1
|
Bu C, Wang Z, Lv X, Zhao Y. A dual-gene panel of two fragments of methylated IRF4 and one of ZEB2 in plasma cell-free DNA for gastric cancer detection. Epigenetics 2024; 19:2374988. [PMID: 39003776 PMCID: PMC11249030 DOI: 10.1080/15592294.2024.2374988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Early detection is crucial for increasing the survival rate of gastric cancer (GC). We aimed to identify a methylated cell-free DNA (cfDNA) marker panel for detecting GC. The differentially methylated CpGs (DMCs) were selected from datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The selected DMCs were validated and further selected in tissue samples (40 gastric cancer and 36 healthy white blood cell samples) and in a quarter sample volume of plasma samples (37 gastric cancer, 12 benign gastric disease, and 43 healthy individuals). The marker combination selected was then evaluated in a normal sample volume of plasma samples (35 gastric cancer, 39 control diseases, and 40 healthy individuals) using real-time methylation-specific PCR (MSP). The analysis of the results compared methods based on 2-ΔΔCt values and Ct values. In the results, 30 DMCs were selected through bioinformatics methods, and then 5 were selected for biological validation. The marker combination of two fragments of IRF4 (IRF4-1 and IRF4-2) and one of ZEB2 was selected due to its good performance. The Ct-based method was selected for its good results and practical advantages. The assay, IRF4-1 and IRF4-2 in one fluorescence channel and ZEB2 in another, obtained 74.3% sensitivity for the GC group at any stage, at 92.4% specificity. In conclusion, the panel of IRF4 and ZEB2 in plasma cfDNA demonstrates good diagnostic performance and application potential in clinical settings.
Collapse
Affiliation(s)
- Chunxiao Bu
- Department of Magnetic Resonance Imaging,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhilong Wang
- Henan Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Xianping Lv
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanteng Zhao
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liu YJ, Li JP, Han M, Li JX, Ye QW, Lin ST, Zhou JY, Liu SL, Zou X. IFIT1 + neutrophil is a causative factor of immunosuppressive features of poorly cohesive carcinoma (PCC). J Transl Med 2024; 22:580. [PMID: 38898490 PMCID: PMC11188200 DOI: 10.1186/s12967-024-05389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
The importance of the immune microenvironment in poorly cohesive carcinoma (PCC) has been highlighted due to its limited response rate to conventional therapy and emerging treatment resistance. A combination of clinical cohorts, bioinformatics analyses, and functional/molecular experiments revealed that high infiltration of Interferon Induced Protein with Tetratricopeptide Repeats 1 (IFIT1) + tumor-associated neutrophils (TANs) is a distinguishing feature of PCC patients. Upregulation of IFIT1 + TANs promote migration and invasion of gastric cancer (GC) cell lines (MKN45 and MKN74) and stimulates the growth of cell-derived xenograft models. Besides, by promoting macrophage secreted phosphoprotein 1 (SPP1) expression and facilitating cancer-associated fibroblast and endothelial cell recruitment and activation through TANs, IFIT1 promotes a mesenchymal phenotype, which is associated with a poor prognosis. Importantly, compared to non-PCC (NPCC), PCC tumors is more immunosuppressive. Mechanistically, IFIT1 can be stimulated by IFN-γ and contributes to the expression of Programmed Cell Death 1 Ligand (PDL1) in TANs. We demonstrated in mouse models that IFIT1 + PDL1 + TANs can induce acquired resistance to anti-PD-1 immunotherapy, which may be responsible for the difficulty of PCC patients to benefit from immunotherapy. This work highlights the role of IFIT1 + TANs in mediating the remodeling of the tumor immune microenvironment and immunotherapeutic resistance and introduces IFIT1 + TANs as a promising target for precision therapy of PCC.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jie-Pin Li
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Mei Han
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jing-Xiao Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Qian-Wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Si-Tian Lin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jin-Yong Zhou
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Shen-Lin Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210029, Jiangsu, China.
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
4
|
Angelico G, Attanasio G, Colarossi L, Colarossi C, Montalbano M, Aiello E, Di Vendra F, Mare M, Orsi N, Memeo L. ARID1A Mutations in Gastric Cancer: A Review with Focus on Clinicopathological Features, Molecular Background and Diagnostic Interpretation. Cancers (Basel) 2024; 16:2062. [PMID: 38893181 PMCID: PMC11171396 DOI: 10.3390/cancers16112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Giulio Attanasio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy;
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Matteo Montalbano
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
- PhD Program in Precision Medicine, University of Palermo, 90144 Palermo, Italy
| | - Eleonora Aiello
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Federica Di Vendra
- Department of Chemical, Biological and Environmental Chemistry, University of Messina, 98122 Messina, Italy
| | - Marzia Mare
- Medical Oncology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Nicolas Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| |
Collapse
|
5
|
Wu P, Zhang Y, Lyu Y, Chen J, Jiang Y, Xiang J, Liu B, Wu C. MiRNA polymorphisms affect the prognosis of gastric cancer: insights from Xianyou, Fujian. Front Oncol 2024; 14:1355270. [PMID: 38817897 PMCID: PMC11138161 DOI: 10.3389/fonc.2024.1355270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Gastric cancer, characterized by high incidence and substantial disease burden, has drawn continuous attention regarding its occurrence and prognosis. Genetics plays a crucial role in influencing the prognosis of gastric cancer, and single nucleotide polymorphisms are closely associated with the occurrence, development, and prognosis of this malignant tumor. Our study aims to conduct survival analysis on patients carrying different single nucleotide polymorphisms, exploring the relationship between miRNA single nucleotide polymorphisms and the prognosis of gastric cancer. Methods Genetic data from 344 patients in Xianyou, Fujian, formed the basis of our study. We delineated the survival rate and median survival time, utilizing the log-rank test and COX regression analysis as statistical tools. Results Upon stratifying the data by sex or operation, it was discerned that the GG genotype at MSH2 rs17502941 independently posed a heightened risk for gastric cancer. Other stratification analyses suggested that the subsequent single nucleotide polymorphisms were correlated with patient prognosis: rs17502941, rs884225, rs1468063, rs7143252, and rs2271738. Discussion The outcomes of this study strongly suggest that miRNA polymorphisms significantly influence the survival time of gastric cancer patients and can serve as effective predictors for the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Ping Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yuling Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yanping Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jingwen Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yu Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianjun Xiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Baoying Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chuancheng Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Lindell E, Zhang X. Exploring the Enigma: The Role of the Epithelial Protein Lost in Neoplasm in Normal Physiology and Cancer Pathogenesis. Int J Mol Sci 2024; 25:4970. [PMID: 38732188 PMCID: PMC11084159 DOI: 10.3390/ijms25094970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The cytoskeleton plays a pivotal role in maintaining the epithelial phenotype and is vital to several hallmark processes of cancer. Over the past decades, researchers have identified the epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) as a key regulator of cytoskeletal dynamics, cytoskeletal organization, motility, as well as cell growth and metabolism. Dysregulation of EPLIN is implicated in various aspects of cancer progression, such as tumor growth, invasion, metastasis, and therapeutic resistance. Its altered expression levels or activity can disrupt cytoskeletal dynamics, leading to aberrant cell motility and invasiveness characteristic of malignant cells. Moreover, the involvement of EPLIN in cell growth and metabolism underscores its significance in orchestrating key processes essential for cancer cell survival and proliferation. This review provides a comprehensive exploration of the intricate roles of EPLIN across diverse cellular processes in both normal physiology and cancer pathogenesis. Additionally, this review discusses the possibility of EPLIN as a potential target for anticancer therapy in future studies.
Collapse
Affiliation(s)
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden;
| |
Collapse
|
7
|
Xu SY, Cao HY, Yang RH, Xu RX, Zhu XY, Ma W, Liu XB, Yan XY, Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155483. [PMID: 38432036 DOI: 10.1016/j.phymed.2024.155483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.
Collapse
Affiliation(s)
- Shi-Yi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui-Yan Cao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rui-Hong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rong-Xue Xu
- The Health Center of Longjiang Airlines, Harbin 150000, China; Qiqihar Medical University, Qiqihar 161003, China
| | - Xing-Yu Zhu
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiu-Bo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Xue-Ying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Peng Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
8
|
Xu Q, Yu Z, Mei Q, Shi K, Shen J, Gao G, Liu S, Li M. Keratin 6A (KRT6A) promotes radioresistance, invasion, and metastasis in lung cancer via p53 signaling pathway. Aging (Albany NY) 2024; 16:7060-7072. [PMID: 38656878 PMCID: PMC11087103 DOI: 10.18632/aging.205742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND It is reported that the incidence rate and mortality of lung cancer are very high. Therefore, early diagnosis and identification of specific biomarkers are crucial for the clinical treatment of lung cancer. This study aims to comprehensively investigate the prognostic significance of KRT6A in human lung cancer. METHODS The GEO2R online tool was utilized to analyze the differential expression of mRNA between lung carcinoma tissues and radioresistant tissues in the GSE73095 and GSE197236 datasets. DAVID database was used to perform GO and KEGG enrichment analyses on target genes. The Kaplan-Meier plotter tool was used to analyze the impact of key messenger ribonucleic acid on the survival status of lung cancer. In addition, quantitative real-time polymerase chain reaction (qPCR) was used to investigate the impact of key genes on the phenotype of lung cancer cells. After the knockout, we conducted cell migration and CCK-8 experiments to detect their effects on cell proliferation and invasion. RESULTS 40 differentially expressed genes (DEGs) were chosen from GSE73095 and 118 DEGs were chosen from GSE197236. Kaplan-Meier map analysis showed that the overall cancer survival rate of the high-expression KRT6A group was higher than that of the low-expression group (P < 0.05). Besides, cell experiments have shown that when the KRT6A gene is downregulated, the proliferation and invasion ability of lung cancer cells is weakened. CONCLUSIONS Our research concluded that KRT6A may take part in the radioresistance and progression of lung cancer and can be a potential biomarker for lung cancer patients.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Thoracic Surgery, Suzhou Xiangcheng People’s Hospital, Suzhou, Jiangsu, China
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ziyang Yu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Qiteng Mei
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Kejun Shi
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jiaofeng Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Guangyu Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Songtao Liu
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ming Li
- Department of Pathology, Suzhou Municipal Hospital affiliated to Nanjing Medical University, Suzhou 215008, People’s Republic of China
| |
Collapse
|
9
|
Ishikawa M, Nakamura K, Kawano R, Hayashi H, Ikeda T, Saito M, Niida Y, Sasaki J, Okuda H, Ishihara S, Yamaguchi M, Shimada H, Isobe T, Yuza Y, Yoshimura A, Kuroda H, Yukisawa S, Aoki T, Takeshita K, Ueno S, Nakazawa J, Sunakawa Y, Nohara S, Okada C, Nishimiya K, Tanishima S, Nishihara H. Clinical and Diagnostic Utility of Genomic Profiling for Digestive Cancers: Real-World Evidence from Japan. Cancers (Basel) 2024; 16:1504. [PMID: 38672586 PMCID: PMC11048180 DOI: 10.3390/cancers16081504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The usefulness of comprehensive genomic profiling (CGP) in the Japanese healthcare insurance system remains underexplored. Therefore, this large-scale study aimed to determine the usefulness of CGP in diagnosing digestive cancers. Patients with various cancer types recruited between March 2020 and October 2022 underwent the FoundationOne® CDx assay at the Keio PleSSision Group (19 hospitals in Japan). A scoring system was developed to identify potentially actionable genomic alterations of biological significance and actionable genomic alterations. The detection rates for potentially actionable genomic alterations, actionable genomic alterations, and alterations equivalent to companion diagnosis (CDx), as well as the signaling pathways associated with these alterations in each digestive cancer, were analyzed. Among the 1587 patients, 547 had digestive cancer. The detection rates of potentially actionable genomic alterations, actionable genomic alterations, and alterations equivalent to CDx were 99.5%, 62.5%, and 11.5%, respectively. APC, KRAS, and CDKN2A alterations were frequently observed in colorectal, pancreatic, and biliary cancers, respectively. Most digestive cancers, except esophageal cancer, were adenocarcinomas. Thus, the classification flowchart for digestive adenocarcinomas proposed in this study may facilitate precise diagnosis. CGP has clinical and diagnostic utility in digestive cancers.
