1
|
Moini Jazani A, Arabzadeh A, Haghi-Aminjan H, Nasimi Doost Azgomi R. The role of ginseng derivatives against chemotherapy-induced cardiotoxicity: A systematic review of non-clinical studies. Front Cardiovasc Med 2023; 10:1022360. [PMID: 36844721 PMCID: PMC9946988 DOI: 10.3389/fcvm.2023.1022360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Aims Although chemotherapy agents are used to treating cancers, they have serious side effects, like their harmful effects on the cardiovascular system, limiting the clinical use of these chemotherapy agents. This study aimed to systematically investigate the potential role of ginseng derivatives in the prevention of chemotherapy-induced cardiac toxicity. Methods This systematic review was performed according to PRISMA guidelines strategy in databases till August 2022. First, identify studies related to using search terms in titles and abstracts. After studying and screening 209 articles, 16 articles were selected in this study according to our inclusion and exclusion criteria. Results According to the findings of this study, ginseng derivatives showed significant changes in biochemical, histological, and heart weight loss, as well as a reduction in mortality, which occurred in the groups treated with chemotherapy agents compared to the control groups. Co-administration of ginseng derivatives with chemotherapy agents inhibited or reversed these changes to near-moderate levels. The protective effects of ginseng derivatives can be due to their anti-inflammatory, anti-oxidant, and anti-apoptotic action. Conclusion This systematic review shows evidence that concomitant administration of ginseng derivatives improves chemotherapy-induced cardiac toxicity. However, for better conclusions about the practical mechanisms of ginseng derivatives in reducing the cardiac toxic effects of chemotherapy agents and evaluating the efficacy and safety of the compound simultaneously, it is necessary to design comprehensive studies.
Collapse
Affiliation(s)
- Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran,*Correspondence: Hamed Haghi-Aminjan,✉
| | - Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran,Ramin Nasimi Doost Azgomi,✉
| |
Collapse
|
2
|
Armandeh M, Bameri B, Samadi M, Heidari S, Foroumad R, Abdollahi M. A systematic review of nonclinical studies on the effect of curcumin in chemotherapy-induced cardiotoxicity. Curr Pharm Des 2022; 28:1843-1853. [PMID: 35570565 DOI: 10.2174/1381612828666220513125312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various anticancer drugs are effective therapeutic agents for cancer treatment; however, they cause severe toxicity in body organs. Cardiotoxicity is one of the most critical side effects of these drugs. Based on various findings, turmeric extract has positive effects on cardiac cells. OBJECTIVE This study aims to evaluate how curcumin as the main component of turmeric may affect chemotherapy-induced cardiotoxicity. METHOD Database search was performed up to April 2021 using "curcumin OR turmeric OR Curcuma longa" and "chemotherapy-induced cardiac disease," including all their equivalents and similar terms. After screening the total articles obtained from the electronic databases, 25 relevant articles were included in this systematic review. RESULTS The studies demonstrate lower body weight and increased mortality rates due to doxorubicin administration. Besides, cancer therapeutic agents induced various morphological and biochemical abnormalities compared to the non-treated groups. Based on most of the obtained results, curcumin at nontoxic doses can protect the cardiac cells mainly through modulating antioxidant capacity, regulation of cell death, and anti-inflammatory effects. Nevertheless, according to a minority of findings, curcumin increases the susceptibility of the rat cardiomyoblast cell line (H9C2) to apoptosis triggered by doxorubicin. CONCLUSION According to most nonclinical studies, curcumin can have the potential of cardioprotective effects against cardiotoxicity induced by chemotherapy. However, based on limited, contradictory findings demonstrating the function of curcumin in potentiating doxorubicin-induced cardiotoxicity, well-designed studies are needed to evaluate the safety and effectiveness of treatment with new formulations of this compound during cancer therapy.
