1
|
Ali MM, Gul M, Imran M, Ijaz M, Azeem S, Ullah A, Yaqub HMF. Molecular identification and genotyping of hepatitis E virus from Southern Punjab, Pakistan. Sci Rep 2024; 14:223. [PMID: 38167570 PMCID: PMC10762251 DOI: 10.1038/s41598-023-50514-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatitis E is a global health concern. Hepatitis E virus (HEV) infection is endemic in Pakistan. HEV has four genotypes: HEV-1 through HEV-4. The genotypes HEV-1 and HEV-2 are associated with infection in humans, especially in countries with poor sanitation. The genotypes HEV-3 and HEV-4 are zoonotic and human infection takes place by consuming undercooked meat or being in contact with animals. The present study was designed to ascertain the presence of HEV in the Southern Punjab region of Pakistan. First, blood samples (n = 50) were collected from patients suspected of infection with the hepatitis E virus from the Multan District. The serum was separated and the samples were initially screened using an HEV IgM-ELISA. Second, the ELISA-positive samples were subjected to PCR and were genetically characterized. For PCR, the RNA extraction and complementary DNA synthesis were done using commercial kits. The HEV ORF2 (Open Reading Frame-2, capsid protein) was amplified using nested PCR targeting a 348 bp segment. The PCR amplicons were sequenced and an evolutionary tree was constructed using MEGA X software. A protein model was built employing the SWISS Model after protein translation using ExPASy online tool. The positivity rate of anti-HEV antibodies in serum samples was found as 56% (28/50). All Pakistani HEV showed homology with genotype 1 and shared common evolutionary origin and ancestry with HEV isolates of genotype 1 of London (MH504163), France (MN401238), and Japan (LC314158). Sequence analysis of motif regions assessment and protein structure revealed that the sequences had a similarity with the reference sequence. These data suggest that genotype 1 of HEV is circulating in Pakistan. This finding could be used for the diagnosis and control of HEV in the specific geographic region focusing on its prevalent genotype.
Collapse
Affiliation(s)
- Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Mehek Gul
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shahan Azeem
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arif Ullah
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiz Muhammad Farooq Yaqub
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
2
|
Shata MTM, Hetta HF, Sharma Y, Sherman KE. Viral hepatitis in pregnancy. J Viral Hepat 2022; 29:844-861. [PMID: 35748741 PMCID: PMC9541692 DOI: 10.1111/jvh.13725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/17/2021] [Accepted: 06/13/2022] [Indexed: 12/09/2022]
Abstract
Viral hepatitis is caused by a heterogenous group of viral agents representing a wide range of phylogenetic groups. Many viruses can involve the liver and cause liver injury but only a subset are delineated as 'hepatitis viruses' based upon their primary site of replication and tropism for hepatocytes which make up the bulk of the liver cell population. Since their discovery, beginning with the agent that caused serum hepatitis in the 1960s, the alphabetic designations have been utilized. To date, we have five hepatitis viruses, A through E, though it is postulated that others may exist. This chapter will focus on those viruses. Note that hepatitis D is included as a subset of hepatitis B, as it cannot exist without concurrent hepatitis B infection. Pregnancy has the potential to affect all aspects of these viral agents due to the unique immunologic and physiologic changes that occur during and after the gestational period. In this review, we will discuss the most common viral hepatitis and their effects during pregnancy.
