippocampus. METH-induced activation of glial cells is associated with the activation of the TLR4/MyD88/NFκB signaling pathway. Moreover, melatonin administration led to recovery of these METH-induced markers to control levels. Thus, we conclude that melatonin could potentially be used as a cognitive enhancer and anti-inflammatory agent in the treatment of METH use disorder in humans.
Collapse
Affiliation(s)
- Thit Lwin
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; Department of Anatomy, Defence Services Medical Academy, Mingalardon, Yangon 11021, Myanmar
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Sukonthar Ngampramuan
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Kittikun Viwatpinyo
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Pongrung Chancharoen
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; Faculty of Allied Health Sciences, Burapha University, Seansuk, Chonburi 20131, Thailand
| | - Nisarath Veschsanit
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Jitrapa Pinyomahakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
31
|
Stuckey SM, Ong LK, Collins-Praino LE, Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci 2021; 22:ijms222313101. [PMID: 34884906 PMCID: PMC8658328 DOI: 10.3390/ijms222313101] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.
Collapse
Affiliation(s)
- Shannon M. Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan 2308, Australia
| | - Lyndsey E. Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Renée J. Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
- Correspondence: ; Tel.: +61-8-8313-3114
| |
Collapse
|
32
|
Li Z, Xiao G, Wang H, He S, Zhu Y. A preparation of Ginkgo biloba L. leaves extract inhibits the apoptosis of hippocampal neurons in post-stroke mice via regulating the expression of Bax/Bcl-2 and Caspase-3. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114481. [PMID: 34343651 DOI: 10.1016/j.jep.2021.114481] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuxuening injection (SXNI) is a Chinese medicine of Ginkgo biloba L. leaves extract (GBE), which is widely used clinically for cardiovascular diseases such as stroke and myocardial infarction, but the pharmacological mechanism of its therapeutic effect is not fully understood. AIM OF THE STUDY Preclinical studies suggested that inhibition of neuronal apoptosis effectively improves brain damage after ischemic stroke. The purpose of this study was to investigate the inhibitory effect of SXNI on neuronal apoptosis in post-stroke mice and its underlying mechanism. MATERIALS AND METHODS A mouse cerebral ischemia-reperfusion injury (CIRI) model was constructed by middle cerebral artery occlusion (MCAO) and treated with 3 mL/kg SXNI. TUNEL and immunohistochemistry experiments were performed on brain slices on the 7th day after stroke. The protein was extracted from the hippocampus region of the brain for western-blot assay. To simulate the in vivo ischemia-reperfusion process, the hippocampal neuron cell line HT-22 was subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro, and 200 μg/mL SXNI was administered. The HT-22 cells were then studied by RT-PCR and immunocytochemistry. RESULTS In vivo, SXNI treatment significantly reduced hippocampal neuronal apoptosis. Immunohistochemistry showed that SXNI inhibited the activation of Caspase-3 protein in the hippocampus after ischemic stroke. Western blot analysis further confirmed that SXNI regulated the expression of the antagonizing protein pair Bax and Bcl-2 to exert anti-apoptotic effect in addition to reducing the expression of Cleaved-Caspase-3 in the hippocampus. In vitro, 200 μg/mL SXNI treatment significantly improved HT-22 apoptosis caused by OGD/R. Further RT-PCR and immunocytochemistry study showed that 200 μg/mL SXNI inhibited apoptosis of hippocampal neurons by regulating the mRNA and protein expressions of apoptotic molecules Bax, Bcl-2 and Caspase-3. CONCLUSIONS CIRI can induce hippocampal neuronal apoptosis, which is inhibited by SXNI via regulating Bax/Bcl-2 and blocking Caspase-3 activation. Therefore, SXNI may be a promising treatment strategy to improve the prognosis of ischemic stroke.
