1
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Bolouki A. Role of Epigenetic Modification in the Intergeneration Transmission of War Trauma. Indian J Clin Biochem 2024; 39:312-321. [PMID: 39005862 PMCID: PMC11239641 DOI: 10.1007/s12291-023-01136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/25/2023] [Indexed: 07/16/2024]
Abstract
War trauma has been linked to changes in the neuroendocrine and immunological systems and increases the risk of physical disorders. Traumatic events during the war may have long-term repercussions on psychological and biological parameters in future generations, implying that traumatic stress may have transgenerational consequences. This article addresses how epigenetic mechanisms, which are a key biological mechanism for dynamic adaptation to environmental stressors, may help explain the long-term and transgenerational consequences of trauma. In war survivors, epigenetic changes in genes mediating the hypothalamus-pituitary-adrenal axis, as well as the immune system, have been reported. These genetic modifications may cause long-term changes in the stress response as well as physical health risks. Also, the finding of biomarkers for diagnosing the possibility of psychiatric illnesses in people exposed to stressful conditions such as war necessitates extensive research. While epigenetic research has the potential to further our understanding of the effects of trauma, the findings must be interpreted with caution because epigenetic molecular mechanisms is only one piece of a complicated puzzle of interwoven biological and environmental components.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Clinical Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Unit on Cellular Biology (URBC), University of Namur, Namur, Belgium
| |
Collapse
|
3
|
Hrubi E, Imre L, Hegedüs C. Effects of EZH2 inhibitor, trichostatin A, and 5-azacytidine combinatorial treatment on osteogenic differentiation of dental pulp stem cells. Heliyon 2024; 10:e32553. [PMID: 39183840 PMCID: PMC11341346 DOI: 10.1016/j.heliyon.2024.e32553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 08/27/2024] Open
Abstract
Objective Epigenetic mechanisms play regulatory roles in dental pulp stem cell (DPSC) differentiation. The molecules that modulate these mechanisms can be used to enhance DPSC differentiation in experimental studies and clinical applications. We investigated the combined effects of an epigenetic modulator enhancer of zeste homologue 2 inhibitor (EZH2i), trichostatin A (TSA), and 5-azacytidine (5-AZA) on the osteogenic differentiation of DPSCs. Results To assess osteogenic differentiation, we measured alkaline phosphatase activity, calcium deposition, and expression of osteogenic differentiation marker genes (RUNX2, BMP2, and ALPL) after 7 or 21 days of combinatorial drug treatment in normal cell culture medium or osteo-inductive medium (OIM). No synergistic effects were observed for any possible combination of EZH2i, TSA, or 5-AZA. However, the effects of these drugs and their combinations depend on the time and culture conditions. Discussion We confirmed that EZH2i and TSA have positive effects on the osteogenic differentiation of DPSCs. EZH2i activates the expression of key regulatory genes (RUNX2, BMP2, and ALPL) directly, whereas TSA interacts with signalling pathways induced by supplements in OIM to activate these genes.
Collapse
Affiliation(s)
- Edit Hrubi
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, H-4032 Hungary
| | - László Imre
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Csaba Hegedüs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, H-4032 Hungary
| |
Collapse
|
4
|
Opare-Addo PA, Sarfo FS, Aikins M, Bediako SA, Ovbiagele B. Epigenetics as a target to mitigate excess stroke risk in people of African ancestry: A scoping review. J Stroke Cerebrovasc Dis 2024; 33:107585. [PMID: 38253246 PMCID: PMC11060795 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Globally, individuals of African ancestry have a relatively greater stroke preponderance compared to other racial/ethnic groups. The higher prevalence of traditional stroke risk factors in this population, however, only partially explains this longstanding disparity. Epigenetic signatures are transgenerational and could be a plausible therapeutic target to further bend the stroke disparities curve for people of African ancestry. There is, however, limited data on epigenetics and stroke risk in this population. PURPOSE To examine existing evidence and knowledge gaps on the potential contribution of epigenetics to excess stroke risk in people of African ancestry and avenues for mitigation. MATERIALS AND METHODS We conducted a scoping review of studies published between January 2003 and July 2023, on epigenetics and stroke risk. We then summarized our findings, highlighting the results for people of African ancestry. RESULTS Of 104 studies, there were only 6 studies that specifically looked at epigenetic mechanisms and stroke risk in people of African ancestry. Results of these studies show how patterns of DNA methylation and non-coding RNA interact with lifestyle choices, xenobiotics, and FVIII levels to raise stroke risk in people of African ancestry. However, no studies evaluated epigenetic patterns as actionable targets for the influence of psychosocial stressors or social context and excess stroke risk in this population (versus others). Also, no studies interrogated the role of established or novel therapeutic agents with the potential to reprogram DNA by adding or removing epigenetic markers in people of African ancestry. CONCLUSION Epigenetics potentially offers a promising target for modifying the effects of lifestyle, environmental exposures, and other factors that differentially affect people of African ancestry and place them at relatively greater stroke risk compared to other populations. Studies that precisely assess the pathways by which epigenetic mechanisms modulate population-specific disparities in the risk of stroke are needed.
Collapse
Affiliation(s)
| | - Fred Stephen Sarfo
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Neurology Division, Kwame Nkrumah University of Science & Technology, P. O. Box 1934, Kumasi, Ghana.
| | | | | | | |
Collapse
|
5
|
Abdulwahab HG, Mansour RES, Farghaly TA, El-Sehrawi HM. Discovery of novel benzimidazole derivatives as potent HDACs inhibitors against leukemia with (Thio)Hydantoin as zinc-binding moiety: Design, synthesis, enzyme inhibition, and cellular mechanistic study. Bioorg Chem 2024; 146:107284. [PMID: 38493640 DOI: 10.1016/j.bioorg.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Based on the well-established pharmacophoric features required for histone deacetylase (HDAC) inhibition, a novel series of easy-to-synthesize benzimidazole-linked (thio)hydantoin derivatives was designed and synthesized as HDAC6 inhibitors. All target compounds potently inhibited HDAC6 at nanomolar levels with compounds 2c, 2d, 4b and 4c (IC50s = 51.84-74.36 nM) being more potent than SAHA reference drug (IC50 = 91.73 nM). Additionally, the most potent derivatives were further assessed for their in vitro cytotoxic activity against two human leukemia cells. Hydantoin derivative 4c was equipotent/superior to SAHA against MOLT-4/CCRF-CEM leukemia cells, respectively and demonstrated safety profile better than that of SAHA against non-cancerous human cells. 4c was also screened against different HDAC isoforms. 4c was superior to SAHA against HDAC1. Cell-based assessment of 4c revealed a significant cell cycle arrest and apoptosis induction. Moreover, western blotting analysis showed increased levels of acetylated histone H3, histone H4 and α-tubulin in CCRF-CEM cells. Furthermore, docking study exposed the ability of title compounds to chelate Zn2+ located within HDAC6 active site. As well, in-silico evaluation of physicochemical properties showed that target compounds are promising candidates in terms of pharmacokinetic aspects.
Collapse
Affiliation(s)
- Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Reda El-Sayed Mansour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Hend M El-Sehrawi
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Scott AK, Gallagher KM, Schneider SE, Kurse A, Neu CP. Epigenetic Priming Enhances Chondrogenic Potential of Expanded Chondrocytes. Tissue Eng Part A 2024; 30:415-425. [PMID: 38323554 DOI: 10.1089/ten.tea.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Expansion of chondrocytes presents a major obstacle in the cartilage regeneration procedure, such as matrix-induced autologous chondrocyte implantation. Dedifferentiation of chondrocytes during the expansion process leads to the emergence of a fibrotic (chondrofibrotic) phenotype that decreases the chondrogenic potential of the implanted cells. We aim to (1) determine the extent that chromatin architecture of H3K27me3 and H3K9me3 remodels during dedifferentiation and persists after the transfer to a three-dimensional (3D) culture; and (2) to prevent this persistent remodeling to enhance the chondrogenic potential of expanded bovine chondrocytes, used as a model system. Chromatin architecture remodeling of H3K27me3 and H3K9me3 was observed at 0 population doublings, 8 population doublings, and 16 population doublings (PD16) in a two-dimensional (2D) culture and after encapsulation of the expanded chondrocytes in a 3D hydrogel culture. Chondrocytes were treated with inhibitors of epigenetic modifiers (epigenetic priming) for PD16 and then encapsulated in 3D hydrogels. Chromatin architecture of chondrocytes and gene expression were evaluated before and after encapsulation. We observed a change in chromatin architecture of epigenetic modifications H3K27me3 and H3K9me3 during chondrocyte dedifferentiation. Although inhibiting enzymes that modify H3K27me3 and H3K9me3 did not alter the dedifferentiation process in 2D culture, applying these treatments during the 2D expansion did increase the expression of select chondrogenic genes and protein deposition of type II collagen when transferred to a 3D environment. Overall, we found that epigenetic priming of expanded bovine chondrocytes alters the cell fate when chondrocytes are later encapsulated into a 3D environment, providing a potential method to enhance the success of cartilage regeneration procedures.
