1
|
Jiang Y, Wang R, Guo J, Cheng K, Chen L, Wang X, Li Y, Du P, Gao C, Lu J, Yu Y, Yang Z. Isolation and characterization of Hc-targeting chimeric heavy chain antibodies neutralizing botulinum neurotoxin type B. Front Immunol 2024; 15:1380694. [PMID: 38779676 PMCID: PMC11109933 DOI: 10.3389/fimmu.2024.1380694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Background Botulinum neurotoxin (BoNT) produced by Clostridium botulinum is one of the most potent known toxins. Moreover, BoNT is classified as one of the most important biological warfare agents that threatens the biosafety of the world. Currently, the approved treatment for botulism in humans is the use of polyvalent horse serum antitoxins. However, they are greatly limited because of insufficient supply and adverse reactions. Thus, treatment of human botulism requires the development of effective toxin-neutralizing antibodies. Considering their advantages, neutralizing nanobodies will play an increasing role as BoNTs therapeutics. Methods Herein, neutralizing nanobodies binding to the heavy chain (Hc) domain of BoNT/B (BHc) were screened from a phage display library. Then, BoNT/B-specific clones were identified and fused with the human Fc fragment (hFc) to form chimeric heavy chain antibodies. Finally, the affinity, specificity, and neutralizing activity of antibodies against BoNT/B in vivo were evaluated. Results The B5-hFc, B9-hFc and B12-hFc antibodies demonstrated high affinity for BHc in the nanomolar range. The three antibodies were proven to have potent neutralizing activity against BoNT/B in vivo. Conclusion The results demonstrate that inhibiting toxin binding to the host receptor is an efficient strategy and the three antibodies could be used as candidates for the further development of drugs to prevent and treat botulism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiansheng Lu
- Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
2
|
Xiong X, Qiu Y, Zheng J, Zhou L, Wang Q, Pang J, Zhang W, Chen H, Liu G, Han X. Generation and characterization of a monoclonal antibody against FGFR3 that protects mice from BoNT/A. Protein Expr Purif 2024; 213:106370. [PMID: 37709211 DOI: 10.1016/j.pep.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Botulinum neurotoxin serotype A (BoNT/A) can cause flaccid paralysis of muscles, an illness fatal to human, by entering neurons and blocking neurotransmitter release. The process was mediated by three receptors. A specific monoclonal antibody anti-D23, designated as ML419, targeting the ectodomain (D23) of fibroblast growth factor receptor 3 (FGFR3), one of the three receptors, was screened and capable of disturbing the recognition of BoNT/A and FGFR3. ML419 was screened from 14 stable positive hybridoma cell lines, and was subcloned, sequenced, and classified as IgG2a(κ) subclass. ML419 binds the D23 domain of FGFR3 with high affinity (KD∼0.26 nM), and prevents the BoNT/A from entering Neuro-2a cells effectively. In vivo data showed that, 200 μg of ML419 could completely protect all the mice against with 5 MLD50 BoNT/A, while 100 μg of ML419 could protected 60% of the mice. Collectively, our results indicated that ML419 served as a good candidate for further development of therapeutics for BoNT/A.
Collapse
Affiliation(s)
| | - Yujin Qiu
- Academy of Military Medical Sciences, Beijing, PR China
| | - Jiahao Zheng
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Ling Zhou
- Department of Clinical Laboratory, The Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Qingyang Wang
- Academy of Military Medical Sciences, Beijing, PR China
| | - Jinglun Pang
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, PR China
| | - Weicai Zhang
- Academy of Military Medical Sciences, Beijing, PR China
| | - Huipeng Chen
- Academy of Military Medical Sciences, Beijing, PR China.
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, PR China.
| | - Xiaodong Han
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
3
|
Peng F, Hu N, Liu Y, Xing C, Luo L, Li X, Wang J, Chen G, Xiao H, Liu C, Shen B, Feng J, Qiao C. Functional epitopes and neutralizing antibodies of vaccinia virus. Front Microbiol 2023; 14:1255935. [PMID: 37954238 PMCID: PMC10634548 DOI: 10.3389/fmicb.2023.1255935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Smallpox is an infectious disease caused by the variola virus, and it has a high mortality rate. Historically it has broken out in many countries and it was a great threat to human health. Smallpox was declared eradicated in 1980, and Many countries stopped nation-wide smallpox vaccinations at that time. In recent years the potential threat of bioterrorism using smallpox has led to resumed research on the treatment and prevention of smallpox. Effective ways of preventing and treating smallpox infection have been reported, including vaccination, chemical drugs, neutralizing antibodies, and clinical symptomatic therapies. Antibody treatments include anti-sera, murine monoclonal antibodies, and engineered humanized or human antibodies. Engineered antibodies are homologous, safe, and effective. The development of humanized and genetically engineered antibodies against variola virus via molecular biology and bioinformatics is therefore a potentially fruitful prospect with respect to field application. Natural smallpox virus is inaccessible, therefore most research about prevention and/or treatment of smallpox were done using vaccinia virus, which is much safer and highly homologous to smallpox. Herein we summarize vaccinia virus epitope information reported to date, and discuss neutralizing antibodies with potential value for field application.
Collapse
Affiliation(s)
- Fenghao Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Naijing Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingjun Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cong Xing
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
4
|
Rosenfeld R, Alcalay R, Zvi A, Ben-David A, Noy-Porat T, Chitlaru T, Epstein E, Israeli O, Lazar S, Caspi N, Barnea A, Dor E, Chomsky I, Pitel S, Makdasi E, Zichel R, Mazor O. Centaur antibodies: Engineered chimeric equine-human recombinant antibodies. Front Immunol 2022; 13:942317. [PMID: 36059507 PMCID: PMC9437483 DOI: 10.3389/fimmu.2022.942317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Hyper-immune antisera from large mammals, in particular horses, are routinely used for life-saving anti-intoxication intervention. While highly efficient, the use of these immunotherapeutics is complicated by possible recipient reactogenicity and limited availability. Accordingly, there is an urgent need for alternative improved next-generation immunotherapies to respond to this issue of high public health priority. Here, we document the development of previously unavailable tools for equine antibody engineering. A novel primer set, EquPD v2020, based on equine V-gene data, was designed for efficient and accurate amplification of rearranged horse antibody V-segments. The primer set served for generation of immune phage display libraries, representing highly diverse V-gene repertoires of horses immunized against botulinum A or B neurotoxins. Highly specific scFv clones were selected and expressed as full-length antibodies, carrying equine V-genes and human Gamma1/Lambda constant genes, to be referred as “Centaur antibodies”. Preliminary assessment in a murine model of botulism established their therapeutic potential. The experimental approach detailed in the current report, represents a valuable tool for isolation and engineering of therapeutic equine antibodies.
Collapse
Affiliation(s)
- Ronit Rosenfeld
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
- *Correspondence: Ronit Rosenfeld, ; Ohad Mazor,
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Alon Ben-David
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tal Noy-Porat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shirley Lazar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noa Caspi
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ada Barnea
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eyal Dor
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Inbar Chomsky
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shani Pitel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Efi Makdasi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ohad Mazor
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
- *Correspondence: Ronit Rosenfeld, ; Ohad Mazor,
| |
Collapse
|
5
|
Henrique IDM, Sacerdoti F, Ferreira RL, Henrique C, Amaral MM, Piazza RMF, Luz D. Therapeutic Antibodies Against Shiga Toxins: Trends and Perspectives. Front Cell Infect Microbiol 2022; 12:825856. [PMID: 35223548 PMCID: PMC8866733 DOI: 10.3389/fcimb.2022.825856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Shiga toxins (Stx) are AB5-type toxins, composed of five B subunits which bind to Gb3 host cell receptors and an active A subunit, whose action on the ribosome leads to protein synthesis suppression. The two Stx types (Stx1 and Stx2) and their subtypes can be produced by Shiga toxin-producing Escherichia coli strains and some Shigella spp. These bacteria colonize the colon and induce diarrhea that may progress to hemorrhagic colitis and in the most severe cases, to hemolytic uremic syndrome, which could lead to death. Since the use of antibiotics in these infections is a topic of great controversy, the treatment remains supportive and there are no specific therapies to ameliorate the course. Therefore, there is an open window for Stx neutralization employing antibodies, which are versatile molecules. Indeed, polyclonal, monoclonal, and recombinant antibodies have been raised and tested in vitro and in vivo assays, showing differences in their neutralizing ability against deleterious effects of Stx. These molecules are in different phases of development for which we decide to present herein an updated report of these antibody molecules, their source, advantages, and disadvantages of the promising ones, as well as the challenges faced until reaching their applicability.
Collapse
Affiliation(s)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Maria Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| |
Collapse
|
6
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
7
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Andrews CD, Huang Y, Ho DD, Liberatore RA. In vivo expressed biologics for infectious disease prophylaxis: rapid delivery of DNA-based antiviral antibodies. Emerg Microbes Infect 2020; 9:1523-1533. [PMID: 32579067 PMCID: PMC7473320 DOI: 10.1080/22221751.2020.1787108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With increasing frequency, humans are facing outbreaks of emerging infectious diseases (EIDs) with the potential to cause significant morbidity and mortality. In the most extreme instances, such outbreaks can become pandemics, as we are now witnessing with COVID-19. According to the World Health Organization, this new disease, caused by the novel coronavirus SARS-CoV-2, has already infected more than 10 million people worldwide and led to 499,913 deaths as of 29 June, 2020. How high these numbers will eventually go depends on many factors, including policies on travel and movement, availability of medical support, and, because there is no vaccine or highly effective treatment, the pace of biomedical research. Other than an approved antiviral drug that can be repurposed, monoclonal antibodies (mAbs) hold the most promise for providing a stopgap measure to lessen the impact of an outbreak while vaccines are in development. Technical advances in mAb identification, combined with the flexibility and clinical experience of mAbs in general, make them ideal candidates for rapid deployment. Furthermore, the development of mAb cocktails can provide a faster route to developing a robust medical intervention than searching for a single, outstanding mAb. In addition, mAbs are well-suited for integration into platform technologies for delivery, in which minimal components need to be changed in order to be redirected against a novel pathogen. In particular, utilizing the manufacturing and logistical benefits of DNA-based platform technologies in order to deliver one or more antiviral mAbs has the potential to revolutionize EID responses.
