1
|
Ulloa-Morrison R, Pavez N, Parra E, Lopez R, Mondaca R, Fernandez P, Kraunik D, Sanhueza C, Bravo S, Cornu MG, Kattan E. Critical care management of hantavirus cardiopulmonary syndrome. A narrative review. J Crit Care 2024; 84:154867. [PMID: 39024823 DOI: 10.1016/j.jcrc.2024.154867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Hantaviruses, members of the Bunyaviridae family, can cause two patterns of disease in humans, hantavirus hemorrhagic fever with renal syndrome (HFRS) and cardiopulmonary syndrome (HCPS), being the latter hegemonic on the American continent. Andesvirus is one of the strains that can cause HCPS and is endemic in Chile. Its transmission occurs through direct or indirect contact with infected rodents' urine, saliva, or feces and inhalation of aerosol particles containing the virus. HCPS rapidly evolves into acute but reversible multiorgan dysfunction. The hemodynamic pattern of HCPS is not identical to that of cardiogenic or septic shock, being characterized by hypovolemia, systolic dysfunction, and pulmonary edema secondary to increased permeability. Given the lack of specific effective therapies to treat this viral infection, the focus of treatment lies in the timely provision of intensive care, specifically hemodynamic and respiratory support, which often requires veno-arterial extracorporeal membrane oxygenation (VA-ECMO). This narrative review aims to provide insights into specific ICU management of HCPS based on the available evidence and gathered experience in Chile and South America including perspectives of pathophysiology, organ dysfunction kinetics, timely life support provision, safe patient transportation, and key challenges for the future.
Collapse
Affiliation(s)
| | - Nicolas Pavez
- Unidad de Cuidados Intensivos, Hospital Guillermo Grant Benavente, Concepción, Chile; Departamento de Medicina Interna, Universidad de Concepción, Concepción, Chile
| | - Esteban Parra
- Unidad de Cuidados Intensivos, Hospital Las Higueras, Talcahuano, Chile
| | - Rene Lopez
- Departamento de Paciente Crítico, Clínica Alemana de Santiago, Santiago, Chile; Grupo Intensivo, ICIM, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Roberto Mondaca
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Fernandez
- Unidad de Cuidados Intensivos, Hospital Guillermo Grant Benavente, Concepción, Chile; Departamento de Medicina Interna, Universidad de Concepción, Concepción, Chile
| | - David Kraunik
- Unidad de Cuidados Intensivos, Hospital Las Higueras, Talcahuano, Chile; Departamento de Medicina Interna, Universidad de Concepción, Concepción, Chile
| | - Claudia Sanhueza
- Unidad de Cuidados Intensivos, Hospital Las Higueras, Talcahuano, Chile
| | - Sebastian Bravo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Yin H, Tang Y, Wang Y, Waheed YA, Wang D, Sun D. Correlation between pre-operative VE-cadherin and DLL4 and the maturation after primary arteriovenous fistula in uremic patients. PeerJ 2024; 12:e18356. [PMID: 39583102 PMCID: PMC11585290 DOI: 10.7717/peerj.18356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 11/26/2024] Open
Abstract
Aims Uremic patients require dialysis to replace the declined kidney function, and arteriovenous fistula (AVF) is a commonly used dialysis access route. Our study aimed to explore vascular endothelial cells cadherin (VE-cadherin) and Delta-like ligand 4 (DLL4) expression in uremic patients undergoing primary AVF surgery and their correlation with AVF maturation. Methods We conducted a prospective study that included n = 55 voluntary uremic patients receiving their initial AVF procedure for renal replacement therapy, subjects were divided into a mature group and a failure group based on whether the AVF matured within 3 months post-operatively. We analyzed the association of VE-cadherin and DLL4 with AVF maturation by examining their expression levels in serum and the endothelium of cephalic veins. Results Pre-operative serum VE-cadherin, in the mature group measured 125.07 (106.77-167.65) ng/L, and DLL4 was 92.78 (83.83-106.72) pg/mL, while the failure group had VE-cadherin at 95.40 (79.03-107.16) ng/L (P = 0.001), and DLL4 at 60.42 (43.98-80.15) pg/mL with a statistical significant; (P = 0.002), binary logistic regression analysis indicated a significant association between cephalic vein diameter, VE-cadherin, DLL4 levels, and AVF immaturity (P = 0.024, P = 0.014 respectively). Immunohistochemical staining showed slightly higher VE-cadherin levels in the mature group than in the failure group (P = 0.366). DLL4 was primarily located in the cell membrane and cytoplasm, concentrated in the inner membrane, with significantly higher levels in the mature group compared to the failure group (P = 0.027). Conclusion The failure group exhibited lower levels of VE-cadherin and DLL4 in serum and vascular tissue, these results suggest that VE-cadherin and DLL4 might play pivotal regulatory roles in the onset and the progression of fistula immaturity, potentially serving as promising targets for future interventions.
Collapse
Affiliation(s)
- Huanhuan Yin
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yifan Tang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Disheng Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical College, Xuzhou, China
- Clinical Research Center for Kidney Disease, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Bathrinarayanan PV, Hallam SM, Grover LM, Vigolo D, Simmons MJH. Microfluidics as a Powerful Tool to Investigate Microvascular Dysfunction in Trauma Conditions: A Review of the State-of-the-Art. Adv Biol (Weinh) 2024; 8:e2400037. [PMID: 39031943 DOI: 10.1002/adbi.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Indexed: 07/22/2024]
Abstract
Skeletal muscle trauma such as fracture or crush injury can result in a life-threatening condition called acute compartment syndrome (ACS), which involves elevated compartmental pressure within a closed osteo-fascial compartment, leading to collapse of the microvasculature and resulting in necrosis of the tissue due to ischemia. Diagnosis of ACS is complex and controversial due to the lack of standardized objective methods, which results in high rates of misdiagnosis/late diagnosis, leading to permanent neuro-muscular damage. ACS pathophysiology is poorly understood at a cellular level due to the lack of physiologically relevant models. In this context, microfluidics organ-on-chip systems (OOCs) provide an exciting opportunity to investigate the cellular mechanisms of microvascular dysfunction that leads to ACS. In this article, the state-of-the-art OOCs designs and strategies used to investigate microvasculature dysfunction mechanisms is reviewed. The differential effects of hemodynamic shear stress on endothelial cell characteristics such as morphology, permeability, and inflammation, all of which are altered during microvascular dysfunction is highlighted. The article then critically reviews the importance of microfluidics to investigate closely related microvascular pathologies that cause ACS. The article concludes by discussing potential biomarkers of ACS with a special emphasis on glycocalyx and providing a future perspective.
Collapse
Affiliation(s)
- P Vasanthi Bathrinarayanan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S M Hallam
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - D Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
4
|
Marino M, Del Bo' C, Martini D, Perna S, Porrini M, Cherubini A, Gargari G, Meroño T, Hidalgo-Liberona N, Andres-Lacueva C, Kroon PA, Guglielmetti S, Riso P. A (poly)phenol-rich diet reduces serum and faecal calprotectin in older adults with increased intestinal permeability: the MaPLE randomised controlled trial. BMC Geriatr 2024; 24:707. [PMID: 39182041 PMCID: PMC11344393 DOI: 10.1186/s12877-024-05272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Older subjects are at risk of elevated intestinal permeability (IP) which can lead to immune system activation and low-grade systemic inflammation. Dietary changes are a potential strategy to reduce IP. The MaPLE project evaluated the hypothesis that increasing (poly)phenol intake would beneficially impact on several important markers and pathways related to IP. The objective of the present study was to assess the effects of the MaPLE (poly)phenol-rich diet (PR-diet) on additional IP-related biomarkers and any relationships between biomarker responses. METHODS A randomised, controlled, crossover study was performed involving 51 participants (≥ 60 y) with increased IP, as determined by serum zonulin levels. Participants were randomly assigned to one of two intervention groups: a control diet (C-diet) or a PR-diet. Each intervention lasted 8 weeks and was separated by an 8-week washout period. For the present study, serum and faecal samples were used to measure zonula occludens-1 (ZO-1), occludin, adiponectin, calprotectin, faecal calprotectin, soluble cluster of differentiation 14 (sCD14), interleukin-6 receptor (IL-6R), and vascular endothelial-cadherin (VEC) levels using quantitative ELISA assays. Data were analysed using ANOVA, and Spearman and network correlation analysis were performed to identify the relationship among biomarkers at baseline. RESULTS Among the different markers analysed, a significant reduction was observed for faecal and serum calprotectin (p = 0.0378 and p = 0.0186, respectively) following the PR-diet, while a significant increase in ZO-1 was found (p = 0.001) after both the intervention periods (PR-diet and C-diet). In addition, a time effect was observed for VEC levels showing a reduction (p = 0.038) following the PR-diet. Based on network correlation analysis, two clusters of correlations were identified: one cluster with high levels of serum calprotectin, faecal calprotectin, sCD14, interleukin (IL)-6, tumor necrosis factor (TNF)-α, C-reactive protein (CRP) and bacterial DNAemia (16 S rRNA gene copies), with potential inflammatory-induced intestinal permeability. Differently, the other cluster had high levels of serum occludin, IL-6R, soluble intercellular adhesion molecule-1 (sICAM-1) and VEC, with potential inflammatory-induced endothelial dysfunction. CONCLUSIONS Overall, this study provides further support to the hypothesis that a (poly)phenol-rich diet may help to ameliorate intestinal permeability-associated conditions. In this regard, calprotectin might represent a promising biomarker since it is a protein that typically increases with age and it is considered indicative of intestinal and systemic inflammation. Further research is needed to develop targeted (poly)phenol-rich diets against age-related gut dysfunction and inflammation. TRIAL REGISTRATION 28/04/2017; ISRCTN10214981; https://doi.org/10.1186/ISRCTN10214981 .
Collapse
Affiliation(s)
- Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy.
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy
| | - Simone Perna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per l'Invecchiamento, IRCCS INRCA, Ancona, Italy
- Department of Clinical and Experimental Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocesses, Università degli Studi di Milano, Milano, Italy
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, CiberFES, ISCIII, University of Barcelona, Barcelona, 08028, Spain
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, CiberFES, ISCIII, University of Barcelona, Barcelona, 08028, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, CiberFES, ISCIII, University of Barcelona, Barcelona, 08028, Spain
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Simone Guglielmetti
- Department of Biotechnology and Biosciences (BtBs), Università degli Studi di Milano-Bicocca, Piazza della Scienza 4, Milano, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
5
|
Wasielewska JM, Chaves JCS, Cabral-da-Silva MC, Pecoraro M, Viljoen SJ, Nguyen TH, Bella VL, Oikari LE, Ooi L, White AR. A patient-derived amyotrophic lateral sclerosis blood-brain barrier model for focused ultrasound-mediated anti-TDP-43 antibody delivery. Fluids Barriers CNS 2024; 21:65. [PMID: 39138578 PMCID: PMC11323367 DOI: 10.1186/s12987-024-00565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder with minimally effective treatment options. An important hurdle in ALS drug development is the non-invasive therapeutic access to the motor cortex currently limited by the presence of the blood-brain barrier (BBB). Focused ultrasound and microbubble (FUS+ MB) treatment is an emerging technology that was successfully used in ALS patients to temporarily open the cortical BBB. However, FUS+ MB-mediated drug delivery across ALS patients' BBB has not yet been reported. Similarly, the effects of FUS+ MB on human ALS BBB cells remain unexplored. METHODS Here we established the first FUS+ MB-compatible, fully-human ALS patient-cell-derived BBB model based on induced brain endothelial-like cells (iBECs) to study anti-TDP-43 antibody delivery and FUS+ MB bioeffects in vitro. RESULTS Generated ALS iBECs recapitulated disease-specific hallmarks of BBB pathology, including reduced BBB integrity and permeability, and TDP-43 proteinopathy. The results also identified differences between sporadic ALS and familial (C9orf72 expansion carrying) ALS iBECs reflecting patient heterogeneity associated with disease subgroups. Studies in these models revealed successful ALS iBEC monolayer opening in vitro with no adverse cellular effects of FUS+ MB as reflected by lactate dehydrogenase (LDH) release viability assay and the lack of visible monolayer damage or morphology change in FUS+ MB treated cells. This was accompanied by the molecular bioeffects of FUS+ MB in ALS iBECs including changes in expression of tight and adherens junction markers, and drug transporter and inflammatory mediators, with sporadic and C9orf72 ALS iBECs generating transient specific responses. Additionally, we demonstrated an effective increase in the delivery of anti-TDP-43 antibody with FUS+ MB in C9orf72 (2.7-fold) and sporadic (1.9-fold) ALS iBECs providing the first proof-of-concept evidence that FUS+ MB can be used to enhance the permeability of large molecule therapeutics across the BBB in a human ALS in vitro model. CONCLUSIONS Together, this study describes the first characterisation of cellular and molecular responses of ALS iBECs to FUS+ MB and provides a fully-human platform for FUS+ MB-mediated drug delivery screening on an ALS BBB in vitro model.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
| | - Juliana C S Chaves
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mauricio Castro Cabral-da-Silva
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute (MCRI), Parkville, VIC, Australia
| | - Martina Pecoraro
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy
| | - Stephani J Viljoen
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Tam Hong Nguyen
- Flow Cytometry and Imaging Facility, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Vincenzo La Bella
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy
| | - Lotta E Oikari
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lezanne Ooi
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia
| | - Anthony R White
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia.
