1
|
Somisetty M, Mack PC, Hsu CY, Huang Y, Gomez JE, Rodilla AM, Cagan J, Tavolacci SC, Carreño JM, Brody R, Moore AC, King JC, Rohs NC, Rolfo C, Bunn PA, Minna JD, Bhalla S, Krammer F, García-Sastre A, Figueiredo JC, Kazemian E, Reckamp KL, Merchant AA, Nadri M, Ahmed R, Ramalingam SS, Shyr Y, Hirsch FR, Gerber DE. Characteristics of Lung Cancer Patients With Asymptomatic or Undiagnosed SARS-CoV-2 Infections. Clin Lung Cancer 2024; 25:612-618. [PMID: 39122606 DOI: 10.1016/j.cllc.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be spread by individuals unaware they are infected. Such dissemination has heightened ramifications in cancer patients, who may need to visit healthcare facilities frequently, be exposed to immune-compromising therapies, and face greater morbidity from coronavirus disease 2019 (COVID-19). We determined characteristics of (1) asymptomatic, clinically diagnosed, and (2) serologically documented but clinically undiagnosed SARS-CoV-2 infection among individuals with lung cancer. PATIENTS AND METHODS In a multicenter registry, individuals with lung cancer (regardless of prior SARS-CoV-2 vaccination or documented infection) underwent collection of clinical data and serial blood samples, which were tested for antinucleocapsid protein antibody (anti-N Ab) or IgG (N) levels. We used multivariable logistic regression models to investigate clinical characteristics associated with the presence or absence of symptoms and the presence or absence of a clinical diagnosis among patients with their first SARS-CoV-2 infection. RESULTS Among patients with serologic evidence or clinically documented SARS-CoV-2 infection, 80/142 (56%) had no reported symptoms at their first infection, and 61/149 (40%) were never diagnosed. Asymptomatic infection was more common among older individuals and earlier-stage lung cancer. In multivariable analysis, non-white individuals with SARS-CoV-2 serologic positivity were 70% less likely ever to be clinically diagnosed (P = .002). CONCLUSIONS In a multicenter lung cancer population, a substantial proportion of SARS-CoV-2 infections had no associated symptoms or were never clinically diagnosed. Because such cases appear to occur more frequently in populations that may face greater COVID-19-associated morbidity, measures to limit disease spread and severity remain critical.
Collapse
Affiliation(s)
- Medha Somisetty
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philip C Mack
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Chih-Yuan Hsu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Yuanhui Huang
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Jorge E Gomez
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Ananda M Rodilla
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Jazz Cagan
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Sooyun C Tavolacci
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Juan Manuel Carreño
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Rachel Brody
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | | | | | - Nicholas C Rohs
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Christian Rolfo
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Paul A Bunn
- Department of Medicine (Division of Medical Oncology), University of Colorado School of Medicine, Aurora, CO
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sheena Bhalla
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Elham Kazemian
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Karen L Reckamp
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Akil A Merchant
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Maimoona Nadri
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Rafi Ahmed
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | | | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Fred R Hirsch
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - David E Gerber
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
2
|
Chatow L, Nudel A, Eyal N, Lupo T, Ramirez S, Zelinger E, Nesher I, Boxer R. Terpenes and cannabidiol against human corona and influenza viruses-Anti-inflammatory and antiviral in vitro evaluation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00829. [PMID: 38318445 PMCID: PMC10840330 DOI: 10.1016/j.btre.2024.e00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/19/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
The activity of the terpenes and Cannabidiol (CBD) against human coronavirus (HCoV) strain OC43 and influenza A (H1N1) was evaluated in human lung fibroblasts (MRC-5 cells). Also, we examined whether these ingredients inhibit pro-inflammatory cytokines in peripheral blood mononuclear cells (PBMC). The tested preparations exhibited both anti-inflammatory and antiviral effects. The combination of terpenes was effective against both HCoV-OC43 and influenza A (H1N1) virus. The addition of CBD improved the antiviral activity in some, but not all cases. This variation in activity may suggest an antiviral mechanism. In addition, there was a strong correlation between the quantitative results from a cell-viability assay and the cytopathic effect after 72 h, as observed under a microscope. The anti-inflammatory properties of terpenes were demonstrated using a pro-inflammatory cytokine-inhibition assay, which revealed significant cytokine inhibition and enhanced by the addition of CBD.
Collapse
Affiliation(s)
| | - Adi Nudel
- Eybna Technologies Ltd., Kfar Saba, Israel
| | - Nadav Eyal
- Eybna Technologies Ltd., Kfar Saba, Israel
| | - Tal Lupo
- Eybna Technologies Ltd., Kfar Saba, Israel
| | | | - Einat Zelinger
- CSI Center for Scientific Imaging Faculty of Agriculture, Hebrew University, Rehovot, Israel
| | | | - Richard Boxer
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Alturaiki W. The role of cross-reactive immunity to emerging coronaviruses: Implications for novel universal mucosal vaccine design. Saudi Med J 2023; 44:965-972. [PMID: 37777266 PMCID: PMC10541972 DOI: 10.15537/smj.2023.44.10.20230375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023] Open
Abstract
Host immune response to coronaviruses and the role of cross-reactivity immunity among different coronaviruses are crucial for understanding and combating the continuing COVID-19 outbreak and potential subsequent pandemics. This review paper explores how previous exposure to common cold coronaviruses and more pathogenic coronaviruses may elicit a protective immune response against SARS-CoV-2 infection, and discusses the challenges posed by some variants of concern that may escape current vaccines. It also highlights the need for a mucosal universal vaccine that can induce long-term protection against current and emerging coronaviruses by leveraging cross-reactive immunity. We propose a novel mucosal universal vaccine that consists of cross-reactive antigenic peptides with highly conserved epitopes among coronaviruses, conjugated with an immunostimulant adjuvant cytokine, including B-cell activating factor (BAFF). This vaccine may enhance the local mucosal adaptive response, induce tissue-resident memory cells, and inhibit viral replication and clearance. However, further research is required to evaluate its safety and efficacy.
Collapse
Affiliation(s)
- Wael Alturaiki
- From the Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
Daniels A, Fletcher S, Kerr HEM, Kratzel A, Pinto RM, Kriplani N, Craig N, Hastie CJ, Davies P, Digard P, Thiel V, Tait-Burkard C. One for all-human kidney Caki-1 cells are highly susceptible to infection with corona- and other respiratory viruses. J Virol 2023; 97:e0055523. [PMID: 37668370 PMCID: PMC10537734 DOI: 10.1128/jvi.00555-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 09/06/2023] Open
Abstract
In vitro investigations of host-virus interactions are reliant on suitable cell and tissue culture models. Results are only as good as the model they are generated in. However, choosing cell models for in vitro work often depends on availability and previous use alone. Despite the vast increase in coronavirus research over the past few years, scientists are still heavily reliant on: non-human, highly heterogeneous or not fully differentiated, or naturally unsusceptible cells requiring overexpression of receptors and other accessory factors. Complex primary or stem cell models are highly representative of human tissues but are expensive and time-consuming to develop and maintain with limited suitability for high-throughput experiments.Using tissue-specific expression patterns, we identified human kidney cells as an ideal target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and broader coronavirus infection. We show the use of the well-characterized human kidney cell line Caki-1 for infection with three human coronaviruses (hCoVs): Betacoronaviruses SARS-CoV-2 and Middle Eastern respiratory syndrome coronavirus and Alphacoronavirus hCoV 229E. Caki-1 cells show equal or superior susceptibility to all three coronaviruses when compared to other commonly used cell lines for the cultivation of the respective virus. Antibody staining against SARS-CoV-2 N protein shows comparable replication rates. A panel of 26 custom antibodies shows the location of SARS-CoV-2 proteins during replication using immunocytochemistry. In addition, Caki-1 cells were found to be susceptible to two other human respiratory viruses, influenza A virus and respiratory syncytial virus, making them an ideal model for cross-comparison for a broad range of respiratory viruses. IMPORTANCE Cell lines remain the backbone of virus research, but results are only as good as their originating model. Despite increased research into human coronaviruses following the COVID-19 pandemic, researchers continue to rely on suboptimal cell line models of: non-human origin, incomplete differentiation, or lacking active interferon responses. We identified the human kidney Caki-1 cell line as a potential target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This cell line could be shown to be infectable with a wide range of coronaviruses including common cold virus hCoV-229E, epidemic virus MERS-CoV, and SARS-CoV-2 as well as other important respiratory viruses influenza A virus and respiratory syncytial virus. We could show the localization of 26 SARS-CoV-2 proteins in Caki-1 cells during natural replication and the cells are competent of forming a cellular immune response. Together, this makes Caki-1 cells a unique tool for cross-virus comparison in one cell line.
Collapse
Affiliation(s)
- Alison Daniels
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- Infection Medicine, University of Edinburgh, Little France Crescent, United Kingdom
| | - Sarah Fletcher
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Holly E. M. Kerr
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Annika Kratzel
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rute Maria Pinto
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nisha Kriplani
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nicky Craig
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - C. James Hastie
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Paul Davies
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Paul Digard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christine Tait-Burkard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
5
|
Lao T, Avalos I, Rodríguez EM, Zamora Y, Rodriguez A, Ramón A, Alvarez Y, Cabrales A, Andújar I, González LJ, Puente P, García C, Gómez L, Valdés R, Estrada MP, Carpio Y. Production and characterization of a chimeric antigen, based on nucleocapsid of SARS-CoV-2 fused to the extracellular domain of human CD154 in HEK-293 cells as a vaccine candidate against COVID-19. PLoS One 2023; 18:e0288006. [PMID: 37751460 PMCID: PMC10522030 DOI: 10.1371/journal.pone.0288006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/16/2023] [Indexed: 09/28/2023] Open
Abstract
Despite that more than one hundred vaccines against SARS-CoV-2 have been developed and that some of them were evaluated in clinical trials, the latest results revealed that these vaccines still face great challenges. Among the components of the virus, the N-protein constitutes an attractive target for a subunit vaccine because it is the most abundant, highly conserved and immunogenic protein. In the present work, a chimeric protein (N-CD protein) was constructed by the fusion of the N-protein to the extracellular domain of human CD154 as the molecular adjuvant. HEK-293 cells were transduced with lentiviral vector bearing the N-CD gene and polyclonal cell populations were obtained. The N-CD protein was purified from cell culture supernatant and further characterized by several techniques. Immunogenicity studies in mice and non-human primates showed the N-CD protein induced high IgG titers in both models after two doses. Moreover, overall health monitoring of non-human primates demonstrated that animals were healthy during 228 days after first immunization. Data obtained support further investigation in order to develop this chimeric protein as vaccine candidate against COVID-19 and other coronavirus diseases.
Collapse
Affiliation(s)
- Thailin Lao
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ileanet Avalos
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Elsa María Rodríguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Yasser Zamora
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Alianet Rodriguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ailyn Ramón
- Center for Genetic Engineering and Biotechnology, Laboratory of Molecular Oncology, Havana, Cuba
| | - Yanitza Alvarez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology, Systems Biology, Havana, Cuba
| | - Ivan Andújar
- Center for Genetic Engineering and Biotechnology, Systems Biology, Havana, Cuba
| | | | - Pedro Puente
- Center for Genetic Engineering and Biotechnology, Animal housing, Havana, Cuba
| | - Cristina García
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Leonardo Gómez
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Rodolfo Valdés
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| |
Collapse
|
6
|
Elhadidy T, Abdelwahab HW, Shahin D, Hewidy A, Khashaba E, Elmorsey RA, Abo El Kheir N, Eid EA, El-Mesery A, Elmaria MO. Immunological changes in a cohort of COVID-19 survivors: Mansoura University experience. F1000Res 2023; 12:793. [PMID: 37767022 PMCID: PMC10521065 DOI: 10.12688/f1000research.134565.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Background: COVID-19 is a global pandemic that has affected millions of people all over the world since 2019. Infection with COVID-19 initiates a humoral immune response that produces antibodies against specific viral antigens, which in turn is supposed to provide immunity against reinfection for a period of time. The aim of this research was to study the kinetics of IgM and IgG antibodies against SARS-CoV-2. Methods: One hundred and seventeen post-COVID-19 participants were enrolled in the study. Qualitative assessment of IgM and IgG antibodies over six months (three visits) post recovery was conducted. Results: The current study revealed a significant reduction in IgM and IgG titers between the first and second visits (p <0.001). After six months, the antibody titer had declined by 78.8% from the first visit for IgM and by 49.2% for IgG antibodies. Regarding younger age and male sex, statistically significant persistence of IgM antibodies was noticed at the six months follow up. Also, statistically significant persistent IgG immunity was found in male patients and diabetics by the end of the six months follow up. Conclusions: We observed a significant waning of IgM and IgG titers over a period of six months follow up.. The persistence of positive IgM and IgG antibodies by the end of six months was variable due to differences in age, gender and presence of diabetes mellitus.