Collapse
Affiliation(s)
- Zhixiong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Huanyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| |
Collapse
|
33
|
Wang L, Tan Y, Zhu Z, Chen J, Sun Q, Ai Z, Ai C, Xing Y, He G, Liu Y. ATP2B1-AS1 Promotes Cerebral Ischemia/Reperfusion Injury Through Regulating the miR-330-5p/TLR4-MyD88-NF-κB Signaling Pathway. Front Cell Dev Biol 2021; 9:720468. [PMID: 34712659 PMCID: PMC8545896 DOI: 10.3389/fcell.2021.720468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
We aim to explore the expression and function of long non-coding RNA (lncRNA) ATP2B1-AS1 in a cerebral ischemia/reperfusion (I/R) injury. In this study, we established a middle cerebral artery occlusion/reperfusion (MCAO/IR) rat model and an OGD/R PC12 cell model to evaluate the expression and role of ATP2B1-AS1 in the cerebral I/R injury. We found that the expression of ATP2B1-AS1 was upregulated in both in vitro and in vivo cerebral I/R injury models. Knockdown of ATP2B1-AS1 increased the cell viability, inhibited apoptosis, and decreased the expressions of inflammation cytokines. The target of ATP2B1-AS1 was predicted and validated to be miR-330-5p. MiR-330-5p abrogated the regulatory effect of ATP2B1-AS1 on cell viability, apoptosis, and cytokines of OGD/R PC12 cells. Furthermore, the results showed that miR-330-5p targeted TLR4, which was also upregulated in the infarcted area of MCAO/IR rats and OGD/R PC12 cells. Overexpression of ATP2B1-AS1 increased the expressions of TLR4, MyD88, and NF-κB p65 of OGD/R PC12 cells, while the effect of ATP2B1-AS1 was abrogated by miR-330-5p. In addition, knockdown of ATP2B1-AS1 decreased the latency time, increased the time of passing the platform position, reduced the cerebral infarct volume, decreased neurological deficit scores, and reduced the number of damaged neurons of MCAO/IR rats that were subjected to the Morris water maze test. Taken together, our study indicates that ATP2B1-AS1 may be an attractive therapeutic target for the treatment of cerebral ischemic injuries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Neurobiology, Health Science Center, Xian Jiaotong University, Xi'an, China.,Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China.,Department of Neurology, Affiliated Taihe Hospital of Xian Jiaotong University Health Science Center, Shiyan, China
| | - Ying Tan
- Department of Laboratory Medicine, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Ziyu Zhu
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Qiang Sun
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zhibin Ai
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Chunqi Ai
- Department of Mental Health Centre, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yu Xing
- Department of Medical Image Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guohou He
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yong Liu
- Department of Human Anatomy, Histology and Embryology, Institute of Neurobiology, Health Science Center, Xian Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Chen W, Jiang L, Hu Y, Fang G, Yang B, Li J, Liang N, Wu L, Hussain Z. Nanomedicines, an emerging therapeutic regimen for treatment of ischemic cerebral stroke: A review. J Control Release 2021; 340:342-360. [PMID: 34695522 DOI: 10.1016/j.jconrel.2021.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Owing to its intricate pathophysiology, cerebral stroke is a serious medical condition caused by interruption or obstruction of blood supply (blockage of vasculature) to the brain tissues which results in diminished supply of essential nutrients and oxygen (hypoxia) and ultimate necrosis of neuronal tissues. A prompt risks assessment and immediate rational therapeutic plan with proficient neuroprotection play critically important role in the effective management of this neuronal emergency. Various conventional medications are being used for treatment of acute ischemic cerebral stroke but fibrinolytic agents, alone or in combination with other agents are considered the mainstay. These clot-busting agents effectively restore blood supply (reperfusion) to ischemic regions of the brain; however, their clinical significance is hampered due to various factors such as short plasma half-life, limited distribution to brain tissues due to the presence of highly efficient physiological barrier, blood brain barrier (BBB), and lacking of target-specific delivery to the ischemic brain