Collapse
Affiliation(s)
- Adrienne K Scott
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Katie M Gallagher
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
| | - Stephanie E Schneider
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Abhijit Kurse
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
7
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
8
|
Odeyemi I, Douglas TA, Igie NF, Hargrove JA, Hamilton G, Bradley BB, Thai C, Le B, Unjia M, Wicherts D, Ferneyhough Z, Pillai A, Koirala S, Hagge LM, Polara H, Trievel RC, Fick RJ, Stelling AL. An optimized purification protocol for enzymatically synthesized S-adenosyl-L-methionine (SAM) for applications in solution state infrared spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123816. [PMID: 38198991 DOI: 10.1016/j.saa.2023.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
S-adenosyl-L-methionine (SAM) is an abundant biomolecule used by methyltransferases to regulate a wide range of essential cellular processes such as gene expression, cell signaling, protein functions, and metabolism. Despite considerable effort, there remain many specificity challenges associated with designing small molecule inhibitors for methyltransferases, most of which exhibit off-target effects. Interestingly, NMR evidence suggests that SAM undergoes conformeric exchange between several states when free in solution. Infrared spectroscopy can detect different conformers of molecules if present in appreciable populations. When SAM is noncovalently bound within enzyme active sites, the nature and the number of different conformations of the molecule are likely to be altered from when it is free in solution. If there are unique structures or different numbers of conformers between different methyltransferase active sites, solution-state information may provide promising structural leads to increase inhibitor specificity for a particular methyltransferase. Toward this goal, frequencies measured in SAM's infrared spectra must be assigned to the motions of specific atoms via isotope incorporation at discrete positions. The incorporation of isotopes into SAM's structure can be accomplished via an established enzymatic synthesis using isotopically labeled precursors. However, published protocols produced an intense and highly variable IR signal which overlapped with many of the signals from SAM rendering comparison between isotopes challenging. We observed this intense absorption to be from co-purifying salts and the SAM counterion, producing a strong, broad signal at 1100 cm-1. Here, we report a revised SAM purification protocol that mitigates the contaminating salts and present the first IR spectra of isotopically labeled CD3-SAM. These results provide a foundation for isotopic labeling experiments of SAM that will define which atoms participate in individual molecular vibrations, as a means to detect specific molecular conformations.
Collapse
Affiliation(s)
- Isaiah Odeyemi
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Teri A Douglas
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Nosakhare F Igie
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - James A Hargrove
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Grace Hamilton
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Brianna B Bradley
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Cathy Thai
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Brendan Le
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Maitri Unjia
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Dylan Wicherts
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Zackery Ferneyhough
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Anjali Pillai
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Shailendra Koirala
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Laurel M Hagge
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Himanshu Polara
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Raymond C Trievel
- University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, 48109, MI, USA
| | - Robert J Fick
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Allison L Stelling
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA.
| |
Collapse
|
9
|
Tomoda A, Nishitani S, Takiguchi S, Fujisawa TX, Sugiyama T, Teicher MH. The neurobiological effects of childhood maltreatment on brain structure, function, and attachment. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01779-y. [PMID: 38466395 DOI: 10.1007/s00406-024-01779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Childhood maltreatment is a risk factor for psychopathologies, and influences brain development at specific periods, particularly during early childhood and adolescence. This narrative review addresses phenotypic alterations in sensory systems associated with specific types of childhood maltreatment exposure, periods of vulnerability to the neurobiological effects of maltreatment, and the relationships between childhood maltreatment and brain structure, function, connectivity, and network architecture; psychopathology; and resilience. It also addresses neurobiological alterations associated with maternal communication and attachment disturbances, and uses laboratory-based measures during infancy and case-control studies to elucidate neurobiological alterations in reactive attachment disorders in children with maltreatment histories. Moreover, we review studies on the acute effects of oxytocin on reactive attachment disorder and maltreatment and methylation of oxytocin regulatory genes. Epigenetic changes may play a critical role in initiating or producing the atypical structural and functional brain alterations associated with childhood maltreatment. However, these changes could be reversed through psychological and pharmacological interventions, and by anticipating or preventing the emergence of brain alterations and subsequent psychopathological risks.
Collapse
Affiliation(s)
- Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan.
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| | - Shota Nishitani
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
| | - Shinichiro Takiguchi
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
| | - Toshiro Sugiyama
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Martin H Teicher
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, USA
- Department of Psychiatry, Harvard Medical School, Boston, USA
| |
Collapse
|
10
|
Yi SJ, Lim J, Kim K. Exploring epigenetic strategies for the treatment of osteoporosis. Mol Biol Rep 2024; 51:398. [PMID: 38453825 DOI: 10.1007/s11033-024-09353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The worldwide trend toward an aging population has resulted in a higher incidence of chronic conditions, such as osteoporosis. Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mass and increased fracture risk, encompasses primary and secondary forms, each with distinct etiologies. Mechanistically, osteoporosis involves an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Current pharmacological interventions for osteoporosis, such as bisphosphonates, denosumab, and teriparatide, aim to modulate bone turnover and preserve bone density. Hormone replacement therapy and lifestyle modifications are also recommended to manage the condition. While current medications offer therapeutic options, they are not devoid of limitations. Recent studies have highlighted the importance of epigenetic mechanisms, including DNA methylation and histone modifications, in regulating gene expression during bone remodeling. The use of epigenetic drugs, or epidrugs, to target these mechanisms offers a promising avenue for therapeutic intervention in osteoporosis. In this review, we comprehensively examine the recent advancements in the application of epidrugs for treating osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jaeho Lim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
11
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Raghubeer S. The influence of epigenetics and inflammation on cardiometabolic risks. Semin Cell Dev Biol 2024; 154:175-184. [PMID: 36804178 DOI: 10.1016/j.semcdb.2023.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Cardiometabolic diseases include metabolic syndrome, obesity, type 2 diabetes mellitus, and hypertension. Epigenetic modifications participate in cardiometabolic diseases through several pathways, including inflammation, vascular dysfunction, and insulin resistance. Epigenetic modifications, which encompass alterations to gene expression without mutating the DNA sequence, have gained much attention in recent years, since they have been correlated with cardiometabolic diseases and may be targeted for therapeutic interventions. Epigenetic modifications are greatly influenced by environmental factors, such as diet, physical activity, cigarette smoking, and pollution. Some modifications are heritable, indicating that the biological expression of epigenetic alterations may be observed across generations. Moreover, many patients with cardiometabolic diseases present with chronic inflammation, which can be influenced by environmental and genetic factors. The inflammatory environment worsens the prognosis of cardiometabolic diseases and further induces epigenetic modifications, predisposing patients to the development of other metabolism-associated diseases and complications. A deeper understanding of inflammatory processes and epigenetic modifications in cardiometabolic diseases is necessary to improve our diagnostic capabilities, personalized medicine approaches, and the development of targeted therapeutic interventions. Further understanding may also assist in predicting disease outcomes, especially in children and young adults. This review describes epigenetic modifications and inflammatory processes underlying cardiometabolic diseases, and further discusses advances in the research field with a focus on specific points for interventional therapy.
Collapse
Affiliation(s)
- Shanel Raghubeer
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, South Africa.
| |
Collapse
|
13
|
Perales SG, Rajasingh S, Zhou Z, Rajasingh J. Therapy of infectious diseases using epigenetic approaches. EPIGENETICS IN HUMAN DISEASE 2024:853-882. [DOI: 10.1016/b978-0-443-21863-7.00007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
15
|
Sarkar S, Deyoung T, Ressler H, Chandler W. Brain Tumors: Development, Drug Resistance, and Sensitization - An Epigenetic Approach. Epigenetics 2023; 18:2237761. [PMID: 37499114 PMCID: PMC10376921 DOI: 10.1080/15592294.2023.2237761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
In this article, we describe contrasting developmental aspects of paediatric and adult brain tumours. We hypothesize that the formation of cancer progenitor cells, for both paediatric and adult, could be due to epigenetic events. However, the progression of adult brain tumours selectively involves more mutations compared to paediatric tumours. We further discuss epigenetic switches, comprising both histone modifications and DNA methylation, and how they can differentially regulate transcription and expression of oncogenes and tumour suppressor genes. Next, we summarize the currently available therapies for both types of brain tumours, explaining the merits and failures leading to drug resistance. We analyse different mechanisms of drug resistance and the role of epigenetics in this process. We then provide a rationale for combination therapy, which includes epigenetic drugs. In the end, we postulate a concept which describes how a combination therapy could be initiated. The timing, doses, and order of individual drug regimens will depend on the individual case. This type of combination therapy will be part of a personalized medicine which will differ from patient to patient.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Division of Biotechnology, Quincy College, Quincy, MA, USA
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
- Division of Biology, STEM, RC College Boston, Boston, MA, USA
| | - Tara Deyoung
- Division of Biotechnology, Quincy College, Quincy, MA, USA
| | - Hope Ressler
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
| | | |
Collapse
|
16
|
Zhang L, Xia C, Yang Y, Sun F, Zhang Y, Wang H, Liu R, Yuan M. DNA methylation and histone post-translational modifications in atherosclerosis and a novel perspective for epigenetic therapy. Cell Commun Signal 2023; 21:344. [PMID: 38031118 PMCID: PMC10688481 DOI: 10.1186/s12964-023-01298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/27/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis, which is a vascular pathology characterized by inflammation and plaque build-up within arterial vessel walls, acts as the important cause of most cardiovascular diseases. Except for a lipid-depository and chronic inflammatory, increasing evidences propose that epigenetic modifications are increasingly associated with atherosclerosis and are of interest from both therapeutic and biomarker perspectives. The chronic progressive nature of atherosclerosis has highlighted atherosclerosis heterogeneity and the fact that specific cell types in the complex milieu of the plaque are, by far, not the only initiators and drivers of atherosclerosis. Instead, the ubiquitous effects of cell type are tightly controlled and directed by the epigenetic signature, which, in turn, is affected by many proatherogenic stimuli, including low-density lipoprotein, proinflammatory, and physical forces of blood circulation. In this review, we summarize the role of DNA methylation and histone post-translational modifications in atherosclerosis. The future research directions and potential therapy for the management of atherosclerosis are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Chenhai Xia
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Yongjun Yang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Fangfang Sun
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Yu Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Huan Wang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Air Force Military Medical University, No. 1 Xinsi Road, Xi'an 710000, China.