Collapse
Affiliation(s)
- Maryam Armandeh
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Tehran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Foroumad
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Shabbir R, Raza A, Liaquat A, Shah SU, Saeed S, Sarwar U, Hamza M, Chudhary F, Hussain Z, Butt NM. Nanoparticles as a novel tool to inhibit inflammatory cytokines in human lymphocytes and macrophages of coronary artery disease. J Pharm Sci 2022; 111:1509-1521. [PMID: 34999090 DOI: 10.1016/j.xphs.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
TNFα and NF-kB contribute in activation of pro-inflammatory signaling pathways and complications of coronary artery diseases (CAD). Current study highlights novel properties of Au (15 ± 2nm), ZnO (77± 45nm) and MgO (11± 4nm) nanoparticles (NPs) as possible anti-inflammatory agents with greater efficacy and lower toxicity. Decrease in TNFα and NF-kB levels in Single Vessel Disease (SVD), Double Vessel Disease (DVD) and Triple-Vessel coronary artery disease (TVD) macrophage and lymphocyte cultures at varying concentrations of NPs has been studied to find an effective therapeutic concentration (ETC). Au and MgO NPs exhibits 5µg/ml ETC compared to 1µg/ml ZnO in all three CAD categories with negligible toxicity. ZnO remains most statistically significant (p<0.001) in SVD and TVD cultures whereas MgO shows efficacy in DVD and TVD cultures with more than 50% reduction in TNFα and NF-kB levels at their respective ETCs. Au NPs exhibit prominent effect in DVD cultures. The mRNA expression results support the down-regulation of TNFα and NF-kB after NPs exposure in respective cultures. Findings of this prospective observational cohort study suggest use of NPs as an alternate anti-inflammatory agent in coronary artery and other diseases.
Collapse
Affiliation(s)
- Rabia Shabbir
- Preston Institute of Nanoscience and Technology (PINSAT), Preston University Kohat, Islamabad campus, Islamabad and Pakistan Academy of Sciences, Islamabad
| | - Abida Raza
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics College, PIEAS, Nilore, Islamabad.
| | | | | | - Sidra Saeed
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics College, PIEAS, Nilore, Islamabad
| | - Usama Sarwar
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics College, PIEAS, Nilore, Islamabad
| | - Muhammad Hamza
- Preston Institute of Nanoscience and Technology (PINSAT), Preston University Kohat, Islamabad campus, Islamabad and Pakistan Academy of Sciences, Islamabad
| | - Fayyaz Chudhary
- Preston Institute of Nanoscience and Technology (PINSAT), Preston University Kohat, Islamabad campus, Islamabad and Pakistan Academy of Sciences, Islamabad
| | | | - N M Butt
- Preston Institute of Nanoscience and Technology (PINSAT), Preston University Kohat, Islamabad campus, Islamabad and Pakistan Academy of Sciences, Islamabad.
| |
Collapse
|
4
|
Moini-Nodeh S, Rahimifard M, Baeeri M, Hodjat M, Haghi-Aminjan H, Abdollahi M. Vinpocetine Effect on the Juncture of Diabetes and Aging: An in-vitro study. Drug Res (Stuttg) 2021; 71:438-447. [PMID: 34255319 DOI: 10.1055/a-1381-6625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The rapid-growing population of diabetic patients and the elderly are among the direst challenges that the science of medicine is facing today. Targeting these two challenges can shed light on new means to control and ideally reverse this trend. In this experiment, Vinpocetine's effect on aged pancreatic beta-cell functions in correlation with oxidative stress was studied. METHODS Islet cells were isolated from the pancreas of aged rats and exposed to Vinpocetine, dissolved in acetone and RPMI, for 48 h. Then, senescence-associated molecular parameters, including P16 and P38 gene expressions and β-galactosidase activity, were investigated along with diabetic and inflammation markers. RESULTS Experimental results showed that Vinpocetine could significantly increase aged islets insulin secretion and also make a meaningful reduction in oxidative stress markers. This drug can also decrease expression levels of P16 and P38, the primary genes responsible for the aging pathway. TNF-α, IL-6, and NF-κB expressions were also reduced noticeably after treatment with Vinpocetine. CONCLUSION The current study showed that Vinpocetine, a derivative of the secondary plant metabolite called Vincamine, could break this vicious cycle of oxidative stress and aging by reducing oxidative stress and inflammation, thus inhibiting cellular aging.