Collapse
Affiliation(s)
- Marin Ishikawa
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
| | - Ryutaro Kawano
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
| | - Hideyuki Hayashi
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
| | - Tatsuru Ikeda
- Department of Cancer Genome Medical Center, Hakodate Goryoukaku Hospital, 38-3, Goryoukakucho, Hakodate-shi 040-8611, Hokkaido, Japan;
| | - Makoto Saito
- Department of Genetic Medicine, Ibaraki Prefectural Center Hospital, 6528, Koibuchi, Kasama-shi 309-1793, Ibaraki, Japan;
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, 1-1, Daigaku, Uchinada 920-0293, Ishikawa, Japan;
| | - Jiichiro Sasaki
- Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi 252-0329, Kanagawa, Japan;
| | - Hiroyuki Okuda
- Department of Medical Oncology, Keiyukai Sapporo Hospital, 1-1 Minami, Hondori 9, Chome, Shiroishi-ku, Sapporo 003-0026, Hokkaido, Japan;
| | - Satoshi Ishihara
- Cancer Genome Diagnosis and Treatment Center, Central Japan International Medical Center, 1-1 Kenkonomachi, Minokamo-shi 505-0010, Gifu, Japan;
| | - Masatoshi Yamaguchi
- Division of Clinical Genetics, Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki-shi 889-1692, Miyazaki, Japan;
| | - Hideaki Shimada
- Department of Surgery and Clinical Oncology, Toho University Graduate School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan;
| | - Takeshi Isobe
- Cancer Genome Medical Center, Shimane University Hospital, 89-1, Enya-cho, Izumo-shi 693-8501, Shimane, Japan;
| | - Yuki Yuza
- Department of Hematology and Oncology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu-shi 183-8561, Tokyo, Japan;
| | - Akinobu Yoshimura
- Department of Clinical Oncology Director, Outpatient Chemotherapy Center, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan;
| | - Hajime Kuroda
- Department of Pathology, Tokyo Women’s Medical University, Adachi Medical Center, 4-33-1 Kohta, Adachi-ku, Tokyo 123-8558, Japan;
| | - Seigo Yukisawa
- Department of Medical Oncology, Saiseikai Utsunomiya Hospital, 911-1, Takebayashi, Utsunomiya-shi 321-0974, Tochigi, Japan;
| | - Takuya Aoki
- Department of Clinical Oncology, Tokyo Medical University Hachioji Medical Center, 1163, Tatemachi, Hachioji-shi 193-0998, Tokyo, Japan;
| | - Kei Takeshita
- Department of Clinical Genetics, Tokai University Hospital, 143, Shimokasuya, Isehara-shi 259-1193, Kanagawa, Japan;
| | - Shinichi Ueno
- Oncology Center, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima-shi 890-0075, Kagoshima, Japan;
| | - Junichi Nakazawa
- Department of Medical Oncology, Kagoshima City Hospital, 37-1, Uearatacho, Kagoshima-shi 890-8760, Kagoshima, Japan;
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Kanagawa, Japan;
| | - Sachio Nohara
- Biomedical Informatics Department, Communication Engineering Center, Mitsubishi Electric Software Corporation, Fuji Techno-Square, 5-4-36 Tsukaguchi-Honmachi, Amagasaki-shi 661-0001, Hyogo, Japan; (S.N.); (C.O.); (K.N.)
| | - Chihiro Okada
- Biomedical Informatics Department, Communication Engineering Center, Mitsubishi Electric Software Corporation, Fuji Techno-Square, 5-4-36 Tsukaguchi-Honmachi, Amagasaki-shi 661-0001, Hyogo, Japan; (S.N.); (C.O.); (K.N.)
| | - Ko Nishimiya
- Biomedical Informatics Department, Communication Engineering Center, Mitsubishi Electric Software Corporation, Fuji Techno-Square, 5-4-36 Tsukaguchi-Honmachi, Amagasaki-shi 661-0001, Hyogo, Japan; (S.N.); (C.O.); (K.N.)
| | - Shigeki Tanishima
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
- Biomedical Informatics Department, Communication Engineering Center, Mitsubishi Electric Software Corporation, Fuji Techno-Square, 5-4-36 Tsukaguchi-Honmachi, Amagasaki-shi 661-0001, Hyogo, Japan; (S.N.); (C.O.); (K.N.)
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Integrated Medical Research Building 3-S5, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (R.K.); (H.H.); (S.T.); (H.N.)
| |
Collapse
|
10
|
Shi Z, Guo X, Hu X, Li R, Li X, Lu J, Jin M, Jiang X. DNA methylation profiling identifies epigenetic signatures of early gastric cancer. Virchows Arch 2024; 484:687-695. [PMID: 38507065 DOI: 10.1007/s00428-024-03765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 03/22/2024]
Abstract
Research on the DNA methylation status of gastric cancer (GC) has primarily focused on identifying invasive GC to develop biomarkers for diagnostic. However, DNA methylation in noninvasive GC remains unclear. We conducted a comprehensive DNA methylation profiling study of differentiated-type intramucosal GCs (IMCs). Illumina 850K microarrays were utilized to assess the DNA methylation profiles of formalin-fixed paraffin-embedded tissues from eight patients who were Epstein-Barr virus-negative and DNA mismatch repair proficient, including IMCs and paired adjacent nontumor mucosa. Gene expression profiling microarray data from the GEO database were analyzed via bioinformatics to identify candidate methylation genes. The final validation was conducted using quantitative real-time PCR, the TCGA methylation database, and single-sample gene set enrichment analysis (GSEA). Genome-wide DNA methylation profiling revealed a global decrease in methylation in IMCs compared with nontumor tissues. Differential methylation analysis between IMCs and nontumor tissues identified 449 differentially methylated probes, with a majority of sites showing hypomethylation in IMCs compared with nontumor tissues (66.1% vs 33.9%). Integrating two RNA-seq microarray datasets, we found one hypomethylation-upregulated gene: eEF1A2, overlapped with our DNA methylation data. The mRNA expression of eEF1A2 was higher in twenty-four IMC tissues than in their paired adjacent nontumor tissues. GSEA indicated that the functions of eEF1A2 were associated with the development of IMCs. Furthermore, TCGA data indicated that eEF1A2 is hypomethylated in advanced GC. Our study illustrates the implications of DNA methylation alterations in IMCs and suggests that aberrant hypomethylation and high mRNA expression of eEF1A2 might play a role in IMCs development.
Collapse
Affiliation(s)
- Zhongyue Shi
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xinmeng Guo
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiumei Hu
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ruiqi Li
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xue Li
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jun Lu
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Mulan Jin
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Xingran Jiang
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Ma Z, Zhou Z, Duan W, Yao G, Sheng S, Zong S, Zhang X, Li C, Liu Y, Ou F, Dahar MR, Huang Y, Yu L. DR30318, a novel tri-specific T cell engager for Claudin 18.2 positive cancers immunotherapy. Cancer Immunol Immunother 2024; 73:82. [PMID: 38554200 PMCID: PMC10981630 DOI: 10.1007/s00262-024-03673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Claudin 18.2 (CLDN18.2) is a highly anticipated target for solid tumor therapy, especially in advanced gastric carcinoma and pancreatic carcinoma. The T cell engager targeting CLDN18.2 represents a compelling strategy for enhancing anti-cancer efficacy. METHODS Based on the in-house screened anti-CLDN18.2 VHH, we have developed a novel tri-specific T cell engager targeting CLDN18.2 for gastric and pancreatic cancer immunotherapy. This tri-specific antibody was designed with binding to CLDN18.2, human serum albumin (HSA) and CD3 on T cells. RESULTS The DR30318 demonstrated binding affinity to CLDN18.2, HSA and CD3, and exhibited T cell-dependent cellular cytotoxicity (TDCC) activity in vitro. Pharmacokinetic analysis revealed a half-life of 22.2-28.6 h in rodents and 41.8 h in cynomolgus monkeys, respectively. The administration of DR30318 resulted in a slight increase in the levels of IL-6 and C-reactive protein (CRP) in cynomolgus monkeys. Furthermore, after incubation with human PBMCs and CLDN18.2 expressing cells, DR30318 induced TDCC activity and the production of interleukin-6 (IL-6) and interferon-gamma (IFN-γ). Notably, DR30318 demonstrated significant tumor suppression effects on gastric cancer xenograft models NUGC4/hCLDN18.2 and pancreatic cancer xenograft model BxPC3/hCLDN18.2 without affecting the body weight of mice.
Collapse
Affiliation(s)
- Zhe Ma
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Zhenxing Zhou
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Wenwen Duan
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Gaofeng Yao
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Shimei Sheng
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Sidou Zong
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Xin Zhang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Changkui Li
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Yuanyuan Liu
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Fengting Ou
- Jinhua Institute of Zhejiang University, Jinhua, 321036, China
| | - Maha Raja Dahar
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yanshan Huang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321036, China.
- Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China.
| |
Collapse
|
12
|
Talari FF, Bozorg A, Zeinali S, Zali M, Mohsenifar Z, Asadzadeh Aghdaei H, Baghaei K. Low incidence of microsatellite instability in gastric cancers and its association with the clinicopathological characteristics: a comparative study. Sci Rep 2023; 13:21743. [PMID: 38065969 PMCID: PMC10709324 DOI: 10.1038/s41598-023-48157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer is a complex heterogeneous disease with different molecular subtypes that have clinical implications. It is characterized by high mortality rates and limited effective therapies. Microsatellite instability (MSI) has been recognized as a subgroup with a good prognosis based on TCGA and ACRG categorizations. Besides its prognostic and predictive value, gastric cancers with high MSI exhibit different clinical behaviors. The prevalence of high MSI has been assessed in gastric cancer worldwide, especially in East Asia, but there is a lack of such information in the Middle East. Therefore, this study aimed to investigate the incidence and status of MSI in Iranian gastric cancer patients using 53 samples collected from 2015 to 2020 at Taleghani Hospital Medical Center. DNA from tumoral and normal tissues were extracted and assessed through multiplex-PCR based on five mononucleotide repeats panel. Clinicopathological variables, including age, sex, Lauren classification, lymph node involvement, TNM stage, differentiation, localization, and tumor size, were also analyzed. With 2 males and 2 females, high microsatellite instability represented a small subgroup of almost 7.5% of the samples with a median age of 60.5 years. High microsatellite instability phenotypes were significantly associated with patients aged 68 years and older (p‑value of 0.0015) and lower lymph node involvement (p‑value of 0.0004). Microsatellite instability was also more frequent in females, with distal gastric location, bigger tumor size, and in the intestinal type of gastric cancer rather than the diffuse type.