| | - Ming Yuan
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
17
|
Heald A, Qin R, Williams R, Warner-Levy J, Narayanan RP, Fernandez I, Peng Y, Gibson JM, McCay K, Anderson SG, Ollier W. A Longitudinal Clinical Trajectory Analysis Examining the Accumulation of Co-morbidity in People with Type 2 Diabetes (T2D) Compared with Non-T2D Individuals. Diabetes Ther 2023; 14:1903-1913. [PMID: 37707702 PMCID: PMC10570249 DOI: 10.1007/s13300-023-01463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) is commonly associated with an increasing complexity of multimorbidity. While some progress has been made in identifying genetic and non-genetic risk factors for T2D, understanding the longitudinal clinical history of individuals before/after T2D diagnosis may provide additional insights. METHODS In this study, we utilised longitudinal data from the DARE (Diabetes Alliance for Research in England) study to examine the trajectory of clinical conditions in individuals with and without T2D. Data from 1932 individuals (T2D n = 1196 vs. matched non-T2D controls n = 736) were extracted and subjected to trajectory analysis over a period of up to 50 years (25 years pre-diagnosis/25 years post-diagnosis). We also analysed the cumulative proportion of people with diagnosed coronary artery disease (CAD) in their general practice (GP) record with an analysis of lower respiratory tract infection (RTI) as a comparator group. RESULTS The mean age of diagnosis of T2D was 52.6 (95% confidence interval 52.0-53.4) years. In the years leading up to T2D diagnosis, individuals who eventually received a T2D diagnosis consistently exhibited a considerable increase in several clinical phenotypes. Additionally, immediately prior to T2D diagnosis, a significantly greater prevalence of hypertension (35%)/RTI (34%)/heart conditions (17%)/eye, nose, throat infection (19%) and asthma (12%) were observed. The corresponding trajectory of each of these conditions was much less dramatic in the matched controls. Post-T2D diagnosis, proportions of T2D individuals exhibiting hypertension/chronic kidney disease/retinopathy/infections climbed rapidly before plateauing. At the last follow-up by quintile of disadvantage, the proportion (%) of people with diagnosed CAD was 6.4% for quintile 1 (least disadvantaged) and 11% for quintile 5 (F = 3.4, p = 0.01 for the difference between quintiles). CONCLUSION These findings provide novel insights into the onset/natural progression of T2D, suggesting an early phase of inflammation-related disease activity before any clinical diagnosis of T2D is made. Measures that reduce social inequality have the potential in the longer term to reduce the social gradient in health outcomes reported here.
Collapse
Affiliation(s)
- Adrian Heald
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford Royal NHS Foundation Trust, Salford, UK.
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
| | - Rui Qin
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Richard Williams
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- National Institute for Health Research Applied Research Collaboration Greater Manchester, The University of Manchester, Manchester, UK
| | - John Warner-Levy
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford Royal NHS Foundation Trust, Salford, UK
| | | | - Israel Fernandez
- Stroke Pharmacogenomics and Genetics, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Yonghong Peng
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - J Martin Gibson
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford Royal NHS Foundation Trust, Salford, UK
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Kevin McCay
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Simon G Anderson
- University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| | - William Ollier
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
18
|
Herranz JM, López-Pascual A, Clavería-Cabello A, Uriarte I, Latasa MU, Irigaray-Miramon A, Adán-Villaescusa E, Castelló-Uribe B, Sangro B, Arechederra M, Berasain C, Avila MA, Fernández-Barrena MG. Comprehensive analysis of epigenetic and epitranscriptomic genes' expression in human NAFLD. J Physiol Biochem 2023; 79:901-924. [PMID: 37620598 PMCID: PMC10636027 DOI: 10.1007/s13105-023-00976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition with a complex etiology. Its incidence is increasing globally in parallel with the obesity epidemic, and it is now considered the most common liver disease in Western countries. The precise mechanisms underlying the development and progression of NAFLD are complex and still poorly understood. The dysregulation of epigenetic and epitranscriptomic mechanisms is increasingly recognized to play pathogenic roles in multiple conditions, including chronic liver diseases. Here, we have performed a comprehensive analysis of the expression of epigenetic and epitranscriptomic genes in a total of 903 liver tissue samples corresponding to patients with normal liver, obese patients, and patients with non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), advancing stages in NAFLD progression. We integrated ten transcriptomic datasets in an unbiased manner, enabling their robust analysis and comparison. We describe the complete landscape of epigenetic and epitranscriptomic genes' expression along the course of the disease. We identify signatures of genes significantly dysregulated in association with disease progression, particularly with liver fibrosis development. Most of these epigenetic and epitranscriptomic effectors have not been previously described in human NAFLD, and their altered expression may have pathogenic implications. We also performed a comprehensive analysis of the expression of enzymes involved in the metabolism of the substrates and cofactors of epigenetic and epitranscriptomic effectors. This study provides novel information on NAFLD pathogenesis and may also guide the identification of drug targets to treat this condition and its progression towards hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jose M Herranz
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaya López-Pascual
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Alex Clavería-Cabello
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Ujúe Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Ainara Irigaray-Miramon
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Elena Adán-Villaescusa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Borja Castelló-Uribe
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Matías A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
19
|
Brahadeeswaran S, Dasgupta T, Manickam V, Saraswathi V, Tamizhselvi R. NLRP3: a new therapeutic target in alcoholic liver disease. Front Immunol 2023; 14:1215333. [PMID: 37520548 PMCID: PMC10374212 DOI: 10.3389/fimmu.2023.1215333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
The liver is in charge of a wide range of critical physiological processes and it plays an important role in activating the innate immune system which elicits the inflammatory events. Chronic ethanol exposure disrupts hepatic inflammatory mechanism and leads to the release of proinflammatory mediators such as chemokines, cytokines and activation of inflammasomes. The mechanism of liver fibrosis/cirrhosis involve activation of NLRP3 inflammasome, leading to the destruction of hepatocytes and subsequent metabolic dysregulation in humans. In addition, increasing evidence suggests that alcohol intake significantly modifies liver epigenetics, promoting the development of alcoholic liver disease (ALD). Epigenetic changes including histone modification, microRNA-induced genetic modulation, and DNA methylation are crucial in alcohol-evoked cell signaling that affects gene expression in the hepatic system. Though we are at the beginning stage without having the entire print of epigenetic signature, it is time to focus more on NLRP3 inflammasome and epigenetic modifications. Here we review the novel aspect of ALD pathology linking to inflammation and highlighting the role of epigenetic modification associated with NLRP3 inflammasome and how it could be a therapeutic target in ALD.