regions. To alleviate these issues, various types of nanomedicines such as polymeric nanoparticles (NPs), liposomes, nanoemulsion, micelles and dendrimers have been designed and evaluated. The implication of these newer therapies (nanomedicines) have revolutionized the therapeutic outcomes by improving the plasma half-life, permeation across BBB, efficient distribution to ischemic cerebral tissues and neuroprotection. Furthermore, the adaptation of some diverse techniques including PEGylation, tethering of targeting ligands on the surfaces of nanomedicines, and pH responsive features have also been pondered. The implication of these emerging adaptations have shown remarkable potential in maximizing the targeting efficiency of drugs to ischemic brain tissues, simultaneous delivery of drugs and imaging agents (for early prognosis as well as monitoring of therapy), and therapeutic outcomes such as long-term neuroprotection.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Lingfei Jiang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Gang Fang
- Guangxi Zhuang and Yao Medicine Engineering Technology Research Center, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Bilin Yang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Junhong Li
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Ni Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
35
|
Yamasaki T, Hatori A, Zhang Y, Mori W, Kurihara Y, Ogawa M, Wakizaka H, Rong J, Wang L, Liang S, Zhang MR. Neuroprotective effects of minocycline and KML29, a potent inhibitor of monoacylglycerol lipase, in an experimental stroke model: a small-animal positron emission tomography study. Am J Cancer Res 2021; 11:9492-9502. [PMID: 34646382 PMCID: PMC8490517 DOI: 10.7150/thno.64320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 11/14/2022] Open
Abstract
Hypoxia caused by ischemia induces acidosis and neuroexcitotoxicity, resulting in neuronal death in the central nervous system (CNS). Monoacylglycerol lipase (MAGL) is a modulator of 2-arachidonoylglycerol (2-AG), which is involved in retrograde inhibition of glutamate release in the endocannabinoid system. In the present study, we used positron emission tomography (PET) to monitor MAGL-positive neurons and neuroinflammation in the brains of ischemic rats. Additionally, we performed PET imaging to evaluate the neuroprotective effects of an MAGL inhibitor in an ischemic injury model. Methods: Ischemic-injury rat models were induced by intraluminal right middle cerebral artery occlusion (MCAO). PET studies of the brains of the ischemic rats were performed at several experimental time points (pre-occlusion, days 2, 4, and 7 after the MCAO surgery) using [11C]SAR127303 for MAGL and [18F]FEBMP for 18 kDa translocator protein (TSPO, a hall-mark of neuroinflammation). Medication using minocycline (a well-known neuroprotective agent) or KML29 (a potent MAGL inhibitor) was given immediately after the MCAO surgery and then daily over the subsequent three days. Results: PET imaging of the ischemic rats using [11C]SAR127303 showed an acute decline of radioactive accumulation in the ipsilateral side at two days after MCAO surgery (ratio of the area under the curve between the ipsilateral and contralateral sides: 0.49 ± 0.04 in the cortex and 0.73 ± 0.02 in the striatum). PET imaging with [18F]FEBMP, however, showed a moderate increase in accumulation of radioactivity in the ipsilateral hemisphere on day 2 (1.36 ± 0.11), and further increases on day 4 (1.72 ± 0.15) and day 7 (1.99 ± 0.06). Treatment with minocycline or KML29 eased the decline in radioactive accumulation of [11C]SAR127303 for MAGL (minocycline-treated group: 0.82 ± 0.06 in the cortex and 0.81 ± 0.05 in the striatum; KML29-treated group: 0.72 ± 0.07 in the cortex and 0.88 ± 0.04 in the striatum) and increased uptake of [18F]FEBMP for TSPO (minocycline-treated group: 1.52 ± 0.21 in the cortex and 1.56 ± 0.11 in the striatum; KML29-treated group: 1.63 ± 0.09 in the cortex and 1.50 ± 0.17 in the striatum). In MCAO rats, minocycline treatment showed a neuroprotective effect in the sensorimotor cortex suffering from severe hypoxic injury, whereas KML29 treatment saved neurons in the striatum, including bundles of myelinated axons. Conclusions: PET imaging allowed visualization of the different neuroprotective effects of minocycline and KML29, and indicated that combination pharmacotherapy using these drugs may be an effective therapy in acute ischemia.