Collapse
Affiliation(s)
- Shermineh Moini-Nodeh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Rahimifard M, Baeeri M, Bahadar H, Moini-Nodeh S, Khalid M, Haghi-Aminjan H, Mohammadian H, Abdollahi M. Therapeutic Effects of Gallic Acid in Regulating Senescence and Diabetes; an In Vitro Study. Molecules 2020; 25:molecules25245875. [PMID: 33322612 PMCID: PMC7763304 DOI: 10.3390/molecules25245875] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Gallic acid (GA), a plant-derived ubiquitous secondary polyphenol metabolite, can be a useful dietary supplement. This in vitro study’s primary purpose was to assess the anti-aging properties of GA using rat embryonic fibroblast (REF) cells, antidiabetic effects via pancreatic islet cells, and finally, elucidating the molecular mechanisms of this natural compound. REF and islet cells were isolated from fetuses and pancreas of rats, respectively. Then, several senescence-associated molecular and biochemical parameters, along with antidiabetic markers, were investigated. GA caused a significant decrease in the β-galactosidase activity and reduced inflammatory cytokines and oxidative stress markers in REF cells. GA reduced the G0/G1 phase in senescent REF cells that led cells to G2/M. Besides, GA improved the function of the β cells. Flow cytometry and spectrophotometric analysis showed that it reduces apoptosis via inhibiting caspase-9 activity. Taken together, based on the present findings, this polyphenol metabolite at low doses regulates different pathways of senescence and diabetes through its antioxidative stress potential and modulation of mitochondrial complexes activities.
Collapse
Affiliation(s)
- Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
- Correspondence: (M.B.); (M.A.)
| | - Haji Bahadar
- Institute of Paramedical Sciences, Khyber Medical University, 25120 Peshawar, Pakistan;
| | - Shermineh Moini-Nodeh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
| | - Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, 5618953141 Ardabil, Iran;
| | - Hossein Mohammadian
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
- Correspondence: (M.B.); (M.A.)
| |
Collapse
|
6
|
The role of taurine on chemotherapy-induced cardiotoxicity: A systematic review of non-clinical study. Life Sci 2020; 265:118813. [PMID: 33275984 DOI: 10.1016/j.lfs.2020.118813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
AIMS Although chemotherapeutic agents have highly beneficial effects against cancer, they disturb the body's normal homeostasis. One of the critical side effects of chemotherapeutic agents is their deleterious effect on the cardiac system, which causes limitations of their clinical usage. Taurine constitutes more than 50% of the amino acids in the heart. The use of taurine might prevent chemotherapy-induced cardiotoxicity. This systematic study aims to evaluate the protective role of taurine against cardiotoxicity induced by chemotherapy. METHODS A systematic search was performed in databases up to November 2020, and the review is designed on PRISMA guidelines. The search keywords were selected based on our study target and were searched in the title and abstract. After the consecutive screening, out of a whole of 94 articles, 8 articles were included according to our inclusion and exclusion criteria. KEY FINDINGS According to the study results, chemotherapy decreases body and heart weight and increases mortality. Also, it induces some biochemical and histological changes compared to the control group. By co-administration of taurine with chemotherapy, alterations returned near to the average level. These protective effects of taurine are mediated through anti-oxidant, anti-inflammatory, and anti-apoptotic properties. SIGNIFICANCE Based on evaluated non-clinical studies, taurine ameliorates chemotherapy-induced cardiotoxicity, but its possible interaction with the efficacy of anti-cancer medicines that mostly act through induction of oxidants remains to be elucidated in the future. This needs conducting well-designed studies to assess the effectiveness and safety of this combination simultaneously.