Collapse
Affiliation(s)
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, New York, NY, USA.,Columbia University Vagelos College of Physicans and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, New York, NY, USA.,Columbia University Vagelos College of Physicans and Surgeons, New York, NY, USA
| | | |
Collapse
|
9
|
Matsumura T, Amatsu S, Misaki R, Yutani M, Du A, Kohda T, Fujiyama K, Ikuta K, Fujinaga Y. Fully Human Monoclonal Antibodies Effectively Neutralizing Botulinum Neurotoxin Serotype B. Toxins (Basel) 2020; 12:toxins12050302. [PMID: 32392791 PMCID: PMC7291131 DOI: 10.3390/toxins12050302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 01/12/2023] Open
Abstract
Botulinum neurotoxin (BoNT) is the most potent natural toxin known. Of the seven BoNT serotypes (A to G), types A, B, E, and F cause human botulism. Treatment of human botulism requires the development of effective toxin-neutralizing antibodies without side effects such as serum sickness and anaphylaxis. In this study, we generated fully human monoclonal antibodies (HuMAbs) against serotype B BoNT (BoNT/B1) using a murine–human chimera fusion partner cell line named SPYMEG. Of these HuMAbs, M2, which specifically binds to the light chain of BoNT/B1, showed neutralization activity in a mouse bioassay (approximately 10 i.p. LD50/100 µg of antibody), and M4, which binds to the C-terminal of heavy chain, showed partial protection. The combination of two HuMAbs, M2 (1.25 µg) and M4 (1.25 µg), was able to completely neutralize BoNT/B1 (80 i.p. LD50) with a potency greater than 80 i.p. LD50/2.5 µg of antibodies, and was effective both prophylactically and therapeutically in the mouse model of botulism. Moreover, this combination showed broad neutralization activity against three type B subtypes, namely BoNT/B1, BoNT/B2, and BoNT/B6. These data demonstrate that the combination of M2 and M4 is promising in terms of a foundation for new human therapeutics for BoNT/B intoxication.
Collapse
Affiliation(s)
- Takuhiro Matsumura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; (T.M.); (S.A.); (M.Y.)
| | - Sho Amatsu
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; (T.M.); (S.A.); (M.Y.)
| | - Ryo Misaki
- Applied Microbiology Laboratory, International Center for Biotechnology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (R.M.); (K.F.)
| | - Masahiro Yutani
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; (T.M.); (S.A.); (M.Y.)
| | - Anariwa Du
- Department of Virology, Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (A.D.); (K.I.)
| | - Tomoko Kohda
- Department of Veterinary Sciences, School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, Osaka 598-8531, Japan;
| | - Kazuhito Fujiyama
- Applied Microbiology Laboratory, International Center for Biotechnology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (R.M.); (K.F.)
| | - Kazuyoshi Ikuta
- Department of Virology, Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (A.D.); (K.I.)
- The Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development, Tokyo 102-0076, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; (T.M.); (S.A.); (M.Y.)
- Correspondence: ; Tel.: +81-76-265-2200
| |
Collapse
|
10
|
Ansari I, Grier G, Byers M. Deliberate release: Plague - A review. JOURNAL OF BIOSAFETY AND BIOSECURITY 2020; 2:10-22. [PMID: 32835180 PMCID: PMC7270574 DOI: 10.1016/j.jobb.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
Yersinia pestis is the causative agent of plague and is considered one of the most likely pathogens to be used as a bioweapon. In humans, plague is a severe clinical infection that can rapidly progress with a high mortality despite antibiotic therapy. Therefore, early treatment of Y. pestis infection is crucial. This review provides an overview of its clinical manifestations, diagnosis, treatment, prophylaxis, and protection requirements for the use of clinicians. We discuss the likelihood of a deliberate release of plague and the feasibility of obtaining, isolating, culturing, transporting and dispersing plague in the context of an attack aimed at a westernized country. The current threat status and the medical and public health responses are reviewed. We also provide a brief review of the potential prehospital treatment strategy and vaccination against Y. pestis. Further, we discuss the plausibility of antibiotic resistant plague bacterium, F1-negative Y. pestis, and also the possibility of a plague mimic along with potential strategies of defense against these. An extensive literature search on the MEDLINE, EMBASE, and Web of Science databases was conducted to collate papers relevant to plague and its deliberate release. Our review concluded that the deliberate release of plague is feasible but unlikely to occur, and that a robust public health response and early treatment would rapidly halt the transmission of plague in the population. Front-line clinicians should be aware of the potential of a deliberate release of plague and prepared to instigate early isolation of patients. Moreover, front-line clinicians should be weary of the possibility of suicide attackers and mindful of the early escalation to public health organizations.
Collapse
Affiliation(s)
- Issmaeel Ansari
- Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, United Kingdom.,Barts and The London School of Medicine and Dentistry, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom.,The Institute of Pre-hospital Care, London's Air Ambulance, The Helipad, The Royal London Hospital, Whitechapel, London E1 1BB, United Kingdom
| | - Gareth Grier
- Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, United Kingdom.,Barts and The London School of Medicine and Dentistry, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom.,The Institute of Pre-hospital Care, London's Air Ambulance, The Helipad, The Royal London Hospital, Whitechapel, London E1 1BB, United Kingdom
| | - Mark Byers
- Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, United Kingdom.,Barts and The London School of Medicine and Dentistry, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom.,The Institute of Pre-hospital Care, London's Air Ambulance, The Helipad, The Royal London Hospital, Whitechapel, London E1 1BB, United Kingdom
| |
Collapse
|
11
|
Roy CJ, Van Slyke G, Ehrbar D, Bornholdt ZA, Brennan MB, Campbell L, Chen M, Kim D, Mlakar N, Whaley KJ, Froude JW, Torres-Velez FJ, Vitetta E, Didier PJ, Doyle-Meyers L, Zeitlin L, Mantis NJ. Passive immunization with an extended half-life monoclonal antibody protects Rhesus macaques against aerosolized ricin toxin. NPJ Vaccines 2020; 5:13. [PMID: 32128254 PMCID: PMC7018975 DOI: 10.1038/s41541-020-0162-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inhalation of ricin toxin (RT), a Category B biothreat agent, provokes an acute respiratory distress syndrome marked by pro-inflammatory cytokine and chemokine production, neutrophilic exudate, and pulmonary edema. The severity of RT exposure is attributed to the tropism of the toxin's B subunit (RTB) for alveolar macrophages and airway epithelial cells, coupled with the extraordinarily potent ribosome-inactivating properties of the toxin's enzymatic subunit (RTA). While there are currently no vaccines or treatments approved to prevent RT intoxication, we recently described a humanized anti-RTA IgG1 MAb, huPB10, that was able to rescue non-human primates (NHPs) from lethal dose RT aerosol challenge if administered by intravenous (IV) infusion within hours of toxin exposure. We have now engineered an extended serum half-life variant of that MAb, huPB10-LS, and evaluated it as a pre-exposure prophylactic. Five Rhesus macaques that received a single intravenous infusion (25 mg/kg) of huPB10-LS survived a lethal dose aerosol RT challenge 28 days later, whereas three control animals succumbed to RT intoxication within 48 h. The huPB10-LS treated animals remained clinically normal in the hours and days following toxin insult, suggesting that pre-existing antibody levels were sufficient to neutralize RT locally. Moreover, pro-inflammatory markers in sera and BAL fluids collected 24 h following RT challenge were significantly dampened in huPB10-LS treated animals, as compared to controls. Finally, we found that all five surviving animals, within days after RT exposure, had anti-RT serum IgG titers against epitopes other than huPB10-LS, indicative of active immunization by residual RT and/or RT-immune complexes.
Collapse
Affiliation(s)
- Chad J. Roy
- Tulane National Primate Research Center, Covington, LA 70433 USA
| | - Greta Van Slyke
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208 USA
| | - Dylan Ehrbar
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208 USA
| | | | | | | | - Michelle Chen
- Mapp Biopharmaceutical, Inc, San Diego, CA 92121 USA
| | - Do Kim
- Mapp Biopharmaceutical, Inc, San Diego, CA 92121 USA
| | - Neil Mlakar
- Mapp Biopharmaceutical, Inc, San Diego, CA 92121 USA
| | | | - Jeffrey W. Froude
- Clinical Pharmacology Branch, Walter Reed Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910 USA
- Present Address: Vaccines and Therapeutics Division, Defense Threat Reduction Agency, 8725 John J. Kingman Rd., Fort Belvoir, VA 22060 USA
| | - Fernando J Torres-Velez
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208 USA
| | - Ellen Vitetta
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Peter J. Didier
- Tulane National Primate Research Center, Covington, LA 70433 USA
| | | | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc, San Diego, CA 92121 USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208 USA
| |
Collapse
|
12
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Rong Y, Torres-Velez FJ, Ehrbar D, Doering J, Song R, Mantis NJ. An intranasally administered monoclonal antibody cocktail abrogates ricin toxin-induced pulmonary tissue damage and inflammation. Hum Vaccin Immunother 2019; 16:793-807. [PMID: 31589555 DOI: 10.1080/21645515.2019.1664243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ricin toxin, a plant-derived, mannosylated glycoprotein, elicits an incapacitating and potentially lethal inflammatory response in the airways following inhalation. Uptake of ricin by alveolar macrophages (AM) and other pulmonary cell types occurs via two parallel pathways: one mediated by ricin's B subunit (RTB), a galactose-specific lectin, and one mediated by the mannose receptor (MR;CD206). Ricin's A subunit (RTA) is a ribosome-inactivating protein that triggers apoptosis in mammalian cells. It was recently reported that a single monoclonal antibody (MAb), PB10, directed against an immunodominant epitope on RTA and administered intravenously, was able to rescue Rhesus macaques from lethal aerosol dose of ricin. In this study, we now demonstrate in mice that the effectiveness PB10 is significantly improved when combined with a second MAb, SylH3, against RTB. Mice treated with PB10 alone survived lethal-dose intranasal ricin challenge, but experienced significant weight loss, moderate pulmonary inflammation (e.g., elevated IL-1 and IL-6 levels, PMN influx), and apoptosis of lung macrophages. In contrast, mice treated with the PB10/SylH3 cocktail were essentially impervious to pulmonary ricin toxin exposure, as evidenced by no weight loss, no change in local IL-1 and IL-6 levels, retention of lung macrophages, and a significant dampening of PMN recruitment into the bronchoalveolar lavage (BAL) fluids. The PB10/SylH3 cocktail only marginally reduced ricin binding to target cells in the BAL, suggesting that the antibody mixture neutralizes ricin by interfering with one or more steps in the RTB- and MR-dependent uptake pathways.