Collapse
Affiliation(s)
| | - Ali Bozorg
- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran.
| | - Sirous Zeinali
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammadreza Zali
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhale Mohsenifar
- Department of Pathology, School of Medicine, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Guo Z, Guo L. YAP/TEAD-induced PRIM1 contributes to the progression and poor prognosis of gastric carcinoma. Transl Oncol 2023; 38:101791. [PMID: 37741096 PMCID: PMC10541473 DOI: 10.1016/j.tranon.2023.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Gastric carcinoma has a poor prognosis and low survival rate. PRIM1 is closely associated with the origin of DNA replication and serves as a carcinogenic factor in multiple tumors. This study aimed to explore the functions of PRIM1 in the progression of gastric carcinoma. The luciferase reporter assay examined the regulatory effect of YAP1/TEAD4 on PRIM1. A xenograft tumor mouse model was constructed to observe cancer cell proliferation in vivo. The upregulation of PRIM1 was found in gastric carcinoma cells and tissues, and it was associated with poor prognosis. Silencing PRIM1 inhibited cell proliferation, arrested the cell cycle, and upregulated Cdc25, Cyclin B, and Cdc2 expression. In addition, apoptosis was increased upon PRIM1 knockdown, accompanied by increased protein levels of cleaved caspase-3 and caspase-8. In vivo, knockdown of PRIM1 suppressed the growth of xenograft tumors formed by gastric carcinoma cells. Moreover, PRIM1 silencing elevated the chemosensitivity of gastric carcinoma cells. By investigating molecular events downstream of the Hippo signaling pathway, we found that PRIM1 was a target gene of the YAP1/TEAD4 transcriptional regulatory complex. PRIM1 represents a novel target for gastric carcinoma therapeutic approaches.
Collapse
Affiliation(s)
- Zijun Guo
- Department of Operating Room, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
14
|
Fukuoka S, Koga Y, Yamauchi M, Koganemaru S, Yasunaga M, Shitara K, Doi T, Yoshino T, Kuronita T, Elenbaas B, Wahra P, Zhang H, Crowley L, Jenkins MH, Clark A, Kojima T. p70S6K/Akt dual inhibitor DIACC3010 is efficacious in preclinical models of gastric cancer alone and in combination with trastuzumab. Sci Rep 2023; 13:16017. [PMID: 37749105 PMCID: PMC10520030 DOI: 10.1038/s41598-023-40612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023] Open
Abstract
The PI3K-Akt-mTOR (PAM) pathway is implicated in tumor progression in many tumor types, including metastatic gastric cancer (GC). The initial promise of PAM inhibitors has been unrealized in the clinic, presumably due, in part, to the up-regulation of Akt signaling that occurs when the pathway is inhibited. Here we present that DIACC3010 (formerly M2698), an inhibitor of two nodes in the PAM pathway, p70S6K and Akt 1/3, blocks the pathway in in vitro and in vivo preclinical models of GC while providing a mechanism that inhibits signaling from subsequent Akt up-regulation. Utilizing GC cell lines and xenograft models, we identified potential markers of DIACC3010-sensitivity in Her2-negative tumors, i.e., PIK3CA mutations, low basal pERK, and a group of differentially expressed genes (DEGs). The combination of DIACC3010 and trastuzumab was evaluated in Her2-positive cell lines and models. Potential biomarkers for the synergistic efficacy of the combination of DIACC3010 + trastuzumab also included DEGs as well as a lack of up-regulation of pERK. Of 27 GC patient-derived xenograft (PDX) models tested in BALB/c nu/nu mice, 59% were sensitive to DIACC3010 + trastuzumab. Of the 21 HER2-negative PDX models, DIACC3010 significantly inhibited the growth of 38%. Altogether, these results provide a path forward to validate the potential biomarkers of DIACC3010 sensitivity in GC and support clinical evaluation of DIACC3010 monotherapy and combination with trastuzumab in patients with HER2- negative and positive advanced GCs, respectively.
Collapse
Affiliation(s)
- Shota Fukuoka
- Division of Experimental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital, Kashiwa, Japan
| | - Mayumi Yamauchi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Shigehiro Koganemaru
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Toshihiko Doi
- Division of Experimental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Toshio Kuronita
- Merck Biopharma Co., Ltd. (an affiliate of Merck KGaA), Tokyo, Japan
| | - Brian Elenbaas
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Pamela Wahra
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Hong Zhang
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Lindsey Crowley
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Molly H Jenkins
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Anderson Clark
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), Billerica, MA, USA
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
15
|
Huang X, Liu Y, Qian C, Shen Q, Wu M, Zhu B, Feng Y. CHSY3 promotes proliferation and migration in gastric cancer and is associated with immune infiltration. J Transl Med 2023; 21:474. [PMID: 37461041 PMCID: PMC10351153 DOI: 10.1186/s12967-023-04333-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/09/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The glycosyltransferase CHSY3 is a CHSY family member, yet its importance in the context of gastric cancer development remains incompletely understood. The present study was thus developed to explore the mechanistic importance of CHSY3 as a regulator of gastric cancer. METHODS Expression of CHSY3 was verified by TCGA, GEO and HPA databases. Kaplan-Meier curve, ROC, univariate cox, multivariate cox, and nomogram models were used to verify the prognostic impact and predictive value of CHSY3. KEGG and GO methods were used to identify signaling pathways associated with CHSY3. TIDE and IPS scores were used to assess the immunotherapeutic value of CHSY3. WGCNA, Cytoscape constructs PPI networks and random forest models to identify key Hub genes. Finally, qRT-PCR and immunohistochemical staining were performed to verify CHSY3 expression in clinical specimens. The ability of CHSY3 to regulate tumor was further assessed by CCK-8 assay and cloning assay, EDU assay, migration assay, invasion assay, and xenograft tumor model analysis. RESULTS The expression of CHSY3 was discovered to be abnormally upregulated in GC tissues through TCGA, GEO, and HPA databases, and the expression of CHSY3 was associated with poor prognosis in GC patients. Correlation analysis and Cox regression analysis revealed higher CHSY3 expression in higher T staging, an independent prognostic factor for GC. Moreover, elevated expression of CHSY3 was found to reduce the benefit of immunotherapy as assessed by the TIDE score and IPS score. Then, utilizing WGCNA, the PPI network constructed by Cytoscape, and random forest model, the Hub genes of COL5A2, POSTN, COL1A1, and FN1 associated with immunity were screened. Finally, the expression of CHSY3 in GC tissues was verified by qRT-PCR and immunohistochemical staining. Moreover, the expression of CHSY3 was further demonstrated by in vivo and in vitro experiments to promote the proliferation, migration, and invasive ability of GC. CONCLUSIONS The results of this study suggest that CHSY3 is an important regulator of gastric cancer progression, highlighting its promise as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Xinkun Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Graduate School, Dalian Medical University, Dalian, 116000, Liaoning, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Yonghui Liu
- Department of Laboratory Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chenyu Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical school, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Qicheng Shen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical school, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Menglong Wu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Graduate School, Dalian Medical University, Dalian, 116000, Liaoning, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Bin Zhu
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China.
- Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China.
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Medical school, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
16
|
Wang P, Zhu Y, Jia X, Ying X, Sun L, Ruan S. Clinical prognostic value of OSGIN2 in gastric cancer and its proliferative effect in vitro. Sci Rep 2023; 13:5775. [PMID: 37031243 PMCID: PMC10082810 DOI: 10.1038/s41598-023-32934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023] Open
Abstract
This study explored the promoting effect of oxidative stress-induced growth inhibitor family member 2(OSGIN2) on gastric cancer (GC) through public databases and in vitro experiments. The potential relationship between OSGIN2 expression, prognosis, functional enrichment of associated differential genes, immune infiltration, and mutational information in gastric cancer were comprehensively investigated using bioinformatics analysis. OSGIN2 was knocked down using small interfering RNA (siRNA) transfection for subsequent cell function testing. The results showed that gastric carcinoma cells and tissues contained high levels of OSGIN2, which was associated with a poor prognosis for GC patients. It was important in the cell cycle, autophagy, etc., and was related to a variety of tumor-related signal pathways. Knockdown of OSGIN2 inhibited tumor cell proliferation and contributed to cell cycle arrest. It was also correlated with tumor immune infiltrating cells (TILs), affecting antitumor immune function. Our analysis highlights that OSING2, as a new biomarker, has diagnostic and prognostic value in gastric cancer and is a potentially effective target in GC treatment.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Ying Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiangchang Ying
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
| |
Collapse
|
17
|
Qin H, Zhang S, Shen L, Mao C, Gao G, Wang H. High expression of serine protease 2 (PRSS2) associated with invasion, metastasis, and proliferation in gastric cancer. Aging (Albany NY) 2023; 15:2473-2484. [PMID: 37022096 PMCID: PMC10120911 DOI: 10.18632/aging.204604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Accumulating evidence indicates that the occurrence and development of tumors are related to the activation of oncogenes and the inactivation of tumor suppressor genes caused by epigenetic mechanisms. However, the function of serine protease 2 (PRSS2) in gastric cancer (GC) is still unknown. Our study aimed to find a regulation network involved in GC. METHODS The mRNA data (GSE158662 and GSE194261) of GC and normal tissues were downloaded from the Gene Expression Omnibus (GEO) dataset. Differential expression analysis was performed using R software, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted by using Xiantao software. Besides, we used Quantitative Real-time PCR (qPCR) to verify our conclusions. After gene knockdown, cell migration and CCK-8 experiment were carried out to detect the effect of gene on cell proliferation and invasion. RESULTS Totally, 412 differentially expressed genes (DEGs) were identified from GSE158662 and 94 DEGs were identified from GSE196261. Km-plot database results indicated that PRSS2 exhibited high diagnosis worth for GC. Gene functional annotation enrichment analysis revealed that these hub mRNAs were mainly taken part in the process of tumorigenesis and development. Besides, vitro experiments showed that down-regulation of PRSS2 gene reduced the proliferation and invasion ability of GC cells. CONCLUSIONS Our results indicated that PRSS2 may play vital roles in the carcinogenesis and progression of GC and can be potential biomarkers for patients with GC.
Collapse
Affiliation(s)
- Haifeng Qin
- Department of Nuclear Medicine, First People’s Hospital of Kunshan, Kunshan, Suzhou 215004, Jiangsu Province, China
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Shushu Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Linling Shen
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Chenjian Mao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Guangyu Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Hui Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| |
Collapse
|
18
|
Ding P, Lv J, Sun C, Chen S, Yang P, Tian Y, Zhou Q, Guo H, Liu Y, Zhao Q. Combined systemic inflammatory immunity index and prognostic nutritional index scores as a screening marker for sarcopenia in patients with locally advanced gastric cancer. Front Nutr 2022; 9:981533. [PMID: 36046129 PMCID: PMC9421237 DOI: 10.3389/fnut.2022.981533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Sarcopenia is associated with poor clinical outcomes in patients with locally advanced gastric cancer (LAGC). Currently, the diagnostic criteria for sarcopenia are complex and laborious. Increased evidence suggests the inflammatory state of the body is closely associated with the development of sarcopenia. The systemic immune-inflammatory index (SII) and the prognostic nutritional index (PNI) are representative blood indicators of the status of the systemic inflammatory response, but the clinical significance of the combined testing of these two indicators remains unclear. We aimed to develop a simple and practical risk score (SII-PNI score) to screen patients with LAGC for sarcopenia on admission for early diagnosis. Methods We registered a prospective clinical study from January 2011 to May 2016 involving 134 patients with LAGC undergoing radical surgical resection. All patients followed the definition of sarcopenia in the Asian Working Group on Sarcopenia (AWGS) guidelines and were divided into sarcopenia and non-sarcopenia groups. SII-PNI score 0-2 was scored as 2 for high SII (≥432.9) and low PNI ( ≤ 49.5); score 1, either high SII or low PNI; score 0, no high SII or low PNI. Results All patients underwent radical surgery, including 31 patients (23.13%) with sarcopenia according to AWGS criteria. The SII-PNI score was significantly lower in the non-sarcopenic patients than in the sarcopenic patients (p < 0.001). Logistic multivariate analysis showed that the SII-PNI score predicted an independent prognostic factor for sarcopenia (p < 0.001). Patients with high SII-PNI scores had significantly worse prognosis than those with low SII-PNI scores (p < 0.001). The SII-PNI score was an independent prognostic factor for predicting overall survival and disease-free survival (p = 0.016, 0.023). Conclusion Peripheral blood parameters SII-PNI scores accurately identify sarcopenia in patients with LAGC and could be used as potential systemic markers.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Jingxia Lv
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Shuya Chen
- Newham University Hospital, London, United Kingdom
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Qin Zhou
- Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Yang Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| |
Collapse
|
19
|
Lyu Y, Yang S, Lyu X, Wang YL, Ji S, Kang S, Jiang Y, Xiang J, He C, Li P, Liu B, Wu C. lncRNA polymorphism affects the prognosis of gastric cancer. World J Surg Oncol 2022; 20:273. [PMID: 36045445 PMCID: PMC9429416 DOI: 10.1186/s12957-022-02723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background Previous studies have found that lncRNA polymorphisms are associated with the prognosis of gastric cancer (GC), but the specific roles of many lncRNA polymorphism sites in gastric cancer are still unclear. Our study aims to deeply explore the relationship between genetic polymorphism of lncRNA and the prognosis of GC. Methods The genotypes of candidate SNP locus were detected by Sequenom Mass ARRAY SNP. We deeply analyzed the association of lncRNA polymorphisms with GC prognosis by univariate and multivariate Cox regression, stratified analysis, conjoint analysis, and log-rank test. Results We found that mutations at rs2579878 and rs10036719 loci reduced the risk of poor prognosis of GC. Stratified analysis showed that rs2795025, rs10036719, and rs12516079 polymorphisms were all associated with tumor prognosis. In addition, conjoint analyses showed that the interaction between these two polymorphic sites (rs2795025 and rs12516079) could increase the risk of poor prognosis. Multivariate analysis also found that the AG/AA genotype of rs10036719 and AG genotype of rs12516079 were independent prognostic factors. Moreover, the high expression of both CCDC26 and LINC02122 were shown to be associated with the poor survival status of GC patients. Conclusions We find that the genetic polymorphism of lncRNA plays a role in the development of GC and is closely related to the survival time of patients. It could serve as a predictor of the prognosis of GC.