Collapse
|
36
|
Li JM, Mu ZN, Zhang TT, Li X, Shang Y, Hu GH. Exploring the Potential Mechanism of Shennao Fuyuan Tang for Ischemic Stroke Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6015702. [PMID: 34603472 PMCID: PMC8486536 DOI: 10.1155/2021/6015702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
METHODS Screen the biologically active components and potential targets of SNFYT through Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID), and related literature. In addition, DrugBank, OMIM, DisGeNET, and the Therapeutic Target Database were searched to explore the therapeutic targets of IS. The cross-targets of SNFYT potential targets and IS treatment targets were taken as candidate gene targets, and GO and KEGG enrichment analyses were performed on the candidate targets. On this basis, the SNFYT-component-target network and protein-protein interaction (PPI) network were constructed using Cytoscape 3.7.2. Finally, AutoDock was used to verify the molecular docking of core components and core targets. RESULTS We screened out 95 potentially active components and 143 candidate targets. SNFYT-component-target network, PPI network, and Cytoscape analysis identified four core active ingredients and 14 core targets. GO enrichment analyzed 2333 biological processes, 79 cell components, and 149 molecular functions. There are 170 KEGG-related signal pathways (P < 0.05), including the IL-17 signal pathway, TNF signal pathway, and HIF-1 signal pathway. The molecular docking results of the core components and the core targets showed good binding power. CONCLUSIONS SNFYT may achieve the effect of treating ischemic stroke through its anti-inflammatory effect through a signal pathway with core targets as the core.
Collapse
Affiliation(s)
- Jia Min Li
- Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zhen Ni Mu
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Tian Tian Zhang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xin Li
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yan Shang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Guo Heng Hu
- Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
37
|
Praveen Kumar P, D. M, Siva Sankar Reddy L, Dastagiri Reddy Y, Somasekhar G, Sirisha N, Nagaraju K, Shouib M, Rizwaan A. A new cerebral ischemic injury model in rats, preventive effect of gallic acid and in silico approaches. Saudi J Biol Sci 2021; 28:5204-5213. [PMID: 34466098 PMCID: PMC8381014 DOI: 10.1016/j.sjbs.2021.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Current study was designed multiple occlusions and reperfusion of bilateral carotid arteries induced cerebral injury model and evaluated the protective effect of gallic acid on it. In silico study was involved to study gallic acid binding affinity on cerebrotonic proteins compared with standard drugs using Autodoc vina tool. Cerebral ischemia was induced by occlusion of bilateral common carotid arteries for 10 mins followed by 10 reperfusions (1 cycle), cycle was continued to 3 cycles (MO/RCA), then pathological changes were observed by estimation of brain antioxidants as superoxide dismutase, glutathione, catalase, oxidants like malonaldehyde, cerebral infarction area, histopathology, and study gallic acid treatment against cerebral injury. Gallic acid exhibited a strong binding affinity on targeted cerebrotoxic proteins. MO/RCA rat brain antioxidant levels were significantly decreased and increased MDA levels (p < 0.0001), Infarction size compared to sham rats. Gallic acid treatment rat brain MDA levels significantly decreased (p < 0.4476) and increased SOD (p < 0.0001), CAT (p < 0.0001), GSH (p < 0.0001), cerebral infarction area when compared to MO/RCA group. Developed model showed significant cerebral ischemic injury in rats, injury was ameliorated by Gallic acid treatment and in silico approaches also inhibit the cerebrotoxic protein function by targeting on active sites.
Collapse
Affiliation(s)
- P. Praveen Kumar
- Santhiram College of Pharmacy, Nandyal, Kurnool, Andhra Pradesh, India
| | - Madhuri D.
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | | | | | - G. Somasekhar
- SKU College of Pharmaceutical Sciences, Anantapur, Andhra Pradesh, India
| | - N.V.L. Sirisha
- Nitte College of Pharmaceutical Sciences, Banglaore, Karnataka, India
| | - K. Nagaraju
- C.R Reddy College of Pharmacy, Eluru, West Godavari, Andhra Pradesh, India
| | - M.S. Shouib
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | - A.S. Rizwaan
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| |
Collapse
|
38
|
Wijeratne T, Sales C. Understanding Why Post-Stroke Depression May Be the Norm Rather Than the Exception: The Anatomical and Neuroinflammatory Correlates of Post-Stroke Depression. J Clin Med 2021; 10:jcm10081674. [PMID: 33919670 PMCID: PMC8069768 DOI: 10.3390/jcm10081674] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic Stroke precedes depression. Post-stroke depression (PSD) is a major driver for poor recovery, negative quality of life, poor rehabilitation outcomes and poor functional ability. In this systematic review, we analysed the inflammatory basis of post-stroke depression, which involves bioenergetic failure, deranged iron homeostasis (calcium influx, Na influx, potassium efflux etc), excitotoxicity, acidotoxicity, disruption of the blood brain barrier, cytokine-mediated cytotoxicity, reactive oxygen mediated toxicity, activation of cyclooxygenase pathway and generation of toxic products. This process subsequently results in cell death, maladapted, persistent neuro-inflammation and deranged neuronal networks in mood-related brain regions. Furthermore, an in-depth review likewise reveals that anatomic structures related to post-stroke depression may be localized to complex circuitries involving the cortical and subcortical regions.
Collapse
Affiliation(s)
- Tissa Wijeratne
- School of Psychology and Public Health, La Trobe University, Melbourne 3000, Australia
- Department of Neurology, Western Health & University Melbourne, AIMSS, Level Three, WHCRE, Sunshine Hospital, St Albans 3021, Australia;
- Department of Medicine, Faculty of Medicine, University of Rajarata, Saliyapura, Anuradhapura 50000, Sri Lanka
- Correspondence:
| | - Carmela Sales
- Department of Neurology, Western Health & University Melbourne, AIMSS, Level Three, WHCRE, Sunshine Hospital, St Albans 3021, Australia;
| |
Collapse
|
39
|
Wang Y, Cai X, Wu Z, Tang L, Lu L, Xu Y, Bao X. Tetrandrine attenuates ischemia/reperfusion‑induced neuronal damage in the subacute phase. Mol Med Rep 2021; 23:297. [PMID: 33649825 PMCID: PMC7930946 DOI: 10.3892/mmr.2021.11936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/27/2020] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke, the third leading cause of disability globally, imposes a notable economic burden. Tetrandrine (Tet), which has been widely used clinically, exhibits potential protective effects against stroke. However, there has been little pre‑clinical research to evaluate the therapeutic effects of Tet on stroke. The present study investigated the beneficial effect of Tet on ischemia‑reperfusion (I/R) injury and its underlying mechanism in rats. Rats were subjected to occlusion of the middle cerebral artery, then treated with Tet (30 mg/kg/day, intraperitoneal) in the subacute phase for 7 days. In order to detect the effects of Tet on the behavior of rats, modified neurological severity score and longa behavior, grasping capability and inclined plane tests were conducted on days 1, 3 and 7 following cerebral ischemia. In addition, neuronal apoptosis in the cortex and hippocampus following ischemia was assessed by Nissl staining and TUNEL assay. Finally, oxidative stress was evaluated by measurement of free radicals and immunofluorescence staining of LC3 was used to assess autophagy. Tet improved neurological function and decreased infarct volume in I/R injury rats. Tet also prevented neuronal apoptosis in the cortex and hippocampus region. In addition, Tet protected against oxidative damage following ischemia, which was reflected by decreased levels of nitric oxide and malondialdehyde and increased levels of glutathione (GSH) and GSH peroxidase. In addition, the expression levels of the autophagy marker LC3 decreased in the Tet treatment group. In conclusion, Tet attenuated I/R‑induced neuronal damage in the subacute phase by decreasing oxidative stress, apoptosis and autophagy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xinjun Cai
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhiheng Wu