Collapse
Affiliation(s)
- Yinghui Rong
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| | - Fernando J Torres-Velez
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| | - Dylan Ehrbar
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| | - Jennifer Doering
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| | - Renjie Song
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| | - Nicholas J Mantis
- New York State Department of Health, Division of Infectious Disease, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
14
|
Shi DY, Liu FJ, Mao YY, Cui RT, Lu JS, Yu YZ, Dong XJ, Yang ZX, Sun ZW, Pang XB. Development and evaluation of candidate subunit vaccine and novel antitoxin against botulinum neurotoxin serotype E. Hum Vaccin Immunother 2019; 16:100-108. [PMID: 31210561 DOI: 10.1080/21645515.2019.1633878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are among the most toxic proteins. Vaccination is an effective strategy to prevent botulism. To generate a vaccine suitable for human use, a recombinant non-His-tagged isoform of the Hc domain of botulinum neurotoxin serotype E (rEHc) was expressed in Escherichia coli and purified by sequential chromatography. The immunogenicity of rEHc was evaluated in mice and dose- and time-dependent immune responses were observed in both antibody titers and protective potency. Then, the pilot-scale expression and purification of rEHc were performed, and its immunological activity was characterized. Our results showed rEHc has good immunogenicity and can elicit strong protective potency against botulinum neurotoxin serotype E (BoNT/E) in mice, indicating that rEHc is an effective botulism vaccine candidate. Further, we developed a novel antitoxin against BoNT/E by purifying F(ab')2 from pepsin-digested serum IgG of rEHc-inoculated horses. The protective effect of the F(ab')2 antitoxin was determined in vitro and in vivo. The results showed that our F(ab')2 antitoxin can prevent botulism in BoNT/E-challenged mice and effectively alleviate the progression of paralysis caused by BoNT/E to achieve therapeutic effects. Therefore, our results provide valuable experimental data for the production of a novel antitoxin, which is a promising candidate for the treatment of BoNT/E-induced botulism.
Collapse
Affiliation(s)
- Dan-Yang Shi
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fu-Jia Liu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.,Pharmaceutical College, Henan University, Kaifeng, China
| | - Yun-Yun Mao
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Rong-Tian Cui
- Department of Drug Registration, Jiangsu T-mab BioPharma Co., Ltd, Taizhou, China
| | - Jian-Sheng Lu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yun-Zhou Yu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiao-Jie Dong
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhi-Xin Yang
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhi-Wei Sun
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiao-Bin Pang
- Pharmaceutical College, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Monoclonal Antibody Combinations Prevent Serotype A and Serotype B Inhalational Botulism in a Guinea Pig Model. Toxins (Basel) 2019; 11:toxins11040208. [PMID: 30959899 PMCID: PMC6520708 DOI: 10.3390/toxins11040208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are some of the most toxic proteins known, with a human LD50 of ~1 ng/kg. Equine antitoxin has a half-life in circulation of less than 1 day and is limited to a treatment rather than a prevention indication. The development of monoclonal antibodies (mAbs) may represent an alternative therapeutic option that can be produced at high quantities and of high quality and with half-lives of >10 days. Two different three mAb combinations are being developed that specifically neutralize BoNT serotypes A (BoNT/A) and B (BoNT/B). We investigated the pharmacokinetics of the anti-BoNT/A and anti-BoNT/B antibodies in guinea pigs (Cavia porcellus) and their ability to protect guinea pigs against an aerosol challenge of BoNT/A1 or BoNT/B1. Each antibody exhibited dose-dependent exposure and reached maximum circulating concentrations within 48 h post intraperitoneal or intramuscular injection. A single intramuscular dose of the three mAb combination protected guinea pigs against an aerosol challenge dose of 93 LD50 of BoNT/A1 and 116 LD50 of BoNT/B1 at 48 h post antibody administration. These mAbs are effective in preventing botulism after an aerosol challenge of BoNT/A1 and BoNT/B1 and may represent an alternative to vaccination to prevent type A or B botulism in those at risk of BoNT exposure.
Collapse
|
16
|
Taiwe GS, Montnach J, Nicolas S, De Waard S, Fiore E, Peyrin E, El-Aziz TMA, Amar M, Molgó J, Ronjat M, Servent D, Ravelet C, De Waard M. Aptamer Efficacies for In Vitro and In Vivo Modulation of αC-Conotoxin PrXA Pharmacology. Molecules 2019; 24:molecules24020229. [PMID: 30634526 PMCID: PMC6359527 DOI: 10.3390/molecules24020229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
The medical staff is often powerless to treat patients affected by drug abuse or misuse and poisoning. In the case of envenomation, the treatment of choice remains horse sera administration that poses a wealth of other medical conditions and threats. Previously, we have demonstrated that DNA-based aptamers represent powerful neutralizing tools for lethal animal toxins of venomous origin. Herein, we further pursued our investigations in order to understand whether all toxin-interacting aptamers possessed equivalent potencies to neutralize αC-conotoxin PrXA in vitro and in vivo. We confirmed the high lethality in mice produced by αC-conotoxin PrXA regardless of the mode of injection and further characterized myoclonus produced by the toxin. We used high-throughput patch-clamp technology to assess the effect of αC-conotoxin PrXA on ACh-mediated responses in TE671 cells, responses that are carried by muscle-type nicotinic receptors. We show that 2 out of 4 aptamers reduce the affinity of the toxin for its receptor, most likely by interfering with the pharmacophore. In vivo, more complex responses on myoclonus and mice lethality are observed depending on the type of aptamer and mode of administration (concomitant or differed). Concomitant administration always works better than differed administration indicating the stability of the complex in vivo. The most remarkable conclusion is that an aptamer that has no or a limited efficacy in vitro may nevertheless be functional in vivo probably owing to an impact on the biodistribution or pharmacokinetics of the toxin in vivo. Overall, the results highlight that a blind selection of aptamers against toxins leads to efficient neutralizing compounds in vivo regardless of the mode of action. This opens the door to the use of aptamer mixtures as substitutes to horse sera for the neutralization of life-threatening animal venoms, an important WHO concern in tropical areas.
Collapse
Affiliation(s)
- Germain Sotoing Taiwe
- INSERM UMR 1087/CNRS UMR 6291, Institut du Thorax, Nouvelle Université à Nantes, LabEx Ion Channels, Science and Therapeutics, 8 Quai Moncousu, BP 70721 Nantes CEDEX 1, France.
- Department of Zoology and Animal Physiology, Faculty of Sciences, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Jérôme Montnach
- INSERM UMR 1087/CNRS UMR 6291, Institut du Thorax, Nouvelle Université à Nantes, LabEx Ion Channels, Science and Therapeutics, 8 Quai Moncousu, BP 70721 Nantes CEDEX 1, France.
| | - Sébastien Nicolas
- INSERM UMR 1087/CNRS UMR 6291, Institut du Thorax, Nouvelle Université à Nantes, LabEx Ion Channels, Science and Therapeutics, 8 Quai Moncousu, BP 70721 Nantes CEDEX 1, France.
| | - Stéphan De Waard
- INSERM UMR 1087/CNRS UMR 6291, Institut du Thorax, Nouvelle Université à Nantes, LabEx Ion Channels, Science and Therapeutics, 8 Quai Moncousu, BP 70721 Nantes CEDEX 1, France.
| | - Emmanuelle Fiore
- CNRS, DPM UMR 5063, University Grenoble Alpes, 38041 Grenoble, France.
| | - Eric Peyrin
- CNRS, DPM UMR 5063, University Grenoble Alpes, 38041 Grenoble, France.
| | | | - Muriel Amar
- Service d'Ingénierie Moléculaire des Protéines, Institut des Sciences du Vivant Frédéric Joliot, Commissariat à l'Energie Atomique, Université Paris-Saclay, F-91191 Gif sur Yvette, France.
| | - Jordi Molgó
- Service d'Ingénierie Moléculaire des Protéines, Institut des Sciences du Vivant Frédéric Joliot, Commissariat à l'Energie Atomique, Université Paris-Saclay, F-91191 Gif sur Yvette, France.
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS/Université Paris-Sud, 91198 Gif sur Yvette, France.
| | - Michel Ronjat
- INSERM UMR 1087/CNRS UMR 6291, Institut du Thorax, Nouvelle Université à Nantes, LabEx Ion Channels, Science and Therapeutics, 8 Quai Moncousu, BP 70721 Nantes CEDEX 1, France.
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines, Institut des Sciences du Vivant Frédéric Joliot, Commissariat à l'Energie Atomique, Université Paris-Saclay, F-91191 Gif sur Yvette, France.
| | - Corinne Ravelet
- CNRS, DPM UMR 5063, University Grenoble Alpes, 38041 Grenoble, France.
| | - Michel De Waard
- INSERM UMR 1087/CNRS UMR 6291, Institut du Thorax, Nouvelle Université à Nantes, LabEx Ion Channels, Science and Therapeutics, 8 Quai Moncousu, BP 70721 Nantes CEDEX 1, France.
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint Egrève, France.
| |
Collapse
|
17
|
Pelfrene E, Mura M, Cavaleiro Sanches A, Cavaleri M. Monoclonal antibodies as anti-infective products: a promising future? Clin Microbiol Infect 2019; 25:60-64. [PMID: 29715552 PMCID: PMC7128139 DOI: 10.1016/j.cmi.2018.04.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND The paucity of licensed monoclonal antibodies (mAbs) in the infectious diseases arena strongly contrasts with the ready availability of these therapeutics for use in other conditions. AIMS This narrative review aims to assess the potential of monoclonal antibody-based interventions for infectious diseases. SOURCES A review of the literature via the Medline database was performed and complemented by published official documents on licensed anti-infective mAbs. In addition, ongoing trials were identified through a search of the clinical trial registration platform ClinicalTrials.gov. CONTENT We identified the few infections for which mAbs have been added to the therapeutic armamentarium and stressed their potential in representing a readily available protection tool against biothreats and newly emerging and reemerging infectious agents. In reviewing the historical context and main features of mAbs, we assert a potentially wider applicability and cite relevant examples of ongoing therapeutic developments. Factors hindering successful introduction of mAbs on a larger scale are outlined and thoughts are offered on how to possibly address some of these limitations. IMPLICATIONS mAbs may represent important tools in treating or preventing infections occurring with reasonably sufficient prevalence to justify demand and for which existing alternatives are not deemed fully adequate. Future initiatives need to address the prohibitive costs encountered in the development process. The feasibility of more large-scale administration of alternative modalities merits further exploration. In order to ensure optimal prospect of regulatory success, an early dialogue with competent authorities is encouraged.
Collapse
Affiliation(s)
- E Pelfrene
- Office of Anti-infectives and Vaccines, Human Medicines Evaluation Division, European Medicines Agency, London, UK.
| | - M Mura
- Office of Anti-infectives and Vaccines, Human Medicines Evaluation Division, European Medicines Agency, London, UK
| | - A Cavaleiro Sanches
- Quality Office, Human Medicines Research & Development Support Division, European Medicines Agency, London, UK
| | - M Cavaleri
- Office of Anti-infectives and Vaccines, Human Medicines Evaluation Division, European Medicines Agency, London, UK
| |
Collapse
|
18
|
Ahn BE, Bae HW, Lee HR, Woo SJ, Park OK, Jeon JH, Park J, Rhie GE. A therapeutic human antibody against the domain 4 of the Bacillus anthracis protective antigen shows protective efficacy in a mouse model. Biochem Biophys Res Commun 2018; 509:611-616. [PMID: 30606479 DOI: 10.1016/j.bbrc.2018.12.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023]
Abstract
Since Bacillus anthracis is a high-risk pathogen and a potential tool for bioterrorism, numerous therapeutic methods including passive immunization have been actively developed. Using a human monoclonal antibody phage display library, we screened new therapeutic antibodies for anthrax infection against protective antigen (PA) of B. anthracis. Among 5 selected clones of antibodies based on enzyme-linked immunosorbent assay (ELISA) results, 7B1 showed neutralizing activity to anthrax lethal toxin (LT) by inhibiting binding of the domain 4 of PA (PD4) to its cellular receptors. Through light chain shuffling process, we improved the productivity of 7B1 up to 25 folds. The light chain shuffled 7B1 antibody showed protective activity against LT both in vitro and in vivo. Furthermore, the antibody also conferred protection of mice from 3 × LD50 challenges of fully virulent anthrax spores. Our result expands the possibility of developing a new therapeutic antibody for anthrax cure.
Collapse
Affiliation(s)
- Bo-Eun Ahn
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, 28159, South Korea
| | - Hee-Won Bae
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, 28159, South Korea
| | - Hae-Ri Lee
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, 28159, South Korea
| | - Sun-Je Woo
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, 28159, South Korea
| | - Ok-Kyu Park
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, 28159, South Korea
| | - Jun Ho Jeon
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, 28159, South Korea
| | - Jungchan Park
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, 17035, South Korea
| | - Gi-Eun Rhie
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, 28159, South Korea.
| |
Collapse
|
19
|
Patel A, Gupta V, Hickey J, Nightlinger NS, Rogers RS, Siska C, Joshi SB, Seaman MS, Volkin DB, Kerwin BA. Coformulation of Broadly Neutralizing Antibodies 3BNC117 and PGT121: Analytical Challenges During Preformulation Characterization and Storage Stability Studies. J Pharm Sci 2018; 107:3032-3046. [PMID: 30176252 PMCID: PMC6269598 DOI: 10.1016/j.xphs.2018.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/20/2018] [Accepted: 08/14/2018] [Indexed: 01/16/2023]
Abstract
In this study, we investigated analytical challenges associated with the formulation of 2 anti-HIV broadly neutralizing antibodies (bnAbs), 3BNC117 and PGT121, both separately at 100 mg/mL and together at 50 mg/mL each. The bnAb formulations were characterized for relative solubility and conformational stability followed by accelerated and real-time stability studies. Although the bnAbs were stable during 4°C storage, incubation at 40°C differentiated their stability profiles. Specific concentration-dependent aggregation rates at 30°C and 40°C were measured by size exclusion chromatography for the individual bnAbs with the mixture showing intermediate behavior. Interestingly, although the relative ratio of the 2 bnAbs remained constant at 4°C, the ratio of 3BNC117 to PGT121 increased in the dimer that formed during storage at 40°C. A mass spectrometry-based multiattribute method, identified and quantified differences in modifications of the Fab regions for each bnAb within the mixture including clipping, oxidation, deamidation, and isomerization sites. Each bnAb showed slight differences in the levels and sites of lysine residue glycations. Together, these data demonstrate the ability to differentiate degradation products from individual antibodies within the bnAb mixture, and that degradation rates are influenced not only by the individual bnAb concentrations but also by the mixture concentration.
Collapse
Affiliation(s)
- Ashaben Patel
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Vineet Gupta
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - John Hickey
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Nancy S Nightlinger
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109
| | - Richard S Rogers
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109
| | - Christine Siska
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| | - Bruce A Kerwin
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109.
| |
Collapse
|
20
|
Lukic I, Filipovic A, Inic-Kanada A, Marinkovic E, Miljkovic R, Stojanovic M. Cooperative binding of anti-tetanus toxin monoclonal antibodies: Implications for designing an efficient biclonal preparation to prevent tetanus toxin intoxication. Vaccine 2018; 36:3764-3771. [PMID: 29773320 DOI: 10.1016/j.vaccine.2018.05.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023]
Abstract
Oligoclonal combinations of several monoclonal antibodies (MAbs) are being considered for the treatment of various infectious pathologies. These combinations are less sensitive to antigen structural changes than individual MAbs; at the same time, their characteristics can be more efficiently controlled than those of polyclonal antibodies. The main goal of this study was to evaluate the binding characteristics of six biclonal equimolar preparations (BEP) of tetanus toxin (TeNT)-specific MAbs and to investigate how the MAb combination influences the BEPs' protective capacity. We show that a combination of TeNT-specific MAbs, which not only bind TeNT but also exert positive cooperative effects, results in a BEP with superior binding characteristics and protective capacity, when compared with the individual component MAbs. Furthermore, we show that a MAb with only partial protective capacity but positive effects on the binding of the other BEP component can be used as a valuable constituent of the BEP.
Collapse
Affiliation(s)
- Ivana Lukic
- Department of Research and Development, Institute of Virology, Vaccines and Sera - TORLAK, Vojvode Stepe 458, 11152 Belgrade, Serbia
| | - Ana Filipovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera - TORLAK, Vojvode Stepe 458, 11152 Belgrade, Serbia
| | - Aleksandra Inic-Kanada
- OCUVAC - LBCE, Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Emilija Marinkovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera - TORLAK, Vojvode Stepe 458, 11152 Belgrade, Serbia
| | - Radmila Miljkovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera - TORLAK, Vojvode Stepe 458, 11152 Belgrade, Serbia
| | - Marijana Stojanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera - TORLAK, Vojvode Stepe 458, 11152 Belgrade, Serbia.
| |
Collapse
|
21
|
Post-Exposure Protection in Mice against Sudan Virus by a Two Antibody Cocktail. Viruses 2018; 10:v10060286. [PMID: 29861435 PMCID: PMC6024315 DOI: 10.3390/v10060286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Sudan virus (SUDV) and Ebola viruses (EBOV) are both members of the Ebolavirus genus and have been sources of epidemics and outbreaks for several decades. We present here the generation and characterization of cross-reactive antibodies to both SUDV and EBOV, which were produced in a cell-free system and protective against SUDV in mice. A non-human primate, cynomolgus macaque, was immunized with viral-replicon particles expressing the glycoprotein of SUDV-Boniface (8A). Two separate antibody fragment phage display libraries were constructed after four immunogen injections. Both libraries were screened first against the SUDV and a second library was cross-selected against EBOV-Kikwit. Sequencing of 288 selected clones from the two distinct libraries identified 58 clones with distinct VH and VL sequences. Many of these clones were cross-reactive to EBOV and SUDV and able to neutralize SUDV. Three of these recombinant antibodies (X10B1, X10F3, and X10H2) were produced in the scFv-Fc format utilizing a cell-free production system. Mice that were challenged with SUDV-Boniface receiving 100µg of the X10B1/X10H2 scFv-Fc combination 6 and 48-h post-exposure demonstrated partial protection individually and complete protection as a combination. The data herein suggests these antibodies may be promising candidates for further therapeutic development.