Collapse
Affiliation(s)
- Tamer Elhadidy
- Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Heba Wagih Abdelwahab
- Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Doaa Shahin
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Asem Hewidy
- Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Eman Khashaba
- Public Health & Community Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Rehab Ahmad Elmorsey
- Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Nermin Abo El Kheir
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Elsayed A. Eid
- Medicine and Endocrinology, Faculty of Medicine, Delta University for Science and Technology, Belkas, Dakahlia Governorate, 7730103, Egypt
| | - Ahmed El-Mesery
- Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Marwa O. Elmaria
- Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Dakahlia Governorate, 35516, Egypt
| |
Collapse
|
7
|
Alibolandi Z, Ostadian A, Sayyah S, Haddad Kashani H, Ehteram H, Banafshe HR, Hajijafari M, Sepehrnejad M, Riahi Kashani N, Azadchehr MJ, Nikzad H, Seyed Hosseini E. The correlation between IgM and IgG antibodies with blood profile in patients infected with severe acute respiratory syndrome coronavirus. Clin Mol Allergy 2022; 20:15. [PMID: 36550478 PMCID: PMC9774079 DOI: 10.1186/s12948-022-00180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES This study aimed to determine the levels of IgM and IgG antibody response to the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 in coronavirus disease 2019 (COVID-19) patients with different disease severity. METHODS IgM and IgG antibody levels were evaluated via enzyme-linked immunosorbent assay (ELISA). In total, 100 patients with confirmed SARS-CoV-2 infection were enrolled in this study and viral RNA was detected by using Real-time PCR technique. Clinical and laboratory data were collected and analyzed after hospital admission for COVID-19 and two months post-admission. RESULTS The level of anti-SARS-CoV-2 antibody IgG was significantly higher in the severe patients than those in moderate and mild groups, 2 months after admission. Also, level of IgG was positively associated with increased WBC, NUT and LYM counts in sever than mild or moderate groups after admission to hospital. CONCLUSION Our findings suggested that patients with severe illness might experience longer virus exposure times and have a stronger antibody response against viral infection. Thus, they have longer time immunity compared with other groups.
Collapse
Affiliation(s)
- Zahra Alibolandi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Sayyah
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hassan Ehteram
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Department of Anesthesiology, Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Sepehrnejad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Riahi Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammd-Javad Azadchehr
- Department of Biostatistics, Infectious Disease Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Ravina, Kumar A, Manjeet, Twinkle, Subodh, Narang J, Mohan H. Analytical performances of different diagnostic methods for SARS-CoV-2 virus - A review. SENSORS INTERNATIONAL 2022; 3:100197. [PMID: 35935464 PMCID: PMC9338831 DOI: 10.1016/j.sintl.2022.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Covid-19 is a dreadful pandemic of the 21st century that has created fear among people, affected the whole world, and taken thousands of lives. It infects the respiratory system and causes flu-type symptoms. According to the WHO reports, 2,082,745 deaths and 96,267,473 confirmed cases were perceived all around the globe till January 22, 2021. The significant roots of transmission are inhalation and direct contact with the infected surface. Its incubation period is 2-14 days and remains asymptomatic in most people. However, no treatment and vaccine are available for the people, so preventive measures like social distancing, wearing personal protective equipment (PPE), and frequent hand-washing are the practical and only options for cure. It has affected every sector of the world, whether it is trade or health all around the world. There is high demand for diagnostic tools as high-scale and expeditious testing is crucial for controlling disease spread; thus, detection methods play an essential role. Like flu, Covid-19 is also detected through RT-PCR, as the World Health Organization (WHO) suggested, but it is time taking and expensive method that many countries cannot afford. A vaccine is a crucial aspect of eradicating disease, and for SARS-CoV-2), plasma therapy and antibiotics therapy are used in the early spreading phase. The later stage involves forming a vaccine based on spike protein, N-protein, and whole-viral antigen that effectively immunizes the population worldwide until herd immunity can be achieved. In this review, we will discuss all possible and developed techniques for identifying SARS-CoV-2 and make a comparison of their specificity, selectivity, and cost; thus, we choose an appropriate method for fast, reliable, and pocket-friendly detection.
Collapse
Affiliation(s)
- Ravina
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ashok Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Manjeet
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Twinkle
- DCR University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India
| | - Subodh
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, Delhi, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
9
|
Sheta SM, El-Sheikh SM. Nanomaterials and metal-organic frameworks for biosensing applications of mutations of the emerging viruses. Anal Biochem 2022; 648:114680. [PMID: 35429447 PMCID: PMC9007753 DOI: 10.1016/j.ab.2022.114680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
The world today lives in a state of terrible fear due to the mutation of the emerging COVID-19. With the continuation of this pandemic, there is an urgent need for fast, accurate testing devices to detect the emerging SARS-CoV-2 pandemic in terms of biosensors and point-of-care testing. Besides, the urgent development in personal defense tools, anti-viral surfaces and wearables, and smartphones open the door for simplifying the self-diagnosis process everywhere. This review introduces a quick COVID-19 overview: definition, transmission, pathophysiology, the identification and diagnosis, mutation and transformation, and the global situation. It also focuses on an overview of the rapidly advanced technologies based on nanomaterials and MOFs for biosensing, diagnosing, and viral control of the SARS-CoV-2 pandemic. Finally, highlight the latest technologies, applications, existing achievements, and preventive diagnostic strategies to control this epidemic and combat the emerging coronavirus. This humble effort aims to provide a helpful survey that can be used to develop a creative solution and to lay down the future vision of diagnosis against COVID-19.
Collapse
Affiliation(s)
- Sheta M Sheta
- Department of Inorganic Chemistry, National Research Centre, 33 El-Behouth St., Dokki, Giza, 12622, Egypt.
| | - Said M El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute, Cairo, 11421, Egypt.
| |
Collapse
|
10
|
Gosselin B, Retout M, Dutour R, Troian-Gautier L, Bevernaegie R, Herens S, Lefèvre P, Denis O, Bruylants G, Jabin I. Ultrastable Silver Nanoparticles for Rapid Serology Detection of Anti-SARS-CoV-2 Immunoglobulins G. Anal Chem 2022; 94:7383-7390. [PMID: 35561247 PMCID: PMC9127678 DOI: 10.1021/acs.analchem.2c00870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023]
Abstract
Dipstick assays using silver nanoparticles (AgNPs) stabilized by a thin calix[4]arene-based coating were developed and used for the detection of Anti-SARS-CoV-2 IgG in clinical samples. The calixarene-based coating enabled the covalent bioconjugation of the SARS-CoV-2 Spike Protein via the classical EDC/sulfo-NHS procedure. It further conferred remarkable stability to the resulting bioconjugated AgNPs, as no degradation was observed over several months. In comparison with lateral-flow immunoassays (LFIAs) based on classical gold nanoparticles, our AgNP-based system constitutes a clear step forward, as the limit of detection for Anti-SARS-CoV-2 IgG was reduced by 1 order of magnitude and similar signals were observed with 10 times fewer particles. In real clinical samples, the AgNP-based dipstick assays showed impressive results: 100% specificity was observed for negative samples, while a sensitivity of 73% was determined for positive samples. These values match the typical sensitivities obtained for reported LFIAs based on gold nanoparticles. These results (i) represent one of the first examples of the use of AgNP-based dipstick assays in the case of real clinical samples, (ii) demonstrate that ultrastable calixarene-coated AgNPs could advantageously replace AuNPs in LFIAs, and thus (iii) open new perspectives in the field of rapid diagnostic tests.
Collapse
Affiliation(s)
- Bryan Gosselin
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Maurice Retout
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Raphaël Dutour
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ludovic Troian-Gautier
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Robin Bevernaegie
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Sophie Herens
- Service
de Biologie Clinique, Clinique CHC MontLégia, Bvd Patience et Beaujonc 2, 4000 Liège, Belgium
| | - Philippe Lefèvre
- Service
de Biologie Clinique, Hôpital de
Marche, Groupe VIVALIA, Rue du Vivier 21, 6900 Marche en Famenne, Belgium
| | - Olivier Denis
- Service
Immune Response, Sciensano, Site Ukkel Engelandstraat 642, 1180 Brussels, Belgium
| | - Gilles Bruylants
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| |
Collapse
|
11
|
Abstract
Coronaviruses have caused devastation in both human and animal populations, affecting both health and the economy. Amidst the emergence and re-emergence of coronaviruses, humans need to surmount the health and economic threat of coronaviruses through science and evidence-based approaches. One of these approaches is through biotechnology, particularly the heterologous production of biopharmaceutical proteins. This review article briefly describes the genome, general virion morphology, and key structural proteins of different coronaviruses affecting animals and humans. In addition, this review paper also presents the different systems in recombinant protein technology such as bacteria, yeasts, plants, mammalian cells, and insect/insect cells systems used to express key structural proteins in the development of countermeasures such as diagnostics, prophylaxis, and therapeutics in the challenging era of coronaviruses.
Collapse
|
12
|
Roberts A, Chouhan RS, Shahdeo D, Shrikrishna NS, Kesarwani V, Horvat M, Gandhi S. A Recent Update on Advanced Molecular Diagnostic Techniques for COVID-19 Pandemic: An Overview. Front Immunol 2021; 12:732756. [PMID: 34970254 PMCID: PMC8712736 DOI: 10.3389/fimmu.2021.732756] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which started out as an outbreak of pneumonia, has now turned into a pandemic due to its rapid transmission. Besides developing a vaccine, rapid, accurate, and cost-effective diagnosis is essential for monitoring and combating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its related variants on time with precision and accuracy. Currently, the gold standard for detection of SARS-CoV-2 is Reverse Transcription Polymerase Chain Reaction (RT-PCR), but it lacks accuracy, is time-consuming and cumbersome, and fails to detect multi-variant forms of the virus. Herein, we have summarized conventional diagnostic methods such as Chest-CT (Computed Tomography), RT-PCR, Loop Mediated Isothermal Amplification (LAMP), Reverse Transcription-LAMP (RT-LAMP), as well new modern diagnostics such as CRISPR-Cas-based assays, Surface Enhanced Raman Spectroscopy (SERS), Lateral Flow Assays (LFA), Graphene-Field Effect Transistor (GraFET), electrochemical sensors, immunosensors, antisense oligonucleotides (ASOs)-based assays, and microarrays for SARS-CoV-2 detection. This review will also provide an insight into an ongoing research and the possibility of developing more economical tools to tackle the COVID-19 pandemic.
Collapse
Affiliation(s)
- Akanksha Roberts
- Department of Biotechnology (DBT)-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | | | - Deepshikha Shahdeo
- Department of Biotechnology (DBT)-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | | | - Veerbhan Kesarwani
- Department of Biotechnology (DBT)-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sonu Gandhi
- Department of Biotechnology (DBT)-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
13
|
SARS-CoV-2 and Variant Diagnostic Testing Approaches in the United States. Viruses 2021; 13:v13122492. [PMID: 34960762 PMCID: PMC8703625 DOI: 10.3390/v13122492] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose of Review Given the rapid development of diagnostic approaches to test for and diagnose infection with SARS-CoV-2 and its associated variants including Omicron (B.1.1.529), many options are available to diagnose infection. Multiple established diagnostic companies are now providing testing platforms whereas initially, testing was being performed with simple PCR-based tests using standard laboratory reagents. Recent Findings Additional testing platforms continue to be developed, including those to detect specific variants, but challenges with testing, including obtaining testing reagents and other related supplies, are frequently encountered. With time, the testing supply chain has improved, and more established companies are providing materials to support these testing efforts. In the United States (U.S.), the need for rapid assay development and subsequent approval through the attainment of emergency use authorization (EUA) has superseded the traditional arduous diagnostic testing approval workflow mandated by the FDA. Through these efforts, the U.S. has been able to continue to significantly increase its testing capabilities to address this pandemic; however, challenges still remain due to the diversity of the performance characteristics of tests being utilized and newly discovered viral variants. Summary This review provides an overview of the current diagnostic testing landscape, with pertinent information related to SARS-CoV-2 virology, variants and antibody responses that are available to diagnose infection in the U.S.