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Chu JY, McCormick B, Sundaram K, Hardisty G, Karmakar U, Pumpe C, Krull E, Lucas CD, Amado-Azevedo J, Hordijk PL, Caporali A, Mellor H, Baillie JK, Rossi AG, Vermeren S. ARAP3 protects from excessive formylated peptide-induced microvascular leakage by acting on endothelial cells and neutrophils. J Pathol 2024; 263:347-359. [PMID: 38734878 DOI: 10.1002/path.6288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 05/13/2024]
Abstract
Vascular permeability is temporarily heightened during inflammation, but excessive inflammation-associated microvascular leakage can be detrimental, as evidenced in the inflamed lung. Formylated peptides regulate vascular leakage indirectly via formylated peptide receptor-1 (FPR1)-mediated recruitment and activation of neutrophils. Here we identify how the GTPase-activating protein ARAP3 protects against formylated peptide-induced microvascular permeability via endothelial cells and neutrophils. In vitro, Arap3-/- endothelial monolayers were characterised by enhanced formylated peptide-induced permeability due to upregulated endothelial FPR1 and enhanced vascular endothelial cadherin internalisation. In vivo, enhanced inflammation-associated microvascular leakage was observed in Arap3-/- mice. Leakage of plasma protein into the lungs of Arap3-/- mice increased within hours of formylated peptide administration. Adoptive transfer experiments indicated this was dependent upon ARAP3 deficiency in both immune and non-immune cells. Bronchoalveolar lavages of formylated peptide-challenged Arap3-/- mice contained neutrophil extracellular traps (NETs). Pharmacological inhibition of NET formation abrogated excessive microvascular leakage, indicating a critical function of NETs in this context. The observation that Arap3-/- mice developed more severe influenza suggests these findings are pertinent to pathological situations characterised by abundant formylated peptides. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Julia Y Chu
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Barry McCormick
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Kruthika Sundaram
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Gareth Hardisty
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Utsa Karmakar
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Caroline Pumpe
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Elizabeth Krull
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Christopher D Lucas
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Joana Amado-Azevedo
- Department of Physiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Andrea Caporali
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol, UK
| | - J Kenneth Baillie
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Basara G, Celebi LE, Ronan G, Discua Santos V, Zorlutuna P. 3D bioprinted aged human post-infarct myocardium tissue model. Health Sci Rep 2024; 7:e1945. [PMID: 38655426 PMCID: PMC11035382 DOI: 10.1002/hsr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
Background and Aims Fibrotic tissue formed after myocardial infarction (MI) can be as detrimental as MI itself. However, current in vitro cardiac fibrosis models fail to recapitulate the complexities of post-MI tissue. Moreover, although MI and subsequent fibrosis is most prominent in the aged population, the field suffers from inadequate aged tissue models. Herein, an aged human post-MI tissue model, representing the native microenvironment weeks after initial infarction, is engineered using three-dimensional bioprinting via creation of individual bioinks to specifically mimic three distinct regions: remote, border, and scar. Methods The aged post-MI tissue model is engineered through combination of gelatin methacryloyl, methacrylated hyaluronic acid, aged type I collagen, and photoinitiator at variable concentrations with different cell types, including aged human induced pluripotent stem cell-derived cardiomyocytes, endothelial cells, cardiac fibroblasts, and cardiac myofibroblasts, by introducing a methodology which utilizes three printheads of the bioprinter to model aged myocardium. Then, using cell-specific proteins, the cell types that comprised each region are confirmed using immunofluorescence. Next, the beating characteristics are analyzed. Finally, the engineered aged post-MI tissue model is used as a benchtop platform to assess the therapeutic effects of stem cell-derived extracellular vesicles on the scar region. Results As a result, high viability (>74%) was observed in each region of the printed model. Constructs demonstrated functional behavior, exhibiting a beating velocity of 6.7 μm/s and a frequency of 0.3 Hz. Finally, the effectiveness of hiPSC-EV and MSC-EV treatment was assessed. While hiPSC-EV treatment showed no significant changes, MSC-EV treatment notably increased cardiomyocyte beating velocity, frequency, and confluency, suggesting a regenerative potential. Conclusion In conclusion, we envision that our approach of modeling post-MI aged myocardium utilizing three printheads of the bioprinter may be utilized for various applications in aged cardiac microenvironment modeling and testing novel therapeutics.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
| | - Lara Ece Celebi
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | - George Ronan
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | | | - Pinar Zorlutuna
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
8
|
Koecke MHM, Strecker J, Straeten FA, Beuker C, Minnerup J, Schmidt‐Pogoda A, Börsch A. Inhibition of leukocyte migration after ischemic stroke by VE-cadherin mutation in a mouse model leads to reduced infarct volumes and improved motor skills. Brain Behav 2024; 14:e3449. [PMID: 38468566 PMCID: PMC10928452 DOI: 10.1002/brb3.3449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 03/13/2024] Open
Abstract
AIMS To distinguish between the genuine cellular impact of the ischemic cascade by leukocytes and unspecific effects of edema and humoral components, two knock-in mouse lines were utilized. Mouse lines Y731F and Y685F possess point mutations in VE-cadherin, which lead to a selective inhibition of transendothelial leukocyte migration or impaired vascular permeability. METHODS Ischemic stroke was induced by a model of middle cerebral artery occlusion. Analysis contained structural outcomes (infarct volume and extent of brain edema), functional outcomes (survival analysis, rotarod test, and neuroscore), and the extent and spatial distribution of leukocyte migration (heatmaps and fluorescence-activated cell sorting (FACS) analysis). RESULTS Inhibition of transendothelial leukocyte migration as in Y731F mice leads to smaller infarct volumes (52.33 ± 4719 vs. 70.43 ± 6483 mm3 , p = .0252) and improved motor skills (rotarod test: 85.52 ± 13.24 s vs. 43.06 ± 15.32 s, p = .0285). An impaired vascular permeability as in Y685F mice showed no effect on structural or functional outcomes. Both VE-cadherin mutations did not influence the total immune cell count or spatial distribution in ischemic brain parenchyma. CONCLUSION Selective inhibition of transendothelial leukocyte migration by VE-cadherin mutation after ischemic stroke in a mouse model leads to smaller infarct volumes and improved motor skills.
Collapse
Affiliation(s)
| | - Jan‐Kolja Strecker
- Department of Neurology with Institute of Translational NeurologyUniversity of MünsterMünsterGermany
| | - Frederike Anne Straeten
- Department of Neurology with Institute of Translational NeurologyUniversity of MünsterMünsterGermany
| | - Carolin Beuker
- Department of Neurology with Institute of Translational NeurologyUniversity of MünsterMünsterGermany
| | - Jens Minnerup
- Department of Neurology with Institute of Translational NeurologyUniversity of MünsterMünsterGermany
| | - Antje Schmidt‐Pogoda
- Department of Neurology with Institute of Translational NeurologyUniversity of MünsterMünsterGermany
| | - Anna‐Lena Börsch
- Department of Neurology with Institute of Translational NeurologyUniversity of MünsterMünsterGermany
| |
Collapse
|
9
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
10
|
Zehtabi F, Gangrade A, Tseng K, Haghniaz R, Abasgholizadeh R, Montazerian H, Khorsandi D, Bahari J, Ahari A, Mohaghegh N, Kouchehbaghi NH, Mandal K, Mecwan M, Rashad A, de Barros NR, Byun Y, Ermis M, Kim HJ, Khademhosseini A. Injectable Shear-Thinning Hydrogels with Sclerosing and Matrix Metalloproteinase Modulatory Properties for the Treatment of Vascular Malformations. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2305880. [PMID: 38558868 PMCID: PMC10977963 DOI: 10.1002/adfm.202305880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 04/04/2024]
Abstract
Sac embolization of abdominal aortic aneurysms (AAAs) remains clinically limited by endoleak recurrences. These recurrences are correlated with recanalization due to the presence of endothelial lining and matrix metalloproteinases (MMPs)-mediated aneurysm progression. This study incorporated doxycycline (DOX), a well-known sclerosant and MMPs inhibitor, into a shear-thinning biomaterial (STB)-based vascular embolizing hydrogel. The addition of DOX was expected to improve embolizing efficacy while preventing endoleaks by inhibiting MMP activity and promoting endothelial removal. The results showed that STBs containing 4.5% w/w silicate nanoplatelet and 0.3% w/v of DOX were injectable and had a 2-fold increase in storage modulus compared to those without DOX. STB-DOX hydrogels also reduced clotting time by 33% compared to untreated blood. The burst release of DOX from the hydrogels showed sclerosing effects after 6 h in an ex vivo pig aorta model. Sustained release of DOX from hydrogels on endothelial cells showed MMP inhibition (ca. an order of magnitude larger than control groups) after 7 days. The hydrogels successfully occluded a patient-derived abdominal aneurysm model at physiological blood pressures and flow rates. The sclerosing and MMP inhibition characteristics in the engineered multifunctional STB-DOX hydrogels may provide promising opportunities for the efficient embolization of aneurysms in blood vessels.
Collapse
Affiliation(s)
- Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Kaylee Tseng
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90007, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Reza Abasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Hossein Montazerian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | | | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
- Vellore Institute of Technology (VIT), Vellore, India, 632014
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
11
|
McEwan A, Greenwood M, Ward C, Ritchie D, Szer J, Gardiner E, Colic A, Sipavicius J, Panek-Hudson Y, Kerridge I. Diagnosis and management of endothelial disorders following haematopoietic stem cell transplantation. Intern Med J 2023; 53:2162-2174. [PMID: 37528613 DOI: 10.1111/imj.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023]
Abstract
Haematopoietic stem cell transplantation is a mainstay of therapy for numerous malignant and nonmalignant diseases. Endothelial activation and dysfunction occur after stem cell transplantation, driven by various patient- and transplant-specific factors. This can manifest as one of the relatively uncommon endothelial injury syndromes, such as sinusoidal obstruction syndrome, transplant-associated thrombotic microangiopathy, idiopathic pneumonia syndrome, capillary leak syndrome, engraftment syndrome or posterior reversible encephalopathy syndrome. This review focuses on the pathogenesis, classification and diagnosis of these disorders, as well as provides guidance on risk mitigation and treatment.
