1
|
Wang Y, Zhang C, Yu R, Wu Z, Wang Y, Wang W, Lai Y. Robust and sensitive determination of nitrites in pickled food by surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123794. [PMID: 38154308 DOI: 10.1016/j.saa.2023.123794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Nitrites are ubiquitous in food and pose a serious threat to human health. Therefore, the rapid and accurate determination of nitrite ion concentration in food is a prerequisite for eliminating the damage of nitrites. In this study, a robust, rapid, and sensitive method is proposed for nitrite detection in pickled food, in which Au@Ag nanoparticles are used as a reliable surface-enhanced Raman spectroscopy (SERS) substrate taking advantage of the high enhancement effect of silver and the good stability of gold. Nitrites were anchored to the surface of the SERS substrate by bridging with 4-aminophenylthiophenol (PATP). With Raman scattering cross-section amplification and internal calibration by PATP, a satisfactory linear relationship (R2 = 0.987) was established for nitrite detection in the concentration range of 5.00-100.00 μM, and the limit of detection (LOD) was 0.17 μM. This SERS-based method demonstrated high selectivity, good precision (RSD < 7.00 %), and satisfying recovery rates (101.42-107.35 %) in real samples, thus improving the determination method for nitrites. Therefore, this method has application potential in food safety and supervision.
Collapse
Affiliation(s)
- Yufei Wang
- Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Cui Zhang
- Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ruiying Yu
- Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhe Wu
- Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yingjie Wang
- Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Wei Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Yongchao Lai
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
2
|
Ding G, Shen L, Dai J, Jackson R, Liu S, Ali M, Sun L, Wen M, Xiao J, Deakin G, Jiang D, Wang XE, Zhou J. The Dissection of Nitrogen Response Traits Using Drone Phenotyping and Dynamic Phenotypic Analysis to Explore N Responsiveness and Associated Genetic Loci in Wheat. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0128. [PMID: 38148766 PMCID: PMC10750832 DOI: 10.34133/plantphenomics.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
Inefficient nitrogen (N) utilization in agricultural production has led to many negative impacts such as excessive use of N fertilizers, redundant plant growth, greenhouse gases, long-lasting toxicity in ecosystem, and even effect on human health, indicating the importance to optimize N applications in cropping systems. Here, we present a multiseasonal study that focused on measuring phenotypic changes in wheat plants when they were responding to different N treatments under field conditions. Powered by drone-based aerial phenotyping and the AirMeasurer platform, we first quantified 6 N response-related traits as targets using plot-based morphological, spectral, and textural signals collected from 54 winter wheat varieties. Then, we developed dynamic phenotypic analysis using curve fitting to establish profile curves of the traits during the season, which enabled us to compute static phenotypes at key growth stages and dynamic phenotypes (i.e., phenotypic changes) during N response. After that, we combine 12 yield production and N-utilization indices manually measured to produce N efficiency comprehensive scores (NECS), based on which we classified the varieties into 4 N responsiveness (i.e., N-dependent yield increase) groups. The NECS ranking facilitated us to establish a tailored machine learning model for N responsiveness-related varietal classification just using N-response phenotypes with high accuracies. Finally, we employed the Wheat55K SNP Array to map single-nucleotide polymorphisms using N response-related static and dynamic phenotypes, helping us explore genetic components underlying N responsiveness in wheat. In summary, we believe that our work demonstrates valuable advances in N response-related plant research, which could have major implications for improving N sustainability in wheat breeding and production.
Collapse
Affiliation(s)
- Guohui Ding
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Shen
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Dai
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Robert Jackson
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| | - Shuchen Liu
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Mujahid Ali
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Mingxing Wen
- Zhenjiang Institute of Agricultural Science, Jurong, Jiangsu 212400, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Greg Deakin
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| | - Dong Jiang
- Regional Technique Innovation Center for Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture,
Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiu-e Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Ji Zhou
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| |
Collapse
|
3
|
Wang J, Chu H, Wang Z, Wang X, Liu X, Song Z, Liu F. In vivo study revealed pro-tumorigenic effect of CMTM3 in hepatocellular carcinoma involving the regulation of peroxisome proliferator-activated receptor gamma (PPARγ). Cell Oncol (Dordr) 2023; 46:49-64. [PMID: 36284038 DOI: 10.1007/s13402-022-00733-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To clarify the ambiguity of the function of CMTM3 in the development of hepatocellular carcinoma (HCC) and explore its molecular mechanism. METHODS The Cmtm3-KO C57BL/6 mouse strain was established using CRISPR-Cas9. Acute liver damage and HCC models were induced by peritoneal injection of 100 or 25 mg/kg.BW N-Nitrosodiethylamine (DEN) to male mice. Liver function and histology were evaluated by blood serum levels of AST and ALT, and HE staining. Gene and protein expression in liver tissues was investigated by RNA-seq, RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence. Protein-protein interactions were studied by STRING and topological measures. The mRNA expression of CMTM3 and PPARs and patient survival were analyzed using the UALCAN database. RESULTS Global knockout of Cmtm3 in KO mice was successfully confirmed. Cmtm3 knockout alleviated DEN-induced acute damage to liver histological integrity and liver function, reduced DNA damage and apoptosis, and also caused a significantly reduced number (WT: 8.7 ± 5.5 vs. KO: 2.7 ± 3.1, P = 0.0394) and total size of tumors (WT: 130.9 ± 181.8 mm2 vs. KO: 9.3 ± 11.5 mm2, P = 0.026) in the liver. Mechanistically, Cmtm3 knockout resulted in reduced expression and inactivation of Pparγ and its downstream lipid metabolism genes (e.g. Adipoq) upon DEN intoxication. CMTM3 and PPARγ were both overexpressed in HCC, and higher levels of both genes were associated with worse overall survival of HCC patients. CONCLUSION This study clarified the pro-tumorigenesis role of CMTM3 in HCC in vivo, possibly through the upregulation of PPARγ and activation of the PPAR pathway.