- School of Clinical Medicine, Wannan Medicial College, Wuhu, Anhui 241002, P.R. China
| | - Leilei Tang
- Department of Pharmacy, Xiaoshan Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Lingqun Lu
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Yinyin Xu
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
40
|
Strickland BA, Bakhsheshian J, Emmanuel B, Amar A, Giannotta SL, Russin JJ, Mack W. Neuroprotective effect of minocycline against acute brain injury in clinical practice: A systematic review. J Clin Neurosci 2021; 86:50-57. [PMID: 33775346 DOI: 10.1016/j.jocn.2021.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 01/19/2023]
Abstract
Acute brain injury is a leading cause of morbidity and mortality worldwide. The term is inclusive of traumatic brain injury, cerebral ischemia, subarachnoid hemorrhage, and intracerebral hemorrhage. Current pharmacologic treatments have had minimal effect on improving neurological outcomes leading to a significant interest in the development neuroprotective agents. Minocycline is a second-generation tetracycline with high blood brain barrier penetrance due to its lipophilic properties. It functions across multiple molecular pathways involved in secondary-injury cascades following acute brain injury. Animal model studies suggest that minocycline might lead to improved neurologic outcomes, but few such trials exist in humans. Clinical investigations have been limited to small randomized trials in ischemic stroke patients which have not demonstrated a clear advantage in neurologic outcomes, but also have not been sufficiently powered to draw definitive conclusions. The potential neuroprotective effect of minocycline in the setting of traumatic brain injury, subarachnoid hemorrhage, and intracerebral hemorrhage have all been limited to pilot studies with phase II/III investigations pending. The authors aim to synthesize what is currently known about minocycline as a neuroprotective agent against acute brain injury in humans.
Collapse
Affiliation(s)
- Ben A Strickland
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA.
| | - Joshua Bakhsheshian
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben Emmanuel
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Arun Amar
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Steven L Giannotta
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan J Russin
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| | - William Mack
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
41
|
Keuters MH, Keksa-Goldsteine V, Dhungana H, Huuskonen MT, Pomeshchik Y, Savchenko E, Korhonen PK, Singh Y, Wojciechowski S, Lehtonen Š, Kanninen KM, Malm T, Sirviö J, Muona A, Koistinaho M, Goldsteins G, Koistinaho J. An arylthiazyne derivative is a potent inhibitor of lipid peroxidation and ferroptosis providing neuroprotection in vitro and in vivo. Sci Rep 2021; 11:3518. [PMID: 33568697 PMCID: PMC7876050 DOI: 10.1038/s41598-021-81741-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Lipid peroxidation-initiated ferroptosis is an iron-dependent mechanism of programmed cell death taking place in neurological diseases. Here we show that a condensed benzo[b]thiazine derivative small molecule with an arylthiazine backbone (ADA-409-052) inhibits tert-Butyl hydroperoxide (TBHP)-induced lipid peroxidation (LP) and protects against ferroptotic cell death triggered by glutathione (GSH) depletion or glutathione peroxidase 4 (GPx4) inhibition in neuronal cell lines. In addition, ADA-409-052 suppresses pro-inflammatory activation of BV2 microglia and protects N2a neuronal cells from cell death induced by pro-inflammatory RAW 264.7 macrophages. Moreover, ADA-409-052 efficiently reduces infarct volume, edema and expression of pro-inflammatory genes in a mouse model of thromboembolic stroke. Targeting ferroptosis may be a promising therapeutic strategy in neurological diseases involving severe neuronal death and neuroinflammation.
Collapse
Affiliation(s)
- Meike Hedwig Keuters
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Velta Keksa-Goldsteine
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hiramani Dhungana
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Mikko T Huuskonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yuriy Pomeshchik
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Savchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paula K Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yajuvinder Singh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland.