Collapse
Affiliation(s)
- Ashley McEwan
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Haematology Department, Liverpool Hospital, Sydney, New South Wales, Australia
- South West Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew Greenwood
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Ward
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - David Ritchie
- Peter MacCallum Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Haematology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- University of Melbourne, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeff Szer
- Peter MacCallum Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Haematology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- University of Melbourne, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Gardiner
- John Curtin School of Medical Research at the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andriana Colic
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Julija Sipavicius
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Yvonne Panek-Hudson
- Peter MacCallum Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Haematology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian Kerridge
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Tang J, Kang Y, Zhou Y, Shang N, Li X, Wang H, Lan J, Wang S, Wu L, Peng Y. TIMP2 ameliorates blood-brain barrier disruption in traumatic brain injury by inhibiting Src-dependent VE-cadherin internalization. J Clin Invest 2023; 134:e164199. [PMID: 38015626 PMCID: PMC10849766 DOI: 10.1172/jci164199] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Blood-brain barrier (BBB) disruption is a serious pathological consequence of traumatic brain injury (TBI), for which there are limited therapeutic strategies. Tissue inhibitor of metalloproteinase-2 (TIMP2), a molecule with dual functions of inhibiting MMP activity and displaying cytokine-like activity through receptor binding, has been reported to inhibit VEGF-induced vascular hyperpermeability. Here, we investigate the ability of TIMP2 to ameliorate BBB disruption in TBI and the underlying molecular mechanisms. Both TIMP2 and AlaTIMP2, a TIMP2 mutant without MMP-inhibiting activity, attenuated neurological deficits and BBB leakage in TBI mice; they also inhibited junctional protein degradation and translocation to reduce paracellular permeability in human brain microvascular endothelial cells (ECs) exposed to hypoxic plus inflammatory insult. Mechanistic studies revealed that TIMP2 interacted with α3β1 integrin on ECs, inhibiting Src activation-dependent VE-cadherin phosphorylation, VE-cadherin/catenin complex destabilization, and subsequent VE-cadherin internalization. Notably, localization of VE-cadherin on the membrane was critical for TIMP2-mediated EC barrier integrity. Furthermore, TIMP2-mediated increased membrane localization of VE-cadherin enhanced the level of active Rac1, thereby inhibiting stress fiber formation. All together, our studies have identified an MMP-independent mechanism by which TIMP2 regulates EC barrier integrity after TBI. TIMP2 may be a therapeutic agent for TBI and other neurological disorders involving BBB breakdown.
Collapse
|
13
|
Stierschneider A, Wiesner C. Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front Immunol 2023; 14:1264889. [PMID: 38077393 PMCID: PMC10704247 DOI: 10.3389/fimmu.2023.1264889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Toll-like receptor 4 (TLR4) are part of the innate immune system. They are capable of recognizing pathogen-associated molecular patterns (PAMPS) of microbes, and damage-associated molecular patterns (DAMPs) of damaged tissues. Activation of TLR4 initiates downstream signaling pathways that trigger the secretion of cytokines, type I interferons, and other pro-inflammatory mediators that are necessary for an immediate immune response. However, the systemic release of pro-inflammatory proteins is a powerful driver of acute and chronic inflammatory responses. Over the past decades, immense progress has been made in clarifying the molecular and regulatory mechanisms of TLR4 signaling in inflammation. However, the most common strategies used to study TLR4 signaling rely on genetic manipulation of the TLR4 or the treatment with agonists such as lipopolysaccharide (LPS) derived from the outer membrane of Gram-negative bacteria, which are often associated with the generation of irreversible phenotypes in the target cells or unintended cytotoxicity and signaling crosstalk due to off-target or pleiotropic effects. Here, optogenetics offers an alternative strategy to control and monitor cellular signaling in an unprecedented spatiotemporally precise, dose-dependent, and non-invasive manner. This review provides an overview of the structure, function and signaling pathways of the TLR4 and its fundamental role in endothelial cells under physiological and inflammatory conditions, as well as the advances in TLR4 modulation strategies.
Collapse
Affiliation(s)
| | - Christoph Wiesner
- Department Science & Technology, Institute Biotechnology, IMC Krems University of Applied Sciences, Krems, Austria
| |
Collapse
|
14
|
Jeon S, Yoon S, Kim Y, Shin S, Ji H, Cho E, Park D, Jung E. The effect of Salix alba L. bark extract on dark circles in vitro and in vivo. Int J Cosmet Sci 2023; 45:636-646. [PMID: 37235713 DOI: 10.1111/ics.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Dark circles in the infraorbital area are a common cosmetic concern among individuals because they exhibit fatigue and are undesirable across all ages. Of the dark circle etiologies, blood stasis by poor-vascular integrity can cause darkening of the lower eyelid skin, which might be alleviated by reduced endothelial permeability. In this study, we investigated the effects of Salix alba bark extract (SABE) on the synthesis of hyaluronic acid (HA) in fibroblasts and vascular integrity protection from inflammatory cytokine. We also performed a clinical trial investigating the effect of SABE on dark circles. METHODS To confirm the effect of SABE on HA synthesis in human dermal fibroblasts (HDFs), we performed ELISA and real-time PCR. We investigated the interaction HDF-secreted substance with vascular integrity, and human dermal microvascular endothelial cells (HMEC-1) were treated with conditioned medium (CM) from HDF treated with or without SABE. Subsequently, we conducted a clinical study on 29 subjects by having them apply SABE containing cream for 8 weeks. RESULTS Salix alba bark extract treatment increased HA synthesis and regulated HMW-HA-related gene expressions in HDF. CM from SABE-treated HDF alleviated endothelial permeability and led to improved vascular integrity in HMEC-1 cells. Treatment with the cream containing 2% SABE for 8 weeks improved the parameters measuring dark circles, skin microcirculation and elasticity. CONCLUSION Our results showed that SABE could protect against dark circles in vitro, and that topical treatment of SABE improved the clinical indexes of dark circles in a clinical study. Therefore, SABE can be used as an active ingredient for improving dark circles.
Collapse
Affiliation(s)
- Suwon Jeon
- BioSpectrum Life Science Institute, Yongin, Korea
| | - Sohyun Yoon
- BioSpectrum Life Science Institute, Yongin, Korea
| | - Yuna Kim
- BioSpectrum Life Science Institute, Yongin, Korea
| | | | - Hyanggi Ji
- BioSpectrum Life Science Institute, Yongin, Korea
| | - Eunae Cho
- BioSpectrum Life Science Institute, Yongin, Korea
| | | | - Eunsun Jung
- BioSpectrum Life Science Institute, Yongin, Korea
| |
Collapse
|
15
|
Karki P, Zhang CO, Promnares K, Li Y, Ke Y, Birukova AA, Birukov KG. Truncated oxidized phospholipids exacerbate endothelial dysfunction and lung injury caused by bacterial pathogens. Cell Signal 2023; 109:110804. [PMID: 37437826 PMCID: PMC10544726 DOI: 10.1016/j.cellsig.2023.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Oxidized phospholipids (OxPLs) are present at basal levels in circulation of healthy individuals, but a substantial increase and changes in composition of OxPLs may rapidly occur during microbial infections, sepsis, and trauma. Specifically, truncated oxidized phospholipids (Tr-OxPLs) exhibit detrimental effects on pulmonary endothelium, yet their role on modulation of lung injury caused by bacterial pathogens remains to be elucidated. This study investigated the effects of Tr-OxPL species: KOdiA-PC, POV-PC, PON-PC, PAz-PC, PGPC, and Lyso-PC on endothelial permeability and inflammatory responses to gram-positive bacterial particles. Results showed that all six tested Tr-OxPLs augmented endothelial barrier disruption caused by heat-killed Staphylococcus aureus (HKSA) as determined by VE-cadherin immunostaining and monitoring transendothelial electrical resistance. In parallel, even moderate elevation of Tr-OxPLs augmented HKSA-induced activation of NF-κB, secretion of IL-6 and IL-8, and protein expression of ICAM-1 and VCAM-1. In the mouse model of acute lung injury caused by intranasal injection of HKSA, intravenous Tr-OxPLs administration augmented HKSA-induced increase in BAL protein content and cell counts, tissue expression of TNFα, KC, IL1β, and CCL2, and promoted vascular leak monitored by lung infiltration of Evans Blue. These results suggest that elevated Tr-OxPLs act as critical risk factor worsening bacterial pathogen-induced endothelial dysfunction and lung injury.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Yue Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
16
|
Nonoguchi HA, Jin M, Narreddy R, Kouo TWS, Nayak M, Trenet W, Mandyam CD. Progenitor Cells Play a Role in Reinstatement of Ethanol Seeking in Adult Male and Female Ethanol Dependent Rats. Int J Mol Sci 2023; 24:12233. [PMID: 37569609 PMCID: PMC10419311 DOI: 10.3390/ijms241512233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Female and male glial fibrillary acidic protein-thymidine kinase (GFAP-TK) transgenic rats were made ethanol dependent via a six-week chronic intermittent ethanol vapor (CIE) and ethanol drinking (ED) procedure. During the last week of CIE, a subset of male and female TK rats was fed valcyte to ablate dividing progenitor cells and continued the diet until the end of this study. Following week six, all CIE rats experienced two weeks of forced abstinence from CIE-ED, after which they experienced relapse to drinking, extinction, and reinstatement of ethanol seeking sessions. CIE increased ED in female and male rats, with females having higher ethanol consumption during CIE and relapse sessions compared with males. In both sexes, valcyte reduced the levels of Ki-67-labeled progenitor cells in the subgranular zone of the dentate gyrus and did not alter the levels in the medial prefrontal cortex (mPFC). Valcyte increased ED during relapse, increased lever responses during extinction and, interestingly, enhanced latency to extinguish ethanol-seeking behaviors in males. Valcyte reduced the reinstatement of ethanol-seeking behaviors triggered by ethanol cues in females and males. Reduced seeking by valcyte was associated with the normalization of cytokines and chemokines in plasma isolated from trunk blood, indicating a role for progenitor cells in peripheral inflammatory responses. Reduced seeking by valcyte was associated with increases in tight junction protein claudin-5 and oligodendrogenesis in the dentate gyrus and reduction in microglial activity in the dentate gyrus and mPFC in females and males, demonstrating a role for progenitor cells in the dentate gyrus in dependence-induced endothelial and microglial dysfunction. These data suggest that progenitor cells born during withdrawal and abstinence from CIE in the dentate gyrus are aberrant and could play a role in strengthening ethanol memories triggered by ethanol cues via central and peripheral immune responses.
Collapse
Affiliation(s)
| | - Michael Jin
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | | | | | - Wulfran Trenet
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
17
|
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, Sekhoacha MP. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023; 9:e17166. [PMID: 37484296 PMCID: PMC10361329 DOI: 10.1016/j.heliyon.2023.e17166] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier separating the blood and the tissues in several organs. ECs maintain endothelium integrity by controlling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and migration. These actions of ECs are efficiently coordinated via an intricate signaling network connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i.e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become activated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin (NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, antioxidant properties, and cell survival potentials, which improve the health of the vascular endothelium. In this review, we provide a comprehensive summary and present the advances in understanding of the mechanisms through which NGN and NAR modulate the biomarkers of vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular diseases.