Collapse
Affiliation(s)
- Jiahui Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Hongjin Chu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Zhixin Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Xuebo Wang
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Xuexia Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Zhan Song
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Fujun Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China.
| |
Collapse
|
4
|
Tyhali A, Forbes PB. N − nitrosamines in surface and drinking waters: An African status report. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Wang Y, Xiong H, Chen C. Agricultural non-point source pollution and health of the elderly in rural China. PLoS One 2022; 17:e0274027. [PMID: 36240140 PMCID: PMC9565375 DOI: 10.1371/journal.pone.0274027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Large input and high loss of chemical fertilizer are the major causes of agricultural non-point source pollution in China. Employing fertilizer loss and micro-health data, this paper analyzes the effects of chemical fertilizer loss on the health of rural elderly and the medical cost in China. Results of the difference-in-differences (DID) method indicate that one kg/ha increase in fertilizer loss alters a key medical disability index (Activities of Daily Living) by 0.0147 (0.2 percent changes) and the number of diseases by 0.0057 for rural residents of 65 and older. This is equivalent to CNY 316 million (USD 45 million) at national medical cost. Furthermore, the age of onset is younger in regions with higher fertilizer loss. One kg/ha increase of fertilizer loss advances the age of onset by 0.267 year, which will cause long-term effect on public health. Our results are robust to a variety of robustness checks.
Collapse
Affiliation(s)
- Ying Wang
- College of Economics and Management, Nanjing Agricultural University, Nanjing, Jiangsu, P.R.China
| | - Hang Xiong
- College of Economics and Management, Nanjing Agricultural University, Nanjing, Jiangsu, P.R.China
- China Center for Food Security Studies, Nanjing Agricultural University, Nanjing, Jiangsu, P.R.China
| | - Chao Chen
- College of Economics and Management, Nanjing Agricultural University, Nanjing, Jiangsu, P.R.China
- China Center for Food Security Studies, Nanjing Agricultural University, Nanjing, Jiangsu, P.R.China
| |
Collapse
|
6
|
Zhang L, Jonscher KR, Zhang Z, Xiong Y, Mueller RS, Friedman JE, Pan C. Islet autoantibody seroconversion in type-1 diabetes is associated with metagenome-assembled genomes in infant gut microbiomes. Nat Commun 2022; 13:3551. [PMID: 35729161 PMCID: PMC9213500 DOI: 10.1038/s41467-022-31227-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
The immune system of some genetically susceptible children can be triggered by certain environmental factors to produce islet autoantibodies (IA) against pancreatic β cells, which greatly increases their risk for Type-1 diabetes. An environmental factor under active investigation is the gut microbiome due to its important role in immune system education. Here, we study gut metagenomes that are de-novo-assembled in 887 at-risk children in the Environmental Determinants of Diabetes in the Young (TEDDY) project. Our results reveal a small set of core protein families, present in >50% of the subjects, which account for 64% of the sequencing reads. Time-series binning generates 21,536 high-quality metagenome-assembled genomes (MAGs) from 883 species, including 176 species that hitherto have no MAG representation in previous comprehensive human microbiome surveys. IA seroconversion is positively associated with 2373 MAGs and negatively with 1549 MAGs. Comparative genomics analysis identifies lipopolysaccharides biosynthesis in Bacteroides MAGs and sulfate reduction in Anaerostipes MAGs as functional signatures of MAGs with positive IA-association. The functional signatures in the MAGs with negative IA-association include carbohydrate degradation in lactic acid bacteria MAGs and nitrate reduction in Escherichia MAGs. Overall, our results show a distinct set of gut microorganisms associated with IA seroconversion and uncovered the functional genomics signatures of these IA-associated microorganisms.
Collapse
Affiliation(s)
- Li Zhang
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Karen R Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zuyuan Zhang
- School of Computer Science, University of Oklahoma, Norman, OK, USA
| | - Yi Xiong
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chongle Pan
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA. .,School of Computer Science, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
7
|
Zhang J, Yang J, Chen J, Zhu Y, Hu K, Ma Q, Zuo Y. A novel propylene glycol alginate gel based colorimetric tube for rapid detection of nitrite in pickled vegetables. Food Chem 2022; 373:131678. [PMID: 34863604 DOI: 10.1016/j.foodchem.2021.131678] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/06/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
The detection of nitrite is of great significance because it is closely related to food safety. In this work, a rapid colorimetric method was developed for nitrite detection based on the reaction of propylene glycol alginate (PGA) gel interface. In the reaction of nitrite and 4-Aminoacetophenone, diazo compound formed, which could be further transformed to purplish red compound by reacting with N-(1-Naphthyl)ethylenediamine (NED). Nitrite exhibited a linear relationship with the grayscale of the gel interface in the range of 0.3-9 μg mL-1 with a detection limit of 0.3 μg mL-1. The method was applied to detect nitrite in four types of pickled vegetables with recovery of 80.9-119.02% and relative standard deviation of 0.11-6.73%. Notably, the detection process can be accomplished within 5 min. The proposed colorimetric method exhibited advantages of simplicity, quickness and sensitivity, showing potential application prospects for the real-time and on-site detection of nitrite in pickled vegetables.
Collapse
Affiliation(s)
- Jing Zhang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jianfei Yang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Jing Chen
- Department of Quality Management and Inspection, Yibin University, Yibin 644000, China
| | - Yuanting Zhu
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Kun Hu
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Qian Ma
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Yong Zuo
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China.
| |
Collapse
|
8
|
Milešević J, Vranić D, Gurinović M, Korićanac V, Borović B, Zeković M, Šarac I, Milićević DR, Glibetić M. The Intake of Phosphorus and Nitrites through Meat Products: A Health Risk Assessment of Children Aged 1 to 9 Years Old in Serbia. Nutrients 2022; 14:242. [PMID: 35057423 PMCID: PMC8781619 DOI: 10.3390/nu14020242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 01/02/2023] Open
Abstract
This study provides the data on dietary exposure of Serbian children to nitrites and phosphorus from meat products by combining individual consumption data with available analytical data of meat products. A total of 2603 and 1900 commercially available meat products were categorized into seven groups and analysed for nitrite and phosphorous content. The highest mean levels of nitrite content, expressed as NaNO2, were found in finely minced cooked sausages (40.25 ± 20.37 mg/kg), followed by canned meat (34.95 ± 22.12 mg/kg) and coarsely minced cooked sausages (32.85 ± 23.25 mg/kg). The EDI (estimated daily intake) of nitrites from meat products, calculated from a National Food Consumption Survey in 576 children aged 1-9 years, indicated that the Serbian children population exceeded the nitrite ADI (acceptable daily intake) proposed by EFSA (European Food Safety Authority) in 6.4% of children, with a higher proportion in 1-3-year-old participants. The mean phosphorus concentration varied from 2.71 ± 1.05 g/kg to 6.12 ± 1.33 g/kg in liver sausage and pate and smoked meat products, respectively. The EDI of phosphorus from meat products was far below the ADI proposed by EFSA, indicating that the use of phosphorus additives in Serbian meat products is generally in line with legislation.
Collapse
Affiliation(s)
- Jelena Milešević
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska, 111000 Belgrade, Serbia; (J.M.); (M.G.); (M.Z.); (I.Š.); (M.G.)
| | - Danijela Vranić
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (D.V.); (V.K.); (B.B.)
| | - Mirjana Gurinović
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska, 111000 Belgrade, Serbia; (J.M.); (M.G.); (M.Z.); (I.Š.); (M.G.)
| | - Vladimir Korićanac
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (D.V.); (V.K.); (B.B.)
| | - Branka Borović
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (D.V.); (V.K.); (B.B.)
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska, 111000 Belgrade, Serbia; (J.M.); (M.G.); (M.Z.); (I.Š.); (M.G.)
| | - Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska, 111000 Belgrade, Serbia; (J.M.); (M.G.); (M.Z.); (I.Š.); (M.G.)
| | - Dragan R. Milićević
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (D.V.); (V.K.); (B.B.)
| | - Maria Glibetić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska, 111000 Belgrade, Serbia; (J.M.); (M.G.); (M.Z.); (I.Š.); (M.G.)
| |
Collapse
|
9
|
Kotopoulou S, Zampelas A, Magriplis E. Dietary nitrate and nitrite and human health: a narrative review by intake source. Nutr Rev 2021; 80:762-773. [PMID: 34919725 DOI: 10.1093/nutrit/nuab113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nitrate and nitrite are plant nutrients that, although ubiquitous in plant foods, are highly controversial substances in human nutrition because they are also used as additives in processed foods and may be found as contaminants in drinking water. The aim for this narrative review is to provide a thorough insight into the current literature on the relationship between dietary nitrate and nitrite and the health risks and benefits by source of intake. The results highlight beneficial effects of nitrate and nitrite consumption from plant origin on cardiovascular disease and, to date, no positive correlation has been reported with cancer. On the contrary, high intake of these compounds from processed animal-based foods is related to an increased risk of gastro-intestinal cancer. Nitrate in drinking water also raises some concern, because it appears to be related to adverse health effects. The up-to-date debate on the role of nitrate and nitrite in human nutrition seems to be justified and more research is required to verify safe consumption.