Collapse
|
7
|
Schneider T, Westermann M, Glei M. Impact of ultrasonication on the delivered dose of metal oxide particle dispersions in vitro. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Aptamer-navigated copolymeric drug carrier system for in vitro delivery of MgO nanoparticles as insulin resistance reversal drug candidate in Type 2 diabetes. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci 2019; 241:117173. [PMID: 31843530 DOI: 10.1016/j.lfs.2019.117173] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Doxorubicin, as an effective chemotherapeutic drug, is commonly used for combating various solid and hematological tumors. However, doxorubicin-induced cardiotoxicity is considered as a serious adverse effect, and it limits the clinical use of this chemotherapeutic drug. The use of melatonin can lead to a decrease in the cardiotoxic effect induced by doxorubicin. The aim of this review was to evaluate the potential role of melatonin in the prevention of doxorubicin-induced cardiotoxicity. METHODS This review was conducted by a full systematic search strategy based on PRISMA guidelines for the identification of relevant literature in the electronic databases of PubMed, Web of Science, Embase, and Scopus up to January 2019 using search terms in the titles and abstracts. 286 articles were screened in accordance with our inclusion and exclusion criteria. Finally, 28 articles were selected in this systematic review. RESULTS The findings demonstrated that doxorubicin-treated groups had increased mortality, decreased body weight and heart weight, and increased ascites compared to the control groups; the co-administration of melatonin revealed an opposite pattern compared to the doxorubicin-treated groups. Also, this chemotherapeutic agent can lead to biochemical and histopathological changes; as for most of the cases, these alterations were reversed near to normal levels (control groups) by melatonin co-administration. Melatonin exerts these protection effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and mitochondrial function. CONCLUSION The results of this systematic review indicated that co-administration of melatonin ameliorates the doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
10
|
Al-Amoudi WM. Toxic effects of Lambda-cyhalothrin, on the rat thyroid: Involvement of oxidative stress and ameliorative effect of ginger extract. Toxicol Rep 2018; 5:728-736. [PMID: 29922588 PMCID: PMC6005809 DOI: 10.1016/j.toxrep.2018.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 01/11/2023] Open
Abstract
Lambda-cyhalothrin leads to histpathological changes and DNA damage in thyroid gland. Lambda-cyhalothrin induces oxidative stress by decreasing the levels of thyroid hormones and antioxidant enzyme in erythrocytes. Ginger prevents the toxicity effect of Lambda-cyhalothrin and DNA damage in the thyroid gland. Ginger decreases the histopathological changes, abnormal level of thyroid hormones and antioxidant enzymes in the thyroid gland caused by LCT.
Lambda-cyhalothrin (LCT) is a synthetic pyrethroid that is widely used to control insecticide. Ginger is a traditional plant that is widely used as a spice or folk medicine. This study evaluates the antioxidant effect of ginger extract on thyroid toxicity induced by LCT in albino rats. Adult Rats were divided into 4 experimental groups: Group 1: control, Group 2: oral ginger treatment (24 mg/ml, 3 days/week for 4 weeks), Group 3: oral LCT treatment (1/100 LD50, 3 days/week for 4 weeks), Group 4: oral LCT and ginger mixture treatment. The histological results of LCT group showed degenerated follicles with reduced colloids, congestion of blood vessels and hyperaemia between the follicles. Histochemically, depletion of glycogen and proteins was recorded in follicular cells and colloids. The biochemical results of LCT treated group revealed a decrease in T3, T4, SOD and CAT, while TSH and MDA were increased. The comet assay showed that LCT significantly induced DNA damage in the thyroid gland. However, treating rats with LCT plus ginger led to an improvement in the histological structure of the thyroid, with noticeable increases in glycogen and protein deposition. Also, LCT plus ginger increase in T3, T4 and the antioxidant enzymes SOD and COT were detected concomitantly with a decrease in TSH and MDA as well as a significant reduction in DNA damage. LCT affected the thyroid function and structure. On the other hand, ginger has a preventative effect against the histological damage and biochemical toxicity caused by the (LCT) insecticide.