Collapse
|
22
|
Rasetti-Escargueil C, Avril A, Miethe S, Mazuet C, Derman Y, Selby K, Thullier P, Pelat T, Urbain R, Fontayne A, Korkeala H, Sesardic D, Hust M, Popoff MR. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies. Toxins (Basel) 2017; 9:toxins9100309. [PMID: 28974033 PMCID: PMC5666356 DOI: 10.3390/toxins9100309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
The goal of the AntiBotABE Program was the development of recombinant antibodies that neutralize botulinum neurotoxins (BoNT) A, B and E. These serotypes are lethal and responsible for most human botulinum cases. To improve therapeutic efficacy, the heavy and light chains (HC and LC) of the three BoNT serotypes were targeted to achieve a synergistic effect (oligoclonal antibodies). For antibody isolation, macaques were immunized with the recombinant and non-toxic BoNT/A, B or E, HC or LC, followed by the generation of immune phage-display libraries. Antibodies were selected from these libraries against the holotoxin and further analyzed in in vitro and ex vivo assays. For each library, the best ex vivo neutralizing antibody fragments were germline-humanized and expressed as immunoglobulin G (IgGs). The IgGs were tested in vivo, in a standardized model of protection, and challenged with toxins obtained from collections of Clostridium strains. Protective antibody combinations against BoNT/A and BoNT/B were evidenced and for BoNT/E, the anti-LC antibody alone was found highly protective. The combination of these five antibodies as an oligoclonal antibody cocktail can be clinically and regulatorily developed while their high “humanness” predicts a high tolerance in humans.
Collapse
Affiliation(s)
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- Institut de Recherche Biomédicale des Armées (IRBA), Département des Maladies Infectieuses, Unité Biothérapies anti-Infectieuses et Immunité, 1 Place du Général Valérie André, BP73, 91220 Brétigny-sur-Orge, France.
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Christelle Mazuet
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- BIOTEM, Parc d'activité Bièvre Dauphine 885, Rue Alphonse Gourju, 38140 Apprieu, France.
| | - Remi Urbain
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
- Ecdysis Pharma, Bioincubateur Eurasanté, 70 Rue du Dr Yersin, 59120 Loos, France.
| | - Alexandre Fontayne
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC), a Center of the Medicines and Healthcare Products Regulatory Agency, Division of Bacteriology, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
23
|
Froude JW, Pelat T, Miethe S, Zak SE, Wec AZ, Chandran K, Brannan JM, Bakken RR, Hust M, Thullier P, Dye JM. Generation and characterization of protective antibodies to Marburg virus. MAbs 2017; 9:696-703. [PMID: 28287337 DOI: 10.1080/19420862.2017.1299848] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) have been a source of epidemics and outbreaks for several decades. We present here the generation and characterization of the first protective antibodies specific for wild-type MARV. Non-human primates (NHP), cynomolgus macaques, were immunized with viral-replicon particles expressing the glycoproteins (GP) of MARV (Ci67 isolate). An antibody fragment (single-chain variable fragment, scFv) phage display library was built after four immunogen injections, and screened against the GP1-649 of MARV. Sequencing of 192 selected clones identified 18 clones with distinct VH and VL sequences. Four of these recombinant antibodies (R4A1, R4B11, R4G2, and R3F6) were produced in the scFv-Fc format for in vivo studies. Mice that were challenged with wild-type Marburg virus (Ci67 isolate) receiving 100 µg of scFv-Fc on days -1, 1 and 3 demonstrated protective efficacies ranging from 75-100%. The amino-acid sequences of the scFv-Fcs are similar to those of their human germline counterparts, sharing an identity ranging between 68 and 100% to human germline immunoglobulin. These results demonstrate for the first time that recombinant antibodies offer protection against wild-type MARV, and suggest they may be promising candidates for further therapeutic development especially due to their human homology.
Collapse
Affiliation(s)
- Jeffrey W Froude
- a US Army Medical Research Institute for Infectious Disease (USAMRIID) , Fort Detrick , MD , USA
| | - Thibaut Pelat
- b Unite de Biotechnologie des Anticorps, Institut de Recherche Biomedicale des Armees [IRBA-CRSSA] , La Tronche , France.,c BIOTEM, Apprieu , France
| | - Sebastian Miethe
- d Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik Braunschweig , Germany.,e YUMAB GmbH, Rebenring , Braunschweig , Germany
| | - Samantha E Zak
- a US Army Medical Research Institute for Infectious Disease (USAMRIID) , Fort Detrick , MD , USA
| | - Anna Z Wec
- f Department of Microbiology and Immunology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Kartik Chandran
- f Department of Microbiology and Immunology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jennifer Mary Brannan
- a US Army Medical Research Institute for Infectious Disease (USAMRIID) , Fort Detrick , MD , USA
| | - Russell R Bakken
- a US Army Medical Research Institute for Infectious Disease (USAMRIID) , Fort Detrick , MD , USA
| | - Michael Hust
- d Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik Braunschweig , Germany
| | - Philippe Thullier
- b Unite de Biotechnologie des Anticorps, Institut de Recherche Biomedicale des Armees [IRBA-CRSSA] , La Tronche , France
| | - John M Dye
- a US Army Medical Research Institute for Infectious Disease (USAMRIID) , Fort Detrick , MD , USA
| |
Collapse
|
24
|
Neutralization of Botulinum Neurotoxin Type E by a Humanized Antibody. Toxins (Basel) 2016; 8:toxins8090257. [PMID: 27626446 PMCID: PMC5037483 DOI: 10.3390/toxins8090257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) cause botulism and are the deadliest naturally-occurring substances known to humans. BoNTs have been classified as one of the category A agents by the Centers for Disease Control and Prevention, indicating their potential use as bioweapons. To counter bio-threat and naturally-occurring botulism cases, well-tolerated antibodies by humans that neutralize BoNTs are relevant. In our previous work, we showed the neutralizing potential of macaque (Macaca fascicularis)-derived scFv-Fc (scFv-Fc ELC18) by in vitro endopeptidase immunoassay and ex vivo mouse phrenic nerve-hemidiaphragm assay by targeting the light chain of the botulinum neurotoxin type E (BoNT/E). In the present study, we germline-humanized scFv-Fc ELC18 into a full IgG hu8ELC18 to increase its immunotolerance by humans. We demonstrated the protection and prophylaxis capacity of hu8ELC18 against BoNT/E in a mouse model. A concentration of 2.5 ng/mouse of hu8ELC18 protected against 5 mouse lethal dose (MLD) in a mouse protection assay and complete neutralization of 1 LD50 of pure BoNT/E toxin was achieved with 8 ng of hu8ELC18 in mouse paralysis assay. Furthermore, hu8ELC18 protected mice from 5 MLD if injected up to 14 days prior to intraperitoneal BoNT/E administration. This newly-developed humanized IgG is expected to have high tolerance in humans.
Collapse
|
25
|
Miethe S, Mazuet C, Liu Y, Tierney R, Rasetti-Escargueil C, Avril A, Frenzel A, Thullier P, Pelat T, Urbain R, Fontayne A, Sesardic D, Hust M, Popoff MR. Development of Germline-Humanized Antibodies Neutralizing Botulinum Neurotoxin A and B. PLoS One 2016; 11:e0161446. [PMID: 27560688 PMCID: PMC4999263 DOI: 10.1371/journal.pone.0161446] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/07/2016] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are counted among the most toxic substances known and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. To date, 7 serologically distinct serotypes of BoNT (serotype A-G) are known. Due to the high toxicity of BoNTs the Centers for Disease Control and Prevention (CDC) have classified BoNTs as category A agent, including the six biological agents with the highest potential risk of use as bioweapons. Well tolerated antibodies neutralizing BoNTs are required to deal with the potential risk. In a previous work, we described the development of scFv and scFv-Fc (Yumab) from macaque origin (Macaca fascicularis) neutralizing BoNT/A and B by targeting the heavy and light chain of each serotype. In the present study, we humanized the macaque antibodies SEM120-IIIC1 (anti-BoNT/A light chain), A1HC38 (anti-BoNT/A heavy chain), BLC3 (anti-BoNT/B light chain) and B2-7 (anti-BoNT/B heavy chain) by germline-humanization to obtain a better potential immunotolerance in humans. We increased the Germinality Index (GI) of SEM120-IIIC1 to 94.5%, for A1HC38, to 95% for BLC3 and to 94.4% for B2-7. Furthermore, the neutralization efficacies of the germline-humanized antibodies were analyzed in lethal and non-lethal in vivo mouse assays as full IgG. The germline-humanized IgGs hu8SEM120-IIIC1, hu8A1HC38, hu8BLC3 and hu8B2-7 were protective in vivo, when anti-heavy and anti-light chain antibodies were combined. The synergistic effect and high humanness of the selected IgGs makes them promising lead candidates for further clinical development.