Collapse
Affiliation(s)
- Sotiria Kotopoulou
- S. Kotopoulou, A. Zampelas, and E. Magriplis are with the Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece. S. Kotopoulou and A. Zampelas are with the Hellenic Food Authority, Athens, Greece
| | - Antonis Zampelas
- S. Kotopoulou, A. Zampelas, and E. Magriplis are with the Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece. S. Kotopoulou and A. Zampelas are with the Hellenic Food Authority, Athens, Greece
| | - Emmanuella Magriplis
- S. Kotopoulou, A. Zampelas, and E. Magriplis are with the Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece. S. Kotopoulou and A. Zampelas are with the Hellenic Food Authority, Athens, Greece
| |
Collapse
|
10
|
Shrestha D, Picciotto S, LaValley MP, Liu S, Hammond SK, Weiner DE, Eisen EA, Applebaum KM. End-stage renal disease and metalworking fluid exposure. Occup Environ Med 2021; 79:24-31. [PMID: 34210793 DOI: 10.1136/oemed-2020-106715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/24/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Despite increasing prevalence of end-stage renal disease (ESRD), little attention has been directed to how occupational exposures may contribute to risk. Our objective was to investigate the relationship between metalworking fluids (MWF) and ESRD in a cohort of 36 703 male autoworkers. METHODS We accounted for competing risk of death, using the subdistribution hazard approach to estimate subhazard ratios (sHRs) and 95% CIs in models with cubic splines for cumulative exposure to MWF (straight, soluble or synthetic). RESULTS Based on 501 ESRD cases and 13 434 deaths, we did not observe an association between MWF and ESRD overall. We observed modest associations between MWF and ESRD classification of glomerulonephritis and diabetic nephropathy. For glomerulonephritis, the 60th percentile of straight MWF was associated with an 18% increased subhazard (sHR=1.18, 95% CI: 0.99 to 1.41). For diabetic nephropathy, the subhazard increased 28% at the 60th percentile of soluble MWF (sHR=1.28, 95% CI: 1.00 to 1.64). Differences by race suggest that black males may have higher disease rates following MWF exposure. CONCLUSIONS Exposure to straight and soluble MWF may be related to ESRD classification, though this relationship should be further examined.
Collapse
Affiliation(s)
- Deepika Shrestha
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | - Sally Picciotto
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Michael P LaValley
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA.,School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - S Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Daniel E Weiner
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ellen A Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Katie M Applebaum
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
11
|
Abela AG, Fava S. Why is the Incidence of Type 1 Diabetes Increasing? Curr Diabetes Rev 2021; 17:e030521193110. [PMID: 33949935 DOI: 10.2174/1573399817666210503133747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/14/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes is a condition that can lead to serious long-term complications and can have significant psychological and quality of life implications. Its incidence is increasing in all parts of the world, but the reasons for this are incompletely understood. Genetic factors alone cannot explain such a rapid increase in incidence; therefore, environmental factors must be implicated. Lifestyle factors have been classically associated with type 2 diabetes. However, there are data implicating obesity and insulin resistance to type 1 diabetes as well (accelerator hypothesis). Cholesterol has also been shown to be correlated with the incidence of type 1 diabetes; this may be mediated by immunomodulatory effects of cholesterol. There is considerable interest in early life factors, including maternal diet, mode of delivery, infant feeding, childhood diet, microbial exposure (hygiene hypothesis), and use of anti-microbials in early childhood. Distance from the sea has recently been shown to be negatively correlated with the incidence of type 1 diabetes. This may contribute to the increasing incidence of type 1 diabetes since people are increasingly living closer to the sea. Postulated mediating mechanisms include hours of sunshine (and possibly vitamin D levels), mean temperature, dietary habits, and pollution. Ozone, polychlorinated biphenyls, phthalates, trichloroethylene, dioxin, heavy metals, bisphenol, nitrates/nitrites, and mercury are amongst the chemicals which may increase the risk of type 1 diabetes. Another area of research concerns the role of the skin and gut microbiome. The microbiome is affected by many of the factors mentioned above, including the mode of delivery, infant feeding, exposure to microbes, antibiotic use, and dietary habits. Research on the reasons why the incidence of type 1 diabetes is increasing not only sheds light on its pathogenesis but also offers insights into ways we can prevent type 1 diabetes.
Collapse
Affiliation(s)
- Alexia G Abela
- Department of Medicine, University of Malta & Mater Dei Hospital, Tal-Qroqq, Msida, Malta
| | - Stephen Fava
- Department of Medicine, University of Malta & Mater Dei Hospital, Tal-Qroqq, Msida, Malta
| |
Collapse
|
12
|
Mattila M, Niinistö S, Takkinen HM, Tapanainen H, Reinivuo H, Åkerlund M, Suomi J, Ahonen S, Ilonen J, Toppari J, Knip M, Veijola R, Virtanen SM. Maternal Nitrate and Nitrite Intakes during Pregnancy and Risk of Islet Autoimmunity and Type 1 Diabetes: The DIPP Cohort Study. J Nutr 2020; 150:2969-2976. [PMID: 32856042 DOI: 10.1093/jn/nxaa250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/26/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND High dietary intake of nitrate and nitrite might increase the risk of type 1 diabetes. To our knowledge, no earlier prospective study has explored whether maternal dietary intake of nitrate and nitrite during pregnancy is associated with the risk of type 1 diabetes in the offspring. OBJECTIVE Our aim was to study association between maternal intake of nitrate and nitrite during pregnancy and the risk of islet autoimmunity and type 1 diabetes in the offspring. DESIGN Children born between 1997 and 2004 at Oulu and Tampere University Hospitals in Finland and carrying increased human leukocyte antigen (HLA)-conferred risk for type 1 diabetes were followed in the Type 1 Diabetes Prediction and Prevention (DIPP) study from 3 mo of age. Islet autoantibodies were screened at 3- to 12-mo intervals from serum samples. Of 4879 children, 312 developed islet autoimmunity and 178 developed type 1 diabetes during a 15-y follow-up. Maternal intake of nitrate and nitrite during the eighth month of pregnancy was assessed after birth using a validated self-administered FFQ. Cox proportional hazards regression was used for the statistical analyses. RESULTS Maternal intake of nitrate and nitrite during pregnancy was not associated with the child's risk of islet autoimmunity [nitrate: HR 0.99 (95% CI: 0.88, 1.11); nitrite: HR 1.03 (95% CI: 0.92, 1.15)] or type 1 diabetes [nitrate: HR 1.02 (95% CI: 0.88, 1.17); nitrite: HR 0.97 (95% CI: 0.83, 1.12)] when adjusted for energy (residual method), sex, HLA risk group, and family history of diabetes. Further adjustment for dietary antioxidants (vitamin C, vitamin E, and selenium) did not change the results. CONCLUSION Maternal dietary intake of nitrate or nitrite during pregnancy is not associated with the risk of islet autoimmunity or type 1 diabetes in the offspring genetically at risk for type 1 diabetes.
Collapse
Affiliation(s)
- Markus Mattila
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sari Niinistö
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Hanna-Mari Takkinen
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Heli Tapanainen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Heli Reinivuo
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Mari Åkerlund
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Johanna Suomi
- Risk Assessment Unit, Research and Laboratory Department, Finnish Food Authority, Helsinki, Finland
| | - Suvi Ahonen
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland.,Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland.,The Clinical and Metabolic Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Suvi M Virtanen
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
13
|
Sall ML, Fall B, Diédhiou I, Dièye EH, Lo M, Diaw AKD, Gningue-Sall D, Raouafi N, Fall M. Toxicity and Electrochemical Detection of Lead, Cadmium and Nitrite Ions by Organic Conducting Polymers: A Review. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s42250-020-00157-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Liu Y, Croft KD, Hodgson JM, Mori T, Ward NC. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide 2020; 96:35-43. [PMID: 31954804 DOI: 10.1016/j.niox.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Within the body, NO is produced by nitric oxide synthases via converting l-arginine to citrulline. Additionally, NO is also produced via the NOS-independent nitrate-nitrite-NO pathway. Unlike the classical pathway, the nitrate-nitrite-NO pathway is oxygen independent and viewed as a back-up function to ensure NO generation during ischaemia/hypoxia. Dietary nitrate and nitrite have emerged as substrates for endogenous NO generation and other bioactive nitrogen oxides with promising protective effects on cardiovascular and metabolic function. In brief, inorganic nitrate and nitrite can decrease blood pressure, protect against ischaemia-reperfusion injury, enhance endothelial function, inhibit platelet aggregation, modulate mitochondrial function and improve features of the metabolic syndrome. However, many questions regarding the specific mechanisms of these protective effects on cardiovascular and metabolic diseases remain unclear. In this review, we focus on nitrate/nitrite bioactivation, as well as the potential mechanisms for nitrate/nitrite-mediated effects on cardiovascular and metabolic diseases. Understanding how dietary nitrate and nitrite induce beneficial effect on cardiovascular and metabolic diseases could open up novel therapeutic opportunities in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Jonathan M Hodgson
- School of Biomedical Sciences, University of Western Australia, Perth, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Trevor Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Natalie C Ward
- Medical School, University of Western Australia, Perth, Australia; School of Public Health and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
15
|
Butalia S, Kaplan GG, Khokhar B, Haubrich S, Rabi DM. The Challenges of Identifying Environmental Determinants of Type 1 Diabetes: In Search of the Holy Grail. Diabetes Metab Syndr Obes 2020; 13:4885-4895. [PMID: 33328748 PMCID: PMC7734044 DOI: 10.2147/dmso.s275080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes is the result of autoimmune-mediated destruction and inflammation of the insulin-producing β-cells of the pancreas. The excess morbidity and mortality from its complications coupled with its increasing incidence emphasize the importance to better understand the etiology of this condition. It has a strong genetic component, but a genetic predisposition is not the sole contributor to disease development as only 30% to 50% of identical twins both develop the disease. In addition, there are multiple lines of evidence to support that environmental factors contribute to the pathogenesis of type 1 diabetes. Environmental risk factors that have been proposed include infections, dietary factors, air pollution, vaccines, location of residence, childhood obesity, family environment and stress. Researchers have conducted many observational studies to identify and characterize these potential environmental factors, but findings have been inconsistent or inconclusive. Many studies have had inherent methodological issues in recruitment, participation, defining cases and exposures, and/or data analysis which may limit the interpretability of findings. Identifying and addressing these limitations may allow for greatly needed advances in our understanding of type 1 diabetes. As such, the purpose of this article is to review and discuss the limitations of observational studies that aim to determine environmental risk factors for type 1 diabetes and propose recommendations to overcome them.
Collapse
Affiliation(s)
- Sonia Butalia
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Correspondence: Sonia ButaliaDivision of Endocrinology and Metabolism, Richmond Road Diagnostic and Treatment Centre, 1820 Richmond Road SW, Calgary, AlbertaT2T 5C7, CanadaTel +1 403-955-8327Fax +1 403-955-8249 Email
| | - Gilaad G Kaplan
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bushra Khokhar
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sydney Haubrich
- Ward of the 21st Century, University of Calgary, Calgary, Alberta, Canada
| | - Doreen M Rabi
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15:635-650. [PMID: 31534209 DOI: 10.1038/s41574-019-0254-y] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus (T1DM) results from the destruction of pancreatic β-cells that is mediated by the immune system. Multiple genetic and environmental factors found in variable combinations in individual patients are involved in the development of T1DM. Genetic risk is defined by the presence of particular allele combinations, which in the major susceptibility locus (the HLA region) affect T cell recognition and tolerance to foreign and autologous molecules. Multiple other loci also regulate and affect features of specific immune responses and modify the vulnerability of β-cells to inflammatory mediators. Compared with the genetic factors, environmental factors that affect the development of T1DM are less well characterized but contact with particular microorganisms is emerging as an important factor. Certain infections might affect immune regulation, and the role of commensal microorganisms, such as the gut microbiota, are important in the education of the developing immune system. Some evidence also suggests that nutritional factors are important. Multiple islet-specific autoantibodies are found in the circulation from a few weeks to up to 20 years before the onset of clinical disease and this prediabetic phase provides a potential opportunity to manipulate the islet-specific immune response to prevent or postpone β-cell loss. The latest developments in understanding the heterogeneity of T1DM and characterization of major disease subtypes might help in the development of preventive treatments.
Collapse
Affiliation(s)
- Jorma Ilonen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland.
| | - Johanna Lempainen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Paediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
17
|
Howard SG. Exposure to environmental chemicals and type 1 diabetes: an update. J Epidemiol Community Health 2019; 73:483-488. [PMID: 30862699 DOI: 10.1136/jech-2018-210627] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/25/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
This narrative review summarises recently published epidemiological and in vivo experimental studies on exposure to environmental chemicals and their potential role in the development of type 1 diabetes mellitus (T1DM). These studies focus on a variety of environmental chemical exposures, including to air pollution, arsenic, some persistent organic pollutants, pesticides, bisphenol A and phthalates. Of the 15 epidemiological studies identified, 14 include measurements of exposures during childhood, 2 include prenatal exposures and 1 includes adults over age 21. Together, they illustrate that the role of chemicals in T1DM may be complex and may depend on a variety of factors, such as exposure level, timing of exposure, nutritional status and chemical metabolism. While the evidence that these exposures may increase the risk of T1DM is still preliminary, it is critical to investigate this possibility further as a means of preventing T1DM.
Collapse
Affiliation(s)
- Sarah G Howard
- Diabetes and Environment Program, Commonweal, Bolinas, CA 94924, USA
| |
Collapse
|
18
|
Beneficial treatment effects of dietary nitrate supplementation on testicular injury in streptozotocin-induced diabetic male rats. Reprod Biomed Online 2019; 39:357-371. [PMID: 30952494 DOI: 10.1016/j.rbmo.2018.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 01/01/2023]
Abstract
RESEARCH QUESTION Do low doses of dietary nitrate help to attenuate the progression of diabetic reproductive disorders in streptozotocin-induced diabetic male rats? DESIGN Fifty male Wistar rats were divided into five groups: controls receiving distilled water; controls receiving 100 mg/l nitrate in distilled water; diabetic rats receiving distilled water; diabetic rats receiving insulin 2-4 U/day of neutral protamine hagedorn insulin; and diabetic rats receiving 100 mg/l nitrate in distilled water. Diabetes was induced by 45 mg/kg streptozotocin. Nitrate and insulin treatment were started 4 weeks after diabetes induction for 8 weeks. Serum insulin, nitrogen oxide, stereology of testis, apoptosis, sperm parameters, and mRNA expression of Pdcd4, Pacs2, p53 and miR-449a were assessed at the end of the study. RESULTS Blood glucose, apoptotic index of seminiferous tubules and expression of p53, Pdcd4, and Pacs2 mRNA were significantly higher in the diabetic rats (P < 0.001). Decreased body weight, serum insulin and nitrogen oxide level, and miR-449a were observed in the diabetic group (P < 0.01 for insulin; P < 0.001 for others). Most sperm parameters and stereological results differed between diabetic and control rats; nitrate recovered almost all these alterations, including dead spermatozoa, sperm motility grade, sperm deformity index, spermatozoa with damaged DNA, malformations in abnormal spermatozoa, total volume of seminiferous tubule, germinal epithelium, capsule, lumen, interstitial tissue, seminiferous tubule diameter, germinal epithelium height, the number of spermatogenic, Sertoli and Leydig cells. CONCLUSIONS Treatment with sodium nitrate could modulate apoptosis, which is a major cause of diabetic testicular disorder. These experiments suggest that nitric oxide plays an important role in the function of the reproductive system.
Collapse
|
19
|
Miao LH, Lin Y, Pan WJ, Huang X, Ge XP, Zhou QL, Liu B, Ren MC, Zhang WX, Liang HL, Yu H, Ji K. Comparative transcriptome analysis reveals the gene expression profiling in bighead carp (Aristichthys nobilis) in response to acute nitrite toxicity. FISH & SHELLFISH IMMUNOLOGY 2018; 79:244-255. [PMID: 29747012 DOI: 10.1016/j.fsi.2018.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Nitrite exposure induces growth inhibition, metabolic disturbance, oxidative stress, organic damage, and infection-mediated mortality of aquatic organism. This study aimed to investigate the mechanism in responses to acute nitrite toxicity in bighead carp (Aristichthys nobilis, A. nobilis) by RNA-seq analysis. METHODS Bighead carps were exposed to water with high nitrite content (48.63 mg/L) for 72 h, and fish livers and gills were separated for RNA-seq analysis. De novo assembly was performed, and differentially expressed genes (DEGs) between control and nitrite-exposed fishes were identified. Furthermore, enrichment analysis was performed for DEGs to annotate the molecular functions. RESULTS A total of 406,135 transcripts and 352,730 unigenes were tagged after de novo assembly. Accordingly, 4108 and 928 DEGs were respectively identified in gill and liver in responses to nitrite exposure. Most of these DEGs were up-regulated DEGs. Enrichment analysis showed these DEGs were mainly associated with immune responses and nitrogen metabolism. CONCLUSIONS We suggested that the nitrite toxicity-induced DEGs were probably related to dysregulation of nitrogen metabolism and immune responses in A. nobilis, particularly in gill.
Collapse
Affiliation(s)
- Ling-Hong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wen-Jing Pan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xin Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xian-Ping Ge
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Qun-Lan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Ming-Chun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wu-Xiao Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hua-Liang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Han Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
20
|
Bahendeka S, Wesonga R, Were TP, Nyangabyaki C. Autoantibodies and HLA class II DR-DQ genotypes in Ugandan children and adolescents with type 1 diabetes mellitus. Int J Diabetes Dev Ctries 2018. [DOI: 10.1007/s13410-018-0622-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Bahadoran Z, Carlström M, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F. Total antioxidant capacity of the diet modulates the association between habitual nitrate intake and cardiovascular events: A longitudinal follow-up in Tehran Lipid and Glucose Study. Nutr Metab (Lond) 2018; 15:19. [PMID: 29492096 PMCID: PMC5828061 DOI: 10.1186/s12986-018-0254-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Considering the lack of data on the association between habitual dietary intakes of nitrate (NO3−) and nitrite (NO2−) and cardiovascular events, we assessed possible effects of dietary NO3− and NO2−, in the context of total antioxidant capacity (TAC) of the diet, with the risk of cardiovascular (CVD) outcomes. Methods Adult men and women without CVD (n = 2369) were recruited from the Tehran Lipid and Glucose Study and were followed for a mean of 6.7 years. Dietary NO3− and NO2− intakes, as well as dietary TAC and nitric oxide (NO) index were assessed at baseline (2006–2008). Multivariable-adjusted Cox proportional hazards regression models were used to estimate risk of CVD above and below median of dietary intakes of NO3−/NO2− and dietary TAC and NO index. Due to a significant interaction between NO3−/NO2− intake and TAC, stratified analyses were done for < and ≥ median dietary TAC. Results Daily mean (SD) dietary NO3− and NO2− intakes were 460 (195) and 9.5 (3.9) mg; mean (SD) dietary TAC and NO index was 1406 (740) and 338 (197) μmol trolox equivalent (TE)/100 g. In subjects with lower dietary TAC, higher intake of NO3− (≥ 430 mg/d) was accompanied with an increased risk of CVD (HR = 3.28, 95% CI = 1.54–6.99). There were no significant associations between dietary intakes of NO2−, TAC of the diet and NO index with the occurrence of CVD events during the study follow-up. Conclusion High habitual intake of NO3−, in the context of low TAC of the food, may be associated with the risk of CVD outcomes.
Collapse
Affiliation(s)
- Zahra Bahadoran
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, 19395-4763 Iran
| | - Mattias Carlström
- 2Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Asghar Ghasemi
- 3Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, 19395-4763 Iran
| | - Fereidoun Azizi
- 4Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- 5Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Bahadoran Z, Mirmiran P, Azizi F, Ghasemi A. Nitrate-rich dietary supplementation during pregnancy: The pros and cons. Pregnancy Hypertens 2018. [PMID: 29523272 DOI: 10.1016/j.preghy.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inorganic nitrate (NO3) due to its potential endogenous conversion to nitric oxide (NO), is suggested as a compensatory fuel for disrupted NO pathways in the case of pathological stats during pregnancy. Dietary NO3-rich supplement in the NO-deficient pregnant women is now suggested as a more appealing choice with fewer off-target effects which can attenuate hypertension and preeclampsia, improve placental blood flow and subsequently enhance maternal and neonatal health. There is also an increasing public interest and common health claims regarding beneficial effects of NO3-rich dietary supplements like beetroot byproducts in pregnant women. Conversely, NO3-rich dietary supplementation during pregnancy may be accompanied with a wide range of unexpected maternal and fatal adverse outcomes such as methemoglobinemia, alteration in embryonic cells and malignant transformation, as well as thyroid disorders. In conclusion, use of dietary inorganic NO3 as a common supplement during pregnancy is currently on a long way from bench to bedside.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Edwards TM, Hamlin HJ, Freymiller H, Green S, Thurman J, Guillette LJ. Nitrate induces a type 1 diabetic profile in alligator hatchlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:767-775. [PMID: 28942280 DOI: 10.1016/j.ecoenv.2017.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that affects 1 in 300 children by age 18. T1D is caused by inflammation-induced loss of insulin-producing pancreatic beta cells, leading to high blood glucose and a host of downstream complications. Although multiple genes are associated with T1D risk, only 5% of genetically susceptible individuals actually develop clinical disease. Moreover, a growing number of T1D cases occur in geographic clusters and among children with low risk genotypes. These observations suggest that environmental factors contribute to T1D etiology. One potential factor, supported primarily by epidemiological studies, is the presence of nitrate and nitrite in drinking water. To test this hypothesis, female hatchling alligators were exposed to environmentally relevant concentrations of nitrate in their tank water (reference, 10mg/L, or 100mg/L NO3-N) from hatch through 5 weeks or 5 months of age. At each time point, endpoints related to T1D were investigated: plasma levels of glucose, triglycerides, testosterone, estradiol, and thyroxine; pancreas, fat body, and thyroid weights; weight gain or loss; presence of immune cells in the pancreas; and pancreatic beta cell number, assessed by antibody staining of nkx6.1 protein. Internal dosing of nitrate was confirmed by measuring plasma and urine nitrate levels and whole blood methemoglobin. Cluster analysis indicated that high nitrate exposure (most animals exposed to 100mg/L NO3-N and one alligator exposed to 10mg/L NO3-N) induced a profile of endpoints consistent with early T1D that could be detected after 5 weeks and was more strongly present after 5 months. Our study supports epidemiological data correlating elevated nitrate with T1D onset in humans, and highlights nitrate as a possible environmental contributor to the etiology of T1D, possibly through its role as a nitric oxide precursor.
Collapse
Affiliation(s)
- Thea M Edwards
- Department of Biology, University of the South, Sewanee, TN, USA; Department of Biology, University of Florida, Gainesville, FL, USA; School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA.
| | - Heather J Hamlin
- School of Marine Sciences, University of Maine, Orono, ME, USA; Department of Biology, University of Florida, Gainesville, FL, USA
| | - Haley Freymiller
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Stephen Green
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Jenna Thurman
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Louis J Guillette
- Department of Biology, University of Florida, Gainesville, FL, USA; Marine Biomedicine & Environmental Sciences, Medical University of South Carolina and Hollings Marine Laboratory, Charleston, SC, USA
| |
Collapse
|
24
|
Chafe R, Aslanov R, Sarkar A, Gregory P, Comeau A, Newhook LA. Association of type 1 diabetes and concentrations of drinking water components in Newfoundland and Labrador, Canada. BMJ Open Diabetes Res Care 2018; 6:e000466. [PMID: 29527309 PMCID: PMC5841498 DOI: 10.1136/bmjdrc-2017-000466] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To determine the association between drinking water quality and rates of type 1 diabetes in the Newfoundland and Labrador (NL) population, which has one of the highest incidences of type 1 diabetes reported globally. RESEARCH DESIGN AND METHODS The study used a community-based, case-control design. We first calculated incidence rates of type 1 diabetes at the provincial, regional and community levels. The connection between incidence rates and components in public water supplies were then analyzed in three ways: to evaluate differences in water quality between communities with and without incident cases of type 1 diabetes, and to analyze the relationship between water quality and incidence rates of type 1 diabetes at both the community and regional levels. RESULTS The provincial incidence of type 1 diabetes was 51.7/100 000 (0-14 year age group) for the period studied. In the community-based analysis, there were significant associations found between higher concentrations of arsenic (β=0.268, P=0.013) and fluoride (β=0.202, P=0.005) in drinking water and higher incidence of type 1 diabetes. In the regional analysis, barium (β=-0.478, P=0.009) and nickel (β=-0.354, P=0.050) concentrations were negatively associated with incidence of type 1 diabetes. CONCLUSIONS We confirmed the high incidence of type 1 diabetes in NL. We also found that concentrations of some components in drinking water were associated with higher incidence of type 1 diabetes, but no component was found to have a significant association across the three different levels of analysis performed.
Collapse
Affiliation(s)
- Roger Chafe
- Discipline of Pediatrics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Rana Aslanov
- Janeway Pediatric Research Unit, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Atanu Sarkar
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Peter Gregory
- Discipline of Pediatrics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
- Janeway Pediatric Research Unit, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Alex Comeau
- Janeway Pediatric Research Unit, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Leigh Anne Newhook
- Discipline of Pediatrics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
25
|
Ahmed M, Rauf M, Mukhtar Z, Saeed NA. Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26983-26987. [PMID: 29139074 DOI: 10.1007/s11356-017-0589-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/24/2017] [Indexed: 05/20/2023]
Abstract
Farmers occasionally need to add nitrogen fertilizer to their farms and gardens to make available just the precise nutrients for their plants' growth. The applications of inorganic nitrogen fertilizers to various crops have been continuously increasing since last many decades globally. Although nitrogen fertilizer contributes substantially to yield enhancement, but excessive use of this manure has posed serious threats to environment and human health. Rate of nitrogen fertilizers application has a close relationship with nitrate accumulation in surrounding environment, groundwater, as well as leafy and root vegetables. Consumption of diets having high nitrate contents has contributed to endogenous nitrosation, which could lead to thyroid condition, various kinds of human cancers, neural tube defects (during fetus development), and diabetes. In this short review, the authors have tried to create awareness among general public, farming community, health practitioners, and agricultural scientists for the risk involved with excessive use of nitrogen fertilizers to human health. Carcinogenic activity and other adverse effects of N-nitroso compounds might be prevented by consuming vitamin C and antioxidants containing fruits and vegetables.
Collapse
Affiliation(s)
- Moddassir Ahmed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan.
| | - Muhammad Rauf
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan
- Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Nasir Ahmad Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| |
Collapse
|