Collapse
Affiliation(s)
- Subhashini Brahadeeswaran
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Tiasha Dasgupta
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Venkatraman Manickam
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Viswanathan Saraswathi
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, Veterans Affairs Medical Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ramasamy Tamizhselvi
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Boboltz A, Kumar S, Duncan GA. Inhaled drug delivery for the targeted treatment of asthma. Adv Drug Deliv Rev 2023; 198:114858. [PMID: 37178928 PMCID: PMC10330872 DOI: 10.1016/j.addr.2023.114858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Sahana Kumar
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
21
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, López-Mora C, Yáñez-Sepúlveda R, Tornero-Aguilera JF. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int J Mol Sci 2023; 24:10672. [PMID: 37445852 DOI: 10.3390/ijms241310672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Endocrine homeostasis and metabolic diseases have been the subject of extensive research in recent years. The development of new techniques and insights has led to a deeper understanding of the mechanisms underlying these conditions and opened up new avenues for diagnosis and treatment. In this review, we discussed the rise of metabolic diseases, especially in Western countries, the genetical, psychological, and behavioral basis of metabolic diseases, the role of nutrition and physical activity in the development of metabolic diseases, the role of single-cell transcriptomics, gut microbiota, epigenetics, advanced imaging techniques, and cell-based therapies in metabolic diseases. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Villaviciosa de Odon, Spain
| | - Clara López-Mora
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Valencia, Pg. de l'Albereda, 7, 46010 València, Spain
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
22
|
Siano G, Madaro G, Caiazza MC, Allouch A, Varisco M, Mignanelli M, Cattaneo A, Di Primio C. Tau-dependent HDAC1 nuclear reduction is associated with altered VGluT1 expression. Front Cell Dev Biol 2023; 11:1151223. [PMID: 37266450 PMCID: PMC10229822 DOI: 10.3389/fcell.2023.1151223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
During AD pathology, Tau protein levels progressively increase from early pathological stages. Tau altered expression causes an unbalance of Tau subcellular localization in the cytosol and in the nuclear compartment leading to synaptic dysfunction, neuronal cell death and neurodegeneration as a consequence. Due to the relevant role of epigenetic remodellers in synaptic activity in physiology and in neurodegeneration, in particular of TRIM28 and HDAC1, we investigated the relationship between Tau and these epigenetic factors. By molecular, imaging and biochemical approaches, here we demonstrate that Tau altered expression in the neuronal cell line SH-SY5y does not alter TRIM28 and HDAC1 expression but it induces a subcellular reduction of HDAC1 in the nuclear compartment. Remarkably, HDAC1 reduced activity modulates the expression of synaptic genes in a way comparable to that observed by Tau increased levels. These results support a competitive relationship between Tau levels and HDAC1 subcellular localization and nuclear activity, indicating a possible mechanism mediating the alternative role of Tau in the pathological alteration of synaptic genes expression.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Giuseppe Madaro
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Maria Claudia Caiazza
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| | - Awatef Allouch
- Cell Death, Immunity and Therapeutic Innovation Team, Gustave Roussy Cancer Campus, Villejuif, France
| | - Martina Varisco
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Marianna Mignanelli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Antonino Cattaneo
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| | - Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
| |
Collapse
|
23
|
Scott AK, Casas E, Schneider SE, Swearingen AR, Van Den Elzen CL, Seelbinder B, Barthold JE, Kugel JF, Stern JL, Foster KJ, Emery NC, Brumbaugh J, Neu CP. Mechanical memory stored through epigenetic remodeling reduces cell therapeutic potential. Biophys J 2023; 122:1428-1444. [PMID: 36871159 PMCID: PMC10147835 DOI: 10.1016/j.bpj.2023.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding how cells remember previous mechanical environments to influence their fate, or mechanical memory, informs the design of biomaterials and therapies in medicine. Current regeneration therapies, such as cartilage regeneration procedures, require 2D cell expansion processes to achieve large cell populations critical for the repair of damaged tissues. However, the limit of mechanical priming for cartilage regeneration procedures before inducing long-term mechanical memory following expansion processes is unknown, and mechanisms defining how physical environments influence the therapeutic potential of cells remain poorly understood. Here, we identify a threshold to mechanical priming separating reversible and irreversible effects of mechanical memory. After 16 population doublings in 2D culture, expression levels of tissue-identifying genes in primary cartilage cells (chondrocytes) are not recovered when transferred to 3D hydrogels, while expression levels of these genes were recovered for cells only expanded for eight population doublings. Additionally, we show that the loss and recovery of the chondrocyte phenotype correlates with a change in chromatin architecture, as shown by structural remodeling of the trimethylation of H3K9. Efforts to disrupt the chromatin architecture by suppressing or increasing levels of H3K9me3 reveal that only with increased levels of H3K9me3 did the chromatin architecture of the native chondrocyte phenotype partially return, along with increased levels of chondrogenic gene expression. These results further support the connection between the chondrocyte phenotype and chromatin architecture, and also reveal the therapeutic potential of inhibitors of epigenetic modifiers as disruptors of mechanical memory when large numbers of phenotypically suitable cells are required for regeneration procedures.
Collapse
Affiliation(s)
- Adrienne K Scott
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Eduard Casas
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Stephanie E Schneider
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Alison R Swearingen
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Courtney L Van Den Elzen
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado
| | - Benjamin Seelbinder
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Jeanne E Barthold
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Jennifer F Kugel
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Josh Lewis Stern
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; Biochemistry and Molecular Genetics, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kyla J Foster
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado
| | - Justin Brumbaugh
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado; Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
24
|
la Torre A, Lo Vecchio F, Greco A. Epigenetic Mechanisms of Aging and Aging-Associated Diseases. Cells 2023; 12:cells12081163. [PMID: 37190071 DOI: 10.3390/cells12081163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Aging is an inevitable outcome of life, characterized by a progressive decline in tissue and organ function. At a molecular level, it is marked by the gradual alterations of biomolecules. Indeed, important changes are observed on the DNA, as well as at a protein level, that are influenced by both genetic and environmental parameters. These molecular changes directly contribute to the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, neurodegenerative disorders and others aging-related diseases. Additionally, they increase the risk of mortality. Therefore, deciphering the hallmarks of aging represents a possibility for identifying potential druggable targets to attenuate the aging process, and then the age-related comorbidities. Given the link between aging, genetic, and epigenetic alterations, and given the reversible nature of epigenetic mechanisms, the precisely understanding of these factors may provide a potential therapeutic approach for age-related decline and disease. In this review, we center on epigenetic regulatory mechanisms and their aging-associated changes, highlighting their inferences in age-associated diseases.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| |
Collapse
|
25
|
Đorđević M, Stepper P, Feuerstein-Akgoz C, Gerhauser C, Paunović V, Tolić A, Rajić J, Dinić S, Uskoković A, Grdović N, Mihailović M, Jurkowska RZ, Jurkowski TP, Jovanović JA, Vidaković M. EpiCRISPR targeted methylation of Arx gene initiates transient switch of mouse pancreatic alpha to insulin-producing cells. Front Endocrinol (Lausanne) 2023; 14:1134478. [PMID: 37008919 PMCID: PMC10063207 DOI: 10.3389/fendo.2023.1134478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Beta cell dysfunction by loss of beta cell identity, dedifferentiation, and the presence of polyhormonal cells are main characteristics of diabetes. The straightforward strategy for curing diabetes implies reestablishment of pancreatic beta cell function by beta cell replacement therapy. Aristaless-related homeobox (Arx) gene encodes protein which plays an important role in the development of pancreatic alpha cells and is a main target for changing alpha cell identity. Results In this study we used CRISPR/dCas9-based epigenetic tools for targeted hypermethylation of Arx gene promoter and its subsequent suppression in mouse pancreatic αTC1-6 cell line. Bisulfite sequencing and methylation profiling revealed that the dCas9-Dnmt3a3L-KRAB single chain fusion constructs (EpiCRISPR) was the most efficient. Epigenetic silencing of Arx expression was accompanied by an increase in transcription of the insulin gene (Ins2) mRNA on 5th and 7th post-transfection day, quantified by both RT-qPCR and RNA-seq. Insulin production and secretion was determined by immunocytochemistry and ELISA assay, respectively. Eventually, we were able to induce switch of approximately 1% of transiently transfected cells which were able to produce 35% more insulin than Mock transfected alpha cells. Conclusion In conclusion, we successfully triggered a direct, transient switch of pancreatic alpha to insulin-producing cells opening a future research on promising therapeutic avenue for diabetes management.
Collapse
Affiliation(s)
- Marija Đorđević
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Peter Stepper
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Clarissa Feuerstein-Akgoz
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clarissa Gerhauser
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verica Paunović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Anja Tolić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Shahu L, Chowdhury SR, Lu HP. Single-Molecule Human Nucleosome Spontaneously Ruptures under the Stress of Compressive Force: A New Perspective on Gene Stability and Epigenetic Pathways. J Phys Chem B 2023; 127:37-44. [PMID: 36537668 DOI: 10.1021/acs.jpcb.2c04449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Force manipulation on the biological entities from living cells to protein molecules has revealed many mechanical details of cell biology from resolving folding and unfolding pathways to finding molecular interaction forces. A nucleosome is the basic repeating unit of chromatin where the histone octamer is wrapped by DNA, important for gene stability and regulation. How the inner side of the DNA gets accessed by other DNA binding molecules has been a puzzle that has been intensively studied and debated, important to epigenetics, gene stability, and regulations. Here we report our observation of spontaneous ruptures of human nucleosomes under pico-Newton (pN) compressive force. The amplitude of the compressive force, a squeezing rather than pulling force, involved in our experiment is tens of pN, which can be thermally available by biological force fluctuation at room temperature and under physiological conditions. This kind of structural rupture can loosen up the DNA around the histone, which in turn makes the DNA accessible to transcription and epigenetic modifications.
Collapse
Affiliation(s)
- Lalita Shahu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - S Roy Chowdhury
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H Peter Lu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
27
|
Li H, Li C, Yang LZ, Liu J. Integrative analysis of histone acetyltransferase KAT2A in human cancer. Cancer Biomark 2023; 38:443-463. [PMID: 38007639 DOI: 10.3233/cbm-220464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The high incidence of mutations and the crucial roles of KAT2A in cancer development have received increased attention. Nevertheless, a systematic comparison of the heterogeneity and dynamics across different cancer types has not been conducted. Hence, a deep analysis using public databases was performed to clarify the contributions of KAT2A and its correlation with tumorigenesis. The raw data regarding KAT2A expression in cancer patients and healthy controls were obtained from The Cancer Genome Atlas (TCGA). Sexually dimorphic manner, genomic alterations, and expression pattern of KAT2A, as well as the association of the KAT2A with survival, were retrieved from UALCAN, cBioportal, and TISIDB databases. Additionally, the Protein-Protein Interaction (PPI) analysis was conducted using the STRING database. The human protein atlas was used to obtain the staining results of protein levels in cancer and normal samples. The correlation between KAT2A and its potential target drugs was determined using TISIDB and HISTome2. Compared to the normal tissues, CHOL and TGCT tumors presented significantly high KAT2A expression, which was positively correlated with BLCA, BRCA, CESC, CHOL, COAD, ESCA, HNSC, KICH, KIRP, LIHC, LUAD, LUSC, READ, STAD, and THCA. However, no significant difference was detected between normal and tumor tissues for the sex difference pattern of KAT2A expression. The PPI analysis indicated that TADA3, CCDC101, TRRAP, SUPT3H, MYC, TADA2A, and USP22 levels were positively correlated with KAT2A expression, while TADA2B and ATXN7 were negatively correlated. A positive link of KAT2A with cancer isotypes and significant connections of the KAT2A expression to poor overall and disease-free survival were also observed. Further validation was conducted using immunohistochemistry (IHC) staining, qPCR, and Western blot. Some potential HAT inhibitory drugs of KAT2A were also determined, but more work and clinical trials are required before their application.