Collapse
|
14
|
Salem R, El-Kholy AA, Waly FR, Ayman D, Sakr A, Hussein M. Generation and utility of a single-chain fragment variable monoclonal antibody platform against a baculovirus expressed recombinant receptor binding domain of SARS-CoV-2 spike protein. Mol Immunol 2021; 141:287-296. [PMID: 34915268 PMCID: PMC8660258 DOI: 10.1016/j.molimm.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023]
Abstract
As the second wave of COVID-19 launched, various variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have emerged with a dramatic global spread amongst millions of people causing unprecedented case fatalities and economic shut-downs. That initiated a necessity for developing specific diagnostics and therapeutics along with vaccines to control such a pandemic. This endeavor describes generation of murine derived recombinant single-chain fragment variable (scFv) as a monoclonal antibody (MAb) platform targeting the receptor binding domain (RBD) of Spike protein of SARS-CoV-2. A specific synthesized RBD coding sequence was cloned and expressed in Baculovirus expression system. The recombinant RBD (rRBD) was ascertained to be at the proper encoding size of ∼ 600bp and expressed protein of the molecular weight of ∼ 21KDa. Purified rRBD was proved genuinely antigenic and immunogenic, exhibiting specific reactivity to anti-SARS-CoV-2 antibody in an indirect enzyme-linked immunosorbent assay (ELISA), and inducing strong seroconversion in immunized mice. The scFv phage display library against rRBD was successfully constructed, revealing ∼ 90 % recombination frequency, and great enriching factor reaching 88 % and 25 % in polyclonal Ab-based and MAb-based ELISAs, respectively. Typically, three unique scFvs were generated, selected, purified and molecularly identified. That was manifested by their: accurate structure, close relation to the mouse immunoglobulin (Ig) superfamily, right anchored six complementarily-determining regions (CDRs) as three within variable heavy (vH) and variable light (vL) regions each, and proper configuration of the three-dimensional (3D) structure. Besides, their expression downstream in a non-suppressive amber codon of E. coli strain SS32 created a distinct protein band at an apparent molecular weight of ∼ 27KDa. Moreover, the purified scFvs showed authentic immunoreactivity and specificity to both rRBD and SARS-CoV-2 in western blot and ELISA. Accordingly, these developed scFvs platform might be a functional candidate for research, inexpensive diagnostics and therapeutics, mitigating spread of COVID-19.
Collapse
Affiliation(s)
- Reda Salem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt.
| | - Alaa A El-Kholy
- Veterinary Sera and Vaccines Research Institute (VSVRI), ARC, Abbassia, P.O. Box #131, 11381, Cairo, Egypt
| | - Fatma R Waly
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Dalia Ayman
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Aya Sakr
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Mai Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| |
Collapse
|
15
|
Liu J, Lian R, Zhang G, Hou B, Wang C, Dong J, Yang L, Wang J, Dai S, Chen L, Zhang G, Lu X, Ye T. Changes in serum virus-specific IgM/IgG antibody in asymptomatic and discharged patients with reoccurring positive COVID-19 nucleic acid test (RPNAT). Ann Med 2021; 53:34-42. [PMID: 32808808 PMCID: PMC7544917 DOI: 10.1080/07853890.2020.1811887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Studies have demonstrated the diagnostic efficiency of antibody testing in COVID-19 infection. There is limited data on the IgM/IgG changes in asymptomatic and discharged patients with reoccurring positive nucleic acid test (RPNAT). This study aims to investigate these IgM/IgG changes. METHODS There were 111 patients with positive nucleic acid test (NAT) and 40 suspected patients enrolled in the study. The serum SARS-CoV-2 specific IgM/IgG antibody levels were retrospectively analysed with the disease progress in asymptomatic and RPNAT patients. RESULTS The best overall performance was found by combining the IgM, IgG, and CT; 95.1% sensitivity and 75% specificity. This was tested in 111 RT-PCR positive cases. The median IgM and IgG levels were lower in the asymptomatic group compared to the symptomatic group (p < .01). Among 15 RPNAT cases, the IgM levels of the RPNAT group at the time of discharge (IgM2.79, IQR: 0.95-5.37) and retest (IgM 2.35, IQR: 0.88-8.65) were significantly higher than those of the non-reoccurring positive nucleic acid test group (Non-RPNAT) (IgM on discharge: 0.59, IQR: 0.33-1.22, IgG on retest: 0.92, IQR: 0.51-1.58). CONCLUSION Serum SARS-CoV-2 specific IgM/IgG antibody levels remained at a low level during hospitalisation for asymptomatic patients. Elevated IgM levels may have implications in the identification of RPNAT patients before discharge. Key messages This study determined the IgM/IgG changes in asymptomatic and RPNAT patients. The rate of serum SARS-CoV-2 specific IgM/IgG antibody levels increase in the asymptomatic group was lower than in the symptomatic group during hospitalisation. The IgM level did not decrease significantly at discharge in the RPNAT patients, and was higher than that of the Non-RPNAT group on discharge. These results highlight the importance of timely monitoring of IgM levels to identify RPNAT patients before discharge.
Collapse
Affiliation(s)
- Junli Liu
- Laboratory Department, Union Jiangbei Hospital, Wuhan, China
| | - Rui Lian
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Guochao Zhang
- General Surgery Department, China-Japan Friendship Hospital, Beijing, China
| | - Baojun Hou
- Endocrinology Department, Union Jiangbei Hospital, Wuhan, China
| | - Chuming Wang
- Laboratory Department, Union Jiangbei Hospital, Wuhan, China
| | - Jian Dong
- Respiratory Department, Union Jiangbei Hospital, Wuhan, China
| | - Liu Yang
- Laboratory Department, Union Jiangbei Hospital, Wuhan, China
| | - Jianglan Wang
- Laboratory Department, Union Jiangbei Hospital, Wuhan, China
| | - Shangming Dai
- Laboratory Department, Union Jiangbei Hospital, Wuhan, China
| | - Libo Chen
- Emergency Department, Union Jiangbei Hospital, Wuhan, China
| | - Guoqiang Zhang
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Xin Lu
- Rheumatology and Immunology Department, Friendship Hospital, Beijing, China
| | - Ting Ye
- Wuhan First Bioscience Co, Ltd, Wuhan, China
| |
Collapse
|
16
|
Mundodan J, Hasnain S, Khogali H, Al Bayat SS, Ali D, Alateeg S, Al-Romaihi H, Al-Thani MHJ. Validation of rapid antibody (IgG-IgM) test kit for SARS COV-2 infection in Qatar. J Public Health Res 2021; 11. [PMID: 34781629 PMCID: PMC8874874 DOI: 10.4081/jphr.2021.2421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Background: In response to the growing coronavirus disease 2019 (COVID-19) pandemic and the shortage of laboratory based molecular testing capacity and reagents, multiple diagnostic test manufacturers have developed rapid and easy to use devices to facilitate testing outside laboratory settings. These kits are either based on detection of proteins from SARS-CoV-2 virus or detection of antigen or human antibodies generated in response to the infection. However, it is important to understand their performance characteristics and they must be validated in the local population setting. Design and methods: The objective is to assess the validity of the rapid test for IgG and IgM immunoglobulins compared to the current gold standard reverse transcription polymerase chain reaction (RT-PCR) test. A total of 16951 asymptomatic individuals were tested by the Ministry of Public Health track-and-trace team using both rapid immunodiagnostic test and RT-PCR as part of screening across various random settings with potential risk of community interaction prior to gradual lifting of restrictions in Qatar. Rapid test was considered to be posiive if both IgG and IgM are positive, while only IgG/IgM positive was considered as rapid test negative. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. Results: The sensitivity of rapid test kit was found to be 0.9%, whereas the specificity was found to be 97.8%. the PPV was found to be 0.3% whereas the NPV was found to be 99.4%. Conclusions: Based on the outcome and results of the study, it appears that the sensitivity and PPV of the rapid antibody test are low. As such, this test is not recommended for use to assist in taking clinic-based decisions or decisions related to quarantine/isolation. Significance for public health It is important to understand the performance characteristics of the Rapid Antibody (IgG-IgM) kits and they must be validated in the local population setting before they can be recommended for use.
Collapse
Affiliation(s)
- Jesha Mundodan
- Public Health Department, Ministry of Public Health, Doha.
| | - Samina Hasnain
- Public Health Department, Ministry of Public Health, Doha.
| | - Hayat Khogali
- Vaccination section / National COVID Track 'n Trace Team, Public Health Department, Ministry of Public Health, Doha.
| | - Soha Shawqi Al Bayat
- Vaccination section / National COVID Track 'n Trace Team, Public Health Department, Ministry of Public Health, Doha.
| | - Dina Ali
- Primary Health Care Corporation, Doha.
| | - Saif Alateeg
- Contact tracing, Health Protection and Communicable Diseases Control (HP-CDC), Public Health Department, Ministry of Public Health, Doha.
| | - Hamad Al-Romaihi
- Director of Health Protection and Communicable Diseases (HP-CDC), Public Health Department, Ministry of Public Health, Doha.
| | | |
Collapse
|
17
|
Thomas E, Delabat S, Andrews DM. Diagnostic Testing for SARS-CoV-2 Infection. CURRENT HEPATOLOGY REPORTS 2021; 20:166-174. [PMID: 34725630 PMCID: PMC8550867 DOI: 10.1007/s11901-021-00567-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Given the rapid development of diagnostic approaches to test for and diagnose infection with SARS-CoV-2, many options are available to assess infection. Multiple established diagnostic companies are now providing testing platforms whereas initially, testing was being performed with simple PCR-based tests using standard laboratory reagents. RECENT FINDINGS Additional testing platforms continue to be developed but challenges with testing, including obtaining testing reagents and other related supplies, are frequently encountered. With time, the testing supply chain will improve and more companies will be providing materials to support these testing efforts. In the USA, the need for rapid assay development and subsequent approval through attainment of emergency use authorization (EUA) has superseded the traditional arduous diagnostic testing approval workflow mandated by the FDA. It is anticipated that the USA will be able to continue to significantly increase its testing capabilities to address this pandemic; however, challenges remain due to the diversity of the performance characteristics of tests being utilized. SUMMARY This review provides an overview of the current diagnostic testing landscape, with pertinent information related to SARS-CoV-2 virology and antibody responses, that is available to diagnose infection.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL USA
- Schiff Center for Liver Disease, University of Miami Miller School of Medicine, 1550 NW 10th Ave., Papanicolaou Bldg., RM PAP 514, Miami, FL 33136 USA
| | - Stephanie Delabat
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL USA
| | - David M. Andrews
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL USA
| |
Collapse
|
18
|
Diagnostic Techniques for COVID-19: A Mini-review of Early Diagnostic Methods. JOURNAL OF ANALYSIS AND TESTING 2021; 5:314-326. [PMID: 34631199 PMCID: PMC8488931 DOI: 10.1007/s41664-021-00198-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022]
Abstract
The outbreak of severe pneumonia at the end of 2019 was proved to be caused by the SARS-CoV-2 virus spreading out the world. And COVID-19 spread rapidly through a terrible transmission way by human-to-human, which led to many suspected cases waiting to be diagnosed and huge daily samples needed to be tested by an effective and rapid detection method. With an increasing number of COVID-19 infections, medical pressure is severe. Therefore, more efficient and accurate diagnosis methods were keen urgently established. In this review, we summarized several methods that can rapidly and sensitively identify COVID-19; some of them are widely used as the diagnostic techniques for SARS-CoV-2 in various countries, some diagnostic technologies refer to SARS (Severe Acute Respiratory Syndrome) or/and MERS (Middle East Respiratory Syndrome) detection, which may provide potential diagnosis ideas.