Collapse
Key Words
- AD, Alzheimer's disease
- ALK-P, alkaline phosphatase
- ALT, plasma alanine aminotransferase
- AST, aspartate aminotransferase
- Antioxidant
- CAT, catalase
- CC14, carbon tetrachloride
- DMA, lipid peroxidan marker
- DMBA, 7,12-dimethylbenz(a)anthracene
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GSH, glutathione
- GST, glutathione-S-transferase
- Ginger
- Histochemistry
- LCT, Lambda-cyhalothrin
- Lambda-cyhalothrin
- MDA, malondialdehyde
- PAS, Periodic acid–Schiff
- PCO, protein carbonyl
- PD, Parkinson’s disease
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- T3, triiodothyronine, T4, thyroxine
- TI, percent of genomic DNA that migrated during electrophoresis from the nuclear core to the tail
- TL, distance of DNA migration from the center to the nuclear core
- TSH, thyroid-stimulating hormone
- Thyroid
Collapse
|
11
|
Nobakht-Haghighi N, Rahimifard M, Baeeri M, Rezvanfar MA, Moini Nodeh S, Haghi-Aminjan H, Hamurtekin E, Abdollahi M. Regulation of aging and oxidative stress pathways in aged pancreatic islets using alpha-lipoic acid. Mol Cell Biochem 2018; 449:267-276. [PMID: 29696608 DOI: 10.1007/s11010-018-3363-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been involved in the aging process and the pathogenesis of type-2 diabetes, which is a serious health problem worldwide. This study investigates the anti-aging, anti-apoptotic, and antioxidant properties of alpha-lipoic acid (ALA), aiming to improve aged rat pancreatic cells. In this regard, half maximal effective concentration (EC50) of ALA based on the survival of aged pancreatic islet cells was determined as 100 µM. Following this, p38 and p53 genes expression as key factors in aging, oxidative stress biomarkers, insulin secretion, and Pdx1 protein expression were evaluated using real-time PCR, ELISA reader, and fluorescence microscope. It was revealed that ALA reduces and controls the effects of aging on beta cells mainly by suppressing p38 and p53 at the gene level (P < 0.001 and P < 0.01), respectively, reducing reactive oxygen species (P < 0.001) and enhancing levels of thiols (P < 0.05) compared with the aged islets. Furthermore, both qualitative and quantitative investigations of insulin secretion have shown that ALA can improve aged cells' function and increase insulin secretion specially in the stimulating concentration of glucose. Also, the expression of Pdx1 was considerably increased by ALA in comparison to the aged pancreatic islets (P < 0.001). As far as the authors of the present study are concerned, this is the first study, which evaluated aging associated with p38 and p53 pathways, oxidative stress parameters, and the expression of insulin in beta cells of an aged rat and reaffirmed the fact that ALA has a significant antioxidant role in reducing the aging process.
Collapse
Affiliation(s)
- Navid Nobakht-Haghighi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Rezvanfar
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shermineh Moini Nodeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emre Hamurtekin
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Mohammad Abdollahi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- The Institute of Pharmaceutical Sciences (TIPS) and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
12
|
Navaei-Nigjeh M, Gholami M, Fakhri-Bafghi MS, Baeeri M, Abdollahi M. Molecular and Biochemical Evidences for Beneficial Effects of Zinc Oxide Nanoparticles in Modulation of Chlorpyrifos Toxicity in Human Lymphocytes. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:927-939. [PMID: 30127816 PMCID: PMC6094429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chlorpyrifos (CP), an acetylcholinesterase (AChE) inhibitor, is used throughout the world as an insecticide in agriculture and an eradicating agent for termites around homes. In the present study, we examined the protective role of zinc oxide nanoparticles (ZnO NPs) in human CP-treated lymphocytes. Lymphocytes isolated by Ficoll and exposed to 75 µg/mL CP either alone or in combination with logarithmic doses of ZnO NPs (0/1, 1, 10, 100 µg/mL). After a 3-day incubation period, the viability and oxidative stress markers were determined. Then, the levels of tumor necrosis factor-α (TNF-α), as an inflammatory index along with AChE activity and cell death were evaluated. Our results showed that incubation with CP significantly increases the percent of cell death, activities of caspase-3 and -9, level of TNF-α and also promotes the levels of biomarkers which play important role in oxidative stress. On the other hand, the activity of AChE and levels of the total antioxidant power (TAP) decreased in CP-treated lymphocytes. In contrast, lymphocytes treated with different concentrations of ZnO NPs showed a significant decrease in the percent of mortality as well as the levels of TNF-α, as compared with CP-treated lymphocytes. Besides, ZnO NPs increased the levels of AChE and TAP at 1 µg/mL. In conclusion, the results indicate the protective effects of ZnO NPs in the prevention of cytotoxic activity of CP in the lymphocytes.