Collapse
Affiliation(s)
- Hua Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Chun Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Lu-Zong Yang
- Department of Anesthesia, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ji Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Yamauchi Y, Duncan HF. Characterization of the Expression and Role of Histone Acetylation and Deacetylation in Dental Pulp Cells. Methods Mol Biol 2023; 2588:279-293. [PMID: 36418694 DOI: 10.1007/978-1-0716-2780-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Histone acetylation and deacetylation of DNA-associated proteins have been shown to alter the architecture of chromatin, affecting gene expression and controlling a wide range of biological events. These events are balanced by two sets of cellular enzymes, histone-deacetylases (HDACs) and histone acetyl-transferases (HATs). Pharmacological inhibition of histone-deacetylases (HDACs) using HDAC-inhibitors (HDACis) has been shown to promote dental pulp cell reparative processes with therapeutic implications in various fields including regenerative dentistry. To date, pan-HDACi have generally been used rather than isoform-specific HDACi targeting, despite the fact that HDAC-specific inhibitors have been developed to target HDACs in several tissues. To identify potential therapeutic targets in the tooth, the expression and distribution of HDAC-isoforms need to be analyzed. This chapter focuses on techniques to analyze expression, location, and distribution of individual HDAC-isoforms under mineralizing conditions using both histology and cell biology, along with a description of basic techniques for culturing and mineralization of rodent dental pulp cells.
Collapse
Affiliation(s)
- Yukako Yamauchi
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Henry F Duncan
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
29
|
Kong IY, Trezise S, Light A, Todorovski I, Arnau GM, Gadipally S, Yoannidis D, Simpson KJ, Dong X, Whitehead L, Tempany JC, Farchione AJ, Sheikh AA, Groom JR, Rogers KL, Herold MJ, Bryant VL, Ritchie ME, Willis SN, Johnstone RW, Hodgkin PD, Nutt SL, Vervoort SJ, Hawkins ED. Epigenetic modulators of B cell fate identified through coupled phenotype-transcriptome analysis. Cell Death Differ 2022; 29:2519-2530. [PMID: 35831623 PMCID: PMC9751284 DOI: 10.1038/s41418-022-01037-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/31/2023] Open
Abstract
High-throughput methodologies are the cornerstone of screening approaches to identify novel compounds that regulate immune cell function. To identify novel targeted therapeutics to treat immune disorders and haematological malignancies, there is a need to integrate functional cellular information with the molecular mechanisms that regulate changes in immune cell phenotype. We facilitate this goal by combining quantitative methods for dissecting complex simultaneous cell phenotypic effects with genomic analysis. This combination strategy we term Multiplexed Analysis of Cells sequencing (MAC-seq), a modified version of Digital RNA with perturbation of Genes (DRUGseq). We applied MAC-seq to screen compounds that target the epigenetic machinery of B cells and assess altered humoral immunity by measuring changes in proliferation, survival, differentiation and transcription. This approach revealed that polycomb repressive complex 2 (PRC2) inhibitors promote antibody secreting cell (ASC) differentiation in both murine and human B cells in vitro. This is further validated using T cell-dependent immunization in mice. Functional dissection of downstream effectors of PRC2 using arrayed CRISPR screening uncovered novel regulators of B cell differentiation, including Mybl1, Myof, Gas7 and Atoh8. Together, our findings demonstrate that integrated phenotype-transcriptome analyses can be effectively combined with drug screening approaches to uncover the molecular circuitry that drives lymphocyte fate decisions.
Collapse
Affiliation(s)
- Isabella Y. Kong
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Stephanie Trezise
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Amanda Light
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Izabela Todorovski
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
| | - Gisela Mir Arnau
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia
| | - Sreeja Gadipally
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia
| | - David Yoannidis
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia
| | - Kaylene J. Simpson
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia ,grid.1055.10000000403978434Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Xueyi Dong
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Lachlan Whitehead
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Jessica C. Tempany
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Anthony J. Farchione
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Amania A. Sheikh
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia
| | - Joanna R. Groom
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Kelly L. Rogers
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Marco J. Herold
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Vanessa L. Bryant
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Matthew E. Ritchie
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Simon N. Willis
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Ricky W. Johnstone
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
| | - Philip D. Hodgkin
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Stephen L. Nutt
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Stephin J. Vervoort
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia ,grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
| | - Edwin D. Hawkins
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| |
Collapse
|
30
|
Inference of epigenetic subnetworks by Bayesian regression with the incorporation of prior information. Sci Rep 2022; 12:20224. [PMID: 36418365 PMCID: PMC9684215 DOI: 10.1038/s41598-022-19879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Changes in gene expression have been thought to play a crucial role in various types of cancer. With the advance of high-throughput experimental techniques, many genome-wide studies are underway to analyze underlying mechanisms that may drive the changes in gene expression. It has been observed that the change could arise from altered DNA methylation. However, the knowledge about the degree to which epigenetic changes might cause differences in gene expression in cancer is currently lacking. By considering the change of gene expression as the response of altered DNA methylation, we introduce a novel analytical framework to identify epigenetic subnetworks in which the methylation status of a set of highly correlated genes is predictive of a set of gene expression. By detecting highly correlated modules as representatives of the regulatory scenario underling the gene expression and DNA methylation, the dependency between DNA methylation and gene expression is explored by a Bayesian regression model with the incorporation of g-prior followed by a strategy of an optimal predictor subset selection. The subsequent network analysis indicates that the detected epigenetic subnetworks are highly biologically relevant and contain many verified epigenetic causal mechanisms. Moreover, a survival analysis indicates that they might be effective prognostic factors associated with patient survival time.
Collapse
|
31
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
32
|
Maldonato BJ, Vergara AG, Yadav J, Glass SM, Paragas EM, Li D, Lazarus P, McClay JL, Ning B, Daly AK, Russell LE. Epigenetics in drug disposition & drug therapy: symposium report of the 24 th North American meeting of the International Society for the Study of Xenobiotics (ISSX). Drug Metab Rev 2022; 54:318-330. [PMID: 35876105 PMCID: PMC9970013 DOI: 10.1080/03602532.2022.2101662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 11/03/2022]
Abstract
The 24th North American International Society for the Study of Xenobiotics (ISSX) meeting, held virtually from September 13 to 17, 2021, embraced the theme of "Broadening Our Horizons." This reinforces a key mission of ISSX: striving to share innovative science related to drug discovery and development. Session speakers and the ISSX New Investigators Group, which supports the scientific and professional development of student and early career ISSX members, elected to highlight the scientific content presented during the captivating session titled, "Epigenetics in Drug Disposition & Drug Therapy." The impact genetic variation has on drug response is well established; however, this session underscored the importance of investigating the role of epigenetics in drug disposition and drug discovery. Session speakers, Drs. Ning, McClay, and Lazarus, detailed mechanisms by which epigenetic players including long non-coding RNA (lncRNAs), microRNA (miRNAs), DNA methylation, and histone acetylation can alter the expression of genes involved in pharmacokinetics, pharmacodynamics, and toxicity. Dr. Ning detailed current knowledge about miRNAs and lncRNAs and the mechanisms by which they can affect the expression of drug metabolizing enzymes (DMEs) and nuclear receptors. Dr. Lazarus discussed the potential role of miRNAs on UDP-glucuronosyltransferase (UGT) expression and activity. Dr. McClay provided evidence that aging alters methylation and acetylation of DMEs in the liver, affecting gene expression and activity. These topics, compiled by the symposium organizers, presenters, and the ISSX New Investigators Group, are herein discussed, along with exciting future perspectives for epigenetics in drug disposition and drug discovery research.