Collapse
|
19
|
Li K, Tong C, Ha X, Zeng C, Chen X, Xu F, Yang J, Du H, Chen Y, Cai J, Yang Z, Jiang Z, Chai D, Zhang X, Li X, Li J, Yao L. Development and clinical evaluation of a rapid antibody lateral flow assay for the diagnosis of SARS-CoV-2 infection. BMC Infect Dis 2021; 21:860. [PMID: 34425781 PMCID: PMC8381135 DOI: 10.1186/s12879-021-06568-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 08/12/2021] [Indexed: 01/23/2023] Open
Abstract
Background The novel coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has quickly spread worldwide since its outbreak in December 2019. One of the primary measures for controlling the spread of SARS-CoV-2 infection is an accurate assay for its diagnosis. SARS-CoV-2 real-time PCR kits suffer from some limitations, including false-negative results in the clinic. Therefore, there is an urgent need for the development of a rapid antibody test kit for COVID-19 diagnosis. Methods The nuclear capsid protein (N) and spike protein 1 (S1) fragments of SARS-CoV-2 were expressed in Escherichia coli, and rapid antibody-based tests for the diagnosis of SARS-CoV-2 infection were developed. To evaluate their clinical applications, the serum from COVID-19 patients, suspected COVID-19 patients, recovering COVID-19 patients, patients with general fever or pulmonary infection, doctors and nurses who worked at the fever clinic, and health professionals was analyzed by the rapid antibody test kits. The serum from patients infected with Mycoplasma pneumoniae and patients with respiratory tract infection was further analyzed to test its cross-reactivity with other respiratory pathogens. Results A 47 kDa N protein and 67 kDa S1 fragment of SARS-CoV-2 were successfully expressed, purified, and renatured. The rapid antibody test with recombinant N protein showed higher positive rate than the rapid IgM antibody test with recombinant S1 protein. Clinical evaluation showed that the rapid antibody test kit with recombinant N protein had 88.56 % analytical sensitivity and 97.42 % specificity for COVID-19 patients, 53.48 % positive rate for suspected COVID-19 patients, 57.14 % positive rate for recovering COVID-19 patients, and 0.5−0.8 % cross-reactivity with other respiratory pathogens. The analytical sensitivity of the kit did not significantly differ in COVID-19 patients with different disease courses (p < 0.01). Conclusions The rapid antibody test kit with recombinant N protein has high specificity and analytical sensitivity, and can be used for the diagnosis of SARS-CoV-2 infection combined with RT-PCR. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06568-9.
Collapse
Affiliation(s)
- Kesheng Li
- Lanzhou Yahua Biotechnology Ltd. Co, Lanzhou, China
| | | | - Xiaoqin Ha
- Clinical Lab, 940 Hospital of Joint Logistic Support, People's Liberation Army, Lanzhou, China
| | | | - Xia Chen
- Lanzhou Yahua Biotechnology Ltd. Co, Lanzhou, China
| | - Feifei Xu
- Lanzhou Yahua Biotechnology Ltd. Co, Lanzhou, China
| | - Jinhong Yang
- Lanzhou Yahua Biotechnology Ltd. Co, Lanzhou, China
| | - Huifen Du
- Lanzhou Yahua Biotechnology Ltd. Co, Lanzhou, China. .,Department of Medicine Biotechnology, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China.
| | - Yuxin Chen
- Clinical Lab, Nanjing Gulou Hospital, Nanjing, China
| | - Jing Cai
- Clinical Lab, Lanzhou Lung Hospital, Lanzhou, China
| | - Zengwei Yang
- Clinical Lab, Lanzhou Lung Hospital, Lanzhou, China
| | - Zhongyi Jiang
- Pathogeny Biology Lab, Gansu Disease Control and Prevention Center, Lanzhou, China
| | - Dandan Chai
- Department of Medicine Biotechnology, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Xueliang Zhang
- Department of Medicine Biotechnology, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Xun Li
- Institute of Infectious Disease, The 1st Hospital, Lanzhou University, Lanzhou, China
| | - Junfeng Li
- Institute of Infectious Disease, The 1st Hospital, Lanzhou University, Lanzhou, China
| | - Liqiong Yao
- Institute of Infectious Disease, The 1st Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Bansal R, Mohagaonkar S, Sen A, Khanam U, Rathi B. In-silico study of peptide-protein interaction of antimicrobial peptides potentially targeting SARS and SARS-CoV-2 nucleocapsid protein. In Silico Pharmacol 2021; 9:46. [PMID: 34336545 PMCID: PMC8315091 DOI: 10.1007/s40203-021-00103-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
This study is an attempt to find a suitable therapy using antimicrobial peptides (AMPs) by identifying peptide-protein interaction of AMPs and nucleocapsid protein of SARS and SARS-CoV- 2. The AMPs were shortlisted from the APD3 database (Antimicrobial peptide database) based on various physicochemical parameters. The binding efficacy of AMPs was measured using the lowest energy score of the docked complexes with 10 selected AMPs. For SARS-CoV, AP00180 showed the best pose with a binding affinity value of - 6.4 kcal/mol. Prominent hydrogen bonding interactions were observed between Lys85 (nucleocapsid receptor) and Arg13 (antimicrobial peptide ligand) having the least intermolecular distance of 1.759 Å. For SARS-CoV-2, AP00549 was docked with a binding affinity value of - 3.4 kcal/mol and Arg119 and Glu14 of receptor nucleocapsid protein and ligand AMP having the least intermolecular distance of 2.104 The dynamic simulation was performed at 50 ns to check the stability of the final docked complexes, one with each protein. The two best AMPs were AP00180 (Human Defensin-5) for SARS and AP00549 (Plectasin) for SARS-CoV-2. From positive results of dynamic simulation and previously known knowledge that some AMPs interact with the nucleocapsid of coronaviruses, these AMPs might be used as a potential therapeutic agent for the treatment regime of SARS-CoV-2 and SARS infection. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00103-z.
Collapse
Affiliation(s)
- Ritu Bansal
- National Institute of Technology, Warangal, Telangana India
| | | | | | - Uzma Khanam
- Amity University, Noida, Uttar Pradesh India
| | | |
Collapse
|
21
|
Qasem A, Shaw AM, Elkamel E, Naser SA. Coronavirus Disease 2019 (COVID-19) Diagnostic Tools: A Focus on Detection Technologies and Limitations. Curr Issues Mol Biol 2021; 43:728-748. [PMID: 34287238 PMCID: PMC8929116 DOI: 10.3390/cimb43020053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
The ongoing coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a severe threat to human health and the global economy and has resulted in overwhelming stress on health care systems worldwide. Despite the global health catastrophe, especially in the number of infections and fatalities, the COVID-19 pandemic has also revolutionized research and discovery with remarkable success in diagnostics, treatments, and vaccine development. The use of many diagnostic methods has helped establish public health guidelines to mitigate the spread of COVID-19. However, limited information has been shared about these methods, and there is a need for the scientific community to learn about these technologies, in addition to their sensitivity, specificity, and limitations. This review article is focused on providing insights into the major methods used for SARS-CoV-2 detection. We describe in detail the core principle of each method, including molecular and serological approaches, along with reported claims about the rates of false negatives and false positives, the types of specimens needed, and the level of technology and the time required to perform each test. Although this study will not rank or prioritize these methods, the information will help in the development of guidelines and diagnostic protocols in clinical settings and reference laboratories.
Collapse
Affiliation(s)
| | | | | | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA; (A.Q.); (A.M.S.); (E.E.)
| |
Collapse
|
22
|
Jiang N, Tansukawat ND, Gonzalez-Macia L, Ates HC, Dincer C, Güder F, Tasoglu S, Yetisen AK. Low-Cost Optical Assays for Point-of-Care Diagnosis in Resource-Limited Settings. ACS Sens 2021; 6:2108-2124. [PMID: 34076428 DOI: 10.1021/acssensors.1c00669] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Readily deployable, low-cost point-of-care medical devices such as lateral flow assays (LFAs), microfluidic paper-based analytical devices (μPADs), and microfluidic thread-based analytical devices (μTADs) are urgently needed in resource-poor settings. Governed by the ASSURED criteria (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverability) set by the World Health Organization, these reliable platforms can screen a myriad of chemical and biological analytes including viruses, bacteria, proteins, electrolytes, and narcotics. The Ebola epidemic in 2014 and the ongoing pandemic of SARS-CoV-2 have exemplified the ever-increasing importance of timely diagnostics to limit the spread of diseases. This review provides a comprehensive survey of LFAs, μPADs, and μTADs that can be deployed in resource-limited settings. The subsequent commercialization of these technologies will benefit the public health, especially in areas where access to healthcare is limited.
Collapse
Affiliation(s)
- Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Natha Dean Tansukawat
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Laura Gonzalez-Macia
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - H. Ceren Ates
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg 79110, Germany
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Freiburg 79110, Germany
| | - Can Dincer
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg 79110, Germany
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Freiburg 79110, Germany
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
23
|
Retrospective of International Serological Studies on the Formation and Dynamics of the Humoral Immune Response to SARS-CoV-2: from 2020 to 2021. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Last year the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has started. The new coronavirus is highly contagious and causes severe complications. The mechanisms of humoral immunity and kinetics of SARS-CoV-2 specific antibodies in a population are not well understood. Therefore, we aimed to summarize and analyze numerous global and Russian serological studies for understanding dynamics of the SARSCoV-2 humoral immune response and getting an accurate picture of the seroprevalence to SARS-CoV-2 in the world population. The PubMed and e-library databases were searched from February 2020 to March 2021 using terms “SARSCoV-2”, “antibodies”, “humoral immunity”. At the beginning of the pandemic first studies were cross-sectional by design and were responsible for determination of the seropositivity and for understanding the fundamental humoral immunity parameters of SARS-CoV-2. Since then, longitudinal seroepidemiological studies have been studying antibody kinetics. Seroconversion time for IgM, IgG antibodies varies, but most researchers report the seroconversion of IgM from the 1st to 14th days after the onset of clinical manifestations, and the seroconversion for IgG is around the 14th day with a concentration peak by the 21st day. Regarding seroprevalence we may say about low herd immunity at the COVID-19 pandemic. Thus, global seroprevalence is about 10 %, and more than 20 % for regions with high incidence and among healthcare workers. Seroprevalence studies have to be continued for more accurate monitoring of long-term humoral immunity to SARS-CoV-2, because the majority of the world’s population is still susceptible to SARS-CoV-2 infection.
Collapse
|
24
|
Dobaño C, Santano R, Jiménez A, Vidal M, Chi J, Rodrigo Melero N, Popovic M, López-Aladid R, Fernández-Barat L, Tortajada M, Carmona-Torre F, Reina G, Torres A, Mayor A, Carolis C, García-Basteiro AL, Aguilar R, Moncunill G, Izquierdo L. Immunogenicity and crossreactivity of antibodies to the nucleocapsid protein of SARS-CoV-2: utility and limitations in seroprevalence and immunity studies. Transl Res 2021; 232:60-74. [PMID: 33582244 PMCID: PMC7879156 DOI: 10.1016/j.trsl.2021.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
COVID-19 patients elicit strong responses to the nucleocapsid (N) protein of SARS-CoV-2 but binding antibodies are also detected in prepandemic individuals, indicating potential crossreactivity with common cold human coronaviruses (HCoV) and questioning its utility in seroprevalence studies. We investigated the immunogenicity of the full-length and shorter fragments of the SARS-CoV-2 N protein, and the crossreactivity of antibodies with HCoV. We identified a C-terminus region in SARS-CoV2 N of minimal sequence homology with HCoV that was more specific for SARS-CoV-2 and highly immunogenic. IgGs to the full-length SARS-CoV-2 N also recognized N229E N, and IgGs to HKU1 N recognized SARS-CoV-2 N. Crossreactivity with SARS-CoV-2 was stronger for alpha- rather than beta-HCoV despite having less sequence identity, revealing the importance of conformational recognition. Higher preexisting IgG to OC43 N correlated with lower IgG to SARS-CoV-2 N in rRT-PCR negative individuals, reflecting less exposure and indicating a potential protective association. Antibodies to SARS-CoV-2 N were higher in patients with more severe and longer duration of symptoms and in females. IgGs remained stable for at least 3 months, while IgAs and IgMs declined faster. In conclusion, N protein is a primary target of SARS-CoV-2-specific and HCoV crossreactive antibodies, both of which may affect the acquisition of immunity to COVID-19.