Collapse
Affiliation(s)
- Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Christelle Mazuet
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Yvonne Liu
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Robert Tierney
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Christine Rasetti-Escargueil
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA) Département des Maladies Infectieuses, Unité Interaction Hôte-Pathogène, Brétigny-sur-Orge, France
| | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA) Département des Maladies Infectieuses, Unité Interaction Hôte-Pathogène, Brétigny-sur-Orge, France
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA) Département des Maladies Infectieuses, Unité Interaction Hôte-Pathogène, Brétigny-sur-Orge, France
| | - Remi Urbain
- LFB Biotechnologies, Therapeutic Innovation Department, Lille, France
| | | | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
- * E-mail: (MRP); (MH)
| | - Michel Robert Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
- * E-mail: (MRP); (MH)
| |
Collapse
|
26
|
Park K. Pulmonary delivery of anti-ricin antibody: From the bench to the clinic. J Control Release 2016; 234:135. [PMID: 27324205 DOI: 10.1016/j.jconrel.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kinam Park
- Purdue University, Departments of Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, USA.
| |
Collapse
|
27
|
Abstract
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.
Collapse
Affiliation(s)
- André Frenzel
- a YUMAB GmbH , Rebenring , Braunschweig.,b Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie , Braunschweig , Germany
| | | | - Michael Hust
- b Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie , Braunschweig , Germany
| |
Collapse
|
28
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
29
|
Respaud R, Marchand D, Pelat T, Tchou-Wong KM, Roy CJ, Parent C, Cabrera M, Guillemain J, Mac Loughlin R, Levacher E, Fontayne A, Douziech-Eyrolles L, Junqua-Moullet A, Guilleminault L, Thullier P, Guillot-Combe E, Vecellio L, Heuzé-Vourc'h N. Development of a drug delivery system for efficient alveolar delivery of a neutralizing monoclonal antibody to treat pulmonary intoxication to ricin. J Control Release 2016; 234:21-32. [PMID: 27173943 DOI: 10.1016/j.jconrel.2016.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/13/2022]
Abstract
The high toxicity of ricin and its ease of production have made it a major bioterrorism threat worldwide. There is however no efficient and approved treatment for poisoning by ricin inhalation, although there have been major improvements in diagnosis and therapeutic strategies. We describe the development of an anti-ricin neutralizing monoclonal antibody (IgG 43RCA-G1) and a device for its rapid and effective delivery into the lungs for an application in humans. The antibody is a full-length IgG and binds to the ricin A-chain subunit with a high affinity (KD=53pM). Local administration of the antibody into the respiratory tract of mice 6h after pulmonary ricin intoxication allowed the rescue of 100% of intoxicated animals. Specific operational constraints and aerosolization stresses, resulting in protein aggregation and loss of activity, were overcome by formulating the drug as a dry-powder that is solubilized extemporaneously in a stabilizing solution to be nebulized. Inhalation studies in mice showed that this formulation of IgG 43RCA-G1 did not induce pulmonary inflammation. A mesh nebulizer was customized to improve IgG 43RCA-G1 deposition into the alveolar region of human lungs, where ricin aerosol particles mostly accumulate. The drug delivery system also comprises a semi-automatic reconstitution system to facilitate its use and a specific holding chamber to maximize aerosol delivery deep into the lung. In vivo studies in monkeys showed that drug delivery with the device resulted in a high concentration of IgG 43RCA-G1 in the airways for at least 6h after local deposition, which is consistent with the therapeutic window and limited passage into the bloodstream.
Collapse
Affiliation(s)
- Renaud Respaud
- Université François-Rabelais de Tours, UMR 1100, CHRU de Tours, Service de Pharmacie, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Denis Marchand
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France; Aerodrug, F-37032 Tours, France
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; Brétigny sur Orge, France; BIOTEM, Parc d'activité Bièvre Dauphine, Apprieu, France
| | - Kam-Meng Tchou-Wong
- NYU School of Medicine, Department of Environmental Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - Chad J Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA; Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Christelle Parent
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Maria Cabrera
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Joël Guillemain
- SESAME, Expertise en toxicologie, Chambray-les-tours, France
| | | | | | | | | | | | - Laurent Guilleminault
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; Brétigny sur Orge, France
| | - Emmanuelle Guillot-Combe
- DGA, Direction de la Stratégie (DS), Mission pour la recherche et l'Innovation scientifique (MRIS), France
| | - Laurent Vecellio
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France; Aerodrug, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France.
| |
Collapse
|
30
|
Hedegaard CJ, Heegaard PMH. Passive immunisation, an old idea revisited: Basic principles and application to modern animal production systems. Vet Immunol Immunopathol 2016; 174:50-63. [PMID: 27185263 PMCID: PMC7127230 DOI: 10.1016/j.vetimm.2016.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
Immunisation by administration of antibodies (immunoglobulins) has been known for more than one hundred years as a very efficient means of obtaining immediate, short-lived protection against infection and/or against the disease-causing effects of toxins from microbial pathogens and from other sources. Thus, due to its rapid action, passive immunisation is often used to treat disease caused by infection and/or toxin exposure. However immunoglobulins may also be administered prior to exposure to infection and/or toxin, although they will not provide long-lasting protection as is seen with active immunisation (vaccination) in which an immunological memory is established by controlled exposure of the host to the pathogen in question. With multi-factorial infectious diseases in production animals, especially those that have proven hard to control by vaccination, the potential of passive immunisation remains big. This review highlights a number of examples on the use of passive immunisation for the control of infectious disease in the modern production of a range of animals, including pigs, cattle, sheep, goat, poultry and fish. Special emphasis is given on the enablement of passive immunisation strategies in these production systems through low cost and ease of use as well as on the sources, composition and purity of immunoglobulin preparations used and their benefits as compared to current measures, including vaccination (also comprising maternal vaccination), antibiotics and feed additives such as spray-dried plasma. It is concluded that provided highly efficient, relatively low-price immunoglobulin products are available, passive immunisation has a clear role in the modern animal production sector as a means of controlling infectious diseases, importantly with a very low risk of causing development of bacterial resistance, thus constituting a real and widely applicable alternative to antibiotics.
Collapse
Affiliation(s)
- Chris J Hedegaard
- National Veterinary Institute, Technical University of Denmark, Section for Immunology and Vaccinology, The innate immunology Group, Denmark.
| | - Peter M H Heegaard
- National Veterinary Institute, Technical University of Denmark, Section for Immunology and Vaccinology, The innate immunology Group, Denmark
| |
Collapse
|
31
|
Böldicke T, Miethe S, Fühner V, Schirrmann T, Frenzel A, Hust M. Generation of Recombinant Antibodies Against Toxins and Viruses by Phage Display for Diagnostics and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:55-76. [PMID: 27236552 PMCID: PMC7121732 DOI: 10.1007/978-3-319-32805-8_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antibody phage display is an in vitro technology to generate recombinant antibodies. In particular for pathogens like viruses or toxins, antibody phage display is an alternative to hybridoma technology, since it circumvents the limitations of the immune system. Phage display allows the generation of human antibodies from naive antibody gene libraries when either immunized patients are not available or immunization is not ethically feasible. This technology also allows the construction of immune libraries to select in vivo affinity matured antibodies if immunized patients or animals are available.In this review, we describe the generation of human and human-like antibodies from naive antibody gene libraries and antibodies from immune antibody gene libraries. Furthermore, we give an overview about phage display derived recombinant antibodies against viruses and toxins for diagnostics and therapy.
Collapse
Affiliation(s)
- Thomas Böldicke
- grid.7490.aRecombinant protein exprsn/Intrabdy unit, Helmholtz-Centre for Infection Rese, Braunschweig, Germany
| | - Sebastian Miethe
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
32
|
Rupprecht CE, Nagarajan T, Ertl H. Current Status and Development of Vaccines and Other Biologics for Human Rabies Prevention. Expert Rev Vaccines 2016; 15:731-49. [PMID: 26796599 DOI: 10.1586/14760584.2016.1140040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rabies is a neglected viral zoonosis with the highest case fatality of any infectious disease. Pasteur's historical accomplishments during the late 19(th) century began the process of human vaccine development, continuing to evolve into the 21(st) century. Over the past 35 years, great improvements occurred in the production of potent tissue culture vaccines and the gradual removal from the market of unsafe nerve tissue products. Timely and appropriate administration of modern biologics virtually assures survivorship, even after severe exposures. Nevertheless, in the developing world, if not provided for free nationally, the cost of a single course of human prophylaxis exceeds the average monthly wage of the common worker. Beyond traditional approaches, recombinant, sub-unit and other novel methods are underway to improve the availability of safe, effective and more affordable rabies biologics.
Collapse
|
33
|
Li L, Guo Q, Liu J, Zhang J, Yin Y, Dong D, Fu L, Xu J, Chen W. Recombinant HSA-CMG2 Is a Promising Anthrax Toxin Inhibitor. Toxins (Basel) 2016; 8:toxins8010028. [PMID: 26805881 PMCID: PMC4728550 DOI: 10.3390/toxins8010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/25/2015] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
Anthrax toxin is the major virulence factor produced by Bacillus anthracis. Protective antigen (PA) is the key component of the toxin and has been confirmed as the main target for the development of toxin inhibitors. The inhibition of the binding of PA to its receptor, capillary morphogenesis protein-2 (CMG2), can effectively block anthrax intoxication. The recombinant, soluble von Willebrand factor type A (vWA) domain of CMG2 (sCMG2) has demonstrated potency against anthrax toxin. However, the short half-life of sCMG2 in vivo is a disadvantage for its development as a new anthrax drug. In the present study, we report that HSA-CMG2, a protein combining human serum albumin (HSA) and sCMG2, produced in the Pichia pastoris expression system prolonged the half-life of sCMG2 while maintaining PA binding ability. The IC50 of HSA-CMG2 is similar to those of sCMG2 and CMG2-Fc in in vitro toxin neutralization assays, and HSA-CMG2 completely protects rats from lethal doses of anthrax toxin challenge; these same challenge doses exceed sCMG2 at a sub-equivalent dose ratio and overwhelm CMG2-Fc. Our results suggest that HSA-CMG2 is a promising inhibitor of anthrax toxin and may contribute to the development of novel anthrax drugs.