Collapse
Affiliation(s)
- Yanping Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shuangfeng Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xuejie Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shumi Ji
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shuling Kang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.,Fuzhou Center for Disease Control and Prevention, Fuzhou, China
| | - Yu Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianjun Xiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chenzhou He
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Peixin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Baoying Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China. .,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Chuancheng Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China. .,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
20
|
Application of Laparoscopic Gastric Jejunum Uncut Roux-en-Y Anastomosis. Gastroenterol Res Pract 2022; 2022:9496271. [PMID: 35601237 PMCID: PMC9119775 DOI: 10.1155/2022/9496271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Uncut Roux-en-Y gastrojejunostomy, recently developed in China, is useful in the treatment of distal gastric cancer. This study is aimed at comparing laparoscopic gastric jejunum uncut Roux-en-Y anastomosis with conventional anastomosis in the surgical treatment of distal gastric malignancy. Methods In this retrospective study, the clinical data of 178 patients and their follow-up records were analyzed. 112 cases (uncut group) were the observation group for stomach jejunum uncut Roux-en-Y anastomosis, the control group for the stomach, 66 cases (conventional group) were for jejunum Roux-en-Y anastomosis and Billroth I and Billroth II anastomosis. A comparison between the two groups was conducted based on the general situation of the patients, TNM stage, and one-year survival rate. Results There was no significant difference reported between the two groups in terms of the general situation and TNM stage. A comparison on postoperative complications between the two groups revealed that the postoperative bleeding was 0.9% and 6.1%, the bile reflux gastritis was 1.8% and 9.1%, the anastomotic leakage was 0.0% and 3.0%, the delayed gastric emptying was 0.9% and 7.6%, and the overall complications was at 3.6% and 25.8%, which was significantly lower in the observation group than in the control group, and the difference was statistically significant. Notably, there was no significant difference in 1-year survival rate between the two groups. Conclusion Laparoscopic gastric jejunal uncut Roux-en-Y anastomosis significantly reduces the risk of postoperative complications of the digestive tract. Its operation is easy and exhibits an effective curative effect.
Collapse
|
21
|
Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, Yousuf T, Dar SB, Parveen S, Hassan R, Mohammad F, Qassim I, Bhat A, Ali S, Zargar MH, Afroze D. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front Pharmacol 2022; 13:821344. [PMID: 35401182 PMCID: PMC8987160 DOI: 10.3389/fphar.2022.821344] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.
Collapse
|
22
|
Chen P, Fan W, Hou Y, Wang F, Luo N. Role of kinesin family member 14 in disease monitoring and prognosis in patients with gastrointestinal cancer. Oncol Lett 2022; 23:156. [PMID: 35836481 PMCID: PMC9258591 DOI: 10.3892/ol.2022.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 11/06/2022] Open
Abstract
Kinesin family member 14 (KIF14) is not only involved in numerous essential biological activities, such as cytokinesis and myelination, but also regulates several malignant behaviors and progression of cancer. However, its role in gastrointestinal cancer is rarely reported. Therefore, the present study aimed to investigate the association of KIF14 expression with disease-free survival (DFS) and overall survival (OS) times in patients with gastrointestinal cancer. A total of 101 patients with gastrointestinal cancer (36 patients with gastric cancer and 65 patients with colorectal cancer) were retrospectively reviewed, and their cancer samples were collected to detect the protein and mRNA expression levels of KIF14 using immunohistochemistry and reverse transcription-quantitative PCR, respectively. KIF14 protein expression was increased in cancer tissues compared with adjacent tissues (all P<0.001). The protein expression levels of KIF14 were positively associated with T stage (P<0.001), distant metastases (P=0.007) and TNM stage (P<0.001), while KIF14 mRNA expression was positively associated with T stage (P<0.001), lymph node metastasis (P=0.004), distant metastases (P=0.001) and TNM stage (P<0.001). High protein and mRNA expression levels of KIF14 were associated with worse DFS (P<0.001) and OS (P=0.016) times. In addition, high KIF14 protein expression independently predicted unfavorable DFS times (P=0.007). Subgroup analysis revealed that in patients with gastric cancer, KIF14 expression was associated with DFS and OS times, while in patients with colorectal cancer, KIF14 expression was only associated with DFS time, but not with OS time. In conclusion, KIF14 expression was not only associated with advanced pathological differentiation and TNM stage but was also associated with poor survival time in patients with gastrointestinal cancer. These results indicate the potential of KIF14 as a biomarker for gastrointestinal cancer prognosis.
Collapse
Affiliation(s)
- Ping Chen
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Weining Fan
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yujin Hou
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Fang Wang
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Na Luo
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
23
|
Wu HJ, Dai WW, Wang LB, Zhang J, Wang CL. Comprehensive analysis of the molecular mechanism for gastric cancer based on competitive endogenous RNA network. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.355010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Fan L, Wang W, Wang Z, Zhao M. Gold nanoparticles enhance antibody effect through direct cancer cell cytotoxicity by differential regulation of phagocytosis. Nat Commun 2021; 12:6371. [PMID: 34737259 PMCID: PMC8569206 DOI: 10.1038/s41467-021-26694-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ramucirumab is the first FDA-approved monotherapy for advanced gastric cancer. In this study, Ramucirumab (Ab) is attached to gold nanoparticles to enhance uptake efficiency. Gold nanoparticles can induce direct cytotoxic effects to cancer cells in the presence of Ab, while individual Ab or gold nanoparticles don't have such an effective anticancer effect even at extremely high concentrations. Proteomic and transcriptomic analyses reveal this direct cytotoxicity is derived predominantly from Ab-mediated phagocytosis. High affinity immunoglobulin gamma Fc receptor I shows differential up-regulation in gastric cancer cells treated by these nanodrugs compared with Ab, especially for Ab with gold nanorods. Simplified and powerful designs of smart nanoparticles are highly desired for clinical application. The enhancement of Ab accumulation with a simple composition, combined with direct cytotoxic effects specific to cancer cells brought improved therapeutic effects in vivo compared with Ab, which can promote further clinical application of gold nanomaterials in the diagnosis and therapeutics of gastric cancer.
Collapse
Affiliation(s)
- Linyang Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Weizhi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Minzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| |
Collapse
|
25
|
Song S, He X, Wang J, Wang R, Wang L, Zhao W, Wang Y, Zhang Y, Yu Z, Miao D, Xue Y. ELF3-AS1 contributes to gastric cancer progression by binding to hnRNPK and induces thrombocytosis in peripheral blood. Cancer Sci 2021; 112:4553-4569. [PMID: 34418240 PMCID: PMC8586678 DOI: 10.1111/cas.15104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have reported that a variety of long noncoding RNAs (lncRNAs) can promote the proliferation, invasion, and migration of different tumor cells. However, different lncRNAs regulate cell functions in various forms, and the exact mechanisms are not clear. Here, we investigated the effect of the lncRNA ELF3-AS1 on gastric cancer (GC) cell function and explored the exact mechanism. Quantitative real-time polymerase chain reaction was used to detect the expression of ELF3-AS1 in GC tissues and adjacent nontumor tissues. Knockdown and overexpression of ELF3-AS1 was used to detect the effect of ELF3-AS1 on cell function. Potential downstream target genes were identified using RNA transcriptome sequencing, while RNA immunoprecipitation, chromatin immunoprecipitation, and Western blotting were performed to explore the tumor promotion mechanisms of ELF3-AS1. We observed that ELF3-AS1 was highly expressed in GC tissues, and high ELF3-AS1 expression predicted poor prognosis. The knockdown of ELF3-AS1 significantly inhibited cell proliferation, migration, and epithelial-mesenchymal transition and promoted apoptosis. Mechanistic investigations revealed that ELF3-AS1 may regulate the downstream target gene, C-C motif chemokine 20, by binding with the RNA-binding protein hnRNPK. Additionally, we found that high ELF3-AS1 expression was associated with thrombocytosis. Interleukin-6 and thrombopoietin may be involved in ELF3-AS1-induced paraneoplastic thrombocytosis. Together, our results demonstrate that aberrantly expressed ELF3-AS1 in GC may play important roles in oncogenesis and progression and is expected to become a new target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Shubin Song
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xuezhi He
- Department of Nutrition and Food HygieneSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Jing Wang
- Department of Anatomy, Histology and EmbryologyState Key Laboratory of Reproductive MedicineThe Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Rong Wang
- Department of Anatomy, Histology and EmbryologyThe Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Leilei Wang
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Wei Zhao
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Yimin Wang
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Yongle Zhang
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Zhiyong Yu
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Dengshun Miao
- The Research Center for AgingFriendship Affiliated Plastic Surgery Hospital of Nanjing Medical UniversityNanjingChina
| | - Yingwei Xue
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
26
|
Shi C, Yang EJ, Tao S, Ren G, Mou PK, Shim JS. Natural products targeting cancer cell dependency. J Antibiot (Tokyo) 2021; 74:677-686. [PMID: 34163025 DOI: 10.1038/s41429-021-00438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Precision cancer medicine is a tailored treatment approach for individual cancer patients with different genomic characteristics. Mutated or hyperactive oncogenes have served as main drug targets in current precision cancer medicine, while defective or inactivated tumor suppressors in general have not been considered as druggable targets. Synthetic lethality is one of very few approaches that enable to target defective tumor suppressors with pharmacological agents. Synthetic lethality exploits cancer cell dependency on a protein or pathway, which arises when the function of a tumor suppressor is defective. This approach has been proven to be effective in clinical settings since the successful clinical introduction of BRCA-PARP synthetic lethality for the treatment of breast and ovarian cancer with defective BRCA. Subsequently, large-scale screenings with RNAi, CRISPR/Cas9-sgRNAs, and chemical libraries have been applied to identify synthetic lethal partners of tumor suppressors. Natural products are an important source for the discovery of pharmacologically active small molecules. However, little effort has been made in the discovery of synthetic lethal small molecules from natural products. This review introduces recent advances in the discovery of natural products targeting cancer cell dependency and discusses potentials of natural products in the precision cancer medicine.
Collapse
Affiliation(s)
- Changxiang Shi
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Shishi Tao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guowen Ren
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Pui Kei Mou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China. .,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
27
|
Lin X, Han T, Xia Q, Cui J, Zhuo M, Liang Y, Su W, Wang L, Wang L, Liu Z, Xiao X. CHPF promotes gastric cancer tumorigenesis through the activation of E2F1. Cell Death Dis 2021; 12:876. [PMID: 34564711 PMCID: PMC8464597 DOI: 10.1038/s41419-021-04148-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 01/06/2023]
Abstract
Chondroitin polymerizing factor (CHPF) is an important glycosyltransferase involved in the biosynthesis of chondroitin sulfate. However, the relationship between CHPF and gastric cancer has not been fully investigated. CHPF expression in gastric cancer tissues was detected by immunohistochemistry and correlated with gastric cancer patient prognosis. Cultured gastric cancer cells and human gastric epithelial cell line GES1 were used to investigate the effects of shCHPF and shE2F1 on the development and progression of gastric cancer by MTT, western blotting, flow cytometry analysis of cell apoptosis, colony formation, transwell and gastric cancer xenograft mouse models, in vitro and in vivo. In gastric cancer tissues, CHPF was found to be significantly upregulated, and its expression correlated with tumor infiltration and advanced tumor stage and shorter patient survival in gastric cancer. CHPF may promote gastric cancer development by regulating cell proliferation, colony formation, cell apoptosis and cell migration, while knockdown induced the opposite effects. Moreover, the results from in vivo experiments demonstrated that tumor growth was suppressed by CHPF knockdown. Additionally, E2F1 was identified as a potential downstream target of CHPF in the regulation of gastric cancer, and its knockdown decreased the CHPF-induced promotion of gastric cancer. Mechanistic study revealed that CHPF may regulate E2F1 through affecting UBE2T-mediated E2F1 ubiquitination. This study showed, for the first time, that CHPF is a potential prognostic indicator and tumor promoter in gastric cancer whose function is likely carried out through the regulation of E2F1.
Collapse
Affiliation(s)
- Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Han
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Xia
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiujie Cui
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Meng Zhuo
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yiyi Liang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wenyu Su
- Department of Gastroenterology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, Shanghai, 200127, China
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Liwei Wang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Zebing Liu
- Department of Pathology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
28
|
Gaiddon C, Gross I, Meng X, Sidhoum M, Mellitzer G, Romain B, Delhorme JB, Venkatasamy A, Jung AC, Pfeffer M. Bypassing the Resistance Mechanisms of the Tumor Ecosystem by Targeting the Endoplasmic Reticulum Stress Pathway Using Ruthenium- and Osmium-Based Organometallic Compounds: An Exciting Long-Term Collaboration with Dr. Michel Pfeffer. Molecules 2021; 26:molecules26175386. [PMID: 34500819 PMCID: PMC8434532 DOI: 10.3390/molecules26175386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Metal complexes have been used to treat cancer since the discovery of cisplatin and its interaction with DNA in the 1960’s. Facing the resistance mechanisms against platinum salts and their side effects, safer therapeutic approaches have been sought through other metals, including ruthenium. In the early 2000s, Michel Pfeffer and his collaborators started to investigate the biological activity of organo-ruthenium/osmium complexes, demonstrating their ability to interfere with the activity of purified redox enzymes. Then, they discovered that these organo-ruthenium/osmium complexes could act independently of DNA damage and bypass the requirement for the tumor suppressor gene TP53 to induce the endoplasmic reticulum (ER) stress pathway, which is an original cell death pathway. They showed that other types of ruthenium complexes—as well complexes with other metals (osmium, iron, platinum)—can induce this pathway as well. They also demonstrated that ruthenium complexes accumulate in the ER after entering the cell using passive and active mechanisms. These particular physico-chemical properties of the organometallic complexes designed by Dr. Pfeffer contribute to their ability to reduce tumor growth and angiogenesis. Taken together, the pioneering work of Dr. Michel Pfeffer over his career provides us with a legacy that we have yet to fully embrace.
Collapse
Affiliation(s)
- Christian Gaiddon
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
- Correspondence: ; Tel.: +33-6-8352-5356
| | - Isabelle Gross
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Xiangjun Meng
- Department of Gastro-Oncology, 7th Hospital, Shanghai 200137, China;
| | | | - Georg Mellitzer
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Benoit Romain
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Jean-Batiste Delhorme
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Aïna Venkatasamy
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Alain C. Jung
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Michel Pfeffer
- CNRS UMR 7177, Institute of Chemistry, 67000 Strasbourg, France;
| |
Collapse
|
29
|
Mansoor W, Roeland EJ, Chaudhry A, Liepa AM, Wei R, Knoderer H, Abada P, Chatterjee A, Klempner SJ. Early Weight Loss as a Prognostic Factor in Patients with Advanced Gastric Cancer: Analyses from REGARD, RAINBOW, and RAINFALL Phase III Studies. Oncologist 2021; 26:e1538-e1547. [PMID: 34037286 PMCID: PMC8417853 DOI: 10.1002/onco.13836] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Weight loss is common in advanced gastric and gastroesophageal junction adenocarcinoma (G/GEA); however, the prognostic implications of weight loss during the first cycle (C1) of chemotherapy remain poorly characterized. In this study, we investigated the impact of early weight loss during systemic treatment as a potential prognostic factor for overall survival (OS) in patients with advanced G/GEA. MATERIALS AND METHODS We performed a post hoc analysis of three phase III studies of ramucirumab. Patients were categorized into two groups: weight loss of ≥3% and <3% based on weight change during C1 (3-4 weeks) of treatment. OS by weight groups was assessed for each study and as a pooled meta-analysis. The effect of C1 weight change on patient survival was evaluated using univariate and multivariate Cox models. RESULTS A total of 1,464 patients with weight data at the end of C1 were analyzed: REGARD (n = 311), RAINBOW (n = 591), and RAINFALL (n = 562). For all three studies, there were fewer patients in the weight loss ≥3% than <3% group. OS was numerically shorter for patients with weight loss of ≥3% than for patients with weight loss of <3% during C1 irrespective of treatment arm. Similar treatment independent effects of early weight loss on OS were observed in the meta-analysis. Overall, early weight loss ≥3% was associated with shorter survival in patients receiving active drug as well as placebo/best supportive care. CONCLUSION This large post hoc analysis demonstrated that weight loss of ≥3% during C1 was a negative prognostic factor for OS in patients with advanced G/GEA. IMPLICATIONS FOR PRACTICE This comprehensive analysis examining early weight loss during systemic treatment as a predictor of survival outcomes in patients with advanced gastric and gastroesophageal junction adenocarcinoma (G/GEA) includes a large sample size, reliable on-treatment data reported in well-conducted phase III clinical trials, and global representation of cancer patients with advanced G/GEA. Understanding the impact of on-treatment weight loss is clinically relevant and may represent an opportunity for targeted interventions.
Collapse
Affiliation(s)
- Wasat Mansoor
- The Christie NHS Foundation TrustManchesterUnited Kingdom
| | - Eric J. Roeland
- Massachusetts General Hospital Cancer CenterBostonMassachusettsUSA
| | | | | | - Ran Wei
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | | | | | | | | |
Collapse
|
30
|
Abdelhakeem A, Patnana M, Wang X, Rogers JE, Murphy MB, Sagebiel T, Ikoma N, Badgwell BD, Trail A, Estrella JS, Lu Y, Devine C, Ajani JA. Influence of Baseline Positron Emission Tomography in Metastatic Gastroesophageal Cancer on Survival and Response to Therapy. Oncology 2021; 99:659-664. [PMID: 34352788 DOI: 10.1159/000517842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The value of baseline fluorodeoxyglucose-positron emission tomography-computed tomography (PET-CT) remains uncertain once gastroesophageal cancer is metastatic. We hypothesized that assessment of detailed PET-CT parameters (maximum standardized uptake value [SUVmax] and/or total lesion glycolysis [TLG]), and the extent of metastatic burden could aid prediction of probability of response or prognosticate. METHODS We retrospectively analyzed treatment-naive patients with stage 4 gastroesophageal cancer (December 2002-August 2017) who had initial PET-CT for cancer staging at MD Anderson Cancer Center. SUVmax and TLG were compared with treatment outcomes for the full cohort and subgroups based on metastatic burden (≤2 or >2 metastatic sites). RESULTS We identified 129 patients with metastatic gastroesophageal cancer who underwent PET-CT before first-line therapy. The median follow-up time was 61 months. The median overall survival (OS) was 18.5 months; the first progression-free survival (PFS) was 5.5 months. SUVmax or TLG of the primary tumor or of all metastases combined had no influence on OS or PFS, whether the number of metastases was ≤2 or >2. Overall response rates (ORRs) to first-line therapy were 48% and 45% for patients with ≤2 and >2 metastases, respectively (nonsignificant). ORR did not differ based on low or high values of SUVmax or TLG. CONCLUSIONS This is the first assessment of a unique set of PET-CT data and its association with outcomes in metastatic gastroesophageal cancer. In our large cohort of patients, detailed analyses of PET-CT (by SUVmax and/or TLG) did not discriminate any parameters examined. Thus, baseline PET-CT in untreated metastatic gastroesophageal cancer patients has limited or no utility.
Collapse
Affiliation(s)
- Ahmed Abdelhakeem
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,
| | - Madhavi Patnana
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jane E Rogers
- Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mariela Blum Murphy
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tara Sagebiel
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brian D Badgwell
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Allison Trail
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeannelyn S Estrella
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Catherine Devine
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
31
|
Weidle UH, Birzele F, Brinkmann U, Auslaender S. Gastric Cancer: Identification of microRNAs Inhibiting Druggable Targets and Mediating Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:497-514. [PMID: 34183383 DOI: 10.21873/cgp.20275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023] Open
Abstract
In addition to chemotherapy, targeted therapies have been approved for treatment of locally advanced and metastatic gastric cancer. The therapeutic benefit is significant but more durable responses and improvement of survival should be achieved. Therefore, the identification of new targets and new approaches for clinical treatment are of paramount importance. In this review, we searched the literature for down-regulated microRNAs which interfere with druggable targets and exhibit efficacy in preclinical in vivo efficacy models. As druggable targets, we selected transmembrane receptors, secreted factors and enzymes. We identified 38 microRNAs corresponding to the criteria as outlined. A total of 13 miRs target transmembrane receptors, nine inhibit secreted proteins and 16 attenuate enzymes. These microRNAs are targets for reconstitution therapy of gastric cancer. Further target validation experiments are mandatory for all of the identified microRNAs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRed), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
32
|
de Fátima Aquino Moreira-Nunes C, de Souza Almeida Titan Martins CN, Feio D, Lima IK, Lamarão LM, de Souza CRT, Costa IB, da Silva Maués JH, Soares PC, de Assumpção PP, Burbano RMR. PD-L1 Expression Associated with Epstein-Barr Virus Status and Patients' Survival in a Large Cohort of Gastric Cancer Patients in Northern Brazil. Cancers (Basel) 2021; 13:3107. [PMID: 34206307 PMCID: PMC8268941 DOI: 10.3390/cancers13133107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) is a worldwide health problem, making it one of the most common types of cancer, in fifth place of all tumor types, and the third highest cause of cancer deaths in the world. There is a subgroup of GC that consists of tumors infected with the Epstein-Barr virus (EBV) and is characterized mainly by the overexpression of programmed cell death protein-ligand-1 (PD-L1). In the present study, we present histopathological and survival data of a thousand GC patients, associated with EBV status and PD-L1 expression. Of the thousand tumors analyzed, 190 were EBV-positive and the vast majority (86.8%) had a high relative expression of mRNA and PD-L1 protein (p < 0.0001) in relation to non-neoplastic control. On the other hand, in EBV-negative samples, the majority had a low PD-L1 expression of RNA and protein (p < 0.0001). In the Kaplan-Meier analysis, the probability of survival and increased overall survival of EBV-positive GC patients was impacted by the PD-L1 overexpression (p < 0.0001 and p = 0.004, respectively). However, the PD-L1 low expression was correlated with low overall survival in those patients. Patients with GC positive for EBV, presenting PD-L1 overexpression can benefit from immunotherapy treatments and performing the quantification of PD-L1 in gastric neoplasms should be adopted as routine.
Collapse
Affiliation(s)
- Caroline de Fátima Aquino Moreira-Nunes
- Laboratory of Molecular Biology, Department of Clinical Medicine, Ophir Loyola Hospital, Belém, 66063-240 PA, Brazil; (C.N.d.S.A.T.M.); (D.F.); (I.K.L.); (P.C.S.)
- Laboratory of Pharmacogenetics, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, 60430-275 CE, Brazil
| | | | - Danielle Feio
- Laboratory of Molecular Biology, Department of Clinical Medicine, Ophir Loyola Hospital, Belém, 66063-240 PA, Brazil; (C.N.d.S.A.T.M.); (D.F.); (I.K.L.); (P.C.S.)
| | - Isamu Komatsu Lima
- Laboratory of Molecular Biology, Department of Clinical Medicine, Ophir Loyola Hospital, Belém, 66063-240 PA, Brazil; (C.N.d.S.A.T.M.); (D.F.); (I.K.L.); (P.C.S.)
| | - Leticia Martins Lamarão
- Foundation Center for Hemotherapy and Hematology of Pará (HEMOPA), Department of Sorology, Belém, 66033-000 PA, Brazil;
| | | | - Igor Brasil Costa
- Department of Virology, Evandro Chagas Institute, Ananindeua, 67030-000 PA, Brazil;
| | - Jersey Heitor da Silva Maués
- Hematology and Transfusion Medicine Center, Laboratory of Molecular and Cell Biology, Department of Medicine, University of Campinas, Campinas, 13083-970 SP, Brazil;
| | - Paulo Cardoso Soares
- Laboratory of Molecular Biology, Department of Clinical Medicine, Ophir Loyola Hospital, Belém, 66063-240 PA, Brazil; (C.N.d.S.A.T.M.); (D.F.); (I.K.L.); (P.C.S.)
| | - Paulo Pimentel de Assumpção
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém, 66073-005 PA, Brazil;
| | - Rommel Mário Rodríguez Burbano
- Laboratory of Molecular Biology, Department of Clinical Medicine, Ophir Loyola Hospital, Belém, 66063-240 PA, Brazil; (C.N.d.S.A.T.M.); (D.F.); (I.K.L.); (P.C.S.)
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém, 66073-005 PA, Brazil;
| |
Collapse
|
33
|
Zhai J, Wu J, Wang Y, Fan R, Xie G, Wu F, He Y, Qian S, Tan A, Yao X, He M, Shen L. Prediction of Sensitivity and Efficacy of Clinical Chemotherapy Using Larval Zebrafish Patient-Derived Xenografts of Gastric Cancer. Front Cell Dev Biol 2021; 9:680491. [PMID: 34164399 PMCID: PMC8215369 DOI: 10.3389/fcell.2021.680491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Background Perioperative chemotherapy has been accepted as one of the most common approaches for locally advanced gastric cancer. However, the efficacy of chemotherapy varies among patients, and there is no effective method to predict the chemotherapy efficacy currently. We previously established the first larval zebrafish patient-derived xenografts (zPDXs) of gastric cancer as a platform for the translational research and personalized treatment. The objective of this study was to investigate the feasibility of screening individualized chemotherapeutics using the zPDXs. Methods We further optimized this zPDXs platform including administration route, drug dosing, and rhythm to develop a stable and reliable protocol for chemotherapeutics screening. Using the novel platform, we investigated the chemosensitivity of 5-fluorouracil, cisplatin, docetaxel, and doxorubicin for gastric cancer patients. Results We showed that the engrafted zebrafish retained the original prominent cell components of the corresponding human tumor tissues, and we successfully obtained the results of chemosensitivity of 5-fluorouracil, cisplatin, docetaxel, and doxorubicin for 28 patients with locally advanced gastric cancer. These patients underwent radical gastrectomy for curative intent and 27 cases received postoperative adjuvant chemotherapy. We revealed that the chemosensitivity obtained from zPDXs was consistent with the clinical responses in these patients (P = 0.029). More importantly, the responder drug(s) from zPDXs used or not was the only risk factor for early-stage recurrence in these 27 patients (P = 0.003). Conclusion Our study with the largest sample size so far suggests that larval zPDXs help to predict the chemotherapeutics response and to achieve precise chemotherapy for gastric cancer.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaqi Wu
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yaohui Wang
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruoyue Fan
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Guiping Xie
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangfang Wu
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yani He
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sitong Qian
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Aimin Tan
- Nanjing Amory Biotech Co. Ltd., Nanjing, China
| | - Xuequan Yao
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingfang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lizong Shen
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
34
|
Wang Y, Zheng D. The importance of precision medicine in modern molecular oncology. Clin Genet 2021; 100:248-257. [PMID: 33997970 DOI: 10.1111/cge.13998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
With the rapid development of modern medical technology, information data modeling has been gradually applied to clinical diagnosis and treatment. Precision medicine is an important approach that focuses on individual patients in terms of their own characteristics, genomic information, proteomics and even social environments. Genome-wide high-throughput technologies, including DNA-seq, RNA-seq, exosome-seq…, contribute enormous amounts of molecular data to aid in diagnosis and analysis. Here, we review the developmental history of different next-generation sequencing platforms, introduce their applications in different tumor diagnosis and therapy, and further discuss the remaining challenges in precision medicine.
Collapse
Affiliation(s)
- Yuanli Wang
- The Precision Medicine Laboratory, The First People's Hospital of Qinzhou, Qinzhou, China
| | - Dawu Zheng
- The Precision Medicine Laboratory, The First People's Hospital of Qinzhou, Qinzhou, China
| |
Collapse
|
35
|
Fu L, Li Q, Fan Q. Combination of preoperative red cell distribution width and neutrophil to lymphocyte ratio as a prognostic marker for gastric cancer patients. J Gastrointest Oncol 2021; 12:1049-1057. [PMID: 34295556 DOI: 10.21037/jgo-21-271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background The neutrophil to lymphocyte ratio (NLR) and red blood cell distribution width (RDW) play an important role in the prognosis of several cancers, but their prognostic value in patients with stage II-III gastric cancer (GC) is unclear. We aimed to evaluate the prognostic value of the RDW-NLR (R-NLR) score based on RDW and NLR in stage II-III GC patients after radical surgery. Methods Preoperative RDW and NLR clinicopathological data were retrospectively reviewed and analyzed from stage II-III GC patients who underwent radical gastrectomy. The optimal cut-off values for pre-RDW-variation coefficient (pre-RDW-cv) and pre-NLR were defined as 14.10% and 2.015, respectively. The R-NLR score was defined as 2 (both elevated RDW and NLR), 1 (one of these was elevated), or 0 (neither were elevated). Prognostic factors were identified by univariate and multivariate analyses. Results A total of 151 patients were included in this study, and 65 (43.05%), 54 (35.76%), and 32 (21.19%) patients had an R-NLR score of 0, 1 and 2, respectively. The preoperative R-NLR score was significantly correlated with tumor size and gender (all P<0.05). The 5-year overall survival (OS) in the R-NLR 0, 1, and 2 groups was 52.30%, 44.40%, and 31.20%, respectively (P=0.031), while the 5-year DFS was 47.70%, 13.30%, and 18.80%, respectively (P<0.001). Further, while the 5-year disease-free survival (DFS) rate was significantly improved in low RDW-cv and NLR patients compared with those with high RDW-cv and NLR (all P<0.05), but not OS (all P>0.05). Multivariate analysis demonstrated that the R-NLR score was independently correlated with OS [hazard ratio (HR), 1.527; P=0.007] and DFS (HR, 1.939; P=0.001). Conclusions We validated the preoperative R-NLR score to be a promising predictor for stage II-III GC patients who have undergone radical gastrectomy.
Collapse
Affiliation(s)
- Lei Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qian Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Alruwaii ZI, Montgomery EA. Select Epstein-Barr Virus-Associated Digestive Tract Lesions for the Practicing Pathologist. Arch Pathol Lab Med 2021; 145:562-570. [PMID: 32320275 DOI: 10.5858/arpa.2019-0703-ra] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
CONTEXT.— Epstein-Barr virus is a ubiquitous oncogenic virus. During the past 5 decades, the virus has been linked to several disease entities, both neoplastic and nonneoplastic. Several Epstein-Barr virus-associated conditions affect the digestive organs, ranging from mild transient inflammatory conditions to more debilitating and even fatal diseases. OBJECTIVE.— To discuss the clinicopathologic aspects of some newly or recently recognized Epstein-Barr virus-related conditions encountered in the digestive system and their therapeutic implications. DATA SOURCES.— Published peer-reviewed literature was reviewed. CONCLUSIONS.— This article highlights the importance of recognizing the discussed lesions because they influence the direct clinical management or serve as a potential predictive marker for therapy.
Collapse
Affiliation(s)
- Zainab I Alruwaii
- From the Department of Pathology, Regional Laboratory and Blood Bank, Eastern Province, Dammam, Saudi Arabia (Alruwaii)
| | - Elizabeth A Montgomery
- and the Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland (Montgomery)
| |
Collapse
|
37
|
High FAM189B Expression and Its Prognostic Value in Patients with Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8875971. [PMID: 34124264 PMCID: PMC8172284 DOI: 10.1155/2021/8875971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/27/2021] [Indexed: 11/18/2022]
Abstract
The clinical significance of the family with sequence similarity 189 member B (FAM189B) gene remains largely unknown in gastric cancer (GC). A comprehensive investigation combining multiple detection methods was carried out in the current study to unveil the clinical implications and prospective molecular characterization of FAM189B protein and mRNA in GC. The protein level of FAM189B was clearly upregulated in the tumor tissues of GC as compared to noncancerous gastric tissues with 179 GC cases and 147 noncancerous gastric controls assessed by immunohistochemistry. The upregulation of the FAM189B protein was also found in the more deteriorating period of the tumor, as there were increasing trends in the groups of larger tumors, with lymph node metastasis, a further advanced clinical stage, and a higher histological grade. Next, we focused on the mRNA level of FAM189B in GC tissues using various high-throughput data. After the screening of GEO, ArrayExpress, and SRA, we finally achieved 18 datasets, including an RNA sequencing dataset of TCGA. Altogether, 1095 cases of GC tissue samples were collected, with 305 unique examples of noncancerous controls. Concerning the mRNA level of FAM189B in GC, the final standard mean difference (SMD) was 0.46 and the area under the curve (AUC) was 0.79 for the upregulation of FAM189B mRNA, which confirmed that the FAM189B mRNA level was also markedly upregulated in GC tissues and comparable to its protein level. The survival analysis showed that the higher expression of FAM189B was a risk factor for the overall survival, first progression, and postprogression survival of GC. For the Affymetrix ID 1555515_a_at of FAM189B, the higher expression level of FAM189B predicted a lower overall survival, first progression survival, and postprogression survival with the hazard ratio (HR) being 1.56 (1.24, 1.95), 1.69 (1.32, 2.17), and 1.97 (1.5, 2.6), respectively. For the Affymetrix ID 203550_s_at of FAM189B, a similar result could be found with corresponding HR being 1.49 (1.24, 1.8), 1.49 (1.21, 1.83), and 1.66 (1.32, 2.08), respectively. The interaction of MEM, COXPRESdb coexpressed genes, and DEGs of GC finally generated 368 genes, and the pathway of the cell cycle was the top pathway enriched by KEGG. In conclusion, the overexpression of the FAM189B protein and mRNA might enhance the incidence of GC.
Collapse
|
38
|
TASP1 Promotes Proliferation and Migration in Gastric Cancer via EMT and AKT/P-AKT Pathway. J Immunol Res 2021; 2021:5521325. [PMID: 34012990 PMCID: PMC8105097 DOI: 10.1155/2021/5521325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Threonine aspartase 1 (TASP1) was reported to function in the development of cancer. However, the regulatory mechanism of TASP1 in gastric cancer (GC) remains unclear. In this study, we determined the expression of TASP1 in tissues of GC patients, GC cells by qRT-PCR, and western blot and assessed the relationship between TASP1 and GC cell proliferation and migration via CCK-8 and transwell assay. It was found that the expression of TASP1 in GC tissues or GC cell lines was significantly higher than that in normal adjacent tissues or normal cells. The proliferation and migration of GC cells were inhibited upon TASP1 knockdown. Mechanism investigation revealed that TASP1 promoted GC cell proliferation and migration through upregulating the p-AKT/AKT expression. TASP1 induced GC cell migration via the epithelial -mesenchymal transition (EMT) pathway. In conclusion, TASP1 promotes GC progression through the EMT and AKT/p-AKT pathway, and it may serve as a new potential biomarker and therapeutic target for GC.
Collapse
|
39
|
EPLIN Expression in Gastric Cancer and Impact on Prognosis and Chemoresistance. Biomolecules 2021; 11:biom11040547. [PMID: 33917939 PMCID: PMC8068319 DOI: 10.3390/biom11040547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 01/17/2023] Open
Abstract
Epithelial protein lost in neoplasm (EPLIN) has been implicated as a suppressor of cancer progression. The current study explored EPLIN expression in clinical gastric cancer and its association with chemotherapy resistance. EPLIN transcript expression, in conjunction with patient clinicopathological information and responsiveness to neoadjuvant chemotherapy (NAC), was explored in two gastric cancer cohorts collected from the Beijing Cancer Hospital. Kaplan-Meier survival analysis was undertaken to explore EPLIN association with patient survival. Reduced EPLIN expression was associated with significant or near significant reductions of overall, disease-free, first progression or post-progression survival in the larger host cohort and Kaplan Meier plotter datasets. In the larger cohort EPLIN expression was significantly higher in the combined T1 + T2 gastric cancer group compared to the T3 + T4 group and identified to be an independent prognostic factor of disease-free survival and overall survival by multivariate analysis. In the smaller, NAC cohort, EPLIN expression was found to be significantly lower in tumour tissues than in paratumour tissues. EPLIN expression was significantly associated with responsiveness to chemotherapy which contributes to overall survival. Together, EPLIN appears to be a prognostic factor and may be associated with patient sensitivity to NAC.
Collapse
|
40
|
Yang MH, Ha IJ, Um JY, Ahn KS. Albendazole Exhibits Anti-Neoplastic Actions against Gastric Cancer Cells by Affecting STAT3 and STAT5 Activation by Pleiotropic Mechanism(s). Biomedicines 2021; 9:biomedicines9040362. [PMID: 33807326 PMCID: PMC8065911 DOI: 10.3390/biomedicines9040362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
Albendazole (ABZ) has been reported to display anti-tumoral actions against various maliganncies, but possible impact of ABZ on gastric cancer has not been deciphered. As aberrant phosphorylation of STAT3 and STAT5 proteins can regulate the growth and progression of gastric cancer, we postulated that ABZ may interrupt the activation of these oncogenic transcription factors. We found that ABZ exposure abrogated STAT3/5 activation, inhibited phosphorylation of Janus-activated kinases 1/2 and Src and enhanced the levels of SHP-1 protein. Silencing of SHP-1 gene by small interfering RNA (siRNA) reversed the ABZ-promoted attenuation of STAT3 as well as STAT5 activation and cellular apoptosis. In addition, these effects were noted to be driven by an augmented levels of reactive oxygen species caused by drug-induced GSH/GSSG imbalance. Thus, the data indicates that ABZ can modulate the activation of STAT3 and STAT5 by pleiotropic mechanisms in gastric cancer cells.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Korea;
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-961-2316
| |
Collapse
|
41
|
Gastric Cancer: Advances in Carcinogenesis Research and New Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms22073418. [PMID: 33810350 PMCID: PMC8037554 DOI: 10.3390/ijms22073418] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer’s bad incidence, prognosis, cellular and molecular heterogeneity amongst others make this disease a major health issue worldwide. Understanding this affliction is a priority for proper patients’ management and for the development of efficient therapeutical strategies. This review gives an overview of major scientific advances, made during the past 5-years, to improve the comprehension of gastric adenocarcinoma. A focus was made on the different actors of gastric carcinogenesis, including, Helicobacter pylori cancer stem cells, tumour microenvironment and microbiota. New and recent potential biomarkers were assessed as well as emerging therapeutical strategies involving cancer stem cells targeting as well as immunotherapy. Finally, recent experimental models to study this highly complex disease were discussed, highlighting the importance of gastric cancer understanding in the hard-fought struggle against cancer relapse, metastasis and bad prognosis.
Collapse
|
42
|
Roviello G, Rodriquenz MG, Aprile G, D'Angelo A, Roviello F, Nobili S, Mini E, Sarno I, Polom K. Maintenance in gastric cancer: New life for an old issue? Crit Rev Oncol Hematol 2021; 160:103307. [PMID: 33753249 DOI: 10.1016/j.critrevonc.2021.103307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/06/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
The interest in maintenance therapy for patients with advanced cancers has been rapidly growing. Maintenance therapy is a useful strategy that may strengthen results of induction therapy thus extending survival and preserving the quality of life (QoL) with less toxicity. Maintenance also represents a suitable setting to investigate novel agents. The value of maintenance therapy after first-line chemotherapy has been well established in several solid tumours, such as colorectal, lung, breast, and ovarian cancer in which it is largely adopted. To date, there is no established role for maintenance therapy following first-line chemotherapy for advanced gastric cancer (GC). This review summarizes the current knowledge regarding maintenance strategies in advanced GC exploring cytotoxic agents, biologic agents and immunotherapy. We also critically review new issues to optimize randomized clinical trials for maintenance therapies and suggest clinical consideration to guide a personalized approach in daily clinical practice for this setting.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| | | | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Alberto D'Angelo
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Franco Roviello
- Department of Medical, Surgical and Neuro Sciences, Section of Surgery, Azienda Ospedaliera Universitaria Senese, University of Siena, Siena, Italy
| | - Stefania Nobili
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Italo Sarno
- Division of Medical Oncology, Department of Onco-Hematology, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), Italy
| | - Karol Polom
- Department of Medical, Surgical and Neuro Sciences, Section of Surgery, Azienda Ospedaliera Universitaria Senese, University of Siena, Siena, Italy; Department of Surgical Oncology, Gdansk Medical University, Gdansk, Poland
| |
Collapse
|
43
|
Zeng Z, Yang B, Liao Z. Biomarkers in Immunotherapy-Based Precision Treatments of Digestive System Tumors. Front Oncol 2021; 11:650481. [PMID: 33777812 PMCID: PMC7991593 DOI: 10.3389/fonc.2021.650481] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy, represented by immune checkpoint inhibitors (mainly referring to programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockades), derives durable remission and survival benefits for multiple tumor types including digestive system tumors [gastric cancer (GC), colorectal cancer (CRC), and hepatocellular carcinoma (HCC)], particularly those with metastatic or recurrent lesions. Even so, not all patients would respond well to anti-programmed death-1/programmed death-ligand 1 agents (anti-PD-1/PD-L1) in gastrointestinal malignancies, suggesting the need for biomarkers to identify the responders and non-responders, as well as to predict the clinical outcomes. PD-L1expression has increasingly emerged as a potential biomarker when predicting the immunotherapy-based efficacy; but regrettably, PD-L1 alone is not sufficient to differentiate patients. Other molecules, such as tumor mutational burden (TMB), microsatellite instability (MSI), and circulating tumor DNA (ctDNA) as well, are involved in further explorations. Overall, there are not still no perfect or well-established biomarkers in immunotherapy for digestive system tumors at present as a result of the inherent limitations, especially for HCC. Standardizing and harmonizing the assessments of existing biomarkers, and meanwhile, switching to other novel biomarkers are presumably wise and feasible.
Collapse
Affiliation(s)
- Zhu Zeng
- Department of Abdominal Oncology, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Yang
- Department of Gastroenterology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhengyin Liao
- Department of Abdominal Oncology, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Cheng Q, Li Y, Guo X, Li H. Involvement of mTOR/Survivin signaling pathway in TUA(2β, 3β, 23-trihydroxy-urs-12-ene-28-olic acid)-induced apoptosis in human gastric cancer cell line BGC823 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113437. [PMID: 33011370 DOI: 10.1016/j.jep.2020.113437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE A natural ursolic compound, 2β,3β,23-trihydroxy-urs-12-ene-28-olic acid (TUA) was isolated from the root of Actinidiafulvicoma Hance. (A.fulvicoma Radix), which is used as a traditional hebal medicine to cure innominate inflammation of unknown origin of the digestive tract in the She nationality. AIM OF THE STUDY The aim of present study was to investigate the effects of TUA on gastric cancer and to clarify the potential mechanisms in human gastric cancer cell line BGC823 cells in vitro and in vivo. MATERIALS AND METHODS Cell proliferation, apoptosis, cell cycle, autophagy were all measured by MTS assay, flow cytometry following exposure to TUA. The mRNA expressions of PI3K, AKT, mTOR, P70S6K, Survivin and the protein expressions of p-PI3K, p-AKT, p-mTOR, p-P70S6K, Survivin were determined by qRT-PCR and Western blotting analysis, respectively. In vivo antitumor activity of TUA was assessed in a xenograft model. RESULTS In vitro studies showed that TUA significantly suppressed the viability of BGC823 cells in a concentration- and time-dependent manner but not GES-1 non-tumorigenic human gastric epithelial cells. TUA also significantly increased the apoptosis rate and the sub G2 population by cell cycle analysis in a concentration dependent manner. Exposure to TUA decreased PI3K, AKT, mTOR, P70S6K, Survivin mRNA, inhibited the phosphorylation of major receptors involved in autophagy and apoptosis, such as PI3K, AKT, mTOR and P70S6K, while reduced the expression of Survivin in BGC cells. In vivo studies showed that TUA decreased tumor volume and tumor weight and also down regulated the autophagy-related proteins expression. CONCLUSIONS TUA occupies underlying antitumor effects, the potential mechanisms may involve the suppression of mTOR/Survivin pathways connected to autophagy and the activation of apoptotic pathways in gastric cancer cells.
Collapse
Affiliation(s)
- Qilai Cheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China.
| | - Yingchen Li
- Department of Neurology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, Hunan Province, PR China.
| | - Xiaohua Guo
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China
| | - Hongliang Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
45
|
Yang K, Lu L, Liu H, Wang X, Gao Y, Yang L, Li Y, Su M, Jin M, Khan S. A comprehensive update on early gastric cancer: defining terms, etiology, and alarming risk factors. Expert Rev Gastroenterol Hepatol 2021; 15:255-273. [PMID: 33121300 DOI: 10.1080/17474124.2021.1845140] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Early gastric cancer (EGC) is a well-defined gastric malignancy that is limited to the mucosa or submucosa, irrespective of lymph node metastasis. At an early stage, gastric cancer often does not cause symptoms until it becomes advanced, and it is a heterogeneous disease and usually encountered in its late stages. AREA COVERED This comprehensive review will provide a novel insight into the evaluation of EGC epidemiology, defining terms, extensive etiology and risk factors, and timely diagnosis since prevention is an essential approach for controlling this cancer and reducing its morbidity and mortality. EXPERT OPINION The causative manner of EGC is complex and multifactorial. In recent years, researchers have made significant contributions to understanding the etiology and pathogenesis of EGC, and standardization in the evaluation of disease activity. Though the incidence of this cancer is steadily declining in some advanced societies owing to appropriate interventions, there remains a serious threat to health in developing nations. Early detection of resectable gastric cancer is crucial for better patient outcomes.