Collapse
Key Words
- ade, antibody-dependent disease enhancement
- covid-19, coronavirus disease 2019
- ct, c-terminus
- fl, full-length
- hcov, common cold human coronavirus
- loess, locally estimated scatterplot smoothing
- m, month
- mfi, median fluorescence intensity
- n, nucleocapsid
- nt, n-terminus
- rbd, receptor-binding domain
- rrt-pcr, real-time reverse-transcriptase polymerase chain reaction
- s, spike
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain; Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain.
| | - Rebeca Santano
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain; Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Chi
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Natalia Rodrigo Melero
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Matija Popovic
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rubén López-Aladid
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Laia Fernández-Barat
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Marta Tortajada
- Occupational Health Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Francisco Carmona-Torre
- Infectious Diseases Division and Clinical Microbiology, Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain
| | - Gabriel Reina
- Clínica Universidad de Navarra, Navarra Institute for Health Research, Pamplona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain; Pneumology Service, Hospital Clinic, Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain; Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alberto L García-Basteiro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; International Health Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
25
|
Akib TBA, Mou SF, Rahman MM, Rana MM, Islam MR, Mehedi IM, Mahmud MAP, Kouzani AZ. Design and Numerical Analysis of a Graphene-Coated SPR Biosensor for Rapid Detection of the Novel Coronavirus. SENSORS (BASEL, SWITZERLAND) 2021; 21:3491. [PMID: 34067769 PMCID: PMC8156410 DOI: 10.3390/s21103491] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
In this paper, a highly sensitive graphene-based multiple-layer (BK7/Au/PtSe2/Graphene) coated surface plasmon resonance (SPR) biosensor is proposed for the rapid detection of the novel Coronavirus (COVID-19). The proposed sensor was modeled on the basis of the total internal reflection (TIR) technique for real-time detection of ligand-analyte immobilization in the sensing region. The refractive index (RI) of the sensing region is changed due to the interaction of different concentrations of the ligand-analyte, thus impacting surface plasmon polaritons (SPPs) excitation of the multi-layer sensor interface. The performance of the proposed sensor was numerically investigated by using the transfer matrix method (TMM) and the finite-difference time-domain (FDTD) method. The proposed SPR biosensor provides fast and accurate early-stage diagnosis of the COVID-19 virus, which is crucial in limiting the spread of the pandemic. In addition, the performance of the proposed sensor was investigated numerically with different ligand-analytes: (i) the monoclonal antibodies (mAbs) as ligand and the COVID-19 virus spike receptor-binding domain (RBD) as analyte, (ii) the virus spike RBD as ligand and the virus anti-spike protein (IgM, IgG) as analyte and (iii) the specific probe as ligand and the COVID-19 virus single-standard ribonucleic acid (RNA) as analyte. After the investigation, the sensitivity of the proposed sensor was found to provide 183.33°/refractive index unit (RIU) in SPR angle (θSPR) and 833.33THz/RIU in SPR frequency (SPRF) for detection of the COVID-19 virus spike RBD; the sensitivity obtained 153.85°/RIU in SPR angle and 726.50THz/RIU in SPRF for detection of the anti-spike protein, and finally, the sensitivity obtained 140.35°/RIU in SPR angle and 500THz/RIU in SPRF for detection of viral RNA. It was observed that whole virus spike RBD detection sensitivity is higher than that of the other two detection processes. Highly sensitive two-dimensional (2D) materials were used to achieve significant enhancement in the Goos-Hänchen (GH) shift detection sensitivity and plasmonic properties of the conventional SPR sensor. The proposed sensor successfully senses the COVID-19 virus and offers additional (1 + 0.55) × L times sensitivity owing to the added graphene layers. Besides, the performance of the proposed sensor was analyzed based on detection accuracy (DA), the figure of merit (FOM), signal-noise ratio (SNR), and quality factor (QF). Based on its performance analysis, it is expected that the proposed sensor may reduce lengthy procedures, false positive results, and clinical costs, compared to traditional sensors. The performance of the proposed sensor model was checked using the TMM algorithm and validated by the FDTD technique.
Collapse
Affiliation(s)
- Tarik Bin Abdul Akib
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh; (T.B.A.A.); (S.F.M.); (M.M.R.); (M.M.R.)
| | - Samia Ferdous Mou
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh; (T.B.A.A.); (S.F.M.); (M.M.R.); (M.M.R.)
| | - Md. Motiur Rahman
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh; (T.B.A.A.); (S.F.M.); (M.M.R.); (M.M.R.)
| | - Md. Masud Rana
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh; (T.B.A.A.); (S.F.M.); (M.M.R.); (M.M.R.)
| | - Md. Rabiul Islam
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Ibrahim M. Mehedi
- Department of Electrical and Computer Engineering (ECE) and Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia;
| |
Collapse
|
26
|
Gracienta TJ, Herardi R, Santosa F, Pasiak TF, Tjang YS. Diagnostic accuracy of antibody-based rapid diagnostic tests in detecting coronavirus disease 2019: systematic review. Arch Med Sci 2021; 18:949-957. [PMID: 35832707 PMCID: PMC9266800 DOI: 10.5114/aoms/135910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction The rapid transmission of coronavirus disease 2019 (COVID-19) requires a fast, accurate, and affordable detection method. Despite doubts of their diagnostic accuracy, rapid diagnostic tests (RDTs) are used worldwide due to their practicality. This systematic review aims to determine the diagnostic accuracy of antibody-based RDTs in detecting COVID-19. Material and methods A literature search was carried out on five journal databases using the PRISMA-P 2015 method. We included all studies published up to February 2021. The risk of bias was evaluated using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Diagnostic Test Accuracy Studies. Data regarding peer-review status, study design, test kit information, immunoglobulin class, target antigen, and the number of samples were extracted and tabulated. We estimated the pooled sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with a 95% confidence interval. Results Thirty-three studies met the eligibility criteria. The pooled data results showed that the combined detection method of IgM or IgG had the highest sensitivity and NPV, which were 73.41% (95% CI: 72.22-74.57) and 75.34% (95% CI: 74.51-76.16), respectively. The single IgG detection method had the highest specificity and PPV of 96.68% (95% CI: 96.25-97.07) and 95.97% (95% CI: 95.47-96.42%), respectively. Conclusions Antibody-based RDTs are not satisfactory as primary diagnostic tests but have utility as a screening tool.
Collapse
Affiliation(s)
| | - Ryan Herardi
- Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Indonesia
| | - Frans Santosa
- Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Indonesia
| | | | - Yanto Sandy Tjang
- Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Indonesia
| |
Collapse
|
27
|
Chakraborty S, Mallajosyula V, Tato CM, Tan GS, Wang TT. SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand? Adv Drug Deliv Rev 2021; 172:314-338. [PMID: 33482248 PMCID: PMC7816567 DOI: 10.1016/j.addr.2021.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
The ongoing SARS-CoV-2 pandemic has led to the focused application of resources and scientific expertise toward the goal of developing investigational vaccines to prevent COVID-19. The highly collaborative global efforts by private industry, governments and non-governmental organizations have resulted in a number of SARS-CoV-2 vaccine candidates moving to Phase III trials in a period of only months since the start of the pandemic. In this review, we provide an overview of the preclinical and clinical data on SARS-CoV-2 vaccines that are currently in Phase III clinical trials and in few cases authorized for emergency use. We further discuss relevant vaccine platforms and provide a discussion of SARS-CoV-2 antigens that may be targeted to increase the breadth and durability of vaccine responses.
Collapse
Affiliation(s)
- Saborni Chakraborty
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Cristina M Tato
- Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gene S Tan
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA; Department of Infectious Diseases, University of California San Diego, La Jolla, CA 92037, USA
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
28
|
Moeller ME, Fock J, Pah P, Veras ADLC, Bade M, Donolato M, Israelsen SB, Eugen‐Olsen J, Benfield T, Engsig FN. Evaluation of commercially available immuno-magnetic agglutination in comparison to enzyme-linked immunosorbent assays for rapid point-of-care diagnostics of COVID-19. J Med Virol 2021; 93:3084-3091. [PMID: 33547818 PMCID: PMC8013206 DOI: 10.1002/jmv.26854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Fast, accurate, and simple blood-based assays for quantification of anti-SARS-CoV-2 antibodies are urgently needed to identify infected individuals and keep track of the spread of disease. METHODS The study included 33 plasma samples from 20 individuals with confirmed COVID-19 by real-time reverse-transcriptase polymerase chain reaction and 40 non-COVID-19 plasma samples. Anti-SARS-CoV-2 immunoglobulin M (IgM)/immunoglobulin A (IgA) or immunoglobulin G (IgG) antibodies were detected by a microfluidic quantitative immunomagnetic assay (IMA) (ViroTrack Sero COVID IgM + IgA/IgG Ab, Blusense Diagnostics) and compared to an enzyme-linked immunosorbent assay (ELISA) (EuroImmun Medizinische Labordiagnostika). RESULTS Of the 33 plasma samples from the COVID-19 patients, 28 were positive for IgA/IgM or IgG by IMA and 29 samples were positive by ELISA. Sensitivity for only one sample per patient was 68% for IgA + IgM and 75% IgG by IMA and 80% by ELISA. For samples collected 14 days after symptom onset, the sensitivity of both IMA and ELISA was around 91%. The specificity of the IMA reached 100% compared to 95% for ELISA IgA and 97.5% for ELISA IgG. CONCLUSION IMA for COVID-19 is a rapid simple-to-use point-of-care test with sensitivity and specificity similar to a commercial ELISA.
Collapse
Affiliation(s)
- Maria E. Moeller
- Department of Infectious Diseases, Copenhagen University HospitalAmager and Hvidovre HospitalHvidovreDenmark
| | - Jeppe Fock
- BluSense Diagnostics ApSCopenhagenDenmark
| | | | | | | | | | - Simone B. Israelsen
- Department of Infectious Diseases, Copenhagen University HospitalAmager and Hvidovre HospitalHvidovreDenmark
| | - Jesper Eugen‐Olsen
- Department of Clinical Research, Copenhagen University HospitalAmager and Hvidovre HospitalHvidovreDenmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University HospitalAmager and Hvidovre HospitalHvidovreDenmark
- Institute of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Frederik N. Engsig
- Department of Infectious Diseases, Copenhagen University HospitalAmager and Hvidovre HospitalHvidovreDenmark
| |
Collapse
|
29
|
Zhou JA, Zeng HL, Deng LY, Li HJ. Clinical Performance of SARS-CoV-2 IgG and IgM Tests Using an Automated Chemiluminescent Assay. Curr Med Sci 2021; 41:318-322. [PMID: 33877548 PMCID: PMC8056193 DOI: 10.1007/s11596-021-2349-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Serology tests for viral antibodies provide an important tool to support nucleic acid testing for diagnosis of the novel coronavirus disease 2019 (COVID-19) and is useful for documenting previous exposures to SARS-CoV-2, the etiological agent of COVID-19. The sensitivities of the chemiluminescent SARS-CoV-2 IgG/IgM immunoassay were assessed by using serum samples collected from 728 patients testing positive for SARS-CoV-2 RNA. The specificity was evaluated on a panel of 60 serum samples from non-COVID-19 patients with high levels of rheumatoid factor, antinuclear antibody, or antibodies against Epstein-Barr virus (EBV), cytomegalovirus (CMV), mycoplasma pneumonia, human respiratory syncytial virus (RSV), adenovirus, influenza A or influenza B. The imprecision and interference were assessed by adopting the Clinical and Laboratory Standards Institute (CLSI) EP15-A2 and EP7-A2, respectively. Sensitivities between 1 and 65 days after onset of symptoms were 94.4% and 78.7%, for IgG and IgM test, respectively. The sensitivity increased with the time after symptom onset, and rose to the top on the 22nd to 28th days. The total imprecision (CVs) was less than 6.0% for IgG and less than 6.5% for IgM. Limited cross-reactions with antibodies against EBV, CMV, mycoplasma pneumonia, human RSV, adenovirus, influenza A or influenza B were found. These data suggested the chemiluminescent SARS-CoV-2 IgG and IgM, assay with reliable utility and sensitivity, could be used for rapid screening and retrospective surveillance of COVID-19.