Collapse
Affiliation(s)
- Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, United States
| | - Ana G Vergara
- Department of ADME & Discovery Toxicology, Merck & Co., Inc, Rahway, NJ, United States
| | - Jaydeep Yadav
- Department of ADME & Discovery Toxicology, Merck & Co., Inc, Rahway, NJ, United States
| | - Sarah M Glass
- Janssen Research & Development, San Diego, CA, United States
| | | | - Dongying Li
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, United States
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Joseph L McClay
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Baitang Ning
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, United States
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura E Russell
- Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, Illinois, United States
| |
Collapse
|
33
|
Bouwstra R, van Meerten T, Bremer E. CD47‐SIRPα blocking‐based immunotherapy: Current and prospective therapeutic strategies. Clin Transl Med 2022; 12:e943. [PMID: 35908284 PMCID: PMC9339239 DOI: 10.1002/ctm2.943] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 01/22/2023] Open
Abstract
Background The CD47‐signal regulatory protein alpha (SIRPα) ‘don't eat me’ signalling axis is perhaps the most prominent innate immune checkpoint to date. However, from initial clinical trials, it is evident that monotherapy with CD47‐SIRPα blocking has a limited therapeutic effect at the maximum tolerated dose. Furthermore, treatment is associated with severe side effects, most notably anaemia, that are attributable to the ubiquitous expression of CD47. Nevertheless, promising clinical responses have been reported upon combination with the tumour‐targeting antibody rituximab or azacytidine, although toxicity issues still hamper clinical application. Main body Here, we discuss the current state of CD47‐SIRPα blocking therapy with a focus on limitations of current strategies, such as depletion of red blood cells. Subsequently, we focus on innovations designed to overcome these limitations. These include novel antibody formats designed to selectively target CD47 on tumour cells as well as tumour‐targeted bispecific antibodies with improved selectivity. In addition, the rationale and outcome of combinatorial approaches to improve the therapeutic effect of CD47 blockade are discussed. Such combinations include those with tumour‐targeted opsonizing antibodies, systemic therapy, epigenetic drugs, other immunomodulatory T‐cell‐targeted therapeutics or dual immunomodulatory CD47 bispecific antibodies. Conclusion With these advances in the design of CD47‐SIRPα‐targeting therapeutic strategies and increasing insight into the mechanism of action of this innate checkpoint, including the role of adaptive immunity, further advances in the clinical application of this checkpoint can be anticipated.
Collapse
Affiliation(s)
- Renée Bouwstra
- Department of Hematology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Tom van Meerten
- Department of Hematology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Edwin Bremer
- Department of Hematology University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
34
|
Sawai S, Wong PF, Ramasamy TS. Hypoxia-regulated microRNAs: the molecular drivers of tumor progression. Crit Rev Biochem Mol Biol 2022; 57:351-376. [PMID: 35900938 DOI: 10.1080/10409238.2022.2088684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hypoxia is a common feature of the tumor microenvironment (TME) of nearly all solid tumors, leading to therapeutic failure. The changes in stiffness of the extracellular matrix (ECM), pH gradients, and chemical balance that contribute to multiple cancer hallmarks are closely regulated by intratumoral oxygen tension via its primary mediators, hypoxia-inducible factors (HIFs). HIFs, especially HIF-1α, influence these changes in the TME by regulating vital cancer-associated signaling pathways and cellular processes including MAPK/ERK, NF-κB, STAT3, PI3K/Akt, Wnt, p53, and glycolysis. Interestingly, research has revealed the involvement of epigenetic regulation by hypoxia-regulated microRNAs (HRMs) of downstream target genes involved in these signaling. Through literature search and analysis, we identified 48 HRMs that have a functional role in the regulation of 5 key cellular processes: proliferation, metabolism, survival, invasion and migration, and immunoregulation in various cancers in hypoxic condition. Among these HRMs, 17 were identified to be directly associated with HIFs which include miR-135b, miR-145, miR-155, miR-181a, miR-182, miR-210, miR-224, miR-301a, and miR-675-5p as oncomiRNAs, and miR-100-5p, miR-138, miR-138-5p, miR-153, miR-22, miR-338-3p, miR-519d-3p, and miR-548an as tumor suppressor miRNAs. These HRMs serve as a potential lead in the development of miRNA-based targeted therapy for advanced solid tumors. Future development of combined HIF-targeted and miRNA-targeted therapy is possible, which requires comprehensive profiling of HIFs-HRMs regulatory network, and improved formula of the delivery vehicles to enhance the therapeutic kinetics of the targeted cancer therapy (TCT) moving forward.
Collapse
Affiliation(s)
- Sakunie Sawai
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022; 13:943839. [PMID: 35935991 PMCID: PMC9355085 DOI: 10.3389/fimmu.2022.943839] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial-like glands and stroma located outside the uterine cavity. This common, estrogen dependent, inflammatory condition affects up to 15% of reproductive-aged women and is a well-recognized cause of chronic pelvic pain and infertility. Despite the still unknown etiology of endometriosis, much evidence suggests the participation of epigenetic mechanisms in the disease etiopathogenesis. The main rationale is based on the fact that heritable phenotype changes that do not involve alterations in the DNA sequence are common triggers for hormonal, immunological, and inflammatory disorders, which play a key role in the formation of endometriotic foci. Epigenetic mechanisms regulating T-cell responses, including DNA methylation and posttranslational histone modifications, deserve attention because tissue-resident T lymphocytes work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental conditions. Thus, a failure to precisely regulate immune cell transcription may result in compromised immunological integrity of the organ with an increased risk of inflammatory disorders. The coexistence of endometriosis and autoimmunity is a well-known occurrence. Recent research results indicate regulatory T-cell (Treg) alterations in endometriosis, and an increased number of highly active Tregs and macrophages have been found in peritoneal fluid from women with endometriosis. Elimination of the regulatory function of T cells and an imbalance between T helper cells of the Th1 and Th2 types have been reported in the endometria of women with endometriosis-associated infertility. This review aims to present the state of the art in recognition epigenetic reprogramming of T cells as the key factor in the pathophysiology of endometriosis in the context of T-cell-related autoimmunity. The new potential therapeutic approaches based on epigenetic modulation and/or adoptive transfer of T cells will also be outlined.
Collapse
|
36
|
Gorica E, Mohammed SA, Ambrosini S, Calderone V, Costantino S, Paneni F. Epi-Drugs in Heart Failure. Front Cardiovasc Med 2022; 9:923014. [PMID: 35911511 PMCID: PMC9326055 DOI: 10.3389/fcvm.2022.923014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Unveiling the secrets of genome's flexibility does not only foster new research in the field, but also gives rise to the exploration and development of novel epigenetic-based therapies as an approach to alleviate disease phenotypes. A better understanding of chromatin biology (DNA/histone complexes) and non-coding RNAs (ncRNAs) has enabled the development of epigenetic drugs able to modulate transcriptional programs implicated in cardiovascular diseases. This particularly applies to heart failure, where epigenetic networks have shown to underpin several pathological features, such as left ventricular hypertrophy, fibrosis, cardiomyocyte apoptosis and microvascular dysfunction. Targeting epigenetic signals might represent a promising approach, especially in patients with heart failure with preserved ejection fraction (HFpEF), where prognosis remains poor and breakthrough therapies have yet to be approved. In this setting, epigenetics can be employed for the development of customized therapeutic approaches thus paving the way for personalized medicine. Even though the beneficial effects of epi-drugs are gaining attention, the number of epigenetic compounds used in the clinical practice remains low suggesting that more selective epi-drugs are needed. From DNA-methylation changes to non-coding RNAs, we can establish brand-new regulations for drug targets with the aim of restoring healthy epigenomes and transcriptional programs in the failing heart. In the present review, we bring the timeline of epi-drug discovery and development, thus highlighting the emerging role of epigenetic therapies in heart failure.
Collapse
Affiliation(s)
- Era Gorica
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Shafeeq A. Mohammed
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Ratanapokasatit Y, Laisuan W, Rattananukrom T, Petchlorlian A, Thaipisuttikul I, Sompornrattanaphan M. How Microbiomes Affect Skin Aging: The Updated Evidence and Current Perspectives. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070936. [PMID: 35888025 PMCID: PMC9320090 DOI: 10.3390/life12070936] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022]
Abstract
The skin has a multifactorial aging process, caused by both intrinsic and extrinsic factors. A major theory of aging involves cellular senescence or apoptosis resulting from oxidative damage as the skin’s antioxidant system tends to weaken with age. The human microbiota is a complex ecosystem that is made up of microorganisms (bacteria, fungi, and viruses). Both gut and skin microbiota have essential roles in the protection against invading pathogens, mediating inflammatory conditions, and the modulation of the immune system which is involved in both innate and adaptive immune responses. However, the human microbiome could be changed during the life stage and affected by various perturbations. An alteration of the intestinal bacteria results in “microbial dysbiosis” which is associated with the influence of various diseases, including aging. The skin interactome is a novel integration of the “genome-microbiome-exposome” that plays a significant role in skin aging and skin health. Mitigating the negative impacts of factors influencing the skin interactome should be the future strategy to protect, prevent, and delay skin aging along with preserving healthy skin conditions. This review summarizes the current evidence on how human microbiomes affect skin aging and demonstrates the possible interventions, relating to human microbiomes, to modulate skin health and aging. Probiotics-based products are currently available mainly for the add-on treatment of many dermatologic conditions. However, at this point, there are limited clinical studies on skin anti-aging purposes and more are required as this evolving concept is on the rise and might provide an insight into future therapeutic options.