| |
Collapse
|
42
|
Meng H, Jin W, Yu L, Xu S, Wan H, He Y. Protective effects of polysaccharides on cerebral ischemia: A mini-review of the mechanisms. Int J Biol Macromol 2020; 169:463-472. [PMID: 33347928 DOI: 10.1016/j.ijbiomac.2020.12.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Cerebral ischemia, a common cerebrovascular disease, is one of the great threats to human health. Nowadays, many drugs used in the treatment of cerebral ischemia such as clot busting drugs, antiplatelet drugs, and neuroprotective drugs have limits. It is urgent finding new effective treatments for the patients. Researches have confirmed that many kinds of polysaccharides from natural resources possess therapeutic effects on cerebral ischemia, but are still lack of a comprehensively understanding. In this paper, based on the pathophysiology of cerebral ischemic injury, we summarize the latest discoveries and advancements of 29 kinds of polysaccharides, focusing on their ameliorating effects on cerebral ischemia and the underlying mechanisms. Several mechanisms are involved, mainly including antioxidant activities, anti-inflammatory activities, regulating neuron apoptosis, as well as resisting nitrosative stress injury. Besides, polysaccharides show protective effects through certain signaling pathways including PI3K/Akt, MAPK, and NF-κB, PARP-1/AIF, JNK3/c-Jun/Fas-L, and Nrf2/HO-1 signaling pathways. The main goal of this mini-review is to emphasize the important roles of polysaccharides in attenuating cerebral ischemic injury through the elucidation of mechanisms.
Collapse
Affiliation(s)
- Huanhuan Meng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weifeng Jin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shouchao Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
43
|
Jiang Z, Alamuri TT, Muir ER, Choi DW, Duong TQ. Longitudinal multiparametric MRI study of hydrogen-enriched water with minocycline combination therapy in experimental ischemic stroke in rats. Brain Res 2020; 1748:147122. [DOI: 10.1016/j.brainres.2020.147122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
|
44
|
Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol 2020; 19:1023-1032. [DOI: 10.1016/s1474-4422(20)30364-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022]
|
45
|
Choi DW. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front Neurosci 2020; 14:579953. [PMID: 33192266 PMCID: PMC7649323 DOI: 10.3389/fnins.2020.579953] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Interest in excitotoxicity expanded following its implication in the pathogenesis of ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there has been steady progress in elucidating underlying mechanisms. This review will outline the historical path to current understandings of excitotoxicity in the ischemic brain, and suggest that this knowledge should be leveraged now to develop neuroprotective treatments for stroke.
Collapse
Affiliation(s)
- Dennis W Choi
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
46
|
Oliveira AC, Richards EM, Karas MM, Pepine CJ, Raizada MK. Would Repurposing Minocycline Alleviate Neurologic Manifestations of COVID-19? Front Neurosci 2020; 14:577780. [PMID: 33117121 PMCID: PMC7561411 DOI: 10.3389/fnins.2020.577780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aline C Oliveira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Marianthi M Karas
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
47
|
Afshari AR, Mollazadeh H, Sahebkar A. Minocycline in Treating Glioblastoma Multiforme: Far beyond a Conventional Antibiotic. JOURNAL OF ONCOLOGY 2020; 2020:8659802. [PMID: 33014057 PMCID: PMC7519463 DOI: 10.1155/2020/8659802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
One of the most lethal forms of CNS pathologies is glioblastoma multiforme (GBM) that represents high invasiveness, uncontrolled proliferation, and angiogenic features. Its invasiveness is responsible for the high recurrence even after maximal surgical interventions. Minocycline is a semisynthetic analog of tetracyclines with potential anti-inflammatory and anticancer effects, distinct from its antimicrobial activity. In this review, we highlight the importance and the cytotoxic mechanisms of minocycline on GBM pathophysiology. Considering the role of certain enzymes in autophagy, apoptosis, tumor cell invasion, and metastatic ability, the possible use of tetracyclines for cancer therapy should be investigated, especially GBM. The present study is, therefore, going to cover the main topics in minocycline pharmacology to date, encouraging its consideration as a new treatment approach for cancer and GBM.