Collapse
Affiliation(s)
- Joy A. Adetunji
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D. Fasae
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Ayobami I. Awe
- Department of Biology, The Catholic University of America, Washington DC, USA
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ayodeji M. Adegoke
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Jacob K. Akintunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mamello P. Sekhoacha
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
18
|
Bosseboeuf E, Chikh A, Chaker AB, Mitchell TP, Vignaraja D, Rajendrakumar R, Khambata RS, Nightingale TD, Mason JC, Randi AM, Ahluwalia A, Raimondi C. Neuropilin-1 interacts with VE-cadherin and TGFBR2 to stabilize adherens junctions and prevent activation of endothelium under flow. Sci Signal 2023; 16:eabo4863. [PMID: 37220183 PMCID: PMC7614756 DOI: 10.1126/scisignal.abo4863] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Linear and disturbed flow differentially regulate gene expression, with disturbed flow priming endothelial cells (ECs) for a proinflammatory, atheroprone expression profile and phenotype. Here, we investigated the role of the transmembrane protein neuropilin-1 (NRP1) in ECs exposed to flow using cultured ECs, mice with an endothelium-specific knockout of NRP1, and a mouse model of atherosclerosis. We demonstrated that NRP1 was a constituent of adherens junctions that interacted with VE-cadherin and promoted its association with p120 catenin, stabilizing adherens junctions and inducing cytoskeletal remodeling in alignment with the direction of flow. We also showed that NRP1 interacted with transforming growth factor-β (TGF-β) receptor II (TGFBR2) and reduced the plasma membrane localization of TGFBR2 and TGF-β signaling. NRP1 knockdown increased the abundance of proinflammatory cytokines and adhesion molecules, resulting in increased leukocyte rolling and atherosclerotic plaque size. These findings describe a role for NRP1 in promoting endothelial function and reveal a mechanism by which NRP1 reduction in ECs may contribute to vascular disease by modulating adherens junction signaling and promoting TGF-β signaling and inflammation.
Collapse
Affiliation(s)
- Emy Bosseboeuf
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Anissa Chikh
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London SW17 0RE, UK
| | - Ahmed Bey Chaker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Tom P. Mitchell
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre for Microvascular Research, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Dhilakshani Vignaraja
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Ridhi Rajendrakumar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rayomand S. Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Thomas D. Nightingale
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre for Microvascular Research, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Justin C. Mason
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Anna M. Randi
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Claudio Raimondi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
19
|
Locatelli L, Fedele G, Maier JA. The Role of Txnip in Mediating Low-Magnesium-Driven Endothelial Dysfunction. Int J Mol Sci 2023; 24:ijms24098351. [PMID: 37176057 PMCID: PMC10179684 DOI: 10.3390/ijms24098351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Magnesium deficiency is associated with a greater risk of developing cardiovascular diseases since this cation is fundamental in regulating vascular function. This clinical evidence is sustained by in vitro studies showing that culturing endothelial cells in low concentrations of magnesium promotes the acquisition of a pro-oxidant and pro-inflammatory phenotype. Here, we show that the increase in reactive oxygen species in endothelial cells in low-magnesium-containing medium is due to the upregulation of the pro-oxidant protein thioredoxin interacting protein (TXNIP), with a consequent accumulation of lipid droplets and increase in endothelial permeability through the downregulation and relocalization of junctional proteins. Silencing TXNIP restores the endothelial barrier and lipid content. Because (i) mitochondria serve multiple roles in shaping cell function, health and survival and (ii) mitochondria are the main intracellular stores of magnesium, it is of note that no significant alterations were detected in their morphology and dynamics in our experimental model. We conclude that TXNIP upregulation contributes to low-magnesium-induced endothelial dysfunction in vitro.
Collapse
Affiliation(s)
- Laura Locatelli
- Department of Biomedical and Clinical Sciences, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy
| | - Giorgia Fedele
- Department of Biomedical and Clinical Sciences, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy
| | - Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy
| |
Collapse
|
20
|
Chuntharpursat-Bon E, Povstyan OV, Ludlow MJ, Carrier DJ, Debant M, Shi J, Gaunt HJ, Bauer CC, Curd A, Simon Futers T, Baxter PD, Peckham M, Muench SP, Adamson A, Humphreys N, Tumova S, Bon RS, Cubbon R, Lichtenstein L, Beech DJ. PIEZO1 and PECAM1 interact at cell-cell junctions and partner in endothelial force sensing. Commun Biol 2023; 6:358. [PMID: 37005489 PMCID: PMC10067937 DOI: 10.1038/s42003-023-04706-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/14/2023] [Indexed: 04/04/2023] Open
Abstract
Two prominent concepts for the sensing of shear stress by endothelium are the PIEZO1 channel as a mediator of mechanically activated calcium ion entry and the PECAM1 cell adhesion molecule as the apex of a triad with CDH5 and VGFR2. Here, we investigated if there is a relationship. By inserting a non-disruptive tag in native PIEZO1 of mice, we reveal in situ overlap of PIEZO1 with PECAM1. Through reconstitution and high resolution microscopy studies we show that PECAM1 interacts with PIEZO1 and directs it to cell-cell junctions. PECAM1 extracellular N-terminus is critical in this, but a C-terminal intracellular domain linked to shear stress also contributes. CDH5 similarly drives PIEZO1 to junctions but unlike PECAM1 its interaction with PIEZO1 is dynamic, increasing with shear stress. PIEZO1 does not interact with VGFR2. PIEZO1 is required in Ca2+-dependent formation of adherens junctions and associated cytoskeleton, consistent with it conferring force-dependent Ca2+ entry for junctional remodelling. The data suggest a pool of PIEZO1 at cell junctions, the coming together of PIEZO1 and PECAM1 mechanisms and intimate cooperation of PIEZO1 and adhesion molecules in tailoring junctional structure to mechanical requirement.
Collapse
Affiliation(s)
| | | | | | - David J Carrier
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Jian Shi
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hannah J Gaunt
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Alistair Curd
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - T Simon Futers
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul D Baxter
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antony Adamson
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Neil Humphreys
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Sarka Tumova
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Robin S Bon
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Cubbon
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - David J Beech
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
21
|
Nair L, Mukherjee S, Kaur K, Murphy CM, Ravichandiran V, Roy S, Singh M. Multi compartmental 3D breast cancer disease model–recapitulating tumor complexity in in-vitro. Biochim Biophys Acta Gen Subj 2023; 1867:130361. [PMID: 37019341 DOI: 10.1016/j.bbagen.2023.130361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Breast cancer is the most common ailment among women. In 2020, it had the highest incidence of any type of cancer. Many Phase II and III anti-cancer drugs fail due to efficacy, durability, and side effects. Thus, accelerated drug screening models must be accurate. In-vivo models have been used for a long time, but delays, inconsistent results, and a greater sense of responsibility among scientists toward wildlife have led to the search for in-vitro alternatives. Stromal components support breast cancer growth and survival. Multi-compartment Transwell models may be handy instruments. Co-culturing breast cancer cells with endothelium and fibroblasts improves modelling. The extracellular matrix (ECM) supports native 3D hydrogels in natural and polymeric forms. 3D Transwell cultured tumor spheroids mimicked in-vivo pathological conditions. Tumor invasion, migration, Trans-endothelial migration, angiogenesis, and spread are studied using comprehensive models. Transwell models can create a cancer niche and conduct high-throughput drug screening, promising future applications. Our comprehensive shows how 3D in-vitro multi compartmental models may be useful in producing breast cancer stroma in Transwell culture.
Collapse
Affiliation(s)
- Lakshmi Nair
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, Assam 788011, India
| | - Souvik Mukherjee
- Department of Pharmaceutical Sciences, Guru Ghasidas University, Koni, Bilaspur,(C.G 495009, India
| | - Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin D02YN77, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, Assam 788011, India.
| |
Collapse
|
22
|
Spurling D, Anchan A, Hucklesby J, Finlay G, Angel CE, Graham ES. Melanoma Cells Produce Large Vesicular-Bodies That Cause Rapid Disruption of Brain Endothelial Barrier-Integrity and Disassembly of Junctional Proteins. Int J Mol Sci 2023; 24:ijms24076082. [PMID: 37047054 PMCID: PMC10093843 DOI: 10.3390/ijms24076082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
It is known that many cells produce extracellular vesicles, and this includes a range of different cancer cell types. Here we demonstrate the profound effects of large vesicular-like bodies produced by melanoma cells on the barrier integrity of human brain endothelial cells. These vesicular-bodies have not been fully characterised but range in size from ~500 nm to >10 µm, are surrounded by membrane and are enzymatically active based on cell-tracker incorporation. Their size is consistent with previously reported large oncosomes and apoptotic bodies. We demonstrate that these melanoma-derived vesicular-bodies rapidly affect brain endothelial barrier integrity, measured using ECIS biosensor technology, where the disruption is evident within ~60 min. This disruption involves acquisition of the vesicles through transcellular uptake into the endothelial cells. We also observed extensive actin-rearrangement, actin removal from the paracellular boundary of the endothelial cells and envelopment of the vesicular-bodies by actin. This was concordant with widespread changes in CD144 localisation, which was consistent with the loss of junctional strength. High-resolution confocal imaging revealed proximity of the melanoma vesicular-bodies juxtaposed to the endothelial nucleus, often containing fragmented DNA themselves, raising speculation over this association and potential delivery of nuclear material into the brain endothelial cells. The disruption of the endothelial cells occurs in a manner that is faster and completely distinct to that of invasion by intact melanoma cells. Given the clinical observation of large vesicles in the circulation of melanoma patients by others, we hypothesize their involvement in weakening or priming the brain vasculature for melanoma invasion.
Collapse
Affiliation(s)
- Dayna Spurling
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Akshata Anchan
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - James Hucklesby
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - E Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
23
|
Custodia A, Aramburu-Núñez M, Rodríguez-Arrizabalaga M, Pías-Peleteiro JM, Vázquez-Vázquez L, Camino-Castiñeiras J, Aldrey JM, Castillo J, Ouro A, Sobrino T, Romaus-Sanjurjo D. Biomarkers Assessing Endothelial Dysfunction in Alzheimer's Disease. Cells 2023; 12:cells12060962. [PMID: 36980302 PMCID: PMC10047803 DOI: 10.3390/cells12060962] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common degenerative disorder in the elderly in developed countries. Currently, growing evidence is pointing at endothelial dysfunction as a key player in the cognitive decline course of AD. As a main component of the blood-brain barrier (BBB), the dysfunction of endothelial cells driven by vascular risk factors associated with AD allows the passage of toxic substances to the cerebral parenchyma, producing chronic hypoperfusion that eventually causes an inflammatory and neurotoxic response. In this process, the levels of several biomarkers are disrupted, such as an increase in adhesion molecules that allow the passage of leukocytes to the cerebral parenchyma, increasing the permeability of the BBB; moreover, other vascular players, including endothelin-1, also mediate artery inflammation. As a consequence of the disruption of the BBB, a progressive neuroinflammatory response is produced that, added to the astrogliosis, eventually triggers neuronal degeneration (possibly responsible for cognitive deterioration). Recently, new molecules have been proposed as early biomarkers for endothelial dysfunction that can constitute new therapeutic targets as well as early diagnostic and prognostic markers for AD.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mariña Rodríguez-Arrizabalaga
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Vázquez-Vázquez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Camino-Castiñeiras
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel Aldrey
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
Behrangzade A, Keeney HR, Martinet KM, Wagner WR, Vande Geest JP. Mechanical alterations of electrospun poly(ϵ-caprolactone) in response to convective thermobonding. J Biomed Mater Res B Appl Biomater 2023; 111:622-632. [PMID: 36221771 PMCID: PMC10600560 DOI: 10.1002/jbm.b.35181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
Vascular graft failure has persisted as a major clinical problem. Mechanical, structural, and transport properties of vascular grafts are critical factors that substantially affect their function and thus the outcome of implantation. The manufacturing method, post-processing technique, and material of choice have a significant impact on these properties. The goal of this work is to use thermal treatment to modulate the transport properties of PCL-based vascular engineered constructs. To this end, we electrospun PCL tubular constructs and thermally bonded the electrospun fibers in a convective oven at various temperatures (54, 57, and 60°C) and durations of treatment (15, 30, and 45 s). The effects of fiber thermal bonding (thermobonding) on the transport, mechanical, and structural properties of PCL tubular constructs were characterized. Increasing the temperature and treatment duration enhanced the degree of thermobonding by removing the interconnected void and fusing the fibers. Thermobonding at 57°C and 60°C for longer than 30 s increased the median tangential modulus (E = 126.1 MPa, [IQR = 20.7]), mean suture retention (F = 193.8 g, [SD = 18.5]), and degradation rate while it decreased the median permeability (kA = 0 m/s), and median thickness (t = 60 μm, [IQR = 2.5]). In particular, the thermobonding at 57°C allowed a finer modulation of permeability via treatment duration. We believe that the thermobonding method can be utilized to modulate the properties of vascular engineered constructs which can be useful in designing functional vascular grafts.
Collapse
Affiliation(s)
- Ali Behrangzade
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hannah R. Keeney
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katarina M. Martinet
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan P. Vande Geest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Jadon J, Yelin R, Arraf AA, Asleh MA, Zaher M, Schultheiss TM. Regulation of aortic morphogenesis and VE-cadherin dynamics by VEGF. Dev Biol 2023; 497:1-10. [PMID: 36841503 DOI: 10.1016/j.ydbio.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
In amniote vertebrates, the definitive dorsal aorta is formed by the fusion of two primordial aortic endothelial tubes. Formation of the definitive dorsal aorta requires extensive cellular migrations and rearrangements of the primordial tubes in order to generate a single vessel located at the embryonic ventral midline. This study examines the role of VEGF signaling in the generation of the definitive dorsal aorta. Through gain- and loss-of-function studies in vivo in the chick embryo, we document a requirement for VEGF signaling in growth and remodeling of the paired primordia. We find that regions of the aorta are differentially sensitive to levels of VEGF signaling, and present evidence that areas of low blood flow are more sensitive to the loss of VEGF signaling. We also find that VEGF signaling regulates the intracellular distribution between membrane and cytoplasm of the cell-cell adhesion molecule VE-cadherin in aortic endothelial cells in vivo. Together, these finding identify mechanisms that likely contribute to the dynamic behavior of endothelial cells during aorta morphogenesis.
Collapse
Affiliation(s)
- Julian Jadon
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Alaa A Arraf
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Manar Abboud Asleh
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Mira Zaher
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
26
|
Lee S, Kim Y, Kim YS, Zhang H, Noh M, Kwon YG. CU06-1004 alleviates vascular hyperpermeability in a murine model of hereditary angioedema by protecting the endothelium. Allergy 2023; 78:1333-1346. [PMID: 36789476 DOI: 10.1111/all.15674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Over-release of the vasoactive peptide bradykinin (BK) due to mutation in the SERPING1 gene is the leading cause of hereditary angioedema (HAE). BK directly activates endothelial cells and increases vascular permeability by disrupting the endothelial barrier, leading to angioedema affecting face, lips, extremities, gastrointestinal tract, and larynx. Although various pharmacological treatment options for HAE became available during the last decade, they are presently limited and pose a major economic burden on patients. To identify additional therapeutic options for HAE, we evaluated the effect of CU06-1004, an endothelial dysfunction blocker, on BK-induced vascular hyperpermeability and the HAE murine model. METHODS To investigate the effect of CU06-1004 on BK-induced vascular hyperpermeability in vivo, we pre-administrated WT mice with the drug and then induced vascular leakage through intravenous injection of BK and observed vascular alternation. Then, SERPING1 deficient mice were used for a HAE murine model. For an in vitro model, the HUVEC monolayer was pre-treated with CU06-1004 and then stimulated with BK. RESULTS Bradykinin disrupted the endothelial barrier and formed interendothelial cell gaps, leading to hyperpermeability in vivo and in vitro. However, CU06-1004 treatment protected the endothelial barrier by suppressing Src and myosin light chain activation via BK and alleviated hyperpermeability. CONCLUSION Our study shows that CU06-1004 oral administration significantly reduced vascular hyperpermeability in the HAE murine model by protecting the endothelial barrier function against BK stimulation. Therefore, protecting endothelium against BK with CU06-1004 could serve as a potential prophylactic/therapeutic approach for HAE patients.
Collapse
Affiliation(s)
- Sunghye Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yeomyeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Ye-Seul Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | - Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
27
|
Adzraku SY, Wang G, Cao C, Bao Y, Wang Y, Smith AO, Du Y, Wang H, Li Y, Xu K, Qiao J, Ju W, Zeng L. Robo4 inhibits gamma radiation-induced permeability of a murine microvascular endothelial cell by regulating the junctions. Cell Mol Biol Lett 2023; 28:2. [PMID: 36647012 PMCID: PMC9843922 DOI: 10.1186/s11658-022-00413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Hematopoietic stem cell transplantation involves irradiation preconditioning which causes bone marrow endothelial cell dysfunction. While much emphasis is on the reconstitution of hematopoietic stem cells in the bone marrow microenvironment, endothelial cell preservation is indispensable to overcome the preconditioning damages. This study aims to ascertain the role of Roundabout 4 (Robo4) in regulating irradiation-induced damage to the endothelium. METHODS Microvascular endothelial cells were treated with γ-radiation to establish an endothelial cell injury model. Robo4 expression in the endothelial cells was manipulated employing lentiviral-mediated RNAi and gene overexpression technology before irradiation treatment. The permeability of endothelial cells was measured using qPCR, immunocytochemistry, and immunoblotting to analyze the effect on the expression and distribution of junctional molecules, adherens junctions, tight junctions, and gap junctions. Using Transwell endothelial monolayer staining, FITC-Dextran permeability, and gap junction-mediated intercellular communication (GJIC) assays, we determined the changes in endothelial functions after Robo4 gene manipulation and irradiation. Moreover, we measured the proportion of CD31 expression in endothelial cells by flow cytometry. We analyzed variations between two or multiple groups using Student's t-tests and ANOVA. RESULTS Ionizing radiation upregulates Robo4 expression but disrupts endothelial junctional molecules. Robo4 deletion causes further degradation of endothelial junctions hence increasing the permeability of the endothelial cell monolayer. Robo4 knockdown in microvascular endothelial cells increases the degradation and delocalization of ZO-1, PECAM-1, occludin, and claudin-5 molecules after irradiation. Conversely, connexin 43 expression increases after silencing Robo4 in endothelial cells to induce permeability but are readily destroyed when exposed to 10 Gy of gamma radiation. Also, Robo4 knockdown enhances Y731-VE-cadherin phosphorylation leading to the depletion and destabilization of VE-cadherin at the endothelial junctions following irradiation. However, Robo4 overexpression mitigates irradiation-induced degradation of tight junctional proteins and stabilizes claudin-5 and ZO-1 distribution. Finally, the enhanced expression of Robo4 ameliorates the irradiation-induced depletion of VE-cadherin and connexin 43, improves the integrity of microvascular endothelial cell junctions, and decreases permeability. CONCLUSION This study reveals that Robo4 maintains microvascular integrity after radiation preconditioning treatment by regulating endothelial permeability and protecting endothelial functions. Our results also provided a potential mechanism to repair the bone marrow vascular niche after irradiation by modulating Robo4 expression.
Collapse
Affiliation(s)
- Seyram Yao Adzraku
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Guozhang Wang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Can Cao
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Yurong Bao
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Yizhou Wang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Alhaji Osman Smith
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Yuwei Du
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Haiyang Wang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Yue Li
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Kailin Xu
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Jianlin Qiao
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Wen Ju
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Lingyu Zeng
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| |
Collapse
|
28
|
Moraes CRP, Borba-Junior IT, De Lima F, Silva JRA, Bombassaro B, Palma AC, Mansour E, Velloso LA, Orsi FA, Costa FTM, De Paula EV. Association of Ang/Tie2 pathway mediators with endothelial barrier integrity and disease severity in COVID-19. Front Physiol 2023; 14:1113968. [PMID: 36895630 PMCID: PMC9988918 DOI: 10.3389/fphys.2023.1113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Endothelial barrier (EB) disruption contributes to acute lung injury in COVID-19, and levels of both VEGF-A and Ang-2, which are mediators of EB integrity, have been associated with COVID-19 severity. Here we explored the participation of additional mediators of barrier integrity in this process, as well as the potential of serum from COVID-19 patients to induce EB disruption in cell monolayers. In a cohort from a clinical trial consisting of thirty patients with COVID-19 that required hospital admission due to hypoxia we demonstrate that i) levels of soluble Tie2 were increase, and of soluble VE-cadherin were decreased when compared to healthy individuals; ii) sera from these patients induce barrier disruption in monolayers of endothelial cells; and iii) that the magnitude of this effect is proportional to disease severity and to circulating levels of VEGF-A and Ang-2. Our study confirms and extends previous findings on the pathogenesis of acute lung injury in COVID-19, reinforcing the concept that EB is a relevant component of this disease. Our results pave the way for future studies that can refine our understanding of the pathogenesis of acute lung injury in viral respiratory disorders, and contribute to the identification of new biomarkers and therapeutic targets for these conditions.
Collapse
Affiliation(s)
| | | | - Franciele De Lima
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - André C Palma
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Eli Mansour
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Lício Augusto Velloso
- School of Medical Sciences, University of Campinas, Campinas, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | | | | | - Erich Vinicius De Paula
- School of Medical Sciences, University of Campinas, Campinas, Brazil.,Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
29
|
McEvoy E, Sneh T, Moeendarbary E, Javanmardi Y, Efimova N, Yang C, Marino-Bravante GE, Chen X, Escribano J, Spill F, Garcia-Aznar JM, Weeraratna AT, Svitkina TM, Kamm RD, Shenoy VB. Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity. Nat Commun 2022; 13:7089. [PMID: 36402771 PMCID: PMC9675837 DOI: 10.1038/s41467-022-34701-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the regulation of endothelial junctions as dependent on the feedback between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Simulations reveal that active cell tension can stabilize cadherin bonds, but excessive RhoA signaling can drive bond dissociation and junction failure. While actin polymerization aids gap closure, high levels of Rac1 can induce junction weakening. Combining the modeling framework with experiments, our model predicts the influence of pharmacological treatments on the junction state and identifies that a critical balance between RhoA and Rac1 expression is required to maintain junction stability. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.
Collapse
Affiliation(s)
- Eoin McEvoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biomedical Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Tal Sneh
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Nadia Efimova
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xingyu Chen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jorge Escribano
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
SOD3 Expression in Tumor Stroma Provides the Tumor Vessel Maturity in Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10112729. [DOI: 10.3390/biomedicines10112729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor angiogenesis is one of the hallmarks of solid tumor development. The progressive tumor cells produce the angiogenic factors and promote tumor angiogenesis. However, how the tumor stromal cells influence tumor vascularization is still unclear. In the present study, we evaluated the effects of oral squamous cell carcinoma (OSCC) stromal cells on tumor vascularization. The tumor stromal cells were isolated from two OSCC patients with different subtypes: low invasive verrucous squamous carcinoma (VSCC) and highly invasive squamous cell carcinoma (SCC) and co-xenografted with the human OSCC cell line (HSC-2) on nude mice. In comparison, the CD34+ vessels in HSC-2+VSCC were larger than in HSC-2+SCC. Interestingly, the vessels in the HSC-2+VSCC expressed vascular endothelial cadherin (VE-cadherin), indicating well-formed vascularization. Our microarray data revealed that the expression of extracellular superoxide dismutase, SOD3 mRNA is higher in VSCC stromal cells than in SCC stromal cells. Moreover, we observed that SOD3 colocalized with VE-cadherin on endothelial cells of low invasive stroma xenograft. These data suggested that SOD3 expression in stromal cells may potentially regulate tumor vascularization in OSCC. Thus, our study suggests the potential interest in SOD3-related vascular integrity for a better OSCC therapeutic strategy.
Collapse
|
31
|
Tang H, He Y, Liang Z, Li J, Dong Z, Liao Y. The therapeutic effect of adipose-derived stem cells on soft tissue injury after radiotherapy and their value for breast reconstruction. Stem Cell Res Ther 2022; 13:493. [PMID: 36195925 PMCID: PMC9531407 DOI: 10.1186/s13287-022-02952-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Postmastectomy radiotherapy is considered to be a necessary treatment in the therapy of breast cancer, while it will cause soft tissue damage and complications, which are closely related to the success rate and effectiveness of breast reconstruction. After radiotherapy, cutaneous tissue becomes thin and brittle, and its compliance decreases. Component fat grafting and adipose-derived stem cell therapy are considered to have great potential in treating radiation damage and improving skin compliance after radiotherapy. Main body In this paper, the basic types and pathological mechanisms of skin and soft tissue damage to breast skin caused by radiation therapy are described. The 2015–2021 studies related to stem cell therapy in PubMed were also reviewed. Studies suggest that adipose-derived stem cells exert their biological effects mainly through cargoes carried in extracellular vesicles and soluble secreted factors. Compared to traditional fat graft breast reconstruction, ADSC therapy amplifies the effects of stem cells in it. In order to obtain a more purposeful therapeutic effect, proper stem cell pretreatment may achieve more ideal and safe results. Conclusion Recent research works about ADSCs and other MSCs mainly focus on curative effects in the acute phase of radiation injury, and there is little research about treatment of chronic phase complications. The efficacy of stem cell therapy on alleviating skin fibrosis and its underlying mechanism require further research.
Collapse
Affiliation(s)
- Haojing Tang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yufei He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Zhuokai Liang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jian Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
32
|
Ushakumari CJ, Zhou QL, Wang YH, Na S, Rigor MC, Zhou CY, Kroll MK, Lin BD, Jiang ZY. Neutrophil Elastase Increases Vascular Permeability and Leukocyte Transmigration in Cultured Endothelial Cells and Obese Mice. Cells 2022; 11:cells11152288. [PMID: 35892585 PMCID: PMC9332277 DOI: 10.3390/cells11152288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil elastase (NE) plays a pivotal role in inflammation. However, the mechanism underlying NE-mediated inflammation in obesity remains unclear. Here, we report that NE activates protease-activated receptor-2 (PAR2), stimulates actin filament (F-actin) formation, decreases intercellular junction molecule VE-cadherin expression, and increases the permeability of human arterial endothelial cells (hECs). NE also prompts degradation of VE-cadherin and its binding proteins p120- and β-catenins via MG132-sensitive proteasomes. NE stimulates phosphorylation of myosin light-chain (MLC) and its regulator myosin phosphatase target subunit-1 (MYPT1), a target of Rho kinase (ROCK). Inhibitors of PAR2 and ROCK prohibit NE-induced F-actin formation, MLC phosphorylation, and VE-cadherin reduction in hECs, and impede monocyte transmigration through hEC monolayer pretreated with either neutrophils or NE. Further, administration of an NE inhibitor GW311616A significantly attenuates vascular leakage, leukocyte infiltration, and the expression of proinflammatory cytokines in the white adipose tissue from high-fat diet (HFD)-induced obese mice. Likewise, NE-deficient mice are resistant to HFD-induced vascular leakage in the heart. Together, NE regulates actomyosin cytoskeleton activity and VE-cadherin expression by activating PAR2 signaling in the endothelial cells, leading to increased vascular permeability and leukocyte extravasation. Hence, inhibition of NE is a potential approach to mitigate vascular injury and leukocyte infiltration in obesity-related systemic inflammation.
Collapse
Affiliation(s)
- Chinchu Jagadan Ushakumari
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Qiong L. Zhou
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Yu-Hua Wang
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Sijia Na
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Michael C. Rigor
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Cindy Y. Zhou
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Max K. Kroll
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Benjamin D. Lin
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Zhen Y. Jiang
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
- Correspondence: ; Tel.: +1-617-358-8255
| |
Collapse
|
33
|
Marino M, Martini D, Ciappellano S, Brusamolino A, Gardana C, Battezzati A, Riso P, Porrini M, Bo CD. Cobalamin status is negatively correlated with vascular endothelial (VE)-cadherin in vegetarian and vegan women with a vitamin B12 deficiency. Nutr Res 2022; 105:126-137. [DOI: 10.1016/j.nutres.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
|
34
|
Zhang J, Pan Z, Zhou J, Zhang L, Tang J, Gong S, Li F, Yu B, Zhang Y, Kou J. The myosin II inhibitor, blebbistatin, ameliorates pulmonary endothelial barrier dysfunction in acute lung injury inducedB19 by LPS via NMMHC IIA/Wnt5a/β-catenin pathway. Toxicol Appl Pharmacol 2022; 450:116132. [PMID: 35716767 PMCID: PMC9527152 DOI: 10.1016/j.taap.2022.116132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) or its most advanced form, acute respiratory distress syndrome (ARDS), is a severe inflammatory pulmonary process triggered by varieties of pathophysiological factors, among which endothelial barrier disruption plays a critical role in the progression of ALI/ARDS. As an inhibitor of myosin II, blebbistatin inhibits endothelial barrier damage. This study aimed to investigate the effect of blebbistatin on lung endothelial barrier dysfunction in LPS induced acute lung injury and its potential mechanism. Mice were challenged with LPS (5 mg/kg) by intratracheal instillation for 6 h to disrupt the pulmonary endothelial barrier in the model group. Blebbistatin (5 mg/kg, ip) was administrated 1 h before LPS challenge. The results showed that blebbistatin could significantly attenuate LPS-induced lung injury and pulmonary endothelial barrier dysfunction. And we observed that blebbistatin inhibited the activation of NMMHC IIA/Wnt5a/β-catenin pathway in pulmonary endothelium after LPS treatment. In murine lung vascular endothelial cells (MLECs) and human umbilical vein endothelial cells (HUVECs), we further confirmed that Blebbistatin (1 μmol/L) markedly ameliorated endothelial barrier dysfunction in MLECs and HUVECs by modulating NMMHC IIA/Wnt5a/β-catenin pathway. Our data demonstrated that blebbistatin could inhibit the development of pulmonary endothelial barrier dysfunction and ALI via NMMHC IIA/Wnt5a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jiazhi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziqian Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianhao Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shuaishuai Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
35
|
Hellenthal KEM, Brabenec L, Wagner NM. Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells 2022; 11:cells11121935. [PMID: 35741064 PMCID: PMC9221661 DOI: 10.3390/cells11121935] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic inflammation can be triggered by infection, surgery, trauma or burns. During systemic inflammation, an overshooting immune response induces tissue damage resulting in organ dysfunction and mortality. Endothelial cells make up the inner lining of all blood vessels and are critically involved in maintaining organ integrity by regulating tissue perfusion. Permeability of the endothelial monolayer is strictly controlled and highly organ-specific, forming continuous, fenestrated and discontinuous capillaries that orchestrate the extravasation of fluids, proteins and solutes to maintain organ homeostasis. In the physiological state, the endothelial barrier is maintained by the glycocalyx, extracellular matrix and intercellular junctions including adherens and tight junctions. As endothelial cells are constantly sensing and responding to the extracellular environment, their activation by inflammatory stimuli promotes a loss of endothelial barrier function, which has been identified as a hallmark of systemic inflammation, leading to tissue edema formation and hypotension and thus, is a key contributor to lethal outcomes. In this review, we provide a comprehensive summary of the major players, such as the angiopoietin-Tie2 signaling axis, adrenomedullin and vascular endothelial (VE-) cadherin, that substantially contribute to the regulation and dysregulation of endothelial permeability during systemic inflammation and elucidate treatment strategies targeting the preservation of vascular integrity.
Collapse
|
36
|
Bond A, Bruno V, Johnson J, George S, Ascione R. Development and Preliminary Testing of Porcine Blood-Derived Endothelial-like Cells for Vascular Tissue Engineering Applications: Protocol Optimisation and Seeding of Decellularised Human Saphenous Veins. Int J Mol Sci 2022; 23:ijms23126633. [PMID: 35743073 PMCID: PMC9223800 DOI: 10.3390/ijms23126633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/03/2022] Open
Abstract
Functional endothelial cells (EC) are a critical interface between blood vessels and the thrombogenic flowing blood. Disruption of this layer can lead to early thrombosis, inflammation, vessel restenosis, and, following coronary (CABG) or peripheral (PABG) artery bypass graft surgery, vein graft failure. Blood-derived ECs have shown potential for vascular tissue engineering applications. Here, we show the development and preliminary testing of a method for deriving porcine endothelial-like cells from blood obtained under clinical conditions for use in translational research. The derived cells show cobblestone morphology and expression of EC markers, similar to those seen in isolated porcine aortic ECs (PAEC), and when exposed to increasing shear stress, they remain viable and show mRNA expression of EC markers similar to PAEC. In addition, we confirm the feasibility of seeding endothelial-like cells onto a decellularised human vein scaffold with approximately 90% lumen coverage at lower passages, and show that increasing cell passage results in reduced endothelial coverage.
Collapse
|
37
|
Yavvari P, Laporte A, Elomaa L, Schraufstetter F, Pacharzina I, Daberkow AD, Hoppensack A, Weinhart M. 3D-Cultured Vascular-Like Networks Enable Validation of Vascular Disruption Properties of Drugs In Vitro. Front Bioeng Biotechnol 2022; 10:888492. [PMID: 35769106 PMCID: PMC9234334 DOI: 10.3389/fbioe.2022.888492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Vascular-disrupting agents are an interesting class of anticancer compounds because of their combined mode of action in preventing new blood vessel formation and disruption of already existing vasculature in the immediate microenvironment of solid tumors. The validation of vascular disruption properties of these drugs in vitro is rarely addressed due to the lack of proper in vitro angiogenesis models comprising mature and long-lived vascular-like networks. We herein report an indirect coculture model of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) to form three-dimensional profuse vascular-like networks. HUVECs embedded and sandwiched in the collagen scaffold were cocultured with HDFs located outside the scaffold. The indirect coculture approach with the vascular endothelial growth factor (VEGF) producing HDFs triggered the formation of progressively maturing lumenized vascular-like networks of endothelial cells within less than 7 days, which have proven to be viably maintained in culture beyond day 21. Molecular weight-dependent Texas red-dextran permeability studies indicated high vascular barrier function of the generated networks. Their longevity allowed us to study the dose-dependent response upon treatment with the three known antiangiogenic and/or vascular disrupting agents brivanib, combretastatin A4 phosphate (CA4P), and 6´-sialylgalactose (SG) via semi-quantitative brightfield and qualitative confocal laser scanning microscopic (CLSM) image analysis. Compared to the reported data on in vivo efficacy of these drugs in terms of antiangiogenic and vascular disrupting effects, we observed similar trends with our 3D model, which are not reflected in conventional in vitro angiogenesis assays. High-vascular disruption under continuous treatment of the matured vascular-like network was observed at concentrations ≥3.5 ng·ml−1 for CA4P and ≥300 nM for brivanib. In contrast, SG failed to induce any significant vascular disruption in vitro. This advanced model of a 3D vascular-like network allows for testing single and combinational antiangiogenic and vascular disrupting effects with optimized dosing and may thus bridge the gap between the in vitro and in vivo experiments in validating hits from high-throughput screening. Moreover, the physiological 3D environment mimicking in vitro assay is not only highly relevant to in vivo studies linked to cancer but also to the field of tissue regeneration.