Collapse
Affiliation(s)
- Kuo Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital , Tianjin, PR, China
| | - Lijie Lu
- Department of Digestive Diseases, Dongfang Hospital of Beijing University of Chinese Medicine , Beijing, PR, China
| | - Huayi Liu
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital , Tianjin, PR, China
| | - Xiujuan Wang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital , Tianjin, PR, China
| | - Ying Gao
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital , Tianjin, PR, China
| | - Liu Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital , Tianjin, PR, China
| | - Yupeng Li
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital , Tianjin, PR, China
| | - Meiling Su
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital , Tianjin, PR, China
| | - Ming Jin
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital , Tianjin, PR, China
| | - Samiullah Khan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital , Tianjin, PR, China
| |
Collapse
|
46
|
Horiuchi S, Nakano R, Nakano A, Hishiya N, Uno K, Suzuki Y, Kakuta N, Kakuta R, Tsubaki K, Jojima N, Yano H. Prevalence of Helicobacter pylori among residents and their environments in the Nara prefecture, Japan. J Infect Public Health 2021; 14:271-275. [PMID: 33508684 DOI: 10.1016/j.jiph.2020.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic infection with Helicobacter pylori, specifically cagA-positive strains, is associated with gastric cancer. Thus, measures to prevent H. pylori infection are required. This study was conducted to clarify the prevalence of H. pylori in the community to identify the infection source and comprehensively assess the risk of H. pylori infection. METHODS We collected 90 human faecal samples and 73 environmental samples (water, vegetable, and animal faecal samples) from the residents in an area with a high incidence of gastric cancer in Japan. Polymerase chain reaction assay was performed to detect the glmM housekeeping gene and the cagA virulence gene of H. pylori. A questionnaire survey was conducted, and the responses were analyzed statistically. RESULTS The glmM gene was detected in 18 of 90 (20%) faecal samples obtained from residents; among them, the cagA gene was detected in 33.3% (6/18), and in all who had undergone eradication therapy. H. pylori was not detected in environmental samples. However, contact with dogs (OR 3.89, 95% CI 1.15-13.15, P < 0.05) was associated with higher odds for glmM gene positivity in the questionnaire survey. CONCLUSIONS The prevalence of H. pylori and cagA-positive strains among the residents was low. However, the study results suggest a correlation between recurrent infection and cagA-positive H. pylori strains. Although H. pylori genes were not detected in living environments, an association between contact with dogs and a glmM positive status was revealed. Further investigations targeting community-dwelling healthy people and their living environments would be required for H. pylori infection control.
Collapse
Affiliation(s)
- Saori Horiuchi
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8521, Japan; Department of Public Health Nursing, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8521, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8521, Japan.
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8521, Japan
| | - Naokuni Hishiya
- Department of Infectious Diseases, Minami-Nara General Medical Center, 8-1 Fukugami, Oyodo, Yoshino-gun, Nara 638-8551, Japan
| | - Kenji Uno
- Department of Infectious Diseases, Minami-Nara General Medical Center, 8-1 Fukugami, Oyodo, Yoshino-gun, Nara 638-8551, Japan
| | - Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8521, Japan
| | - Naoki Kakuta
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8521, Japan
| | - Risako Kakuta
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kohsuke Tsubaki
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8521, Japan
| | - Noriko Jojima
- Department of Public Health Nursing, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8521, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
47
|
Zhang Y, Hong Y, Wang D, Duan L, Liu Y, Li L, Liu D, Zhuang K, Wei C, Zheng G, Huo C, Liu G. Hsa_circ_0076305 induces migration-proliferation dichotomy in gastric cancer. Oncol Lett 2021; 21:220. [PMID: 33613709 PMCID: PMC7859472 DOI: 10.3892/ol.2021.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have demonstrated that circular RNAs (circRNAs) play an important role in the development of gastric cancer (GC). The present study aimed to investigate the role of hsa_circ_0076305 (circPGC) in GC. The levels of circRNAs and mRNAs in AGS cell lines were detected via reverse transcription-quantitative PCR, and western blotting was performed to detect protein expression levels. Functional studies were explored by CCK8 assay and cell migration assay. Functional studies have indicated that circPGC orchestrates two cellular processes; it inhibits proliferation, and promotes migration and invasion in the GC AGS cell line, a phenomenon called ‘migration-proliferation dichotomy’, as well as epithelial-to-mesenchymal transition in AGS cells. In addition, circPGC degrades the extracellular matrix and basement membrane through matrix metallopeptidase (MMP)9 and MMP14, providing a microenvironment that facilitates cell migration. The results also demonstrated that circPGC expression is lower in clinical patients with later stages of GC, which is associated with poor prognosis. Taken together, these results suggest that circPGC exhibits migration-proliferation dichotomy during GC development, invasion and migration.
Collapse
Affiliation(s)
- Yuhai Zhang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China.,Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Yuling Hong
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361000, P.R. China.,Department of Cancer Prevention and Rehabilitation, Huayan Science and Technology Cancer Prevention and Rehabilitation Research Center, School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Dan Wang
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Linshan Duan
- Department of Cancer Prevention and Rehabilitation, Huayan Science and Technology Cancer Prevention and Rehabilitation Research Center, School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yanling Liu
- Department of Cancer Prevention and Rehabilitation, Huayan Science and Technology Cancer Prevention and Rehabilitation Research Center, School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Long Li
- Department of Cancer Prevention and Rehabilitation, Huayan Science and Technology Cancer Prevention and Rehabilitation Research Center, School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Di Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China.,Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Kunbin Zhuang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China.,Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Chaoxin Wei
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Guogeng Zheng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Chunyong Huo
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Guoyan Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China.,Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361000, P.R. China.,Department of Cancer Prevention and Rehabilitation, Huayan Science and Technology Cancer Prevention and Rehabilitation Research Center, School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, P.R. China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China.,College of Food an Biological Engineering, Jimei University, Xiamen, Fujian 361021, P.R. China
| |
Collapse
|
48
|
Antitumor Effects of Paeoniflorin on Hippo Signaling Pathway in Gastric Cancer Cells. JOURNAL OF ONCOLOGY 2021; 2021:4724938. [PMID: 33531900 PMCID: PMC7837793 DOI: 10.1155/2021/4724938] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 12/16/2022]
Abstract
Background Paeoniflorin has been reported to exert antitumor effects on human cancers. However, the role of paeoniflorin in gastric cancer and the underlying molecular mechanism are unelucidated. Therefore, we determined whether paeoniflorin could exhibit anticancer activity in gastric cancer cells. Methods MTT was used to measure the viability of cells after paeoniflorin treatment. FACS was performed to examine cell apoptosis. Wound healing and transwell invasion assays were conducted to examine cell migratory and invasive activities. Western blotting was used to explore the mechanism by which paeoniflorin exerted tumor suppressive effects. Results We found that paeoniflorin suppressed cell growth, enhanced apoptosis, and reduced cell invasion. Notably, we showed that paeoniflorin inhibited the expression of TAZ in gastric cancer cells. The overexpression of TAZ abrogated the antitumor activity of paeoniflorin in gastric cancer cells. In contrast, the downregulation of TAZ promoted the tumor suppressive effects of paeoniflorin treatment. Conclusion Hence, targeting TAZ with paeoniflorin could be a novel approach for the treatment of human gastric cancer.
Collapse
|
49
|
Weidle UH, Birzele F, Nopora A. microRNAs Promoting Growth of Gastric Cancer Xenografts and Correlation to Clinical Prognosis. Cancer Genomics Proteomics 2021; 18:1-15. [PMID: 33419892 DOI: 10.21873/cgp.20237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The annual death toll for gastric cancer is in the range of 700,000 worldwide. Even in patients with early-stage gastric cancer recurrence within five years has been observed after surgical resection and following chemotherapy with therapy-resistant features. Therefore, the identification of new targets and treatment modalities for gastric cancer is of paramount importance. In this review we focus on the role of microRNAs with documented efficacy in preclinical xenograft models with respect to growth of human gastric cancer cells. We have identified 31 miRs (-10b, -19a, -19b, -20a, -23a/b, -25, -27a-3p, -92a, -93, -100, -106a, -130a, -135a, -135b-5p, -151-5p, -187, -199-3p, -215, -221-3p, -224, -340a, -382, -421, -425, -487a, -493, -532-3p, -575, -589, -664a-3p) covering 26 different targets which promote growth of gastric cancer cells in vitro and in vivo as xenografts. Five miRs (miRs -10b, 151-5p, -187, 532-3p and -589) additionally have an impact on metastasis. Thirteen of the identified miRs (-19b, -20a/b, -25, -92a, -106a, -135a, -187, -221-3p, -340a, -421, -493, -575 and -589) have clinical impact on worse prognosis in patients.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| |
Collapse
|
50
|
Polymorphisms in Pepsinogen C and miRNA Genes Associate with High Serum Pepsinogen II in Gastric Cancer Patients. Microorganisms 2021; 9:microorganisms9010126. [PMID: 33430456 PMCID: PMC7827830 DOI: 10.3390/microorganisms9010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Pepsinogen (PG) II (PGII) is a serological marker used to estimate the risk of gastric cancer but how PGII expression is regulated is largely unknown. It has been suggested that PGII expression, from the PGC (Progastricsin) gene, is regulated by microRNAs (miRNA), but how PGII levels vary with Helicobacter pylori (H. pylori) infection and miRNAs genotype remains unclear. Methods: Serum levels of PGI and PGII were determined in 80 patients with gastric cancer and persons at risk for gastric cancer (74 first-degree relatives of patients, 62 patients with autoimmune chronic atrophic gastritis, and 2 patients with dysplasia), with and without H. pylori infection. As control from the general population, 52 blood donors were added to the analyses. Associations between PGII levels and genetic variants in PGC and miRNA genes in these groups were explored based on H. pylori seropositivity and the risk for gastric cancer. The two-dimensional difference in gel electrophoresis (2D-DIGE) and the NanoString analysis of messenger RNA (mRNAs) from gastric cancer tissue were used to determine the pathways associated with increased PGII levels. Results: PGII levels were significantly higher in patients with gastric cancer, and in those with H. pylori infection, than in other patients or controls. A PGI/PGII ratio ≤ 3 was found better than PGI < 25 ng/mL to identify patients with gastric cancer (15.0% vs. 8.8%). For two genetic variants, namely rs8111742 in miR-Let-7e and rs121224 in miR-365b, there were significant differences in PGII levels between genotype groups among patients with gastric cancer (p = 0.02 and p = 0.01, respectively), but not among other study subjects. Moreover, a strict relation between rs9471643 C-allele with H. pylori infection and gastric cancer was underlined. Fold change in gene expression of mRNA isolated from gastric cancer tissue correlated well with polymorphism, H. pylori infection, increased PGII level, and pathway for bacteria cell entry into the host. Conclusions: Serum PGII levels depend in part on an interaction between H. pylori and host miRNA genotypes, which may interfere with the cut-off of PGI/PGII ratio used to identify persons at risk of gastric cancer. Results reported new findings regarding the relation among H. pylori, PGII-related host polymorphism, and genes involved in this interaction in the gastric cancer setting.
Collapse
|