Collapse
Affiliation(s)
- Mona Navaei-Nigjeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran. ,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Gholami
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran. ,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Maryam Baeeri
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran. ,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran. ,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. ,Corresponding author: E-mail:
| |
Collapse
|
13
|
Moeini-Nodeh S, Rahimifard M, Baeeri M, Abdollahi M. Functional Improvement in Rats' Pancreatic Islets Using Magnesium Oxide Nanoparticles Through Antiapoptotic and Antioxidant Pathways. Biol Trace Elem Res 2017; 175:146-155. [PMID: 27234250 DOI: 10.1007/s12011-016-0754-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
According to undiscovered toxicity and safety of magnesium oxide nanoparticles (MgO NPs) in isolated pancreatic islet cells, this study was designed to examine the effects of its various concentrations on a time-course basis on the oxidative stress, viability, and function of isolated islets of rat's pancreas. Pancreatic islets were isolated and exposed to different MgO NP (<100 nm) concentrations within three different time points. After that, oxidative stress biomarkers were investigated and the best exposure time was selected. Then, safety of MgO NPs was investigated by flow cytometry and fluorescent staining, and levels of insulin secretion and caspase activity were measured. The results illustrated a considerable decrease in oxidative stress markers such as reactive oxygen species (ROS) and lipid peroxidation (LPO) levels of pancreatic islets which were treated by MgO NPs for 24 h. Also, in that time of exposure, cell apoptosis investigation by flow cytometry and insulin test showed that MgO NPs, in a concentration of 100 μg/ml, decreased the rate of apoptotic cells via inhibiting caspase-9 activity and made a significant increase in the level of insulin secretion. Data of function and apoptosis biomarkers correlated with each other. It is concluded that the use of MgO NPs in concentration of as low as 100 μg/ml can induce antiapoptotic, antioxidative, and antidiabetic effects in rat pancreatic islets, which support its possible benefit in islet transplantation procedures.
Collapse
Affiliation(s)
- Shermineh Moeini-Nodeh
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Institute of Clinical Endocrine Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Shiri M, Navaei-Nigjeh M, Baeeri M, Rahimifard M, Mahboudi H, Shahverdi AR, Kebriaeezadeh A, Abdollahi M. Blockage of both the extrinsic and intrinsic pathways of diazinon-induced apoptosis in PaTu cells by magnesium oxide and selenium nanoparticles. Int J Nanomedicine 2016; 11:6239-6250. [PMID: 27920530 PMCID: PMC5125760 DOI: 10.2147/ijn.s119680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diazinon (DZ) is an organophosphorus insecticide that acts as an acetylcholinesterase inhibitor. It is important to note that it can induce oxidative stress, lipid peroxidation, diabetic disorders, and cytotoxicity. Magnesium oxide (MgO) and selenium nanoparticles (Se NPs) showed promising protection against oxidative stress, lipid peroxidation, cytotoxicity, and diabetic disorders. Therefore, this study was conducted to explore the possible protective mechanisms of MgO and Se NPs against DZ-induced cytotoxicity in PaTu cell line. Cytotoxicity of DZ, in the presence or absence of effective doses of MgO and Se NPs, was determined in human pancreatic cancer cell line (PaTu cells) after 24 hours of exposure by using mitochondrial activity and mitochondrial membrane potential assays. Then, the insulin, proinsulin, and C-peptide release; caspase-3 and -9 activities; and total thiol molecule levels were assessed. Determination of cell viability, including apoptotic and necrotic cells, was assessed via acridine orange/ethidium bromide double staining. Furthermore, expression of 15 genes associated with cell death/apoptosis in various phenomena was examined after 24 hours of contact with DZ and NPs by using real-time polymerase chain reaction. Compared to the individual cases, the group receiving the combination of MgO and Se NPs showed more beneficial effects in reducing the toxicity of DZ. Cotreatment of PaTu cell lines with MgO and Se NPs counteracts the toxicity of DZ on insulin-producing cells.