Collapse
Affiliation(s)
- Mohamed Tarek M. Shata
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Helal F. Hetta
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA,Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Yeshika Sharma
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Kenneth E. Sherman
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
3
|
Biselli R, Nisini R, Lista F, Autore A, Lastilla M, De Lorenzo G, Peragallo MS, Stroffolini T, D’Amelio R. A Historical Review of Military Medical Strategies for Fighting Infectious Diseases: From Battlefields to Global Health. Biomedicines 2022; 10:2050. [PMID: 36009598 PMCID: PMC9405556 DOI: 10.3390/biomedicines10082050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
The environmental conditions generated by war and characterized by poverty, undernutrition, stress, difficult access to safe water and food as well as lack of environmental and personal hygiene favor the spread of many infectious diseases. Epidemic typhus, plague, malaria, cholera, typhoid fever, hepatitis, tetanus, and smallpox have nearly constantly accompanied wars, frequently deeply conditioning the outcome of battles/wars more than weapons and military strategy. At the end of the nineteenth century, with the birth of bacteriology, military medical researchers in Germany, the United Kingdom, and France were active in discovering the etiological agents of some diseases and in developing preventive vaccines. Emil von Behring, Ronald Ross and Charles Laveran, who were or served as military physicians, won the first, the second, and the seventh Nobel Prize for Physiology or Medicine for discovering passive anti-diphtheria/tetanus immunotherapy and for identifying mosquito Anopheline as a malaria vector and plasmodium as its etiological agent, respectively. Meanwhile, Major Walter Reed in the United States of America discovered the mosquito vector of yellow fever, thus paving the way for its prevention by vector control. In this work, the military relevance of some vaccine-preventable and non-vaccine-preventable infectious diseases, as well as of biological weapons, and the military contributions to their control will be described. Currently, the civil-military medical collaboration is getting closer and becoming interdependent, from research and development for the prevention of infectious diseases to disasters and emergencies management, as recently demonstrated in Ebola and Zika outbreaks and the COVID-19 pandemic, even with the high biocontainment aeromedical evacuation, in a sort of global health diplomacy.
Collapse
Affiliation(s)
- Roberto Biselli
- Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Florigio Lista
- Dipartimento Scientifico, Policlinico Militare, Comando Logistico dell’Esercito, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Alberto Autore
- Osservatorio Epidemiologico della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Marco Lastilla
- Istituto di Medicina Aerospaziale, Comando Logistico dell’Aeronautica Militare, Viale Piero Gobetti 2, 00185 Roma, Italy
| | - Giuseppe De Lorenzo
- Comando Generale dell’Arma dei Carabinieri, Dipartimento per l’Organizzazione Sanitaria e Veterinaria, Viale Romania 45, 00197 Roma, Italy
| | - Mario Stefano Peragallo
- Centro Studi e Ricerche di Sanità e Veterinaria, Comando Logistico dell’Esercito, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Tommaso Stroffolini
- Dipartimento di Malattie Infettive e Tropicali, Policlinico Umberto I, 00161 Roma, Italy
| | - Raffaele D’Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Roma, Italy
| |
Collapse
|
4
|
Mostafavi E, Ghasemian A, Abdinasir A, Nematollahi Mahani SA, Rawaf S, Salehi Vaziri M, Gouya MM, Minh Nhu Nguyen T, Al Awaidy S, Al Ariqi L, Islam MM, Abu Baker Abd Farag E, Obtel M, Omondi Mala P, Matar GM, Asghar RJ, Barakat A, Sahak MN, Abdulmonem Mansouri M, Swaka A. Emerging and Re-emerging Infectious Diseases in the WHO Eastern Mediterranean Region, 2001-2018. Int J Health Policy Manag 2022; 11:1286-1300. [PMID: 33904695 PMCID: PMC9808364 DOI: 10.34172/ijhpm.2021.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/08/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Countries in the World Health Organization (WHO) Eastern Mediterranean Region (EMR) are predisposed to highly contagious, severe and fatal, emerging infectious diseases (EIDs), and re-emerging infectious diseases (RIDs). This paper reviews the epidemiological situation of EIDs and RIDs of global concern in the EMR between 2001 and 2018. METHODS To do a narrative review, a complete list of studies in the field was we prepared following a systematic search approach. Studies that were purposively reviewed were identified to summarize the epidemiological situation of each targeted disease. A comprehensive search of all published studies on EIDs and RIDs between 2001 and 2018 was carried out through search engines including Medline, Web of Science, Scopus, Google Scholar, and ScienceDirect. RESULTS Leishmaniasis, hepatitis A virus (HAV) and hepatitis E virus (HEV) are reported from all countries in the region. Chikungunya, Crimean Congo hemorrhagic fever (CCHF), dengue fever, and H5N1 have been increasing in number, frequency, and expanding in their geographic distribution. Middle East respiratory syndrome (MERS), which was reported in this region in 2012 is still a public health concern. There are challenges to control cholera, diphtheria, leishmaniasis, measles, and poliomyelitis in some of the countries. Moreover, Alkhurma hemorrhagic fever (AHF), and Rift Valley fever (RVF) are limited to some countries in the region. Also, there is little information about the real situation of the plague, Q fever, and tularemia. CONCLUSION EIDs and RIDs are prevalent in most countries in the region and could further spread within the region. It is crucial to improve regional capacities and capabilities in preventing and responding to disease outbreaks with adequate resources and expertise.
Collapse
Affiliation(s)
- Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolmajid Ghasemian
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Abubakar Abdinasir
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Seyed Alireza Nematollahi Mahani
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Salman Rawaf
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Mostafa Salehi Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mahdi Gouya
- Centre for Communicable Disease Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Tran Minh Nhu Nguyen
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | | | - Lubna Al Ariqi
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Md. Mazharul Islam
- Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | | | - Majdouline Obtel
- Laboratory of Community Medicine, Preventive Medicine and Hygiene, Public Health Department, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Laboratory of Epidemiology, Biostatistics and Clinical Research, Public Health Department, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Peter Omondi Mala
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Ghassan M. Matar
- Department of Experimental Pathology, Immunology and Microbiology Center for Infectious Diseases Research, American University of Beirut & Medical Center, Beirut, Lebanon
| | - Rana Jawad Asghar
- University of Nebraska Medical Center, Omaha, NE, USA
- Global Health Strategists & Implementers (GHSI), Islamabad, Pakistan
| | - Amal Barakat
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Mohammad Nadir Sahak
- Infectious Hazard Management Department, World Health Organization, Kabul, Afghanistan
| | - Mariam Abdulmonem Mansouri
- Communicable Diseases Control Department, Public Health Directorate Unit, Ministry of Health, Kuwait City, Kuwait
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
| | - Alexandra Swaka
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
5
|
Changes in Pakistan crude oil properties contaminated by water-based drilling fluids with varying KCL concentrations. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Koyuncu A, Mapemba D, Ciglenecki I, Gurley ES, Azman AS. Setting a Course for Preventing Hepatitis E in Low and Lower-Middle-Income Countries: A Systematic Review of Burden and Risk Factors. Open Forum Infect Dis 2021; 8:ofab178. [PMID: 34113684 PMCID: PMC8186248 DOI: 10.1093/ofid/ofab178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/09/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is responsible for outbreaks of acute jaundice in Africa and Asia, many of which occur among displaced people or in crisis settings. Although an efficacious vaccine for HEV has been developed, we lack key epidemiologic data needed to understand how best to use the vaccine for hepatitis E control in endemic countries. METHODS We conducted a systematic review of articles published on hepatitis E in low-income and lower-middle-income countries in Africa and Asia. We searched PubMed, Scopus, and Embase databases to identify articles with data on anti-HEV immunoglobulin (Ig)G seroprevalence, outbreaks of HEV, or risk factors for HEV infection, disease, or death, and all relevant data were extracted. Using these data we describe the evidence around temporal and geographical distribution of HEV transmission and burden. We estimated pooled age-specific seroprevalence and assessed the consistency in risk factor estimates. RESULTS We extracted data from 148 studies. Studies assessing anti-HEV IgG antibodies used 18 different commercial assays. Most cases of hepatitis E during outbreaks were not confirmed. Risk factor data suggested an increased likelihood of current or recent HEV infection and disease associated with fecal-oral transmission of HEV, as well as exposures to blood and animals. CONCLUSIONS Heterogeneity in diagnostic assays used and exposure and outcome assessment methods hinder public health efforts to quantify burden of disease and evaluate interventions over time and space. Prevention tools such as vaccines are available, but they require a unified global strategy for hepatitis E control to justify widespread use.
Collapse
Affiliation(s)
| | - Daniel Mapemba
- South African Field Epidemiology Training Program, National Institute for Communicable Diseases, Division of National Health Laboratory Services, Johannesburg, South Africa
| | | | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew S Azman
- Médecins Sans Frontières, Geneva, Switzerland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Pallerla SR, Harms D, Johne R, Todt D, Steinmann E, Schemmerer M, Wenzel JJ, Hofmann J, Shih JWK, Wedemeyer H, Bock CT, Velavan TP. Hepatitis E Virus Infection: Circulation, Molecular Epidemiology, and Impact on Global Health. Pathogens 2020; 9:E856. [PMID: 33092306 PMCID: PMC7589794 DOI: 10.3390/pathogens9100856] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Infection with hepatitis E virus (HEV) represents the most common source of viral hepatitis globally. Although infecting over 20 million people annually in endemic regions, with major outbreaks described since the 1950s, hepatitis E remains an underestimated disease. This review gives a current view of the global circulation and epidemiology of this emerging virus. The history of HEV, from the first reported enteric non-A non-B hepatitis outbreaks, to the discovery of the viral agent and the molecular characterization of the different human pathogenic genotypes, is discussed. Furthermore, the current state of research regarding the virology of HEV is critically assessed, and the challenges towards prevention and diagnosis, as well as clinical risks of the disease described. Together, these points aim to underline the significant impact of hepatitis E on global health and the need for further in-depth research to better understand the pathophysiology and its role in the complex disease manifestations of HEV infection.
Collapse
Affiliation(s)
- Srinivas Reddy Pallerla
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi 100000, Vietnam
| | - Dominik Harms
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany;
| | - Reimar Johne
- Unit Viruses in Food, Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany; (D.T.); (E.S.)
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany; (D.T.); (E.S.)
| | - Mathias Schemmerer
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, 93053 Regensburg, Germany; (M.S.); (J.J.W.)
| | - Jürgen J. Wenzel
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, 93053 Regensburg, Germany; (M.S.); (J.J.W.)
| | - Jörg Hofmann
- Institute of Virology, Charité Universitätsmedizin Berlin, Labor Berlin-Charité-Vivantes GmbH, 13353 Berlin, Germany;
| | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30623 Hannover, Germany;
- German Center for Infection Research, Partner Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - C.-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany;
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi 100000, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
8
|
Li M, Yang Y, Lu Y, Zhang D, Liu Y, Cui X, Yang L, Liu R, Liu J, Li G, Qu J. Natural Host-Environmental Media-Human: A New Potential Pathway of COVID-19 Outbreak. ENGINEERING (BEIJING, CHINA) 2020; 6:1085-1098. [PMID: 33520330 PMCID: PMC7834166 DOI: 10.1016/j.eng.2020.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
Identifying the first infected case (patient zero) is key in tracing the origin of a virus; however, doing so is extremely challenging. Patient zero for coronavirus disease 2019 (COVID-19) is likely to be permanently unknown. Here, we propose a new viral transmission route by focusing on the environmental media containing viruses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or RaTG3-related bat-borne coronavirus (Bat-CoV), which we term the "environmental quasi-host." We reason that the environmental quasi-host is likely to be a key node in helping recognize the origin of SARS-CoV-2; thus, SARS-CoV-2 might be transmitted along the route of natural host-environmental media-human. Reflecting upon viral outbreaks in the history of humanity, we realize that many epidemic events are caused by direct contact between humans and environmental media containing infectious viruses. Indeed, contacts between humans and environmental quasi-hosts are greatly increasing as the space of human activity incrementally overlaps with animals' living spaces, due to the rapid development and population growth of human society. Moreover, viruses can survive for a long time in environmental media. Therefore, we propose a new potential mechanism to trace the origin of the COVID-19 outbreak.
Collapse
Affiliation(s)
- Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cui
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Salman M, Ul Mustafa Z, Asif N. Hepatitis E outbreak in the province of Punjab, Pakistan: a call for action. Infect Dis (Lond) 2019; 51:633-634. [PMID: 31240982 DOI: 10.1080/23744235.2019.1632473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Muhammad Salman
- a Department of Pharmacy , The University of Lahore , Lahore , Pakistan
| | | | - Noman Asif
- c Punjab University College of Pharmacy, University of the Punjab , Lahore , Pakistan
| |
Collapse
|
10
|
Abstract
Soon after the 1991 molecular cloning of hepatitis E virus (HEV), recombinant viral capsid antigens were expressed and tested in nonhuman primates for protection against liver disease and infection. Two genotype 1 subunit vaccine candidates entered clinical development: a 56 kDA vaccine expressed in insect cells and HEV 239 vaccine expressed in Escherichia coli Both were highly protective against hepatitis E and acceptably safe. The HEV 239 vaccine was approved in China in 2011, but it is not yet prequalified by the World Health Organization, a necessary step for introduction into those low- and middle-income countries where the disease burden is highest. Nevertheless, the stage is set for the final act in the hepatitis E vaccine story-policymaking, advocacy, and pilot introduction of vaccine in at-risk populations, in which it is expected to be cost-effective.
Collapse
Affiliation(s)
- Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, Washington, D.C. 20001
| | - Julia A Lynch
- International Vaccine Institute, SNU Research Park, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
11
|
Hakim MS, Ikram A, Zhou J, Wang W, Peppelenbosch MP, Pan Q. Immunity against hepatitis E virus infection: Implications for therapy and vaccine development. Rev Med Virol 2017; 28. [PMID: 29272060 DOI: 10.1002/rmv.1964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022]
Abstract
Hepatitis E virus (HEV) is the leading cause of acute viral hepatitis worldwide and an emerging cause of chronic infection in immunocompromised patients. As with viral infections in general, immune responses are critical to determine the outcome of HEV infection. Accumulating studies in cell culture, animal models and patients have improved our understanding of HEV immunopathogenesis and informed the development of new antiviral therapies and effective vaccines. In this review, we discuss the recent progress on innate and adaptive immunity in HEV infection, and the implications for the devolopment of effective vaccines and immune-based therapies.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.,Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aqsa Ikram
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.,Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Jianhua Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.,State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Hakim MS, Wang W, Bramer WM, Geng J, Huang F, de Man RA, Peppelenbosch MP, Pan Q. The global burden of hepatitis E outbreaks: a systematic review. Liver Int 2017; 37:19-31. [PMID: 27542764 DOI: 10.1111/liv.13237] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis E virus (HEV) is responsible for repeated water-borne outbreaks since the past century, representing an emerging issue in public health. However, the global burden of HEV outbreak has not been comprehensively described. We performed a systematic review of confirmed HEV outbreaks based on published literatures. HEV outbreaks have mainly been reported from Asian and African countries, and only a few from European and American countries. India represents a country with the highest number of reported HEV outbreaks. HEV genotypes 1 and 2 were responsible for most of the large outbreaks in developing countries. During the outbreaks in developing countries, a significantly higher case fatality rate was observed in pregnant women. In fact, outbreaks have occurred both in open and closed populations. The control measures mainly depend upon improvement of sanitation and hygiene. This study highlights that HEV outbreak is not new, yet it is a continuous global health problem.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Microbiology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wichor M Bramer
- Medical Library, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jiawei Geng
- Department of Infectious Diseases, The First People's Hospital of Yunnan Province, Kunming, China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Butt AS, