1
|
Sun Y, Li G, Hong H, Zhu L, Kung HF, Zhang Y, Zhu J. Serotonin transporter imaging agent as a probe for β-cells of pancreas. Nucl Med Biol 2024; 130-131:108894. [PMID: 38422917 DOI: 10.1016/j.nucmedbio.2024.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Diabetes mellitus (DM) is one of the major diseases in the world. Nuclear medicine imaging may be able to detect functional status of pancreatic β cells in vivo, which might elucidate the pathological mechanisms of diabetes and develop individualized treatment plans. In this study, we evaluated the ability of [125I]ADAM, a serotonin transporter (SERT) imaging agent, as a probe for detecting pancreatic β-cell mass (BCM). METHODS In vitro cell studies were evaluated in INS-1 cells (rat islet β cell line). Biodistribution studies were performed in male normal Sprague-Dawley rats and alloxan-induced type 1 diabetes mellitus (T1DM) rats. Distribution and expression of SERT protein in pancreas of rats were also measured by immunofluorescence staining and Western blot. RESULTS In vitro cell studies showed that the concentration of [125I]ADAM associated with the INS-1 cells was increased gradually with incubation time, and the SERT specific inhibitor, escitalopram, exhibited the inhibitory effect on this interaction. Biodistribution studies also showed that the uptake of [125I]ADAM in the pancreas of normal rats was decreased in the presence of escitalopram. However, in the T1DM rat model with a significant β cells reduction, the uptake of pancreas was increased when compared with the control. Through immunofluorescence staining and Western blot, it was found that both the endocrine and exocrine cells of the normal pancreas expressed SERT protein, and the level of SERT protein in the exocrine cells was higher than islets. In the diabetic state, the expression of SERT in the exocrine cells was further increased. CONCLUSIONS The SERT imaging agent, [125I]ADAM, at the present form will not be suitable for imaging β cells, specifically because there were extraordinarily high non-specific signals contributing from the exocrine cells of pancreas. In addition, we noticed that the level of SERT expression was abnormally elevated in the diabetic state, which might provide an unexpected target for studying the pathological mechanisms of diabetes.
Collapse
Affiliation(s)
- Yuli Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Guangwen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Haiyan Hong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Roberts FL, Cataldo LR, Fex M. Monoamines' role in islet cell function and type 2 diabetes risk. Trends Mol Med 2023; 29:1045-1058. [PMID: 37722934 DOI: 10.1016/j.molmed.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023]
Abstract
The two monoamines serotonin and melatonin have recently been highlighted as potent regulators of islet hormone secretion and overall glucose homeostasis in the body. In fact, dysregulated signaling of both amines are implicated in β-cell dysfunction and development of type 2 diabetes mellitus (T2DM). Serotonin is a key player in β-cell physiology and plays a role in expansion of β-cell mass. Melatonin regulates circadian rhythm and nutrient metabolism and reduces insulin release in human and rodent islets in vitro. Herein, we focus on the role of serotonin and melatonin in islet physiology and the pathophysiology of T2DM. This includes effects on hormone secretion, receptor expression, genetic variants influencing β-cell function, melatonin treatment, and compounds that alter serotonin availability and signaling.
Collapse
Affiliation(s)
- Fiona Louise Roberts
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden
| | - Luis Rodrigo Cataldo
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden; The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Malin Fex
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden.
| |
Collapse
|
3
|
Bini J, Carson RE, Cline GW. Noninvasive Quantitative PET Imaging in Humans of the Pancreatic Beta-Cell Mass Biomarkers VMAT2 and Dopamine D2/D3 Receptors In Vivo. Methods Mol Biol 2023; 2592:61-74. [PMID: 36507985 DOI: 10.1007/978-1-0716-2807-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noninvasive quantitative imaging of beta-cells can provide information on changes in cellular transporters, receptors, and signaling proteins that may affect function and/or loss of mass, both of which contribute to the loss of insulin secretion and glucose regulation of patients with type 1 or type 2 diabetes (T1D/T2D). We have developed and optimized the use of two positron emission tomography (PET) radioligands, [18F]FP-(+)-DTBZ and [11C](+)-PHNO, targeting beta-cell VMAT2 and dopamine (D2/D3) receptors, respectively. Here we describe our optimized methodology for the clinical use of these two tracers for quantitative PET imaging of beta-cell biomarkers in vivo. We also briefly discuss our previous results and their implications and value towards extending the use of PET radioligand beyond the original goal of quantitative imaging of beta-cell mass to the potential to provide insight into the biology of beta-cell loss of mass and/or function and to evaluate the efficacy of therapeutics to prevent or restore functional beta-cell mass.
Collapse
Affiliation(s)
- Jason Bini
- PET Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Richard E Carson
- PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Inhibition of VMAT2 by β2-adrenergic agonists, antagonists, and the atypical antipsychotic ziprasidone. Commun Biol 2022; 5:1283. [PMID: 36418492 PMCID: PMC9684503 DOI: 10.1038/s42003-022-04121-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Vesicular monoamine transporter 2 (VMAT2) is responsible for packing monoamine neurotransmitters into synaptic vesicles for storage and subsequent neurotransmission. VMAT2 inhibitors are approved for symptomatic treatment of tardive dyskinesia and Huntington's chorea, but despite being much-studied inhibitors their exact binding site and mechanism behind binding and inhibition of monoamine transport are not known. Here we report the identification of several approved drugs, notably β2-adrenergic agonists salmeterol, vilanterol and formoterol, β2-adrenergic antagonist carvedilol and the atypical antipsychotic ziprasidone as inhibitors of rat VMAT2. Further, plausible binding modes of the established VMAT2 inhibitors reserpine and tetrabenazine and hit compounds salmeterol and ziprasidone were identified using molecular dynamics simulations and functional assays using VMAT2 wild-type and mutants. Our findings show VMAT2 as a potential off-target of treatments with several approved drugs in use today and can also provide important first steps in both drug repurposing and therapy development targeting VMAT2 function.
Collapse
|
5
|
Pan X, Tao S, Tong N. Potential Therapeutic Targeting Neurotransmitter Receptors in Diabetes. Front Endocrinol (Lausanne) 2022; 13:884549. [PMID: 35669692 PMCID: PMC9163348 DOI: 10.3389/fendo.2022.884549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Neurotransmitters are signaling molecules secreted by neurons to coordinate communication and proper function among different sections in the central neural system (CNS) by binding with different receptors. Some neurotransmitters as well as their receptors are found in pancreatic islets and are involved in the regulation of glucose homeostasis. Neurotransmitters can act with their receptors in pancreatic islets to stimulate or inhibit the secretion of insulin (β cell), glucagon (α cell) or somatostatin (δ cell). Neurotransmitter receptors are either G-protein coupled receptors or ligand-gated channels, their effects on blood glucose are mainly decided by the number and location of them in islets. Dysfunction of neurotransmitters receptors in islets is involved in the development of β cell dysfunction and type 2 diabetes (T2D).Therapies targeting different transmitter systems have great potential in the prevention and treatment of T2D and other metabolic diseases.
Collapse
Affiliation(s)
- Xiaohui Pan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetes and Islet Transplantation, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shibing Tao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology, Ziyang First People’s Hospital, Ziyang, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetes and Islet Transplantation, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Nanwei Tong,
| |
Collapse
|
6
|
Cheung P, Eriksson O. The Current State of Beta-Cell-Mass PET Imaging for Diabetes Research and Therapies. Biomedicines 2021; 9:1824. [PMID: 34944640 PMCID: PMC8698817 DOI: 10.3390/biomedicines9121824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Diabetes is a chronic metabolic disease affecting over 400 million people worldwide and one of the leading causes of death, especially in developing nations. The disease is characterized by chronic hyperglycemia, caused by defects in the insulin secretion or action pathway. Current diagnostic methods measure metabolic byproducts of the disease such as glucose level, glycated hemoglobin (HbA1c), insulin or C-peptide levels, which are indicators of the beta-cell function. However, they inaccurately reflect the disease progression and provide poor longitudinal information. Beta-cell mass has been suggested as an alternative approach to study disease progression in correlation to beta-cell function, as it behaves differently in the diabetes physiopathology. Study of the beta-cell mass, however, requires highly invasive and potentially harmful procedures such as pancreatic biopsies, making diagnosis and monitoring of the disease tedious. Nuclear medical imaging techniques using radiation emitting tracers have been suggested as strong non-invasive tools for beta-cell mass. A highly sensitive and high-resolution technique, such as positron emission tomography, provides an ideal solution for the visualization of beta-cell mass, which is particularly essential for better characterization of a disease such as diabetes, and for estimating treatment effects towards regeneration of the beta-cell mass. Development of novel, validated biomarkers that are aimed at beta-cell mass imaging are thus highly necessary and would contribute to invaluable breakthroughs in the field of diabetes research and therapies. This review aims to describe the various biomarkers and radioactive probes currently available for positron emission tomography imaging of beta-cell mass, as well as highlight the need for precise quantification and visualization of the beta-cell mass for designing new therapy strategies and monitoring changes in the beta-cell mass during the progression of diabetes.
Collapse
Affiliation(s)
- Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden;
| | | |
Collapse
|
7
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
8
|
Murakami T, Fujimoto H, Inagaki N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol (Lausanne) 2021; 12:714348. [PMID: 34248856 PMCID: PMC8270651 DOI: 10.3389/fendo.2021.714348] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
9
|
Sakano D, Uefune F, Tokuma H, Sonoda Y, Matsuura K, Takeda N, Nakagata N, Kume K, Shiraki N, Kume S. VMAT2 Safeguards β-Cells Against Dopamine Cytotoxicity Under High-Fat Diet-Induced Stress. Diabetes 2020; 69:2377-2391. [PMID: 32826296 PMCID: PMC7576560 DOI: 10.2337/db20-0207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Vesicular monoamine transporter 2 (VMAT2) uptakes cytoplasmic monoamines into vesicles for storage. VMAT2 plays a role in modulating insulin release by regulating dopamine levels in the pancreas, although the exact mechanism remains elusive. We found that VMAT2 expression in β-cells specifically increases under high blood glucose conditions. The islets isolated from β-cell-specific Vmat2 knockout (βVmat2KO) mice show elevated insulin secretion levels in response to glucose stimulation. Under prolonged high-fat diet feedings, the βVmat2KO mice exhibit impaired glucose and insulin tolerance and progressive β-cell dysfunction. Here we demonstrate VMAT2 uptake of dopamine to protect dopamine from degradation by monoamine oxidase, thereby safeguarding β-cells from excess reactive oxygen species (ROS) exposure. In the context of high demand for insulin secretion, the absence of VMAT2 leads to elevated ROS in β-cells, which accelerates β-cell dedifferentiation and β-cell loss. Therefore, VMAT2 controls the amount of dopamine in β-cells, thereby protecting pancreatic β-cells from excessive oxidative stress.
Collapse
Affiliation(s)
- Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Fumiya Uefune
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hiraku Tokuma
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yuki Sonoda
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kumi Matsuura
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Naoki Takeda
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
10
|
Demine S, Schulte ML, Territo PR, Eizirik DL. Beta Cell Imaging-From Pre-Clinical Validation to First in Man Testing. Int J Mol Sci 2020; 21:E7274. [PMID: 33019671 PMCID: PMC7582644 DOI: 10.3390/ijms21197274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2ga as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers.
Collapse
Affiliation(s)
- Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA;
| | - Michael L. Schulte
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.L.S.); (P.R.T.)
| | - Paul R. Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.L.S.); (P.R.T.)
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Decio L. Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA;
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
11
|
Cong GZ, Ghosh KK, Mishra S, Gulyás M, Kovács T, Máthé D, Padmanabhan P, Gulyás B. Targeted pancreatic beta cell imaging for early diagnosis. Eur J Cell Biol 2020; 99:151110. [PMID: 33070042 DOI: 10.1016/j.ejcb.2020.151110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta cells are important in blood glucose level regulation. As type 1 and 2 diabetes are getting prevalent worldwide, we need to explore new methods for early detection of beta cell-related afflictions. Using bioimaging techniques to measure beta cell mass is crucial because a decrease in beta cell density is seen in diseases such as diabetes and thus can be a new way of diagnosis for such diseases. We also need to appraise beta cell purity in transplanted islets for type 1 diabetes patients. Sufficient amount of functional beta cells must also be determined before being transplanted to the patients. In this review, indirect imaging of beta cells will be discussed. This includes membrane protein on pancreatic beta cells whereby specific probes are designed for different imaging modalities mainly magnetic resonance imaging, positron emission tomography and fluorescence imaging. Direct imaging of insulin is also explored though probes synthesized for such function are relatively fewer. The path for successful pancreatic beta cell imaging is fraught with challenges like non-specific binding, lack of beta cell-restricted targets, the requirement of probes to cross multiple lipid layers to bind to intracellular insulin. Hence, there is an urgent need to develop new imaging techniques and innovative probing constructs in the entire imaging chain of bioengineering to provide early detection of beta cell-related pathology.
Collapse
Affiliation(s)
- Goh Zheng Cong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Miklós Gulyás
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskölds väg 20, Uppsala Se-751 85, Sweden
| | - Tibor Kovács
- Institute of Radiochemistry and Radioecology, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University Faculty of Medicine, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
12
|
Kong Y, Zhou H, Feng H, Zhuang J, Wen T, Zhang C, Sun B, Wang J, Guan Y. Elucidating the Relationship Between Diabetes Mellitus and Parkinson's Disease Using 18F-FP-(+)-DTBZ, a Positron-Emission Tomography Probe for Vesicular Monoamine Transporter 2. Front Neurosci 2020; 14:682. [PMID: 32760240 PMCID: PMC7372188 DOI: 10.3389/fnins.2020.00682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/03/2020] [Indexed: 01/25/2023] Open
Abstract
Diabetes mellitus (DM) and Parkinson’s disease (PD) have been and will continue to be two common chronic diseases globally that are difficult to diagnose during the prodromal phase. Current molecular genetics, cell biological, and epidemiological evidences have shown the correlation between PD and DM. PD shares the same pathogenesis pathways and pathological factors with DM. In addition, β-cell reduction, which can cause hyperglycemia, is a striking feature of DM. Recent studies indicated that hyperglycemia is highly relevant to the pathologic changes in PD. However, further correlation between DM and PD remains to be investigated. Intriguingly, polycystic monoamine transporter 2 (VMAT2), which is co-expressed in dopaminergic neurons and β cells, is responsible for taking up dopamine into the presynaptic vesicles and can specifically bind to the β cells. Furthermore, we have summarized the specific molecular and diagnostic functions of VMAT2 for the two diseases reported in this review. Therefore, VMAT2 can be applied as a target probe for positron emission tomography (PET) imaging to detect β-cell and dopamine level changes, which can contribute to the diagnosis of DM and PD during the prodromal phase. Targeting VMAT2 with the molecular probe 18F-FP-(+)-DTBZ can be an entry point for the β cell mass (BCM) changes in DM at the molecular level, to clarify the potential relationship between DM and PD. VMAT2 has promising clinical significance in investigating the pathogenesis, early diagnosis, and treatment evaluation of the two diseases.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Haicong Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hu Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Zhuang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Jiang D, Kong Y, Ren S, Cai H, Zhang Z, Huang Z, Peng F, Hua F, Guan Y, Xie F. Decreased striatal vesicular monoamine transporter 2 (VMAT2) expression in a type 1 diabetic rat model: A longitudinal study using micro-PET/CT. Nucl Med Biol 2020; 82-83:89-95. [PMID: 32120243 DOI: 10.1016/j.nucmedbio.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 02/05/2023]
Abstract
AIMS Diabetes mellitus is a risk factor for Parkinson's disease. These diseases share similar pathogenic pathways, such as mitochondrial dysfunction, inflammation, and altered metabolism. Despite these similarities, the pathogenic relationship between these two diseases is unclear. [18F]FP-(+)-DTBZ is a promising radiotracer targeting VMAT2, which has been used to measure β-cell mass and to diagnose Parkinson's disease. The aim of this study was to examine the effect of type 1 diabetes on VMAT2 expression in the striatum using [18F]FP-(+)-DTBZ. MATERIALS AND METHODS A longitudinal study of type 1 diabetic rats was established by intraperitoneally injecting male Wistar rats with streptozotocin. Rats injected with saline were used as the control group. Glucose level, body weight, and [18F]FP-(+)-DTBZ uptake in the striatum and pancreas were evaluated at 0.5, 1, 4, 6 and 12 months after STZ or saline injection. RESULTS At one-half month post-STZ injection, the glucose levels in these rats increased and then returned to a normal level at 6 months. Along with increased glucose levels, body weight was also decreased significantly and returned slowly to a normal level. β-Cell mass and striatal [18F]FP-(+)-DTBZ uptake were impaired significantly at 2 weeks post-STZ injection in type 1 diabetic rats and returned to a normal level at 6 and 4 months post-STZ injection. CONCLUSIONS Due to increased glucose levels and decreased β-cell mass, decreased [18F]FP-(+)-DTBZ uptake in the striatum was observed in type 1 diabetic rats. Decreased BCM and increased glucose levels were correlated with VMAT2 expression in the striatum which indicated DM is a risk factor for PD.
Collapse
Affiliation(s)
- Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Shuhua Ren
- PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Zheming Huang
- PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Fangyu Peng
- Department of Radiology, University of Texas Southwestern Medical Center, 75390 Dallas, TX, USA
| | - Fengchun Hua
- PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China.
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China.
| |
Collapse
|
14
|
Anti-diabetic activity of crude polysaccharide and rhamnose-enriched polysaccharide from G. lithophila on Streptozotocin (STZ)-induced in Wistar rats. Sci Rep 2020; 10:556. [PMID: 31953455 PMCID: PMC6969100 DOI: 10.1038/s41598-020-57486-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to elucidate the anti-diabetic effects of the crude polysaccharide and rhamnose-enriched polysaccharide derived from G. lithophila on streptozotocin (STZ)-induced diabetic Wistar rats. Treatment with crude polysaccharide and rhamnose-enriched polysaccharide showed increases in body weight and pancreatic insulin levels and a decrease in blood glucose levels compared with control diabetic rats. The blood concentrations of total cholesterol (TC), triglycerides (TGs), low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) decreased, and high-density lipoprotein (HDL) increased both in the crude polysaccharide- and rhamnose-enriched polysaccharide-treated rats. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels increased, and malondialdehyde (MDA) levels decreased in the livers, kidneys and pancreases of crude polysaccharide- and rhamnose-enriched polysaccharide-treated rats. Immunohistological examination further confirmed that restoration of the normal cellular size of the islets of Langerhans and the rebirth of β-cells were found to be greater in the body region than in the head and tail regions of the pancreas. The crude polysaccharide- and rhamnose-enriched polysaccharide-treated diabetic rats showed normal blood glucose levels and insulin production, and reversed cholesterol levels and enzymatic actions. Therefore, rhamnose-enriched polysaccharide from G. lithophila acts as a potent anti-diabetic agent to treat diabetes and can lead to the development of an alternative medicine for diabetes in the future.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Quantitative markers for beta-cell mass (BCM) in human pancreas are currently lacking. Medical imaging using positron emission tomography (PET) markers for beta-cell restricted targets may provide an accurate and non-invasive measurement of BCM, to assist diagnosis and treatment of metabolic disease. GPR44 was recently discovered as a putative marker for beta cells and this review summarizes the developments so far. RECENT FINDINGS Several small molecule binders targeting GPR44 have been radiolabeled for PET imaging and evaluated in vitro and in small and large animal models. 11C-AZ12204657 and 11C-MK-7246 displayed a dose-dependent and GPR44-mediated binding to beta cells both in vitro and in vivo, with negligible uptake in exocrine pancreas. GPR44 represents an attractive target for visualization of BCM. Further progress in radioligand development including clinical testing is expected to clarify the role of GPR44 as a surrogate marker for BCM in humans.
Collapse
Affiliation(s)
- Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-752 37, Uppsala, Sweden.
- Antaros Medical AB, Mölndal, Sweden.
| |
Collapse
|
16
|
Kang NY, Soetedjo AAP, Amirruddin NS, Chang YT, Eriksson O, Teo AKK. Tools for Bioimaging Pancreatic β Cells in Diabetes. Trends Mol Med 2019; 25:708-722. [PMID: 31178230 DOI: 10.1016/j.molmed.2019.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
When diabetes is diagnosed, the majority of insulin-secreting pancreatic β cells are already dysfunctional or destroyed. This β cell dysfunction/destruction usually takes place over many years, making timely detection and clinical intervention difficult. For this reason, there is immense interest in developing tools to bioimage β cell mass and/or function noninvasively to facilitate early diagnosis of diabetes as well as to assist the development of novel antidiabetic therapies. Recent years have brought significant progress in β cell imaging that is now inching towards clinical applicability. We explore here the need to bioimage human β cells noninvasively in various types of diabetes, and we discuss current and emerging tools for bioimaging β cells. Further developments in this field are expected to facilitate β cell imaging in diabetes.
Collapse
Affiliation(s)
- Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 02-02 Helios, 138667, Singapore; New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chembok-ro (1115-1 Dongnae-dong), Dong-gu, Daegu City 41061, Republic of Korea.
| | | | - Nur Shabrina Amirruddin
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 02-02 Helios, 138667, Singapore; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea; Center for Self-assembly and Complexity, Institute for Basic Science (IBS), 77 Hyogok-dong, Nam-gu, Pohang 37673, Republic of Korea
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala SE-752 36, Sweden
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
17
|
Pecic S, Milosavic N, Rayat G, Maffei A, Harris PE. A novel optical tracer for VMAT2 applied to live cell measurements of vesicle maturation in cultured human β-cells. Sci Rep 2019; 9:5403. [PMID: 30932004 PMCID: PMC6443945 DOI: 10.1038/s41598-019-41891-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/19/2019] [Indexed: 02/03/2023] Open
Abstract
The islet β-cells integrate external signals to modulate insulin secretion to better regulate blood glucose levels during periods of changing metabolic demand. The vesicular monoamine transporter type 2 (VMAT2), an important regulator of CNS neurotransmission, has an analogous role in the endocrine pancreas as a key control point of insulin secretion, with additional roles in regulating β-cell differentiation and proliferation. Here we report on the synthesis and biological characterisation of a fluorescent ligand for VMAT2 suitable for live cell imaging. Staining for VMAT2 and dopamine in live β-cell cultures show colocalisation in specific vesicles and reveal a heterogeneous population with respect to cell size, shape, vesicle number, size, and contents. Staining for VMAT2 and zinc ion, as a surrogate for insulin, reveals a wide range of vesicle sizes. Immunohistochemistry shows larger β-cell vesicles enriched for proinsulin, whereas smaller vesicles predominantly contain the processed mature insulin. In β-cell cultures obtained from nondiabetic donors, incubation at non-stimulatory glucose concentrations promotes a shift in vesicle diameter towards the more mature insulin vesicles at the expense of the larger immature insulin secretory vesicle population. We anticipate that this probe will be a useful reagent to identify living β-cells within complex mixtures for further manipulation and characterisation.
Collapse
Affiliation(s)
- Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, USA
| | - Nenad Milosavic
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Medical Centre, New York, New York, USA
| | - Gina Rayat
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Antonella Maffei
- Division of Endocrinology, Department of Medicine and Naomi Berrie Diabetes Center, Columbia University Medical Centre, New York, New York, USA
| | - Paul E Harris
- Division of Endocrinology, Department of Medicine and Naomi Berrie Diabetes Center, Columbia University Medical Centre, New York, New York, USA.
| |
Collapse
|
18
|
Cataldo Bascuñan LR, Lyons C, Bennet H, Artner I, Fex M. Serotonergic regulation of insulin secretion. Acta Physiol (Oxf) 2019; 225:e13101. [PMID: 29791774 DOI: 10.1111/apha.13101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
The exact physiological role for the monoamine serotonin (5-HT) in modulation of insulin secretion is yet to be fully understood. Although the presence of this monoamine in islets of Langerhans is well established, it is only with recent advances that the complex signalling network in islets involving 5-HT is being unravelled. With more than fourteen different 5-HT receptors expressed in human islets and receptor-independent mechanisms in insulin-producing β-cells, our understanding of 5-HT's regulation of insulin secretion is increasing. It is now widely accepted that failure of the pancreatic β-cell to release sufficient amounts of insulin is the main cause of type 2 diabetes (T2D), an ongoing global epidemic. In this context, 5-HT signalling may be of importance. In fact, 5-HT may serve an essential role in regulating the release of insulin and glucagon, the two main hormones that control glucose and lipid homoeostasis. In this review, we will discuss past and current understanding of 5-HT's role in the endocrine pancreas.
Collapse
Affiliation(s)
- L. R. Cataldo Bascuñan
- Endocrine Cell Differentiation and Function Group; Stem Cell Centre; Lund University; Lund Sweden
| | - C. Lyons
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| | - H. Bennet
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| | - I. Artner
- Endocrine Cell Differentiation and Function Group; Stem Cell Centre; Lund University; Lund Sweden
| | - M. Fex
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| |
Collapse
|
19
|
Cline GW, Naganawa M, Chen L, Chidsey K, Carvajal-Gonzalez S, Pawlak S, Rossulek M, Zhang Y, Bini J, McCarthy TJ, Carson RE, Calle RA. Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging. Diabetologia 2018; 61:2598-2607. [PMID: 29721633 DOI: 10.1007/s00125-018-4624-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The progressive loss of beta cell function is part of the natural history of type 2 diabetes. Autopsy studies suggest that this is, in part, due to loss of beta cell mass (BCM), but this has not been confirmed in vivo. Non-invasive methods to quantify BCM may contribute to a better understanding of type 2 diabetes pathophysiology and the development of therapeutic strategies. In humans, the localisation of vesicular monoamine transporter type 2 (VMAT2) in beta cells and pancreatic polypeptide cells, with minimal expression in other exocrine or endocrine pancreatic cells, has led to its development as a measure of BCM. We used the VMAT2 tracer [18F]fluoropropyl-(+)-dihydrotetrabenazine to quantify BCM in humans with impaired glucose tolerance (prediabetes) or type 2 diabetes, and in healthy obese volunteers (HOV). METHODS Dynamic positron emission tomography (PET) data were obtained for 4 h with metabolite-corrected arterial blood measurement in 16 HOV, five prediabetic and 17 type 2 diabetic participants. Eleven participants (six HOV and five with type 2 diabetes) underwent two abdominal PET/computed tomography (CT) scans for the assessment of test-retest variability. Standardised uptake value ratio (SUVR) was calculated in pancreatic subregions (head, body and tail), with the spleen as a reference region to determine non-specific tracer uptake at 3-4 h. The outcome measure SUVR minus 1 (SUVR-1) accounts for non-specific tracer uptake. Functional beta cell capacity was assessed by C-peptide release following standard (arginine stimulus test [AST]) and acute insulin response to the glucose-enhanced AST (AIRargMAX). Pearson correlation analysis was performed between the binding variables and the C-peptide AUC post-AST and post-AIRargMAX. RESULTS Absolute test-retest variability (aTRV) was ≤15% for all regions. Variability and overlap of SUVR-1 was measured in all groups; HOV and participants with prediabetes and with type 2 diabetes. SUVR-1 showed significant positive correlations with AIRargMAX (all groups) in all pancreas subregions (whole pancreas p = 0.009 and pancreas head p = 0.009; body p = 0.019 and tail p = 0.023). SUVR-1 inversely correlated with HbA1c (all groups) in the whole pancreas (p = 0.033) and pancreas head (p = 0.008). SUVR-1 also inversely correlated with years since diagnosis of type 2 diabetes in the pancreas head (p = 0.049) and pancreas tail (p = 0.035). CONCLUSIONS/INTERPRETATION The observed correlations of VMAT2 density in the pancreas and pancreas regions with years since diagnosis of type 2 diabetes, glycaemic control and beta cell function suggest that loss of BCM contributes to deficient insulin secretion in humans with type 2 diabetes.
Collapse
Affiliation(s)
- Gary W Cline
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520, USA.
| | - Mika Naganawa
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520, USA
| | | | | | | | | | | | | | - Jason Bini
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520, USA
| | | | - Richard E Carson
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520, USA
| | | |
Collapse
|
20
|
Brom M, Joosten L, Frielink C, Peeters H, Bos D, van Zanten M, Boerman O, Gotthardt M. Validation of 111In-Exendin SPECT for the Determination of the β-Cell Mass in BioBreeding Diabetes-Prone Rats. Diabetes 2018; 67:2012-2018. [PMID: 30045920 DOI: 10.2337/db17-1312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/12/2018] [Indexed: 11/13/2022]
Abstract
The changes in β-cell mass (BCM) during the development and progression of diabetes could potentially be measured by radionuclide imaging using radiolabeled exendin. In this study, we investigated the potential of 111In-diethylenetriaminepentaacetic acid-exendin-3 (111In-exendin) in a rat model that closely mimics the development of type 1 diabetes (T1D) in humans: BioBreeding diabetes-prone (BBDP) rats. BBDP rats of 4-18 weeks of age were injected intravenously with 111In-exendin, and single-photon emission computed tomography (SPECT) images were acquired. The accumulation of the radiotracer was measured as well as the BCM and grade of insulitis by histology. 111In-exendin accumulated specifically in the islets, resulting in a linear correlation with the BCM (%) (Pearson r = 0.89, P < 0.0001, and r = 0.64 for SPECT). Insulitis did not have an influence on this correlation. These results indicate that 111In-exendin is a promising tracer to determine the BCM during the development of T1D, irrespective of the degree of insulitis.
Collapse
Affiliation(s)
- Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cathelijne Frielink
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanneke Peeters
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Desirée Bos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Monica van Zanten
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Otto Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
21
|
Imaging of Human Insulin Secreting Cells with Gd-DOTA-P88, a Paramagnetic Contrast Agent Targeting the Beta Cell Biomarker FXYD2γa. Molecules 2018; 23:molecules23092100. [PMID: 30134599 PMCID: PMC6225257 DOI: 10.3390/molecules23092100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 11/17/2022] Open
Abstract
Non-invasive imaging and quantification of human beta cell mass remains a major challenge. We performed pre-clinical in vivo validation of a peptide previously discovered by our group, namely, P88 that targets a beta cell specific biomarker, FXYD2γa. We conjugated P88 with DOTA and then complexed it with GdCl₃ to obtain the MRI (magnetic resonance imaging) contrast agent (CA) Gd-DOTA-P88. A scrambled peptide was used as a negative control CA, namely Gd-DOTA-Scramble. The CAs were injected in immunodeficient mice implanted with EndoC-βH1 cells, a human beta cell line that expresses FXYD2γa similarly to primary human beta cells. The xenograft-bearing mice were analyzed by MRI. At the end, the mice were euthanized and the CA biodistribution was evaluated on the excised tissues by measuring the Gd concentration with inductively coupled plasma mass spectrometry (ICP-MS). The MRI and biodistribution studies indicated that Gd-DOTA-P88 accumulates in EndoC-βH1 xenografts above the level observed in the background tissue, and that its uptake is significantly higher than that observed for Gd-DOTA-Scramble. In addition, the Gd-DOTA-P88 showed good xenograft-to-muscle and xenograft-to-liver uptake ratios, two potential sites of human islets transplantation. The CA shows good potential for future use to non-invasively image implanted human beta cells.
Collapse
|
22
|
Almaça J, Molina J, Menegaz D, Pronin AN, Tamayo A, Slepak V, Berggren PO, Caicedo A. Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion from Alpha Cells. Cell Rep 2016; 17:3281-3291. [PMID: 28009296 PMCID: PMC5217294 DOI: 10.1016/j.celrep.2016.11.072] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022] Open
Abstract
In the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration. Serotonin secretion from beta cells decreases cyclic AMP (cAMP) levels in neighboring alpha cells via 5-HT1F receptors and inhibits glucagon secretion. Without serotonergic input, alpha cells lose their ability to regulate glucagon secretion in response to changes in glucose concentration, suggesting that diminished serotonergic control of alpha cells can cause glucose blindness and the uncontrolled glucagon secretion associated with diabetes. Supporting this model, pharmacological activation of 5-HT1F receptors reduces glucagon secretion and has hypoglycemic effects in diabetic mice. Thus, modulation of serotonin signaling in the islet represents a drug intervention opportunity.
Collapse
Affiliation(s)
- Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Judith Molina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Danusa Menegaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alejandro Tamayo
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vladlen Slepak
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Rolf Luft Research Center for Diabetes & Endocrinology, Karolinska Institutet, Stockholm SE-17177, Sweden; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Eriksson O, Laughlin M, Brom M, Nuutila P, Roden M, Hwa A, Bonadonna R, Gotthardt M. In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia 2016; 59:1340-1349. [PMID: 27094935 DOI: 10.1007/s00125-016-3959-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022]
Abstract
Radiotracer imaging is characterised by high in vivo sensitivity, with a detection limit in the lower picomolar range. Therefore, radiotracers represent a valuable tool for imaging pancreatic beta cells. High demands are made of radiotracers for in vivo imaging of beta cells. Beta cells represent only a small fraction of the volume of the pancreas (usually 1-3%) and are scattered in the tiny islets of Langerhans throughout the organ. In order to be able to measure a beta cell-specific signal, one has to rely on highly specific tracer molecules because current in vivo imaging technologies do not allow the resolution of single islets in humans non-invasively. Currently, a considerable amount of preclinical data are available for several radiotracers and three are under clinical evaluation. We summarise the current status of the evaluation of these tracer molecules and put forward recommendations for their further evaluation.
Collapse
Affiliation(s)
- Olof Eriksson
- Preclinical PET Platform, Department of Medical Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-751 83, Uppsala, Sweden.
- Turku PET Centre, University of Turku, Turku, Finland.
- Department of Biosciences, Åbo Akademi University, Turku, Finland.
| | - Maren Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500HB, Nijmegen, the Netherlands
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Albert Hwa
- JDRF, Discovery Research, New York, NY, USA
| | - Riccardo Bonadonna
- Division of Endocrinology, Department of Clinical and Experimental Medicine, University of Parma and AOU of Parma, Parma, Italy
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500HB, Nijmegen, the Netherlands.
| |
Collapse
|
24
|
Freeby MJ, Kringas P, Goland RS, Leibel RL, Maffei A, Divgi C, Ichise M, Harris PE. Cross-sectional and Test-Retest Characterization of PET with [(18)F]FP-(+)-DTBZ for β Cell Mass Estimates in Diabetes. Mol Imaging Biol 2015; 18:292-301. [PMID: 26370678 PMCID: PMC4783444 DOI: 10.1007/s11307-015-0888-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/07/2015] [Accepted: 08/06/2015] [Indexed: 12/15/2022]
Abstract
Purpose The vesicular monoamine transporter, type 2 (VMAT2) is expressed by insulin producing β cells and was evaluated as a biomarker of β cell mass (BCM) by positron emission tomography (PET) with [18F]fluoropropyl-dihydrotetrabenazine ([18F]FP-(+)-DTBZ). Procedures We evaluated the feasibility of longitudinal pancreatic PET VMAT2 quantification in the pancreas in two studies of healthy controls and patients with type 1 or 2 diabetes. VMAT2 binding potential (BPND) was estimated voxelwise using a reference tissue method in a cross-sectional study, followed by assessment of reproducibility using a test-retest paradigm. Metabolic function was evaluated by stimulated c-peptide measurements. Results Pancreatic BPND was significantly decreased in patients with type 1 diabetes relative to controls and the test-retest variability was 9.4 %. Conclusions Pancreatic VMAT2 content is significantly reduced in long-term diabetes patients relative to controls and repeat scans are sufficiently reproducible to suggest the feasibility clinically VMAT2 measurements in longitudinal studies of new onset diabetes. Electronic supplementary material The online version of this article (doi:10.1007/s11307-015-0888-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew J Freeby
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90404, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Patricia Kringas
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Robin S Goland
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Antonella Maffei
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80131, Naples, Italy.,Division of Endocrinology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chaitan Divgi
- Division of Nuclear Medicine and Kreitchman PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Masanori Ichise
- Division of Nuclear Medicine and Kreitchman PET Center, Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Paul E Harris
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, 10032, USA. .,Division of Endocrinology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
25
|
Pugliese A, Vendrame F, Reijonen H, Atkinson MA, Campbell-Thompson M, Burke GW. New insight on human type 1 diabetes biology: nPOD and nPOD-transplantation. Curr Diab Rep 2014; 14:530. [PMID: 25142715 PMCID: PMC4174350 DOI: 10.1007/s11892-014-0530-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Juvenile Diabetes Research Foundation (JDRF) Network for Pancreatic Organ Donors with Diabetes (JDRF nPOD) was established to obtain human pancreata and other tissues from organ donors with type 1 diabetes (T1D) in support of research focused on disease pathogenesis. Since 2007, nPOD has recovered tissues from over 100 T1D donors and distributed specimens to approximately 130 projects led by investigators worldwide. More recently, nPOD established a programmatic expansion that further links the transplantation world to nPOD, nPOD-Transplantation; this effort is pioneering novel approaches to extend the study of islet autoimmunity to the transplanted pancreas and to consent patients for postmortem organ donation directed towards diabetes research. Finally, nPOD actively fosters and coordinates collaborative research among nPOD investigators, with the formation of working groups and the application of team science approaches. Exciting findings are emerging from the collective work of nPOD investigators, which covers multiple aspects of islet autoimmunity and beta cell biology.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA,
| | | | | | | | | | | |
Collapse
|
26
|
Gotthardt M, Eizirik DL, Cnop M, Brom M. Beta cell imaging - a key tool in optimized diabetes prevention and treatment. Trends Endocrinol Metab 2014; 25:375-7. [PMID: 24726483 DOI: 10.1016/j.tem.2014.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/09/2014] [Accepted: 02/11/2014] [Indexed: 12/19/2022]
Abstract
The prevalence of diabetes is 382 million worldwide, and is expected to rise to 592 million in 2035 (http://www.idf.org/diabetesatlas); 2.5-15% of national annual healthcare budgets are related to diabetes care, potentially increasing to 40% in high-prevalence countries. Beta cell dysfunction and death are central events in diabetes pathogenesis, but the natural history of beta cell loss remains unknown. Clinical imaging of beta cells will play a pivotal role in developing strategies for optimized diabetes prevention and treatment.
Collapse
Affiliation(s)
- Martin Gotthardt
- Radboud University Medical Center, Department of Radiology and Nuclear Medicine, PO Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Decio L Eizirik
- Laboratory of Experimental Medicine and ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), CP 618, 1070 Brussels, Belgium
| | - Miriam Cnop
- Laboratory of Experimental Medicine and ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), CP 618, 1070 Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maarten Brom
- Radboud University Medical Center, Department of Radiology and Nuclear Medicine, PO Box 9101, 6500HB Nijmegen, The Netherlands
| |
Collapse
|
27
|
Tiedge M. Inside the pancreas: progress and challenges of human beta cell mass quantification. Diabetologia 2014; 57:856-9. [PMID: 24599112 DOI: 10.1007/s00125-014-3206-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/17/2014] [Indexed: 12/17/2022]
Abstract
The accurate quantification of beta cell mass in humans is one of the key challenges in understanding the role of beta cell loss and dysfunction in the pathogenesis of diabetes mellitus. Autopsy studies indicate that beta cell loss is not only a hallmark of autoimmune diabetes but also plays a pivotal role in type 2 diabetes, owing to the toxic effects of lipids, glucose and cytokines. Thus, there is an urgent need for non-invasive clinical techniques for beta cell mass quantification, which should be optimally integrated into standard diagnostic equipment in hospitals. In this issue of Diabetologia (Brom et al DOI 10.1007/s00125-014-3166-3) it is reported that single photon emission computed tomography (SPECT) data with (111)indium-labelled glucagon-like peptide-1 (GLP-1) receptor agonist exendin-3 correlate with the morphometric analysis of beta cell mass in a rat model of alloxan-induced diabetes. With this validation, the authors were able to demonstrate a significant loss of beta cell mass in C-peptide-negative type 1 diabetic patients. Thus, (111)indium-labelled exendin-3 could serve as a model tracer for future studies of larger cohorts of diabetic patients to monitor the dynamics of beta cell loss and regeneration. Despite the recent progress from SPECT imaging data there remain open questions that await clarification in the near future such as variations in GLP-1 receptor density and physiological variation of beta cell mass in relation to beta cell function. The use of GLP-1-based tracer analysis may open new clinical avenues for non-invasive quantification of beta cell mass in patients with newly diagnosed type 1 diabetes and prediabetic individuals with high titres of autoantibodies.
Collapse
Affiliation(s)
- Markus Tiedge
- Institute of Medical Biochemistry and Molecular Biology, Rostock University Medical Center, University of Rostock, Schillingallee 70, D-18057, Rostock, Germany,
| |
Collapse
|
28
|
Brom M, Woliner-van der Weg W, Joosten L, Frielink C, Bouckenooghe T, Rijken P, Andralojc K, Göke BJ, de Jong M, Eizirik DL, Béhé M, Lahoutte T, Oyen WJG, Tack CJ, Janssen M, Boerman OC, Gotthardt M. Non-invasive quantification of the beta cell mass by SPECT with ¹¹¹In-labelled exendin. Diabetologia 2014; 57:950-9. [PMID: 24488022 DOI: 10.1007/s00125-014-3166-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/23/2013] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS A reliable method for in vivo quantification of pancreatic beta cell mass (BCM) could lead to further insight into the pathophysiology of diabetes. The glucagon-like peptide 1 receptor, abundantly expressed on beta cells, may be a suitable target for imaging. We investigated the potential of radiotracer imaging with the GLP-1 analogue exendin labelled with indium-111 for determination of BCM in vivo in a rodent model of beta cell loss and in patients with type 1 diabetes and healthy individuals. METHODS The targeting of (111)In-labelled exendin was examined in a rat model of alloxan-induced beta cell loss. Rats were injected with 15 MBq (111)In-labelled exendin and single photon emission computed tomography (SPECT) acquisition was performed 1 h post injection, followed by dissection, biodistribution and ex vivo autoradiography studies of pancreatic sections. BCM was determined by morphometric analysis after staining with an anti-insulin antibody. For clinical evaluation SPECT was acquired 4, 24 and 48 h after injection of 150 MBq (111)In-labelled exendin in five patients with type 1 diabetes and five healthy individuals. The tracer uptake was determined by quantitative analysis of the SPECT images. RESULTS In rats, (111)In-labelled exendin specifically targets the beta cells and pancreatic uptake is highly correlated with BCM. In humans, the pancreas was visible in SPECT images and the pancreatic uptake showed high interindividual variation with a substantially lower uptake in patients with type 1 diabetes. CONCLUSIONS/INTERPRETATION These studies indicate that (111)In-labelled exendin may be suitable for non-invasive quantification of BCM. TRIAL REGISTRATION ClinicalTrials.gov NCT01825148, EudraCT: 2012-000619-10.
Collapse
Affiliation(s)
- Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pugliese A, Yang M, Kusmarteva I, Heiple T, Vendrame F, Wasserfall C, Rowe P, Moraski JM, Ball S, Jebson L, Schatz DA, Gianani R, Burke GW, Nierras C, Staeva T, Kaddis JS, Campbell-Thompson M, Atkinson MA. The Juvenile Diabetes Research Foundation Network for Pancreatic Organ Donors with Diabetes (nPOD) Program: goals, operational model and emerging findings. Pediatr Diabetes 2014; 15:1-9. [PMID: 24325575 PMCID: PMC4282794 DOI: 10.1111/pedi.12097] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/30/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022] Open
Abstract
nPOD actively promotes a multidisciplinary and unbiased approach toward a better understanding of T1D and identify novel therapeutic targets, through its focus on the study of human samples. Unique to this effort is the coordination of collaborative efforts and real-time data sharing. Studies supported by nPOD are providing direct evidence that human T1D isa complex and heterogeneous disease, in which a multitude of pathogenic factors may be operational and may contribute to the onset of the disease. Importantly, the concept that beta cell destruction is almost completed and that the autoimmune process is almost extinguished soon after diagnosis is being challenged. nPOD investigators are exploring the hypothesis that beta cell dysfunction may also be a significant cause of hyperglycemia, at least around the time of diagnosis, and are uncovering novel molecules and pathways that are linked to the pathogenesis and etiology of human T1D. The validation of therapeutic targets is also a key component of this effort, with recent and future findings providing new strategic direction for clinical trials.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of MedicineMiami, FL, USA,Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Miami Miller School of MedicineMiami, FL, USA,Department of Immunology and Microbiology, University of Miami Miller School of MedicineMiami, FL, USA
| | - Mingder Yang
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Irina Kusmarteva
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Tiffany Heiple
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Francesco Vendrame
- Diabetes Research Institute, University of Miami Miller School of MedicineMiami, FL, USA
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Patrick Rowe
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Jayne M Moraski
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Suzanne Ball
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Les Jebson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Desmond A Schatz
- Department of Pediatrics, The University of Florida College of MedicineGainesville, FL, USA
| | | | - George W Burke
- Department of Surgery, University of Miami Miller School of MedicineMiami, FL, USA
| | | | | | - John S Kaddis
- Department of Information Sciences, City of Hope National Medical CenterDuarte, CA, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA,Department of Pediatrics, The University of Florida College of MedicineGainesville, FL, USA
| |
Collapse
|
30
|
Rutter GA, Hodson DJ. Minireview: intraislet regulation of insulin secretion in humans. Mol Endocrinol 2013; 27:1984-95. [PMID: 24243488 PMCID: PMC5426601 DOI: 10.1210/me.2013-1278] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/23/2013] [Indexed: 12/25/2022] Open
Abstract
The higher organization of β-cells into spheroid structures termed islets of Langerhans is critical for the proper regulation of insulin secretion. Thus, rodent β-cells form a functional syncytium that integrates and propagates information encoded by secretagogues, producing a "gain-of-function" in hormone release through the generation of coordinated cell-cell activity. By contrast, human islets possess divergent topology, and this may have repercussions for the cell-cell communication pathways that mediate the population dynamics underlying the intraislet regulation of insulin secretion. This is pertinent for type 2 diabetes mellitus pathogenesis, and its study in rodent models, because environmental and genetic factors may converge on these processes in a species-specific manner to precipitate the defective insulin secretion associated with glucose intolerance. The aim of the present minireview is therefore to discuss the structural and functional underpinnings that influence insulin secretion from human islets, and the possibility that dyscoordination between individual β-cells may play an important role in some forms of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Guy A Rutter
- Section Cell Biology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom. ; or Professor Guy A. Rutter, Section of Cell Biology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom. E-mail:
| | | |
Collapse
|