Collapse
Affiliation(s)
- Yanisa Ratanapokasatit
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (Y.R.); (T.R.)
| | - Wannada Laisuan
- Division of Allergy Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Teerapong Rattananukrom
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (Y.R.); (T.R.)
| | - Aisawan Petchlorlian
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Geriatric Excellence Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Iyarit Thaipisuttikul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Mongkhon Sompornrattanaphan
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Allergy and Immunology, Mahidol University, Bangkok 10700, Thailand
- Correspondence:
| |
Collapse
|
38
|
Siddiqui R, Muhammad JS, Maciver SK, Khan NA. Crocodylus porosus Sera a Potential Source to Identify Novel Epigenetic Targets: In Silico Analysis. Vet Sci 2022; 9:vetsci9050210. [PMID: 35622738 PMCID: PMC9144183 DOI: 10.3390/vetsci9050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
We have previously found that sera from Crocodylus porosus contain anticancer agents and the treatment of MCF7 cells with this serum resulted in the differential expression of 51 genes. The purpose of this study was to use in silico analysis to identify genes that might be epigenetically modulated in cells treated with crocodile serum and to understand the role of potential genes as novel candidates with epigenetic therapeutic potential. The findings report five proto-oncogenes (TUBA1B, SLC2A1, PGK1, CCND1, and NCAPD2) and two tumor suppressor genes (RPLP2, RPL37) as novel therapeutic targets. Furthermore, we present a comprehensive overview of relevant studies on epigenetic regulation of these genes along with an insight into their clinical implications. Therefore, elucidating the molecules present in the serum and gut bacteria of reptiles such as crocodiles may offer insights into the role of these genes on longevity, health, disease, and life expectancy.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates;
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sutherland K. Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK;
| | - Naveed Ahmed Khan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-65057722
| |
Collapse
|
39
|
Prandi FR, Lecis D, Illuminato F, Milite M, Celotto R, Lerakis S, Romeo F, Barillà F. Epigenetic Modifications and Non-Coding RNA in Diabetes-Mellitus-Induced Coronary Artery Disease: Pathophysiological Link and New Therapeutic Frontiers. Int J Mol Sci 2022; 23:4589. [PMID: 35562979 PMCID: PMC9105558 DOI: 10.3390/ijms23094589] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a glucose metabolism disorder characterized by chronic hyperglycemia resulting from a deficit of insulin production and/or action. DM affects more than 1 in 10 adults, and it is associated with an increased risk of cardiovascular morbidity and mortality. Cardiovascular disease (CVD) accounts for two thirds of the overall deaths in diabetic patients, with coronary artery disease (CAD) and ischemic cardiomyopathy as the main contributors. Hyperglycemic damage on vascular endothelial cells leading to endothelial dysfunction represents the main initiating factor in the pathogenesis of diabetic vascular complications; however, the underlying pathophysiological mechanisms are still not entirely understood. This review addresses the current knowledge on the pathophysiological links between DM and CAD with a focus on the role of epigenetic modifications, including DNA methylation, histone modifications and noncoding RNA control. Increased knowledge of epigenetic mechanisms has contributed to the development of new pharmacological treatments ("epidrugs") with epigenetic targets, although these approaches present several challenges. Specific epigenetic biomarkers may also be used to predict or detect the development and progression of diabetes complications. Further studies on diabetes and CAD epigenetics are needed in order to identify possible new therapeutic targets and advance personalized medicine with the prediction of individual drug responses and minimization of adverse effects.
Collapse
Affiliation(s)
- Francesca Romana Prandi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Dalgisio Lecis
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Federica Illuminato
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Marialucia Milite
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Roberto Celotto
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Stamatios Lerakis
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Francesco Romeo
- Department of Departmental Faculty of Medicine, Unicamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| |
Collapse
|
40
|
Schuldt L, Reimann M, von Brandenstein K, Steinmetz J, Döding A, Schulze-Späte U, Jacobs C, Symmank J. Palmitate-Triggered COX2/PGE2-Related Hyperinflammation in Dual-Stressed PdL Fibroblasts Is Mediated by Repressive H3K27 Trimethylation. Cells 2022; 11:955. [PMID: 35326406 PMCID: PMC8946768 DOI: 10.3390/cells11060955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
The interrelationships between periodontal disease, obesity-related hyperlipidemia and mechanical forces and their modulating effects on the epigenetic profile of periodontal ligament (PdL) cells are assumed to be remarkably complex. The PdL serves as a connective tissue between teeth and alveolar bone and is involved in pathogen defense and the inflammatory responses to mechanical stimuli occurring during tooth movement. Altered inflammatory signaling could promote root resorption and tooth loss. Hyperinflammatory COX2/PGE2 signaling was reported for human PdL fibroblasts (HPdLFs) concomitantly stressed with Porphyromonas gingivalis lipopolysaccharides and compressive force after exposure to palmitic acid (PA). The aim of this study was to investigate the extent to which this was modulated by global and gene-specific changes in histone modifications. The expression of key epigenetic players and global H3Kac and H3K27me3 levels were quantitatively evaluated in dual-stressed HPdLFs exposed to PA, revealing a minor force-related reduction in repressive H3K27me3. UNC1999-induced H3K27me3 inhibition reversed the hyperinflammatory responses of dual-stressed PA cultures characterized by increased COX2 expression, PGE2 secretion and THP1 adhesion. The reduced expression of the gene encoding the anti-inflammatory cytokine IL-10 and the increased presence of H3K27me3 at its promoter-associated sites were reversed by inhibitor treatment. Thus, the data highlight an important epigenetic interplay between the different stimuli to which the PdL is exposed.
Collapse
Affiliation(s)
- Lisa Schuldt
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Michael Reimann
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Katrin von Brandenstein
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Julia Steinmetz
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Collin Jacobs
- Center for Dental, Oral and Maxillofacial Medicine, Department of Orthodontics, University Hospital Jena, 07743 Jena, Germany;
| | - Judit Symmank
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| |
Collapse
|
41
|
Dhawan P, Vasishta S, Balakrishnan A, Joshi MB. Mechanistic insights into glucose induced vascular epigenetic reprogramming in type 2 diabetes. Life Sci 2022; 298:120490. [DOI: 10.1016/j.lfs.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
|
42
|
Timilsina M, Kernan DPM, Yang H, d'Aquin M. Synergy Between Embedding and Protein Functional Association Networks for Drug Label Prediction Using Harmonic Function. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1203-1213. [PMID: 33064647 DOI: 10.1109/tcbb.2020.3031696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semi-Supervised Learning (SSL)is an approach to machine learning that makes use of unlabeled data for training with a small amount of labeled data. In the context of molecular biology and pharmacology, one can take advantage of unlabeled data. For instance, to identify drugs and targets where a few genes are known to be associated with a specific target for drugs and considered as labeled data. Labeling the genes requires laboratory verification and validation. This process is usually very time consuming and expensive. Thus, it is useful to estimate the functional role of drugs from unlabeled data using computational methods. To develop such a model, we used openly available data resources to create (i)drugs and genes, (ii)genes and disease, bipartite graphs. We constructed the genetic embedding graph from the two bipartite graphs using Tensor Factorization methods. We integrated the genetic embedding graph with the publicly available protein functional association network. Our results show the usefulness of the integration by effectively predicting drug labels.
Collapse
|
43
|
Suchanti S, Stephen BJ, Awasthi S, Awasthi SK, Singh G, Singh A, Mishra R. Harnessing the role of epigenetic histone modification in targeting head and neck squamous cell carcinoma. Epigenomics 2022; 14:279-293. [PMID: 35184601 DOI: 10.2217/epi-2020-0348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent form of cancer worldwide. Despite advancements made in treatment strategies, the fatality rate of HNSCC is very high. An accumulating body of evidence suggests that epigenetic modification of histones plays an influential role in the development and progression of the disease. In this review we discuss the role of epigenetic modifications in HNSCC and the inter-relationships of human papillomavirus oncoproteins and histone-modifying agents. Further, we explore the possibility of identifying these modifications as biomarkers for their use as drugs in treatment strategies.
Collapse
Affiliation(s)
- Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Bjorn J Stephen
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Sonali Awasthi
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| | - Sudhir K Awasthi
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| | - Gyanendra Singh
- Toxicology Division, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, 380016, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Rajeev Mishra
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| |
Collapse
|
44
|
Raina R, Almutary AG, Bagabir SA, Afroze N, Fagoonee S, Haque S, Hussain A. Chrysin Modulates Aberrant Epigenetic Variations and Hampers Migratory Behavior of Human Cervical (HeLa) Cells. Front Genet 2022; 12:768130. [PMID: 35096000 PMCID: PMC8790538 DOI: 10.3389/fgene.2021.768130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose: Plant-derived phytochemicals have shown epigenetic modulatory effect in different types of cancer by reversing the pattern of DNA methylation and chromatin modulation, thereby restoring the function of silenced tumor-suppressor genes. In the present study, attempts have been made to explore chrysin-mediated epigenetic alterations in HeLa cells. Methods: Colony formation and migration assays followed by methylation-specific PCR for examining the methylation status of CpG promoters of various tumor-suppressor genes (TSGs) and the expression of these TSGs at the transcript and protein levels were performed. Furthermore, global DNA methylation; biochemical activities of DNA methyltransferases (DNMTs), histone methyl transferases (HMTs), histone deacetylases (HDACs), and histone acetyl transferases (HATs) along with the expression analysis of chromatin-modifying enzymes; and H3 and H4 histone modification marks analyses were performed after chrysin treatment. Results: The experimental analyses revealed that chrysin treatment encourages cytostatic behavior as well as inhibits the migration capacity of HeLa cells in a time- and dose-dependent manner. Chrysin reduces the methylation of various tumor-suppressor genes, leading to their reactivation at mRNA and protein levels. The expression levels of various chromatin-modifying enzymes viz DNMTs, HMTs, HDACs, and HATS were found to be decreased, and H3 and H4 histone modification marks were modulated too. Also, reduced global DNA methylation was observed following the treatment of chrysin. Conclusion: This study concludes that chrysin can be used as a potential epigenetic modifier for cancer treatment and warrants for further experimental validation.