Collapse
Affiliation(s)
- Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Mohebali A, Abdouss M. Layered biocompatible pH-responsive antibacterial composite film based on HNT/PLGA/chitosan for controlled release of minocycline as burn wound dressing. Int J Biol Macromol 2020; 164:4193-4204. [PMID: 32891643 DOI: 10.1016/j.ijbiomac.2020.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
In the present study, a promising pH-responsive wound dressing was prepared. Halloysite nanotube (HNT) composites were modified with different concentration of both poly (lactic-co-glycolic acid) (PLGA) and chitosan (CS) through the Layer-by-Layer (LbL) strategy for targeted and controlled drug delivery of minocycline (MC). The resulting composites were characterized by FT-IR, XRD, zeta-potential, TGA, FE-SEM and TEM studies. Studying the biodegradability, water uptake, photostability, and water vapor transmission of resulting composites revealed that the composite film absorbed wound secretions, did not degrade, and penetrated properly to wound during the treatment. The results of protein adsorption showed that the optimized composite (C40P60MNT) was blood-compatible. Studying the release profile of the drug showed pH-responsive behavior that was fitted with Korsmeyer-Peppas kinetic model. In-vitro antibacterial testing showed that the C40P60MNT sample had an acceptable effect on the inhibition of gram-positive and gram-negative bacteria. In wound healing test (in-vivo studies), this MC loaded composite film showed faster healing of the burn wound in rat compare to the control sample. Due to the characteristics of the optimized sample, it can be considered as a promising candidate for pH-responsive drug delivery in the treatment of chronic burn wounds.
Collapse
Affiliation(s)
- Alireza Mohebali
- Amirkabir University of Technology, Department of Chemistry, No. 350, Hafez Ave, Valiasr Square, Tehran 1591634311, Iran
| | - Majid Abdouss
- Amirkabir University of Technology, Department of Chemistry, No. 350, Hafez Ave, Valiasr Square, Tehran 1591634311, Iran.
| |
Collapse
|
49
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
50
|
Cui Q, Zhang YL, Ma YH, Yu HY, Zhao XZ, Zhang LH, Ge SQ, Zhang GW, Qin XD. A network pharmacology approach to investigate the mechanism of Shuxuening injection in the treatment of ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112891. [PMID: 32315738 DOI: 10.1016/j.jep.2020.112891] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuxuening injection (SXNI), a popular herbal medicine, is an extract of Ginkgo biloba leaves (GBE), and is used to treat ischemic stroke (IS) in China. However, its specific active ingredients and molecular mechanisms in IS remain unclear. AIM OF THE STUDY The purpose of the research is to identify the main active ingredients in GBE and explore its molecular mechanisms in the treatment of IS. MATERIALS AND METHODS The main active components of GBE were discerned through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) database, and absorption, distribution, metabolism and excretion (ADME) analysis. The targets related to IS were obtained using Genecards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and Disgenet. We discovered an intersection of genes. Subsequently, protein-protein interaction (PPI) networks were constructed with Cytoscape 3.7.1 and the String database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to analyze the intersection of targets via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8. Built on the above analysis, we made a Compound-Target-Pathway (C-T-P) network. Autodock Vina was used for molecular docking analysis. Maestro 11.9 was used to calculate the root-mean-square deviation (RMSD). Animal experiments were performed to verify the core targets. Triphenyl tetrazolium chloride (TTC) staining was used to calculate the infarct volume in rats. Hematoxylin-eosin (HE) staining was employed to observe the morphology of hippocampal neuron cells. RT-qPCR was applied to detect relative mRNA levels, and protein expression was determined using Western blotting. RESULTS Molecular docking showed that PTGS2, NOS3 and CASP3 docked with small molecule compounds. According to RT-qPCR and Western blotting, mRNA and protein expression of PTGS2 and CASP3 were up-regulated (P < 0.05), and mRNA and protein levels of NOS3 were down-regulated (P < 0.05). CONCLUSIONS SXNI can treat IS through multiple targets and routes, and reduce the apoptosis of neuron cells in brain tissue by inhibiting inflammation and regulating the level of oxidative stress, thereby protecting rats brain tissue.
Collapse
Affiliation(s)
- Qian Cui
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China.
| | - Yu-Liang Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China.
| | - Yu-Hui Ma
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China.
| | - Hao-Yu Yu
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China.
| | - Xin-Zhe Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China.
| | - Li-Hui Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China.
| | - Shao-Qin Ge
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China.
| | - Guo-Wei Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China.
| | - Xiu-de Qin
- Shenzhen TCM Hospital, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|