Collapse
Affiliation(s)
- Jin-an Zhou
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hao-long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ling-yan Deng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hui-jun Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
30
|
Toh YH, Huang YW, Chang YC, Chen YT, Hsu YT, Lin GH. Reactivity of human antisera to codon optimized SARS-CoV2 viral proteins expressed in Escherichia coli. Tzu Chi Med J 2021; 33:146-153. [PMID: 33912411 PMCID: PMC8059472 DOI: 10.4103/tcmj.tcmj_189_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 11/04/2022] Open
Abstract
Objective The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV2 virus continues to pose a serious threat to public health worldwide. The development of rapid diagnostic kits can assist the Tzu Chi Foundation in supporting global volunteers working to provide relief during the current pandemic. Materials and Methods In this study, nucleotide sequences derived from publicly available viral genome data for several domains of the SARS-CoV2 spike and nucleocapsid (N) proteins were chemically synthesized, with codon optimization for Escherichia coli protein expression. No actual viral particles were involved in these experiments. The synthesized sequences were cloned into an E. coli expression system based on pQE80L, and expressed viral proteins were subsequently purified using Ni-affinity chromatography. Western blotting was conducted using human antiviral sera to assess the response of codon-modified viral proteins to COVID-19 patient sera. Results N protein was expressed in amounts large enough to support large-scale production. The N-terminal domain, receptor-binding domain (RBD), Region 3, and the S2 domain were expressed in small but sufficient amounts for experiments. Immunoblotting results showed that anti-N IgG and anti-N IgM antibodies were detected in most patient sera, but only 60% of samples reacted with the recombinant RBD and S2 domain expressed by E. coli. Conclusion The results indicated that codon-optimized SARS-CoV2 viral proteins can be expressed in E. coli and purified for rapid antibody detection kit preparation, with the codon-optimized N protein, RBD, and S2 protein demonstrating the most potential.
Collapse
Affiliation(s)
- Yee-Huan Toh
- Department of Life Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Weng Huang
- Department of Molecular Biology and Human Genetics, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yo-Chen Chang
- Department of Laboratory Medicine and Biotechnology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yi-Ting Chen
- Department of Molecular Biology and Human Genetics, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ya-Ting Hsu
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Guang-Huey Lin
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,International College, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
31
|
Abstract
Coronavirus disease (COVID-19) caused by SARS-CoV-2 has spread since the end of 2019 and has resulted in a pandemic with unprecedented socioeconomic consequences. This situation has created enormous demand for the improvement of current diagnostic methods and the development of new diagnostic methods for fast, low-cost and user-friendly confirmation of SARS-CoV-2 infection. This critical review focuses on viral electrochemical biosensors that are promising for the development of rapid medical COVID-19 diagnostic tools. The molecular biological properties of SARS-CoV-2 as well as currently known biochemical attributes of infection necessary for biosensor development are outlined. The advantages and drawbacks of conventional diagnostic methods, such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR), are critically discussed. Electrochemical biosensors focusing on viral nucleic acid and whole viral particle detection are highlighted and discussed in detail. Finally, future perspectives on viral electrochemical biosensor development are briefly mentioned.
Collapse
Affiliation(s)
- Jiri Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Lada Ilieva
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| |
Collapse
|
32
|
Moreno Borraz LA, Giménez López M, Carrera Lasfuentes P, González Pérez E, Ortíz Domingo C, Bonafonte Marteles JL, Vicente Gaspar C, Amorós de la Nieta F, Sastre Heres A, García Forcada ÁL, Serrano Herrero MP, Fernández Doblado S, Espinosa Val MC, Fernández Adarve MM, Narvión Carriquiri A, Arto Maza F, Barea Gil M, Aznar Vázquez I, Sisas Rubio R, González Tejedor R, Florentín Ostáriz E, López Santed C, Molina Morales AR, Parrilla Binué S, Pérez Sans J, García Mena M, Moragrega Cardona B, Luzón Alonso M, Díaz Mora F, Gil Acebes JC, Rubio Morilla Y, Lou Lou R, Zabala Lahoz RB, Coarasa Lirón de Robles A. [Prevalence of SARS-CoV-2 coronavirus infection in patients and professional staff at a medium or long-stay hospital in Spain]. Rev Esp Geriatr Gerontol 2021; 56:75-80. [PMID: 33308845 PMCID: PMC7664346 DOI: 10.1016/j.regg.2020.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND GOALS The aim of the study is to know the prevalence of SARS-CoV-2 infection in patients and professional staff of a medium or long-stay hospital during the peak period of the pandemic in Spain, spring 2020. MATERIAL AND METHODS At the end of February 2020, we developed at the hospital a strategy to diagnose the SARS-CoV-2 infection consisting of complementing the realization of PCR tests at real time with a quick technique of lateral flow immunochromatography to detect IgG and IgM antibodies against the virus. We also developed a protocol to realize those diagnostic tests and considered an infection (current or past) a positive result in any of the above tests. We included 524 participants in the study (230 patients and 294 hospital staff), and divided them into hospital patients and Hemodialysis outpatients. Furthermore, we divided the hospital staff into healthcare and non-healthcare staff. The documented period was from March, 20th to April, 21st, 2020. RESULTS 26 out of 230 patients tested positive in any of the diagnostic techniques (PCR, antibodies IgG, IgM) with a 11.30% prevalence. According to patients groups, we got a 14.38% prevalence in hospital patients vs. 5.95% in outpatients, with a significantly higher risk in admitted patients after adjustment for age and gender (OR=3,309, 95%CI: 1,154-9,495). 24 out of 294 hospital staff tested positive in any of the diagnostic techniques, with a 8.16% prevalence. According to the groups, we got a 8.91% prevalence in healthcare staff vs. 4.26% in non-healthcare staff. Thus, we do not see any statistically significant differences between hospital staff and patients as far as prevalence is concerned (P=0,391), (OR=2,200, 95%CI: 0,500-9,689). CONCLUSIONS The result of the study was a quite low prevalence rate of SARS-CoV-2 infection, in both patients and hospital staff, being the hospital patients' prevalence rate higher than the outpatients', and the healthcare staff higher than the non-healthcare's. Combining PCR tests (gold standard) with antibodies tests proved useful as a diagnostic strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Javier Pérez Sans
- Unidad de riesgos Laborables, Hospital San Juan de Dios, Zaragoza, España
| | | | | | | | | | | | | | - Rosa Lou Lou
- Medicina MF y C, Hospital San Juan de Dios, Zaragoza, España
| | | | | |
Collapse
|
33
|
Sherwood LJ, Hayhurst A. Toolkit for Quickly Generating and Characterizing Molecular Probes Specific for SARS-CoV-2 Nucleocapsid as a Primer for Future Coronavirus Pandemic Preparedness. ACS Synth Biol 2021; 10:379-390. [PMID: 33534552 PMCID: PMC7875338 DOI: 10.1021/acssynbio.0c00566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/31/2022]
Abstract
Generating and characterizing immunoreagents to enable studies of novel emerging viruses is an area where ensembles of synthetic genes, recombinant antibody pipelines, and modular antibody-reporter fusion proteins can respond rapidly. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread through the global population causing widespread morbidity, mortality, and socioeconomic chaos. Using SARS-CoV-2 as our model and starting with a gBlocks encoded nucleocapsid (N) gene, we purified recombinant protein from E. coli, to serve as bait for selecting semisynthetic nanobodies from our Nomad single-pot library. Clones were isolated in days and first fused to Gaussia luciferase to determine EC50 in the tens of nM range, and second fused to the ascorbate peroxidase derivative APEX2 for sensitive detection of SARS-CoV-2 infected cells. To generate inherently fluorescent immunoreagents, we introduce novel periplasmic sdAb fusions made with mNeonGreen and mScarlet-I, which were produced at milligram amounts. The fluorescent fusion proteins enabled concise visualization of SARS-CoV-2 N in the cytoplasm but not in the nucleus 24 h post infection, akin to the distribution of SARS-CoV N, thereby validating these useful imaging tools. SdAb reactivity appeared specific to SARS-CoV-2 with very much weaker binding to SARS-CoV, and no noticeable cross-reactivity to a panel of overexpressed human codon optimized N proteins from other CoV. High periplasmic expression levels and in silico immortalization of the nanobody constructs guarantees a cost-effective and reliable source of SARS-CoV-2 immunoreagents. Our proof-of-principle study should be applicable to known and newly emerging CoV to broaden the tools available for their analysis and help safeguard human health in a more proactive than reactive manner.
Collapse
Affiliation(s)
- Laura Jo Sherwood
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Andrew Hayhurst
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
34
|
Diagnostic value of using a combination of nucleic acid and specific antibody tests for SARS-CoV-2 in coronavirus disease 2019. Epidemiol Infect 2021; 149:e62. [PMID: 33594967 PMCID: PMC7985888 DOI: 10.1017/s0950268821000406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a newly emerged disease with various clinical manifestations and imaging features. The diagnosis of COVID-19 depends on a positive nucleic acid amplification test by real-time reverse transcription-polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the clinical manifestations and imaging features of COVID-19 are non-specific, and nucleic acid test for SARS-CoV-2 can have false-negative results. It is presently believed that detection of specific antibodies to SARS-CoV-2 is an effective screening and diagnostic indicator for SARS-CoV-2 infection. Thus, a combination of nucleic acid and specific antibody tests for SARS-CoV-2 will be more effective to diagnose COVID-19, especially to exclude suspected cases.
Collapse
|
35
|
Terry JS, Anderson LB, Scherman MS, McAlister CE, Perera R, Schountz T, Geiss BJ. Development of a SARS-CoV-2 nucleocapsid specific monoclonal antibody. Virology 2021; 558:28-37. [PMID: 33714753 PMCID: PMC7849420 DOI: 10.1016/j.virol.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
To help fight COVID-19, new molecular tools specifically targeting critical components of the causative agent of COVID-19, SARS-Coronavirus-2 (SARS-CoV-2), are desperately needed. The SARS-CoV-2 nucleocapsid protein is critical for viral replication, integral to viral particle assembly, and a major diagnostic marker for infection and immune protection. Currently the limited available antibody reagents targeting the nucleocapsid protein are not specific to SARS-CoV-2 nucleocapsid protein, and sequences for these antibodies are not publicly available. In this work we developed and characterized a series of new mouse monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein, with a specific clone, mBG86, targeting only SARS-CoV-2 nucleocapsid protein. The monoclonal antibodies were validated in ELISA, Western blot, and immunofluorescence analyses. The variable regions from six select clones were cloned and sequenced, and preliminary epitope mapping of the sequenced clones was performed. Overall, these new antibody reagents will be of significant value in the fight against COVID-19.
Collapse
Affiliation(s)
- James S Terry
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Loran Br Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael S Scherman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Carley E McAlister
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
36
|
The positive rate of IgM and IgG antibodies against SARS-CoV-2 is similar in severe and non-severe COVID-19 patients. REV ROMANA MED LAB 2021. [DOI: 10.2478/rrlm-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Background: Coronavirus disease 2019 (COVID-19) has spread rapidly in China and globally. In order to control the spread of the epidemic, it is important to find an efficient diagnostic method.
Objectives: The aim of this study was to assess the responses of antibodies during SARS-CoV-2 infection in relation to disease severity and to evaluate the association between the positive rate of antibody detection and nucleic acid test.
Methods: Ninety patients with SARS-CoV-2 infection were recruited in this retrospective observational study. Demographic, clinical data, and SARS-CoV-2 IgM and IgG antibodies in serum specimens were detected at 4 and 6 weeks after diagnosis.
Results: IgM and IgG antibody levels showed a decreased tendency, the titers at week 4 were higher than the titers at week 6: The positive rates of IgM at week 4 and 6 were 92.9% and 67.9%, respectively. The positive rates of IgG at week 4 and week 6 were 100%. No association was found between the positive rate of antibody detection at week 4 or 6 and that of nucleic acid test (P>0.05). No difference between the positive rate of antibodies against SARS-CoV-2 in severe and non-severe COVID-19 patients was observed.
Conclusions: Antibody detection is an effective means in the diagnosis of COVID-19. The titer and positive rate of IgM are lower than those of IgG in the first six weeks after infection. Positive rate of antibodies was not different between severe and non-severe patients.