Collapse
Affiliation(s)
- Mahdi Shiri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences; School of Medicine, Artesh University of Medical Sciences
| | - Mona Navaei-Nigjeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences
| | - Mahban Rahimifard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences
| | - Hossein Mahboudi
- Department of Biotechnology, Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Biotechnology, Faculty of Pharmacy and Biotechnology Research Center
| | - Abbas Kebriaeezadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences; Toxicology Interest Group, USERN; Endocrinology & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Sudakaran SV, Venugopal JR, Vijayakumar GP, Abisegapriyan S, Grace AN, Ramakrishna S. Sequel of MgO nanoparticles in PLACL nanofibers for anti-cancer therapy in synergy with curcumin/β-cyclodextrin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:620-628. [PMID: 27987753 DOI: 10.1016/j.msec.2016.10.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/15/2016] [Accepted: 10/23/2016] [Indexed: 12/21/2022]
Abstract
Pharmaceutical industries spend more money in developing new and efficient methods for delivering successful drugs for anticancer therapy. Electrospun nanofibers and nanoparticles loaded with drugs have versatile biomedical applications ranging from wound healing to anticancer therapy. We aimed to attempt for fabricating elastomeric poly (l-lactic acid-co-ε-caprolactone) (PLACL) with Aloe Vera (AV), magnesium oxide (MgO) nanoparticles, curcumin (CUR) and β-cyclodextrin (β-CD) composite nanofibers to control the growth of MCF-7 cells for breast cancer therapy. The study focused on the interaction of MgO nanoparticle with CUR and β-CD inhibiting the proliferation of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. FESEM micrographs of fabricated electrospun PLACL, PLACL/AV, PLACL/AV/MgO, PLACL/AV/MgO/CUR and PLACL/AV/MgO/β-CD nanofibrous scaffolds achieved bead free, random and uniform nanofibers with fiber diameter in the range of 786±286, 507±171, 334±95, 360±94 and 326±80nm respectively. Proliferation of MCF-7 cells was decreased by 65.92% in PLACL/AV/MgO/CUR with respect to PLACL/AV/MgO nanofibrous scaffolds on day 9. The obtained results proved that 1% CUR interacting with MgO nanoparticles showed higher inhibition of MCF-7 cells among all other nanofibrous scaffolds thus serving as a promising biocomposite material system for the breast cancer therapy.
Collapse
Affiliation(s)
- Shruthi Vathaluru Sudakaran
- Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore; The Centre for Nanotechnology Research, VIT University, Vellore, India
| | - Jayarama Reddy Venugopal
- Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore.
| | - Gnaneshwar Puvala Vijayakumar
- Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Sivasubramanian Abisegapriyan
- Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore; The Centre for Nanotechnology Research, VIT University, Vellore, India
| | | | - Seeram Ramakrishna
- Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| |
Collapse
|
16
|
Asghari MH, Moloudizargari M, Bahadar H, Abdollahi M. A review of the protective effect of melatonin in pesticide-induced toxicity. Expert Opin Drug Metab Toxicol 2016; 13:545-554. [DOI: 10.1080/17425255.2016.1214712] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Moloudizargari
- Young Researchers and Elite Club, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Haji Bahadar
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|