Collapse
Affiliation(s)
- Liangliang Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
- Center for Disease Control and Prevention of Navy, Beijing 101113, China.
| | - Qiang Guo
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ju Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Dayong Dong
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| |
Collapse
|
34
|
Miethe S, Rasetti-Escargueil C, Avril A, Liu Y, Chahboun S, Korkeala H, Mazuet C, Popoff MR, Pelat T, Thullier P, Sesardic D, Hust M. Development of Human-Like scFv-Fc Neutralizing Botulinum Neurotoxin E. PLoS One 2015; 10:e0139905. [PMID: 26440796 PMCID: PMC4595074 DOI: 10.1371/journal.pone.0139905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background Botulinum neurotoxins (BoNTs) are considered to be the most toxic substances known on earth and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food-poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agent by the Centers of Disease Control and Prevention (CDC) and are listed among the six agents with the highest risk to be used as bioweapons. Neutralizing antibodies are required for the development of effective anti-botulism therapies to deal with the potential risk of exposure. Results In this study, a macaque (Macaca fascicularis) was immunized with recombinant light chain of BoNT/E3 and an immune phage display library was constructed. After a multi-step panning, several antibody fragments (scFv, single chain fragment variable) with nanomolar affinities were isolated, that inhibited the endopeptidase activity of pure BoNT/E3 in vitro by targeting its light chain. Furthermore, three scFv were confirmed to neutralize BoNT/E3 induced paralysis in an ex vivo mouse phrenic nerve-hemidiaphragm assay. The most effective neutralization (20LD50/mL, BoNT/E3) was observed with scFv ELC18, with a minimum neutralizing concentration at 0.3 nM. Furthermore, ELC18 was highly effective in vivo when administered as an scFv-Fc construct. Complete protection of 1LD50 BoNT/E3 was observed with 1.6 ng/dose in the mouse flaccid paralysis assay. Conclusion These scFv-Fcs antibodies are the first recombinant antibodies neutralizing BoNT/E by targeting its light chain. The human-like nature of the isolated antibodies is predicting a good tolerance for further clinical development.
Collapse
Affiliation(s)
- Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Christine Rasetti-Escargueil
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de biotechnologie des anticorps et des toxines, 24 avenue des Maquis du Grésivaudan, B.P. 87, 38702 La Tronche Cedex, France
| | - Yvonne Liu
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Siham Chahboun
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de biotechnologie des anticorps et des toxines, 24 avenue des Maquis du Grésivaudan, B.P. 87, 38702 La Tronche Cedex, France
| | - Hannu Korkeala
- University of Helsinki, Faculty of Veterinary Medicine, Centre of Excellence in Microbial Food Safety Research, Department of Food Hygiene and Environmental Health, P.O. Box 66 (Agnes Sjöbergin katu 2), 00014 Helsinki University, Helsinki, Finland
| | - Christelle Mazuet
- Unité des Bactéries anaérobies et Toxines, Institut Pasteur, 25 avenue du Docteur Roux, 75015, Paris, France
| | - Michel-Robert Popoff
- Unité des Bactéries anaérobies et Toxines, Institut Pasteur, 25 avenue du Docteur Roux, 75015, Paris, France
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de biotechnologie des anticorps et des toxines, 24 avenue des Maquis du Grésivaudan, B.P. 87, 38702 La Tronche Cedex, France
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de biotechnologie des anticorps et des toxines, 24 avenue des Maquis du Grésivaudan, B.P. 87, 38702 La Tronche Cedex, France
| | - Dorothea Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
- * E-mail:
| |
Collapse
|
35
|
Irani V, Guy AJ, Andrew D, Beeson JG, Ramsland PA, Richards JS. Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Mol Immunol 2015; 67:171-82. [DOI: 10.1016/j.molimm.2015.03.255] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
|
36
|
Herrera C, Tremblay JM, Shoemaker CB, Mantis NJ. Mechanisms of Ricin Toxin Neutralization Revealed through Engineered Homodimeric and Heterodimeric Camelid Antibodies. J Biol Chem 2015; 290:27880-9. [PMID: 26396190 DOI: 10.1074/jbc.m115.658070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 11/06/2022] Open
Abstract
Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors.
Collapse
Affiliation(s)
- Cristina Herrera
- From the Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York 12208, the Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York 12201, and
| | - Jacqueline M Tremblay
- the Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachuetts 01536
| | - Charles B Shoemaker
- the Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachuetts 01536
| | - Nicholas J Mantis
- From the Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York 12208, the Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York 12201, and
| |
Collapse
|
37
|
You Z, Yang H, Xin W, Kang L, Gao S, Wang J, Zhang T, Wang J. Preparation of egg yolk antibodies against BoNT/B and their passive protection in mouse models. Hum Vaccin Immunother 2015; 10:2321-7. [PMID: 25424938 DOI: 10.4161/hv.29433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Botulism in human is a devastating intoxication caused mainly by type A, B, and E botulinum neurotoxins (BoNTs). The most effective treatment of botulism is injection of BoNT antiserum in the first 24 h. In this study, a recombinant C-terminal heavy chain of BoNT/B (BHc) was successfully expressed in E. coli. The soluble BHc was used as an antigen to immunize laying hens for yolk immunoglobulin (IgY) production. The purified IgY against BHc subunit, preincubated with the BoNT/B, was predominantly involved in the neutralization of BoNT/B toxicity. Furthermore, both intraperitoneal and intragastric administration of the IgY could protect mice from death caused by injection of toxin at a lethal dose. Our results therefore suggest that anti-BHc IgY directed to the Hc domain is effectively involved in the neutralization of BoNT/B toxin and may be considered as preventive and therapeutic intervention in the case of botulism.
Collapse
Affiliation(s)
- Zherong You
- a State Key Laboratory of Pathogen and Biosecurity; Institute of Microbiology and Epidemiology; Fengtai District, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim YJ, Kim JH, Lee KJ, Choi MM, Kim YH, Rhie GE, Yoo CK, Cha K, Shin NR. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages. PLoS One 2015; 10:e0120840. [PMID: 25853816 PMCID: PMC4390353 DOI: 10.1371/journal.pone.0120840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/10/2015] [Indexed: 01/16/2023] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) is the most potent protein toxin and causes fatal flaccid muscle paralysis by blocking neurotransmission. Application of BoNT/A has been extended to the fields of therapeutics and biodefense. Nevertheless, the global response of host immune cells to authentic BoNT/A has not been reported. Employing microarray analysis, we performed global transcriptional profiling of RAW264.7 cells, a murine alveolar macrophage cell line. We identified 70 genes that were modulated following 1 nM BoNT/A treatment. The altered genes were mainly involved in signal transduction, immunity and defense, protein metabolism and modification, neuronal activities, intracellular protein trafficking, and muscle contraction. Microarray data were validated with real-time RT-PCR for seven selected genes including tlr2, tnf, inos, ccl4, slpi, stx11, and irg1. Proinflammatory mediators such as nitric oxide (NO) and tumor necrosis factor alpha (TNFα) were induced in a dose-dependent manner in BoNT/A-stimulated RAW264.7 cells. Increased expression of these factors was inhibited by monoclonal anti-Toll-like receptor 2 (TLR2) and inhibitors specific to intracellular proteins such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK). BoNT/A also suppressed lipopolysaccharide-induced NO and TNFα production from RAW264.7 macrophages at the transcription level by blocking activation of JNK, ERK, and p38 MAPK. As confirmed by TLR2-/- knock out experiments, these results suggest that BoNT/A induces global gene expression changes in host immune cells and that host responses to BoNT/A proceed through a TLR2-dependent pathway, which is modulated by JNK, ERK, and p38 MAPK.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Jeong-Hee Kim
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Kwang-Jun Lee
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Myung-Min Choi
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Yeon Hee Kim
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Gi-eun Rhie
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Cheon-Kwon Yoo
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Kiweon Cha
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Na-Ri Shin
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| |
Collapse
|
39
|
Sully EK, Whaley K, Bohorova N, Bohorov O, Goodman C, Kim D, Pauly M, Velasco J, Holtsberg FW, Stavale E, Aman MJ, Tangudu C, Uzal FA, Mantis NJ, Zeitlin L. A tripartite cocktail of chimeric monoclonal antibodies passively protects mice against ricin, staphylococcal enterotoxin B and Clostridium perfringens epsilon toxin. Toxicon 2014; 92:36-41. [PMID: 25260254 PMCID: PMC4248019 DOI: 10.1016/j.toxicon.2014.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 11/25/2022]
Abstract
Due to the fast-acting nature of ricin, staphylococcal enterotoxin B (SEB), and Clostridium perfringens epsilon toxin (ETX), it is necessary that therapeutic interventions following a bioterrorism incident by one of these toxins occur as soon as possible after intoxication. Moreover, because the clinical manifestations of intoxication by these agents are likely to be indistinguishable from each other, especially following aerosol exposure, we have developed a cocktail of chimeric monoclonal antibodies that is capable of neutralizing all three toxins. The efficacy of this cocktail was demonstrated in mouse models of lethal dose toxin challenge.