Collapse
|
37
|
Katchunga PB, Murhula A, Akilimali P, Zaluka JC, Karhikalembu R, Makombo M, Bisimwa J, Mubalama E. [Seroprevalence of SARS-CoV-2 antibodies among travellers and workers screened at the Saint Luc Clinic in Bukavu, a city in eastern Democratic Republic of the Congo, from May to August 2020]. Pan Afr Med J 2021; 38:93. [PMID: 33889259 PMCID: PMC8035686 DOI: 10.11604/pamj.2021.38.93.26663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction les tests sérologiques anti-SARS-CoV-2 pourrait jouer un rôle majeur dans l´estimation de la prévalence de la COVID-19. L´objectif était d´estimer la prévalence de la COVID-19 dans la ville de Bukavu, à l'Est de la République Démocratique du Congo, parmi les voyageurs et travailleurs. Méthodes entre mai et août 2020, les tests rapides Cellex qSARS-CoV-2 IgG/IgM (Cellex, Inc., USA), test immunologique à flux latéral, ont été utilisés pour détecter et différencier des anticorps anti-SARS-CoV-2 chez les voyageurs et les travailleurs en quête d´un certificat médical. Résultats parmi 684 habitants de la ville de Bukavu dépistés de la COVID-19 (4,2% hispaniques, 2,8% autres africains, 0,9% asiatiques), la séroprévalence anti-SARS-CoV-2 était de 40,8% (IgG+/IgM+: 34,6%; IgG+/IgM-: 0,5%; IgG-/IgM+: 5,4%). La séroprévalence cumulée des IgG anti-SARS-CoV-2 est passée de 24,5% à 35,2% de mai à août 2020. Les prédicteurs indépendants des anticorps anti-SARS-CoV-2 étaient l´âge > 60 ans [OR ajusté= 2,07(1,26-3,38)] et la non-appartenance au personnel médical [OR ajusté= 2,28(1,22-4,26)]. Treize virgule neuf pour cent (13,9%) des séropositifs pour les SARS-CoV-2 étaient symptomatiques et hospitalisés. Conclusion la présente étude montre une séroprévalence très élevée des anticorps anti-SARS-CoV-2 dans la ville de Bukavu, à l´Est de la République Démocratique du Congo, parmi les voyageurs et travailleurs, pouvant impacter positivement sur l´immunité communautaire de la population étudiée. Ainsi, la prise en charge de la COVID-19 devrait être contextualisée en fonction des réalités de chaque région.
Collapse
Affiliation(s)
- Philippe Bianga Katchunga
- Clinique Saint-Luc de Bukavu, Bukavu, République Démocratique du Congo.,Faculté de Médecine, Université Officielle de Bukavu, Bukavu, République Démocratique du Congo
| | - Aimé Murhula
- Clinique Saint-Luc de Bukavu, Bukavu, République Démocratique du Congo
| | - Prince Akilimali
- Clinique Saint-Luc de Bukavu, Bukavu, République Démocratique du Congo
| | | | | | - Mack Makombo
- Clinique Saint-Luc de Bukavu, Bukavu, République Démocratique du Congo
| | - Justin Bisimwa
- Clinique Saint-Luc de Bukavu, Bukavu, République Démocratique du Congo
| | - Eugene Mubalama
- Clinique Saint-Luc de Bukavu, Bukavu, République Démocratique du Congo
| |
Collapse
|
38
|
Limsakul P, Charupanit K, Moonla C, Jeerapan I. Advances in emergent biological recognition elements and bioelectronics for diagnosing COVID-19. EMERGENT MATERIALS 2021; 4:231-247. [PMID: 33718775 PMCID: PMC7937783 DOI: 10.1007/s42247-021-00175-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 05/04/2023]
Abstract
Coronaviruses pose a serious threat to public health. Tremendous efforts are dedicated to advance reliable and effective detection of coronaviruses. Currently, the coronavirus disease 2019 (COVID-19) diagnosis mainly relies on the detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic materials by using reverse transcription-polymerase chain reaction (RT-PCR) assay. However, simpler and more rapid and reliable alternatives are needed to meet high demand during the pandemic. Biosensor-based diagnosis approaches become alternatives for selectively and rapidly detecting virus particles because of their biorecognition elements consisting of biomaterials that are specific to virus biomarkers. Here, we summarize biorecognition materials, including antibodies and antibody-like molecules, that are designed to recognize SARS-CoV-2 biomarkers and the advances of recently developed biosensors for COVID-19 diagnosis. The design of biorecognition materials or layers is crucial to maximize biosensing performances, such as high selectivity and sensitivity of virus detection. Additionally, the recent representative achievements in developing bioelectronics for sensing coronavirus are included. This review includes scholarly articles, mainly published in 2020 and early 2021. In addition to capturing the fast development in the fields of applied materials and biodiagnosis, the outlook of this rapidly evolving technology is summarized. Early diagnosis of COVID-19 could help prevent the spread of this contagious disease and provide significant information to medical teams to treat patients.
Collapse
Affiliation(s)
- Praopim Limsakul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Krit Charupanit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| | - Chochanon Moonla
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111, University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| |
Collapse
|
39
|
Rai P, Kumar BK, Deekshit VK, Karunasagar I, Karunasagar I. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl Microbiol Biotechnol 2021; 105:441-455. [PMID: 33394144 PMCID: PMC7780074 DOI: 10.1007/s00253-020-11061-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
COVID-19 is a disease caused by SARS-CoV-2 capable of causing mild to severe infections in humans. Since its first appearance in China in December 2019, the pandemic has spread rapidly throughout the world. Despite considerable efforts made to contain the disease, the virus has continued its prevalence in many countries with varying degrees of clinical manifestations. To contain this pandemic, collaborative approach involving accurate diagnosis, epidemiology, surveillance, and prophylaxis is essential. However, proper diagnosis using rapid technologies plays a crucial role. With increasing incidence of COVID-19 cases, the accurate and early detection of the SARS-CoV-2 is need of the hour for effective prevention and management of COVID-19 cases as well as to curb its spread. RT-qPCR assay is considered to be the gold standard for the early detection of virus, but this protocol has limited application to use as bedside test because of its technical complexity. To address these challenges, several POC assays have been developed to facilitate the COVID-19 diagnosis outside the centralized testing laboratories as well to accelerate the clinical decision making with a least turnaround time. Hence, in this report, we review different nucleic acid-based and serological techniques available for the diagnosis and effective prevention of COVID-19. KEY POINTS : • Provides comprehensive information on the different diagnostic tools available for COVID-19 • Nucleic acid based tests or antigen detection tests are used for diagnostic purpose • Accurate diagnosis is essential for the efficient management of COVID-19.
Collapse
Affiliation(s)
- Praveen Rai
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India.
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
40
|
Yan M, Zheng Y, Sun Y, Wang L, Luan L, Liu J, Tian X, Wan N. Analysis of the diagnostic value of serum specific antibody testing for coronavirus disease 2019. J Med Virol 2021; 93:441-447. [PMID: 32592502 PMCID: PMC7361814 DOI: 10.1002/jmv.26230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has spread to various regions worldwide. As of 27 April 2020, according to real-time statistics released by the World Health Organization, there have been 84 341 confirmed cases and 4643 deaths in China, with more than 2 979 484 confirmed cases and 206 450 deaths outside China. The detection of antibodies produced during the immune response to severe acute respiratory syndrome coronavirus 2 infections has become an important laboratory method for the diagnosis of COVID-19. However, at present, a little research on these specific antibodies has been conducted. In this study, a retrospective analysis was used to explore the dynamic changes of serum immunoglobulin M (IgM) and IgG antibody and factors affecting diagnostic efficacy, so as to provide a theoretical basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Meitian Yan
- Dalian Medical UniversityDalianLiaoningChina
- Laboratory Department of General Hospital of General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Yutong Zheng
- Dalian Medical UniversityDalianLiaoningChina
- Laboratory Department of General Hospital of General Hospital of Northern Theater CommandShenyangLiaoningChina
| | | | - Lan Wang
- Laboratory Department of General Hospital of General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Liang Luan
- Laboratory Department of General Hospital of General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Jing Liu
- Laboratory Department of General Hospital of General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Xiao Tian
- Laboratory Department of General Hospital of General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Nan Wan
- Laboratory Department of General Hospital of General Hospital of Northern Theater CommandShenyangLiaoningChina
| |
Collapse
|
41
|
Russo A, Calò F, Di Fraia A, Starace M, Minichini C, Gentile V, Angelillo IF, Coppola N. Assessment and Comparison of Two Serological Approaches for the Surveillance of Health Workers Exposed to SARS-CoV-2. Infect Drug Resist 2020; 13:4501-4507. [PMID: 33364797 PMCID: PMC7751610 DOI: 10.2147/idr.s282652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022] Open
Abstract
Background and Aim The aim of the present study was to assess the diagnostic performance of an LFA compared with an ELISA test in a cohort of HWs operating in a COVID-19 unit of a teaching hospital in southern Italy. Methods We performed an observational, prospective, interventional study including 65 COVID-19 unit personnel. On a total of 196 serum samples (at least 2 serum samples for each HW), LFA and ELISA tests for SARS-COV-2 IgG and IgM were performed. Also, 32 serum samples of SARS-CoV-2 RNA positive patients at least 21 days before sampling, and 30 serum samples of patients obtained up to November 2019, before COVID-19 outbreak in China, were used as positive and negative controls, respectively. Findings Of the 65 HWs enrolled, 6 were positive in LFA; overall, of the 196 serum samples, 20 were positive in LFA. All ELISA tests performed on serum samples collected from HWs were negative. The specificity of LFAs was 90.77% considering the 65 HWs and 89.80% considering all the 196 health workers serum samples analyzed. Considering the data on HWs, ELISA test for SARS-COV-2 antibodies showed a specificity of 100%, including all the 196 serum samples collected, and 100% including the 65 HWs. The ELISA and LFAs performed after 21 days last COVID-19 patient was discharged were all negative. Conclusion LFAs compared to ELISA tests result in less specificity, considering COVID-19 negative personnel and patients. Thus, LFAs seem to be not adequate in the active surveillance of HWs.
Collapse
Affiliation(s)
- Antonio Russo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Federica Calò
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Alessandra Di Fraia
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Mario Starace
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Carmine Minichini
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Valeria Gentile
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | | | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | | |
Collapse
|
42
|
Diagnostic indexes of a rapid immunoglobulin G/immunoglobulin M combined antibody test for severe acute respiratory syndrome coronavirus 2. Chin Med J (Engl) 2020; 134:475-477. [PMID: 33323816 PMCID: PMC7909467 DOI: 10.1097/cm9.0000000000001204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
43
|
Bhagat S, Yadav N, Shah J, Dave H, Swaraj S, Tripathi S, Singh S. Novel corona virus (COVID-19) pandemic: current status and possible strategies for detection and treatment of the disease. Expert Rev Anti Infect Ther 2020; 20:1275-1298. [PMID: 33043740 DOI: 10.1080/14787210.2021.1835469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION In December 2019, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak occurred and caused the coronavirus disease of 2019 (COVID-19), which affected ~ 190 countries. The World Health Organization (WHO) has declared COVID-19 a pandemic on 11 March 2020. AREA COVERED In the review, a comprehensive analysis of the recent developments of the COVID-19 pandemic has been provided, including the structural characterization of the virus, the current worldwide status of the disease, various detection strategies, drugs recommended for the effective treatment, and progress of vaccine development programs by different countries. This report was constructed by following a systematic literature search of bibliographic databases of published reports of relevance until 1 September 2020. EXPERT OPINION Currently, the countries are opening businesses despite a spike in the number of COVID-19 cases. The pharmaceutical industries are developing clinical diagnostic kits, medicines, and vaccines. They target different approaches, including repurposing the already approved diagnosis and treatment options for similar CoVs. At present, over ~200 vaccine candidates are being developed against COVID-19. Future research may unravel the genetic variations or polymorphisms that dictate these differences in susceptibilities to the disease.
Collapse
Affiliation(s)
- Stuti Bhagat
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Nisha Yadav
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Juhi Shah
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Harsh Dave
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Shachee Swaraj
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| |
Collapse
|
44
|
Akinshina YA, Mardanly SS, Kiseleva VA. Immunochromatographic test for differentiation detection of IgM and IgG to SARS-CoV-2. Klin Lab Diagn 2020; 65:688-692. [PMID: 33301658 DOI: 10.18821/0869-2084-2020-65-11-688-692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study presents the results of the creation and evaluation of the diagnostic characteristics of the rapid immunochromatographic test for the qualitative detection and differentiation of IgM/IgG antibodies to SARS-CoV-2 in human serum, plasma, and whole blood "ИХА-COVID-19-IgM / IgG". Have been tested some samples without antibodies to SARS-CoV-2 and a samples with two and one type of specific antibodies. The coincidence of the results of immunochromatographic analysis with the results of the immunochemiluminescent method was 87.2%. Test kit can be use as the rapid diagnostic test in the context of the COVID-19 pandemic and to assess the immune status of convalescents.