Collapse
Affiliation(s)
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Inga Pacharzina
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Anke Hoppensack
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
- *Correspondence: Marie Weinhart, ,
| |
Collapse
|
38
|
Wang Y, Lin K, Zhang L, Lin Y, Yu H, Xu Y, Fu L, Pi L, Li J, Mai H, Wei B, Jiang Z, Che D, Gu X. The rs7404339 AA Genotype in CDH5 Contributes to Increased Risks of Kawasaki Disease and Coronary Artery Lesions in a Southern Chinese Child Population. Front Cardiovasc Med 2022; 9:760982. [PMID: 35571208 PMCID: PMC9095914 DOI: 10.3389/fcvm.2022.760982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Kawasaki disease (KD) is an acute, self-limited febrile illness of unknown cause. And it predominantly affects children <5 years and the main complication is coronary artery lesion (CAL). Studies demonstrated that vascular endothelial cells (VECs) played a very important role in the CAL of KD. VE-cad encoded by CDH5 may exert a relevant role in endothelial cell biology through controlling the cohesion of the intercellular junctions. The pathogenesis of KD remains unclear and genetic factors may increase susceptibility of KD. However, the relationship between CDH5 polymorphisms and KD susceptibility has not been reported before. The present study is aimed at investigating whether the rs7404339 polymorphism in CDH5 is associated with KD susceptibility and CAL in a southern Chinese child population. Methods and Results We recruited 1,335 patients with KD and 1,669 healthy children. Each participant had supplied 2 mL of fresh blood in the clinical biologic bank at our hospital for other studies. Multiplex PCR is used to assess the genotypes of rs7404339 polymorphism in CDH5. According to the results, we found significant correlated relationship between rs7404339 polymorphism in CDH5 and KD susceptibility [AA vs. GG: adjusted odds ratio (OR) = 1.43, 95% confidence interval (CI) = 1.00-2.05; p = 0.0493; recessive model: adjusted OR = 1.44, 95% CI = 1.01-2.06, P = 0.0431]. In further stratified analysis, we found that children younger than 60 months (adjusted OR = 1.46, 95% CI = 1.01-2.10; p = 0.0424) and male (adjusted OR = 1.70, 95% CI = 1.09-2.65; p = 0.0203) with the rs7404339 AA genotype in CDH5 had a higher risk of KD than carriers of the GA/GG genotype. Furthermore, stratification analysis revealed that patients with the rs7404339 AA genotype exhibited the significantly higher onset risk for CAL than carriers of the GA/GG genotype (adjusted age and gender odds ratio = 1.56, 95% CI = 1.01-2.41; P = 0.0433). Conclusion Our results showed that rs7404339 AA genotype in CDH5 is significant associated with KD susceptibility. And children younger than 60 months and male with the rs7404339 AA genotype had a higher risk of KD than carriers with the GA/GG genotype. Furthermore, patients with the rs7404339 AA genotype exhibited a significantly higher risk of CAL complication than carriers of the GA/GG genotype.
Collapse
Affiliation(s)
- Yishuai Wang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Kun Lin
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Linyuan Zhang
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yueling Lin
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinqing Li
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hanran Mai
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Wei
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiyong Jiang
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
39
|
Schreiner TG, Romanescu C, Popescu BO. The Blood-Brain Barrier-A Key Player in Multiple Sclerosis Disease Mechanisms. Biomolecules 2022; 12:538. [PMID: 35454127 PMCID: PMC9025898 DOI: 10.3390/biom12040538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, multiple sclerosis (MS), a chronic neuroinflammatory disease with severe personal and social consequences, has undergone a steady increase in incidence and prevalence rates worldwide. Despite ongoing research and the development of several novel therapies, MS pathology remains incompletely understood, and the prospect for a curative treatment continues to be unpromising in the near future. A sustained research effort, however, should contribute to a deeper understanding of underlying disease mechanisms, which will undoubtedly yield improved results in drug development. In recent years, the blood-brain barrier (BBB) has increasingly become the focus of many studies as it appears to be involved in both MS disease onset and progression. More specifically, neurovascular unit damage is believed to be involved in the critical process of CNS immune cell penetration, which subsequently favors the development of a CNS-specific immune response, leading to the classical pathological and clinical hallmarks of MS. The aim of the current narrative review is to merge the relevant evidence on the role of the BBB in MS pathology in a comprehensive and succinct manner. Firstly, the physiological structure and functions of the BBB as a component of the more complex neurovascular unit are presented. Subsequently, the authors review the specific alteration of the BBB encountered in different stages of MS, focusing on both the modifications of BBB cells in neuroinflammation and the CNS penetration of immune cells. Finally, the currently accepted theories on neurodegeneration in MS are summarized.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Constantin Romanescu
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Section IV, “St. Parascheva” Infectious Disease Hospital, 700116 Iași, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
40
|
Yang K, Holt M, Fan M, Lam V, Yang Y, Ha T, Williams DL, Li C, Wang X. Cardiovascular Dysfunction in COVID-19: Association Between Endothelial Cell Injury and Lactate. Front Immunol 2022; 13:868679. [PMID: 35401579 PMCID: PMC8984030 DOI: 10.3389/fimmu.2022.868679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious respiratory disease propagated by a new virus known as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has resulted in global healthcare crises. Emerging evidence from patients with COVID-19 suggests that endothelial cell damage plays a central role in COVID-19 pathogenesis and could be a major contributor to the severity and mortality of COVID-19. Like other infectious diseases, the pathogenesis of COVID-19 is closely associated with metabolic processes. Lactate, a potential biomarker in COVID-19, has recently been shown to mediate endothelial barrier dysfunction. In this review, we provide an overview of cardiovascular injuries and metabolic alterations caused by SARS-CoV-2 infection. We also propose that lactate plays a potential role in COVID-19-driven endothelial cell injury.
Collapse
Affiliation(s)
- Kun Yang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Matthew Holt
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Victor Lam
- College of Arts and Science, New York University, New York City, NY, United States
| | - Yong Yang
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
41
|
Fernandes A, Hosseini V, Vogel V, Lovchik RD. Engineering solutions for biological studies of flow-exposed endothelial cells on orbital shakers. PLoS One 2022; 17:e0262044. [PMID: 35061745 PMCID: PMC8782315 DOI: 10.1371/journal.pone.0262044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Shear stress is extremely important for endothelial cell (EC) function. The popularity of 6-well plates on orbital shakers to impose shear stress on ECs has increased among biologists due to their low cost and simplicity. One characteristic of such a platform is the heterogeneous flow profile within a well. While cells in the periphery are exposed to a laminar and high-velocity pulsatile flow that mimics physiological conditions, the flow in the center is disturbed and imposes low shear stress on the cells, which is characteristic of atheroprone regions. For studies where such heterogeneity is not desired, we present a simple cell-patterning technique to selectively prevent cell growth in the center of the well and facilitate the exclusive collection and analysis of cells in the periphery. This guarantees that cell phenotypes will not be influenced by secreted factors from cells exposed to other shear profiles nor that interesting results are obscured by mixing cells from different regions. We also present a multi-staining platform that compartmentalizes each well into 5 smaller independent regions: four at the periphery and one in the center. This is ideal for studies that aim to grow cells on the whole well surface, for comparison with previous work and minimal interference in the cell culture, but require screening of markers by immunostaining afterwards. It allows to compare different regions of the well, reduces antibody-related costs, and allows the exploration of multiple markers essential for high-content screening of cell response. By increasing the versatility of the 6-well plate on an orbital shaker system, we hope that these two solutions motivate biologists to pursue studies on EC mechanobiology and beyond.
Collapse
Affiliation(s)
- Andreia Fernandes
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Vahid Hosseini
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Viola Vogel
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | | |
Collapse
|
42
|
Wang Z, Lu YL, Chen M, Xu HF, Zheng LR. Piceatannol alleviates glucolipotoxicity induced vascular barrier injury through inhibition of the ROS/NF-kappa B signaling pathway. Am J Transl Res 2022; 14:120-134. [PMID: 35173833 PMCID: PMC8829620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/25/2021] [Indexed: 06/14/2023]
Abstract
Vascular barrier dysfunction is considered as the initial and critical event in atherosclerosis progression. Recent studies have revealed that treatment with piceatannol (PIC) alleviates both acute and chronic responses to vascular injury. We investigated whether PIC treatment would have beneficial effects on glucolipotoxicity-induced endothelial barrier dysfunction. Target proteins of PIC were identified from several online databases. Then, we confirmed the effect of PIC on endothelial barrier function. PIC treatment mitigated the impairment of endothelial cell motility, adhesion and migration ability associated with high glucose/lipid stimulation. PIC stabilized cytoskeletal reorganization and expression of cell cytoskeletal associated proteins GTPase. PIC reversed changes in critical vascular junction proteins and thus preserved endothelial barrier function and permeability. Finally, we confirmed that reducing of nuclear factor kappa B (NF-κB)/p65 activation and elimination of reactive oxygen species (ROS) were involved in the protective effect of PIC against glucolipotoxicity-induced vascular barrier injury. We identify PIC as a promising therapeutic strategy for glucolipotoxicity-induced endothelial barrier injury.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Yun-Long Lu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Miao Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Hong-Fei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Liang-Rong Zheng
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| |
Collapse
|
43
|
Cholenic acid derivative UniPR1331 impairs tumor angiogenesis via blockade of VEGF/VEGFR2 in addition to Eph/ephrin. Cancer Gene Ther 2022; 29:908-917. [PMID: 34426652 PMCID: PMC9293752 DOI: 10.1038/s41417-021-00379-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is crucial for tumor growth and metastatization, and is considered a promising therapeutic target. Unfortunately, drugs directed against a specific proangiogenic growth factor or receptor turned out to be of limited benefit for oncology patients, likely due to the high biochemical redundancy of the neovascularization process. In this scenario, multitarget compounds that are able to simultaneously tackle different proangiogenic pathways are eagerly awaited. UniPR1331 is a 3β-hydroxy-Δ5-cholenic acid derivative, which is already known to inhibit Eph-ephrin interaction. Here, we employed an analysis pipeline consisting of molecular modeling and simulation, surface plasmon resonance spectrometry, biochemical assays, and endothelial cell models to demonstrate that UniPR1331 directly interacts with the vascular endothelial growth factor receptor 2 (VEGFR2) too. The binding of UniPR1331 to VEGFR2 prevents its interaction with the natural ligand vascular endothelial growth factor and subsequent autophosphorylation, signal transduction, and in vitro proangiogenic activation of endothelial cells. In vivo, UniPR1331 inhibits tumor cell-driven angiogenesis in zebrafish. Taken together, these data shed light on the pleiotropic pharmacological effect of UniPR1331, and point to Δ5-cholenic acid as a promising molecular scaffold for the development of multitarget antiangiogenic compounds.