Collapse
Affiliation(s)
- Erin K Sully
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Kevin Whaley
- Mapp Biopharmaceutical, Inc., 92121 San Diego, CA, USA
| | | | | | | | - Do Kim
- Mapp Biopharmaceutical, Inc., 92121 San Diego, CA, USA
| | - Michael Pauly
- Mapp Biopharmaceutical, Inc., 92121 San Diego, CA, USA
| | - Jesus Velasco
- Mapp Biopharmaceutical, Inc., 92121 San Diego, CA, USA
| | | | - Eric Stavale
- Integrated BioTherapeutics, Gaithersburg, MD, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Gaithersburg, MD, USA
| | - Chandra Tangudu
- Department of Veterinary Sciences, Iowa State University, USA
| | | | - Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., 92121 San Diego, CA, USA.
| |
Collapse
|
40
|
Seo SH, Lee YR, Ho Jeon J, Hwang YR, Park PG, Ahn DR, Han KC, Rhie GE, Hong KJ. Highly sensitive detection of a bio-threat pathogen by gold nanoparticle-based oligonucleotide-linked immunosorbent assay. Biosens Bioelectron 2014; 64:69-73. [PMID: 25194798 DOI: 10.1016/j.bios.2014.08.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/07/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023]
Abstract
Francisella (F.) tularensis causes the zoonotic disease tularemia and categorized as one of the highest-priority biological agents. The sensing approaches utilized by conventional detection methods, including enzyme-linked immunosorbent assay (ELISA), are not sensitive enough to identify an infectious dose of this high-risk pathogen due to its low infective dose. As an attempt to detect F. tularensis with high sensitivity, we utilized the highly sensitive immunoassay system named gold nanoparticle-based oligonucleotide-linked immunosorbent assay (GNP-OLISA) which uses antibody-gold nanoparticles conjugated with DNA strands as a signal generator and RNA oligonucleotides appended with a fluorophore as a quencher for signal amplification. We modified the GNP-OLISA for the detection F. tularensis to utilize one antibody for both the capture of the target and for signal generation instead of using two different antibodies, which are usually employed to construct the antibody sandwich in the ELISA. The GNP-OLISA showed 37-fold higher sensitivity compared with ELISA and generated very consistent detection results in the sera. In addition, the detection specificity was not affected by the presence of non-target bacteria, suggesting that GNP-OLISA can be used as a sensitive detection platform for monitoring high-risk pathogens thereby overcoming the limit of the conventional assay system.
Collapse
Affiliation(s)
- Sang-Hwan Seo
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongwon, Chungcheongbuk-do 363-951, Republic of Korea
| | - Young-Ran Lee
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongwon, Chungcheongbuk-do 363-951, Republic of Korea
| | - Jun Ho Jeon
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongwon, Chungcheongbuk-do 363-951, Republic of Korea
| | - Yi-Rang Hwang
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongwon, Chungcheongbuk-do 363-951, Republic of Korea
| | - Pil-Gu Park
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongwon, Chungcheongbuk-do 363-951, Republic of Korea
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Department of Biological Chemistry, KIST Campus, Korea University of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Ki-Cheol Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Gi-Eun Rhie
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongwon, Chungcheongbuk-do 363-951, Republic of Korea
| | - Kee-Jong Hong
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongwon, Chungcheongbuk-do 363-951, Republic of Korea.
| |
Collapse
|
41
|
Direct neutralization of type III effector translocation by the variable region of a monoclonal antibody to Yersinia pestis LcrV. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:667-73. [PMID: 24599533 DOI: 10.1128/cvi.00013-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Plague is an acute infection caused by the Gram-negative bacterium Yersinia pestis. Antibodies that are protective against plague target LcrV, an essential virulence protein and component of a type III secretion system of Y. pestis. Secreted LcrV localizes to the tips of type III needles on the bacterial surface, and its function is necessary for the translocation of Yersinia outer proteins (Yops) into the cytosol of host cells infected by Y. pestis. Translocated Yops counteract macrophage functions, for example, by inhibiting phagocytosis (YopE) or inducing cytotoxicity (YopJ). Although LcrV is the best-characterized protective antigen of Y. pestis, the mechanism of protection by anti-LcrV antibodies is not fully understood. Antibodies bind to LcrV at needle tips, neutralize Yop translocation, and promote opsonophagocytosis of Y. pestis by macrophages in vitro. However, it is not clear if anti-LcrV antibodies neutralize Yop translocation directly or if they do so indirectly, by promoting opsonophagocytosis. To determine if the protective IgG1 monoclonal antibody (MAb) 7.3 is directly neutralizing, an IgG2a subclass variant, a deglycosylated variant, F(ab')2, and Fab were tested for the ability to inhibit the translocation of Yops into Y. pestis-infected macrophages in vitro. Macrophage cytotoxicity and cellular fractionation assays show that the Fc of MAb 7.3 is not required for the neutralization of YopJ or YopE translocation. In addition, the use of Fc receptor-deficient macrophages, and the use of cytochalasin D to inhibit actin polymerization, confirmed that opsonophagocytosis is not required for MAb 7.3 to neutralize translocation. These data indicate that the binding of the variable region of MAb 7.3 to LcrV is sufficient to directly neutralize Yop translocation.
Collapse
|
42
|
Miethe S, Rasetti-Escargueil C, Liu Y, Chahboun S, Pelat T, Avril A, Frenzel A, Schirrmann T, Thullier P, Sesardic D, Hust M. Development of neutralizing scFv-Fc against botulinum neurotoxin A light chain from a macaque immune library. MAbs 2014; 6:446-59. [PMID: 24492304 PMCID: PMC3984333 DOI: 10.4161/mabs.27773] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.
Collapse
Affiliation(s)
- Sebastian Miethe
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie, und Bioinformatik; Abteilung Biotechnologie; Braunschweig, Germany
| | - Christine Rasetti-Escargueil
- National Institute for Biological Standards and Control (NIBSC); Medicines and Healthcare Products Regulatory Agency; Division of Bacteriology; Potters Bar, UK
| | - Yvonne Liu
- National Institute for Biological Standards and Control (NIBSC); Medicines and Healthcare Products Regulatory Agency; Division of Bacteriology; Potters Bar, UK
| | - Siham Chahboun
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines ; La Tronche Cedex, France
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines ; La Tronche Cedex, France
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines ; La Tronche Cedex, France
| | - André Frenzel
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie, und Bioinformatik; Abteilung Biotechnologie; Braunschweig, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie, und Bioinformatik; Abteilung Biotechnologie; Braunschweig, Germany
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines ; La Tronche Cedex, France
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC); Medicines and Healthcare Products Regulatory Agency; Division of Bacteriology; Potters Bar, UK
| | - Michael Hust
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie, und Bioinformatik; Abteilung Biotechnologie; Braunschweig, Germany
| |
Collapse
|
43
|
Levy H, Glinert I, Weiss S, Sittner A, Schlomovitz J, Altboum Z, Kobiler D. Toxin-independent virulence of Bacillus anthracis in rabbits. PLoS One 2014; 9:e84947. [PMID: 24416317 PMCID: PMC3885664 DOI: 10.1371/journal.pone.0084947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/14/2013] [Indexed: 12/24/2022] Open
Abstract
The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play a major role in pathogenicity. In the guinea pig (GP) model we have previously shown that deletion of all three toxin components results in a relatively moderate attenuation in virulence, indicating that B. anthracis possesses an additional toxin-independent virulence mechanism. To characterize this toxin-independent mechanism in anthrax disease, we developed a new rabbit model by intravenous injection (IV) of B. anthracis encapsulated vegetative cells, artificially creating bacteremia. Using this model we were able to demonstrate that also in rabbits, B. anthracis mutants lacking the toxins are capable of killing the host within 24 hours. This virulent trait depends on the activity of AtxA in the presence of pXO2, as, in the absence of the toxin genes, deletion of either component abolishes virulence. Furthermore, this IV virulence depends mainly on AtxA rather than the whole pXO1. A similar pattern was shown in the GP model using subcutaneous (SC) administration of spores of the mutant strains, demonstrating the generality of the phenomenon. The virulent strains showed higher bacteremia levels and more efficient tissue dissemination; however our interpretation is that tissue dissemination per se is not the main determinant of virulence whose exact nature requires further elucidation.
Collapse
Affiliation(s)
- Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
- * E-mail:
| | - Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Assa Sittner
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Josef Schlomovitz
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Zeev Altboum
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - David Kobiler
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
44
|
Torres S, Hamilton M, Sanches E, Starovatova P, Gubanova E, Reshetnikova T. Neutralizing antibodies to botulinum neurotoxin type A in aesthetic medicine: five case reports. Clin Cosmet Investig Dermatol 2013; 7:11-7. [PMID: 24379687 PMCID: PMC3872090 DOI: 10.2147/ccid.s51938] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Botulinum neurotoxin injections are a valuable treatment modality for many therapeutic indications as well as in the aesthetic field for facial rejuvenation. As successful treatment requires repeated injections over a long period of time, secondary resistance to botulinum toxin preparations after repeated injections is an ongoing concern. We report five case studies in which neutralizing antibodies to botulinum toxin type A developed after injection for aesthetic use and resulted in secondary treatment failure. These results add to the growing number of reports in the literature for secondary treatment failure associated with high titers of neutralizing antibodies in the aesthetic field. Clinicians should be aware of this risk and implement injection protocols that minimize resistance development.
Collapse
Affiliation(s)
| | | | - Elena Sanches
- EKLAN Co Ltd Medical Center for Aesthetic Correction, Moscow, Russia
| | | | | | - Tatiana Reshetnikova
- Department of Dermatovenereology and Cosmetology, State Medical University, Novosibirsk, Russia
| |
Collapse
|
45
|
Luo L, Luo Q, Guo L, Lv M, Lin Z, Geng J, Li X, Li Y, Shen B, Qiao C, Feng J. Structure-based affinity maturation of a chimeric anti-ricin antibody C4C13. J Biomol Struct Dyn 2013; 32:416-23. [DOI: 10.1080/07391102.2013.771380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Chow SK, Casadevall A. Monoclonal antibodies and toxins--a perspective on function and isotype. Toxins (Basel) 2012; 4:430-54. [PMID: 22822456 PMCID: PMC3398419 DOI: 10.3390/toxins4060430] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins—Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)—and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.
Collapse
Affiliation(s)
- Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-718-430-2811; Fax: +1-718-430-8711
| |
Collapse
|
47
|
|