Collapse
|
45
|
Xu Y, Xiao M, Liu X, Xu S, Du T, Xu J, Yang Q, Xu Y, Han Y, Li T, Zhu H, Wang M. Significance of serology testing to assist timely diagnosis of SARS-CoV-2 infections: implication from a family cluster. Emerg Microbes Infect 2020; 9:924-927. [PMID: 32286155 PMCID: PMC7269047 DOI: 10.1080/22221751.2020.1752610] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Confirmative diagnosis of SARS-CoV-2 infections has been challenged due to unsatisfactory positive rate of molecular assays. Here we identified a family cluster of SARS-CoV-2 infections, with five of six family members were SARS-CoV-2-specific immunoglobin serology testing positive, while molecular assays only detected two of this five patients even repeated twice. We comprehensively analyzed this familial cluster of cases based on the clinical characteristics, chest CT images, SARS-CoV-2 molecular detection results, and serology testing results. At last, two patients were diagnosed with COVID-19, two were suspected of COVID-19, and two were considered close contacts. Our results emphasized the significance of serology testing to assist timely diagnosis of SARS-CoV-2 infections, especially for COVID-19 close contacts screening.
Collapse
Affiliation(s)
- Yan Xu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Meng Xiao
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xinchao Liu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shengyong Xu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tiekuan Du
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jun Xu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qiwen Yang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yingchun Xu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yang Han
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Taisheng Li
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huadong Zhu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Mengzhao Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
46
|
Dai Y, Chen H, Zhuang S, Feng X, Fang Y, Tang H, Dai R, Tang L, Liu J, Ma T, Zhong G. Immunodominant regions prediction of nucleocapsid protein for SARS-CoV-2 early diagnosis: a bioinformatics and immunoinformatics study. Pathog Glob Health 2020; 114:463-470. [PMID: 33198594 PMCID: PMC7678408 DOI: 10.1080/20477724.2020.1838190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 is sweeping the world and posing serious health problems. Rapid and accurate detection along with timely isolation is the key to control the epidemic. Nucleic acid test and antibody-detection have been applied in the diagnosis of COVID-19, while both have their limitations. Comparatively, direct detection of viral antigens in clinical specimens is highly valuable for the early diagnosis of SARS-CoV-2. The nucleocapsid (N) protein is one of the predominantly expressed proteins with high immunogenicity during the early stages of infection. Here, we applied multiple bioinformatics servers to forecast the potential immunodominant regions derived from the N protein of SARS-CoV-2. Since the high homology of N protein between SARS-CoV-2 and SARS-CoV, we attempted to leverage existing SARS-CoV immunological studies to develop SARS-CoV-2 diagnostic antibodies. Finally, N229-269, N349-399, and N405-419 were predicted to be the potential immunodominant regions, which contain both predicted linear B-cell epitopes and murine MHC class II binding epitopes. These three regions exhibited good surface accessibility and hydrophilicity. All were forecasted to be non-allergen and non-toxic. The final construct was built based on the bioinformatics analysis, which could help to develop an antigen-capture system for the early diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Yufeng Dai
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University , Changsha, Hunan, China
| | - Hongzhi Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, and Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University , Changsha, Hunan, China
| | - Siqi Zhuang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University , Changsha, Hunan, China
| | - Xiaojing Feng
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University , Changsha, Hunan, China
| | - Yiyuan Fang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University , Changsha, Hunan, China
| | - Haoneng Tang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University , Changsha, Hunan, China
| | - Ruchun Dai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University , Changsha, Hunan, China
| | - Lingli Tang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University , Changsha, Hunan, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University , Changsha, Hunan, 410011, China
| | - Tianmin Ma
- Asian International Collaboration, Waitemata District Health Board, New Zealand, Level 1 , Auckland, 15 Shea Terrace, 0622, New Zealand
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio , San Antonio,TX, 7703 Floyd Curl Drive, 78229, USA
| |
Collapse
|
47
|
Xiang J, Chen Z, Zhou J, Tian D, Ran X, Zhang Z, Shi S, Xiao D, Zhou Y. Comparative analysis of the main haematological indexes and RNA detection for the diagnosis of SARS-CoV-2 infection. BMC Infect Dis 2020; 20:779. [PMID: 33081702 PMCID: PMC7573872 DOI: 10.1186/s12879-020-05489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become a public health emergency of international concern. SARS-CoV-2 RNA detection is the diagnostic criterion for coronavirus disease 2019 (COVID-19). Nevertheless, RNA detection has many limitations, such as being time-consuming and cost-prohibitive, and it must be performed in specialized laboratories. Virus antibody detection is a routine method for screening for multiple viruses, but data about SARS-CoV-2 antibody detection are limited. METHOD Throat swabs and blood were collected from 67 suspected SARS-CoV-2 infection patients at the Affiliated Hospital of Zunyi Medical University and Zunyi Fourth People's Hospital isolated observation departments. Throat swab samples were subjected to SARS-CoV-2 RNA detection by real-time PCR. Blood was used subjected to SARS-CoV-2 IgG/IgM detection by an enzyme-linked immunosorbent assay (ELISA) and gold immunochromatography assay (GICA). Blood underwent C-reactive protein detection by immunoturbidimetry, and white blood cells, neutrophil percentages and lymphocyte percentages were counted and calculated, respectively. Clinical symptoms, age and lifestyle habits (smoking and drinking) in all patients were recorded. Data were analysed using SPSS version 19. The results were confirmed by T and χ2 tests; correlations with detection results were analysed by kappa coefficients. Odds ratio (OR) and corrected OR values were analysed by logistic regression. P < 0.05 was considered statistically significant. RESULTS Of the 67 patients included in this study, 26 were SARS-CoV-2 RNA-positive. GICA IgM sensitivity was 50.9% (13/26), and specificity was 90.2% (37/41). ELISA IgM sensitivity was 76.9% (20/26), and specificity was 90.2% (37/41). ELISA IgG sensitivity was 76.9% (20/26), and specificity was 95.1% (39/41). The kappa coefficients between RNA detection and ELISA IgG, ELISA IgM, and GICA IgM results were 0.741 (P < 0.01), 0.681 (P < 0.01) and 0.430 (P < 0.01), respectively. CONCLUSION Among the candidate blood indicators, serum IgG and IgM detected by ELISA had the best consistency and validity when compared with standard RNA detection; these indicators can be used as potential preliminary screening tools to identify those who should undergo nucleic acid detection in laboratories without RNA detection abilities or as a supplement to RNA detection.
Collapse
Affiliation(s)
- Jialin Xiang
- Department of Laboratory medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. China
| | - Zuyi Chen
- Department of Laboratory medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. China
| | - Jie Zhou
- Department of Laboratory medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. China
| | - Di Tian
- Department of Laboratory medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. China
| | - Xiusheng Ran
- Center for Disease Control and Prevention of Daozhen, Zunyi, Guizhou, 563000, P.R. China
| | - Zhimin Zhang
- Department of Medical Genetics, Zuyi Medical University, Zunyi, Guizhou, 563000, P.R. China
| | - Shi Shi
- Department of Laboratory medicine, The Fourth People's Hospital of Zunyi, Zunyi, Guizhou, 563000, P.R. China
| | - Daimin Xiao
- Department of Laboratory medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. China.
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medcial University, Zunyi, Guizhou, 563000, P.R. China.
| |
Collapse
|
48
|
Liu B, Han J, Cheng X, Yu L, Zhang L, Wang W, Ni L, Wei C, Huang Y, Cheng Z. Reduced numbers of T cells and B cells correlates with persistent SARS-CoV-2 presence in non-severe COVID-19 patients. Sci Rep 2020; 10:17718. [PMID: 33077873 PMCID: PMC7573596 DOI: 10.1038/s41598-020-73955-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
COVID-19 has been widely spreading. We aimed to examine adaptive immune cells in non-severe patients with persistent SARS-CoV-2 shedding. 37 non-severe patients with persistent SARS-CoV-2 presence that were transferred to Zhongnan hospital of Wuhan University were retrospectively recruited to the PP (persistently positive) group, which was further allocated to PPP group (n = 19) and PPN group (n = 18), according to their testing results after 7 days (N = negative). Epidemiological, demographic, clinical and laboratory data were collected and analyzed. Data from age- and sex-matched non-severe patients at disease onset (PA [positive on admission] patients, n = 37), and lymphocyte subpopulation measurements from matched 54 healthy subjects were extracted for comparison (HC). Compared with PA patients, PP patients had much improved laboratory findings. The absolute numbers of CD3+ T cells, CD4+ T cells, and NK cells were significantly higher in PP group than that in PA group, and were comparable to that in healthy controls. PPP subgroup had markedly reduced B cells and T cells compared to PPN group and healthy subjects. Finally, paired results of these lymphocyte subpopulations from 10 PPN patients demonstrated that the number of T cells and B cells significantly increased when the SARS-CoV-2 tests turned negative. Persistent SARS-CoV-2 presence in non-severe COVID-19 patients is associated with reduced numbers of adaptive immune cells. Monitoring lymphocyte subpopulations could be clinically meaningful in identifying fully recovered COVID-19 patients.
Collapse
Affiliation(s)
- Bing Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Junyan Han
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohuan Cheng
- Department of Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Long Yu
- Analytical and Testing Center, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Ni
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chaojie Wei
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
49
|
Guerriero M, Bisoffi Z, Poli A, Micheletto C, Pomari C. Prevalence of asymptomatic SARS-CoV-2-positive individuals in the general population of northern Italy and evaluation of a diagnostic serological ELISA test: a cross-sectional study protocol. BMJ Open 2020; 10:e040036. [PMID: 33028562 PMCID: PMC7539547 DOI: 10.1136/bmjopen-2020-040036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION As of 30 April 2020, the novel betacoronavirus SARS-CoV-2 had infected more than 3 172 000 individuals, killing over 224 000 people and spreading to more than 200 countries. Italy was the most affected country in Europe and the third most affected in the world in terms of the number of cases. Therefore, the aims of this study are: (1) to estimate the prevalence of asymptomatic SARS-CoV-2-positive individuals among the general population of Verona; (2) to assess the accuracy (sensitivity, specificity and predictive values) of an ELISA serological test for the screening of SARS-CoV-2. METHODS AND ANALYSIS The study will be carried out on a random sample of subjects aged at least 10 years from the general population of Verona. Participants will undergo the measurement of vital parameters (oxygen saturation measured by oximeter, respiratory rate and body temperature detected by laser thermometer), the administration of a COVID-19-related symptoms questionnaire, the collection of a blood sample and a nasopharyngeal swab. Our evaluation will include the statistical technique of Latent Class Analysis, which will be the basis for the estimation of prevalence. ETHICS AND DISSEMINATION The study protocol has been approved by the Ethics Committee of Verona and Rovigo provinces on 15 April 2020 (internal protocol number 2641CESC). The study results will be submitted for publication in international, peer-reviewed journals and the complete dataset will be deposited in a public repository. Most relevant data will be made available to policy-makers as well as disseminated to stakeholders and to the community.
Collapse
Affiliation(s)
- Massimo Guerriero
- Clinical Research Unit, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Zeno Bisoffi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Albino Poli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Claudio Micheletto
- Unit of Pneumology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Carlo Pomari
- Department of Internal Medicine, Unit of Pneumology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| |
Collapse
|
50
|
Shareef MA, Bashaiwth HM, AlAkbari AO, Bahamran MS, AlAmodi MO, Albaiti SH, Ali MA, Eshaq AM, Alkattan K, Alamodi AA. A systematic review of contemporary evidence on SARS-CoV-2 and HIV coinfection: What does it look like up to date? Avicenna J Med 2020; 10:189-197. [PMID: 33437690 PMCID: PMC7791285 DOI: 10.4103/ajm.ajm_175_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Preexisting alteration of the immune system by factors including older age, cardiovascular diseases, morbid obesity, diabetes, and chronic obstructive pulmonary disease (COPD) have detrimental effects on SARS-CoV-2 patients. Literature regarding SARS-CoV-2/human immunodeficiency virus (HIV) is still developing. MATERIALS AND METHODS We reviewed the existing literature pertaining to SARS-CoV-2/HIV coinfection systematically. Research records' characteristics and patients' clinical data were collected. RESULTS Seven research records were included, of which three were case series and four were case reports, reporting a total of 16 cases. There was one case of death, whereas (15/16) patients were discharged home. Majority of patients developed consistent clinical presentation of SARS-CoV-2. All patients had initial positive RT-PCR results, and four cases had HIV-related lymphopenia. CONCLUSION Although the current literature is still growing to increase our understanding of SARS-CoV-2/HIV coinfection, people living with HIV should adhere to the guidelines of healthy behavior and practice during this pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|