Collapse
Affiliation(s)
- Ritu Raina
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Sali Abubaker Bagabir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Sharmila Fagoonee
- Molecular Biotechnology Center, Institute of Biostructure and Bioimaging (CNR), Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Bursa Uludağ University Faculty of Medicine, Görükle Campus, Bursa, Turkey
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| |
Collapse
|
45
|
Panariello F, Fanelli G, Fabbri C, Atti AR, De Ronchi D, Serretti A. Epigenetic Basis of Psychiatric Disorders: A Narrative Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:302-315. [PMID: 34433406 DOI: 10.2174/1871527320666210825101915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Psychiatric disorders are complex, multifactorial illnesses with a demonstrated biological component in their etiopathogenesis. Epigenetic modifications, through the modulation of DNA methylation, histone modifications and RNA interference, tune tissue-specific gene expression patterns and play a relevant role in the etiology of psychiatric illnesses. OBJECTIVE This review aims to discuss the epigenetic mechanisms involved in psychiatric disorders, their modulation by environmental factors and their interactions with genetic variants, in order to provide a comprehensive picture of their mutual crosstalk. METHODS In accordance with the PRISMA guidelines, systematic searches of Medline, EMBASE, PsycINFO, Web of Science, Scopus, and the Cochrane Library were conducted. RESULTS Exposure to environmental factors, such as poor socio-economic status, obstetric complications, migration, and early life stressors, may lead to stable changes in gene expression and neural circuit function, playing a role in the risk of psychiatric diseases. The most replicated genes involved by studies using different techniques are discussed. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions and they interact with genetic variants in determining the risk of psychiatric disorders. CONCLUSION An increasing amount of evidence suggests that epigenetics plays a pivotal role in the etiopathogenesis of psychiatric disorders. New therapeutic approaches may work by reversing detrimental epigenetic changes that occurred during the lifespan.
Collapse
Affiliation(s)
- Fabio Panariello
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Rita Atti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
46
|
Tan B, Wang S, Wang S, Zeng J, Hong L, Li Z, Yang J, Cai G, Zheng E, Wu Z, Gu T. Genome-Wide Analysis of H3K27me3 in Porcine Embryonic Muscle Development. Front Cell Dev Biol 2021; 9:739321. [PMID: 34805148 PMCID: PMC8602352 DOI: 10.3389/fcell.2021.739321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
The trimethylation of histone H3 lysine 27 (H3K27me3) is one of the most important chromatin modifications, which is generally presented as a repressive mark in various biological processes. However, the dynamic and global-scale distribution of H3K27me3 during porcine embryonic muscle development remains unclear. Here, our study provided a comprehensive genome-wide view of H3K27me3 and analyzed the matching transcriptome in the skeletal muscles on days 33, 65, and 90 post-coitus from Duroc fetuses. Transcriptome analysis identified 4,124 differentially expressed genes (DEGs) and revealed the key transcriptional properties in three stages. We found that the global H3K27me3 levels continually increased during embryonic development, and the H3K27me3 level was negatively correlated with gene expression. The loss of H3K27me3 in the promoter was associated with the transcriptional activation of 856 DEGs in various processes, including skeletal muscle development, calcium signaling, and multiple metabolic pathways. We also identified for the first time that H3K27me3 could enrich in the promoter of genes, such as DES, MYL1, TNNC1, and KLF5, to negatively regulate gene expression in porcine satellite cells (PSCs). The loss of H3K27me3 could promote muscle cell differentiation. Taken together, this study provided the first genome-wide landscape of H3K27me3 in porcine embryonic muscle development. It revealed the complex and broad function of H3K27me3 in the regulation of embryonic muscle development from skeletal muscle morphogenesis to myofiber maturation.
Collapse
Affiliation(s)
- Baohua Tan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Shanshan Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiekang Zeng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
47
|
Joaquim RM, Guatimosim RF, Araújo RJDS, Nardi AE, Veras AB, Alves VDM. Vulnerability biomarkers for mental illness and suicide risk: Regards for the development of pharmacological and psychological therapies. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2021. [DOI: 10.1016/j.crbeha.2021.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
48
|
Parrello D, Vlasenok M, Kranz L, Nechaev S. Targeting the Transcriptome Through Globally Acting Components. Front Genet 2021; 12:749850. [PMID: 34603400 PMCID: PMC8481634 DOI: 10.3389/fgene.2021.749850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription is a step in gene expression that defines the identity of cells and its dysregulation is associated with diseases. With advancing technologies revealing molecular underpinnings of the cell with ever-higher precision, our ability to view the transcriptomes may have surpassed our knowledge of the principles behind their organization. The human RNA polymerase II (Pol II) machinery comprises thousands of components that, in conjunction with epigenetic and other mechanisms, drive specialized programs of development, differentiation, and responses to the environment. Parts of these programs are repurposed in oncogenic transformation. Targeting of cancers is commonly done by inhibiting general or broadly acting components of the cellular machinery. The critical unanswered question is how globally acting or general factors exert cell type specific effects on transcription. One solution, which is discussed here, may be among the events that take place at genes during early Pol II transcription elongation. This essay turns the spotlight on the well-known phenomenon of promoter-proximal Pol II pausing as a step that separates signals that establish pausing genome-wide from those that release the paused Pol II into the gene. Concepts generated in this rapidly developing field will enhance our understanding of basic principles behind transcriptome organization and hopefully translate into better therapies at the bedside.
Collapse
Affiliation(s)
- Damien Parrello
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Maria Vlasenok
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lincoln Kranz
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| |
Collapse
|
49
|
Rost NS, Meschia JF, Gottesman R, Wruck L, Helmer K, Greenberg SM. Cognitive Impairment and Dementia After Stroke: Design and Rationale for the DISCOVERY Study. Stroke 2021; 52:e499-e516. [PMID: 34039035 PMCID: PMC8316324 DOI: 10.1161/strokeaha.120.031611] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke is a leading cause of the adult disability epidemic in the United States, with a major contribution from poststroke cognitive impairment and dementia (PSCID), the rates of which are disproportionally high among the health disparity populations. Despite the PSCID's overwhelming impact on public health, a knowledge gap exists with regard to the complex interaction between the acute stroke event and highly prevalent preexisting brain pathology related to cerebrovascular and Alzheimer disease or related dementia. Understanding the factors that modulate PSCID risk in relation to index stroke event is critically important for developing personalized prognostication of PSCID, targeted interventions to prevent it, and for informing future clinical trial design. The DISCOVERY study (Determinants of Incident Stroke Cognitive Outcomes and Vascular Effects on Recovery), a collaborative network of thirty clinical performance clinical sites with access to acute stroke populations and the expertise and capacity for systematic assessment of PSCID will address this critical challenge. DISCOVERY is a prospective, multicenter, observational, nested-cohort study of 8000 nondemented ischemic and hemorrhagic stroke patients enrolled at the time of index stroke and followed for a minimum of 2 years, with serial cognitive evaluations and assessments of functional outcome, with subsets undergoing research magnetic resonance imaging and positron emission tomography and comprehensive genetic/genomic and fluid biomarker testing. The overall scientific objective of this study is to elucidate mechanisms of brain resilience and susceptibility to PSCID in diverse US populations based on complex interplay between life-course exposure to multiple vascular risk factors, preexisting burden of microvascular and neurodegenerative pathology, the effect of strategic acute stroke lesions, and the mediating effect of genomic and epigenomic variation.
Collapse
Affiliation(s)
- Natalia S. Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Karl Helmer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
50
|
Alcaraz J, Ikemori R, Llorente A, Díaz-Valdivia N, Reguart N, Vizoso M. Epigenetic Reprogramming of Tumor-Associated Fibroblasts in Lung Cancer: Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13153782. [PMID: 34359678 PMCID: PMC8345093 DOI: 10.3390/cancers13153782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer death among both men and women, partly due to limited therapy responses. New avenues of knowledge are indicating that lung cancer cells do not form a tumor in isolation but rather obtain essential support from their surrounding host tissue rich in altered fibroblasts. Notably, there is growing evidence that tumor progression and even the current limited responses to therapies could be prevented by rescuing the normal behavior of fibroblasts, which are critical housekeepers of normal tissue function. For this purpose, it is key to improve our understanding of the molecular mechanisms driving the pathologic alterations of fibroblasts in cancer. This work provides a comprehensive review of the main molecular mechanisms involved in fibroblast transformation based on epigenetic reprogramming, and summarizes emerging therapeutic approaches to prevent or overcome the pathologic effects of tumor-associated fibroblasts. Abstract Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-β, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-β transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.
Collapse
Affiliation(s)
- Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Correspondence: (J.A.); (M.V.)
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Alejandro Llorente
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Natalia Díaz-Valdivia
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Miguel Vizoso
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: (J.A.); (M.V.)
| |
Collapse
|