Collapse
|
44
|
Abstract
The development of vasculature in vivo is an extremely complex process that requires temporal and spatial coordination between multiple cell types to produce an effective vessel. The formation of vasculature from preexisting blood vessels, known as angiogenesis, plays important roles in several physiological and pathological processes, including wound healing, organ development and growth, ischemia, inflammatory disorders, fibrosis, and cancer. Means to deconstruct these complicated biological systems are necessary to gain mechanistic insight into their development, function, and modulation that can be tested in in vivo models and ultimately the clinic. In this chapter, we will first review the classical in vitro techniques to study angiogenesis. Next, we will explore the exciting recent advances that rely on 3D multicellular systems to more accurately mimic vasculature development in vitro. Finally, we will discuss the applications of in vitro angiogenic methods to study related vasculature phenomena, such as vasculogenic mimicry.
Collapse
Affiliation(s)
- Ralph Francescone
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Marvin and Concetta Greenberg, Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Débora Barbosa Vendramini-Costa
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
- Marvin and Concetta Greenberg, Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
45
|
HIV-1 Tat and Heparan Sulfate Proteoglycans Orchestrate the Setup of in Cis and in Trans Cell-Surface Interactions Functional to Lymphocyte Trans-Endothelial Migration. Molecules 2021; 26:molecules26247488. [PMID: 34946571 PMCID: PMC8705413 DOI: 10.3390/molecules26247488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This "two-way" activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1.
Collapse
|
46
|
Multifaceted Pathomolecular Mechanism of a VWF Large Deletion Involved in the Pathogenesis of Severe VWD. Blood Adv 2021; 6:1038-1053. [PMID: 34861678 PMCID: PMC8945295 DOI: 10.1182/bloodadvances.2021005895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022] Open
Abstract
The present study demonstrates the dominant-negative impact of an in-frame large deletion on VWF biosynthesis and biogenesis of the WPBs. The malformed WPBs/altered trafficking of its inflammatory cargos cause distresses in endothelial cell signaling pathways and phenotype.
An in-frame heterozygous large deletion of exons 4 through 34 of the von Willebrand factor (VWF) gene was identified in a type 3 von Willebrand disease (VWD) index patient (IP), as the only VWF variant. The IP exhibited severe bleeding episodes despite prophylaxis treatment, with a short VWF half-life after infusion of VWF/factor VIII concentrates. Transcript analysis confirmed transcription of normal VWF messenger RNA besides an aberrant deleted transcript. The IP endothelial colony-forming cells (ECFCs) exhibited a defect in the VWF multimers and Weibel-Palade bodies (WPBs) biogenesis, although demonstrating normal VWF secretion compared with healthy cells. Immunostaining of IP-ECFCs revealed subcellular mislocalization of WPBs pro-inflammatory cargos angiopoietin-2 (Ang2, nuclear accumulation) and P-selectin. Besides, the RNA-sequencing (RNA-seq) analysis showed upregulation of pro-inflammatory and proangiogenic genes, P-selectin, interleukin 8 (IL-8), IL-6, and GROα, copackaged with VWF into WPBs. Further, whole-transcriptome RNA-seq and subsequent gene ontology (GO) enrichment analysis indicated the most enriched GO-biological process terms among the differentially expressed genes in IP-ECFCs were regulation of cell differentiation, cell adhesion, leukocyte adhesion to vascular endothelial, blood vessel morphogenesis, and angiogenesis, which resemble downstream signaling pathways associated with inflammatory stimuli and Ang2 priming. Accordingly, our functional experiments exhibited an increased endothelial cell adhesiveness and interruption in endothelial cell–cell junctions of the IP-ECFCs. In conclusion, the deleted VWF has a dominant-negative impact on multimer assembly and the biogenesis of WPBs, leading to altered trafficking of their pro-inflammatory cargos uniquely, which, in turn, causes changes in cellular signaling pathways, phenotype, and function of the endothelial cells.
Collapse
|
47
|
Binding of the Andes Virus Nucleocapsid Protein to RhoGDI Induces the Release and Activation of the Permeability Factor RhoA. J Virol 2021; 95:e0039621. [PMID: 34133221 DOI: 10.1128/jvi.00396-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Andes virus (ANDV) nonlytically infects pulmonary microvascular endothelial cells (PMECs), causing acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every PMEC is infected; however, the mechanism by which ANDV induces vascular permeability and edema remains to be resolved. The ANDV nucleocapsid (N) protein activates the GTPase RhoA in primary human PMECs, causing VE-cadherin internalization from adherens junctions and PMEC permeability. We found that ANDV N protein failed to bind RhoA but coprecipitates RhoGDI (Rho GDP dissociation inhibitor), the primary RhoA repressor that normally sequesters RhoA in an inactive state. ANDV N protein selectively binds the RhoGDI C terminus (residues 69 to 204) but fails to form ternary complexes with RhoA or inhibit RhoA binding to the RhoGDI N terminus (residues 1 to 69). However, we found that ANDV N protein uniquely inhibits RhoA binding to an S34D phosphomimetic RhoGDI mutant. Hypoxia and vascular endothelial growth factor (VEGF) increase RhoA-induced PMEC permeability by directing protein kinase Cα (PKCα) phosphorylation of S34 on RhoGDI. Collectively, ANDV N protein alone activates RhoA by sequestering and reducing RhoGDI available to suppress RhoA. In response to hypoxia and VEGF-activated PKCα, ANDV N protein additionally directs the release of RhoA from S34-phosphorylated RhoGDI, synergistically activating RhoA and PMEC permeability. These findings reveal a fundamental edemagenic mechanism that permits ANDV to amplify PMEC permeability in hypoxic HPS patients. Our results rationalize therapeutically targeting PKCα and opposing protein kinase A (PKA) pathways that control RhoGDI phosphorylation as a means of resolving ANDV-induced capillary permeability, edema, and HPS. IMPORTANCE HPS-causing hantaviruses infect pulmonary endothelial cells (ECs), causing vascular leakage, pulmonary edema, and a 35% fatal acute respiratory distress syndrome (ARDS). Hantaviruses do not lyse or disrupt the endothelium but dysregulate normal EC barrier functions and increase hypoxia-directed permeability. Our findings reveal a novel underlying mechanism of EC permeability resulting from ANDV N protein binding to RhoGDI, a regulatory protein that normally maintains edemagenic RhoA in an inactive state and inhibits EC permeability. ANDV N sequesters RhoGDI and enhances the release of RhoA from S34-phosphorylated RhoGDI. These findings indicate that ANDV N induces the release of RhoA from PKC-phosphorylated RhoGDI, synergistically enhancing hypoxia-directed RhoA activation and PMEC permeability. Our data suggest inhibiting PKC and activating PKA phosphorylation of RhoGDI as mechanisms of inhibiting ANDV-directed EC permeability and therapeutically restricting edema in HPS patients. These findings may be broadly applicable to other causes of ARDS.
Collapse
|
48
|
Moon S, Chang MS, Koh SH, Choi YK. Repair Mechanisms of the Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int J Mol Sci 2021; 22:ijms22168543. [PMID: 34445248 PMCID: PMC8395233 DOI: 10.3390/ijms22168543] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.
Collapse
Affiliation(s)
- Sunhong Moon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Mi-Sook Chang
- Department of Oral Anatomy, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-0558; Fax: +82-2-444-3490
| |
Collapse
|
49
|
Weng J, Chen Z, Li J, He Q, Chen D, Yang L, Su H, Huang J, Yu S, Huang Q, Xu Q, Guo X. Advanced glycation end products induce endothelial hyperpermeability via β-catenin phosphorylation and subsequent up-regulation of ADAM10. J Cell Mol Med 2021; 25:7746-7759. [PMID: 34227224 PMCID: PMC8358892 DOI: 10.1111/jcmm.16659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial hyperpermeability is the initial event in the development of diabetic microvascular complications, and advanced glycation end products (AGEs) are suggested to cause much of the endothelial hyperpermeability associated with diabetes mellitus, but the molecular mechanism remains to be characterized. β-catenin reportedly plays dual functions in maintaining normal endothelial permeability by serving both as an adhesive component and a signal transduction component. Here, we found that AGEs induced the phosphorylation of β-catenin at residues Y654 and Y142 and the endothelial hyperpermeability was reversed when the two residues were blocked. In mechanism, phosphorylation of Y654 was blocked by Src inactivation, whereas phosphorylation of Y142 was reduced by a focal adhesion kinase inhibitor. β-catenin Y654 phosphorylation induced by AGEs facilitated the dissociation of vascular endothelial (VE)-cadherin/β-catenin and the impairment of adherens junctions (AJs), whereas β-catenin Y142 phosphorylation favoured the dissociation of β-catenin and α-catenin. Further investigation revealed that β-catenin Y142 phosphorylation was required for AGEs-mediated β-catenin nuclear translocation, and this nuclear-located β-catenin subsequently activated the TCF/LEF pathway. This pathway promotes the transcription of the Wnt target, ADAM10 (a disintegrin and metalloprotease 10), which mediates VE-cadherin shedding and leads to further impairment of AJs. In summary, our study showed the role of β-catenin Y654 and Y142 phosphorylation in AGEs-mediated endothelial hyperpermeability through VE-cadherin/β-catenin/α-catenin dissociation and up-regulation of ADAM10, thereby advancing our understanding of the underlying mechanisms of AGEs-induced microvascular hyperpermeability.
Collapse
Affiliation(s)
- Jie Weng
- Department of Pulmonary and Critical Care MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhenfeng Chen
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jieyu Li
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qi He
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Deshu Chen
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Lin Yang
- Guangzhou Special Service Sanatorium Center of the Rocket ForceGuangzhouChina
| | - Haiying Su
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Junlin Huang
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shengxiang Yu
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qiaobing Huang
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qiulin Xu
- Department of Emergency and Critical MedicineGuangdong Provincial People’s HospitalGuangdong Academy of Medical ScienceGuangzhouChina
| | - Xiaohua Guo
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
50
|
Gholami S, Mazidi Z, Pahlavan S, Moslem F, Hosseini M, Taei A, Hesaraki M, Barekat M, Aghdami N, Baharvand H. A Novel Insight into Endothelial and Cardiac Cells Phenotype in Systemic Sclerosis Using Patient-Derived Induced Pluripotent Stem Cell. CELL JOURNAL 2021; 23:273-287. [PMID: 34308570 PMCID: PMC8286459 DOI: 10.22074/cellj.2021.7244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/26/2020] [Indexed: 12/03/2022]
Abstract
Objective Systemic sclerosis (SSc) is a connective tissue disease associated with vascular damage and multi organ
fibrotic changes with unknown pathogenesis. Most SSc patients suffer from defective angiogenesis/vasculogenesis
and cardiac conditions leading to high mortality rates. We aimed to investigate the cardiovascular phenotype of SSc by
cardiogenic differentiation of SSc induced pluripotent stem cells (iPSC).
Materials and Methods In this experimental study, we generated iPSC from two diffuse SSc patients, followed by
successful differentiation into endothelial cells (ECs) and cardiomyocytes (CMs).
Results SSc-derived EC (SSc-EC) expressed KDR, a nearly EC marker, similar to healthy control-EC (C1-EC). After
sorting and culturing KDR+ cells, the resulting EC expressed CD31, a late endothelial marker, but vascular endothelial
(VE)-cadherin expression markedly dropped resulting in a functional defect as reflected in tube formation failure of
SSc-EC. Interestingly, upregulation of SNAI1 (snail family transcriptional repressor 1) was observed in SSc-EC which
might underlie VE-cadherin downregulation. Furthermore, SSc-derived CM (SSc-CM) successfully expressed cardiac-
specific markers including ion channels, resulting in normal physiological behavior and responsiveness to cardioactive
drugs.
Conclusion This study provides an insight into impaired angiogenesis observed in SSc patients by evaluating in vitro
cardiovascular differentiation of SSc iPSC.
Collapse
Affiliation(s)
- Sedigheh Gholami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Zahra Mazidi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fariba Moslem
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahya Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|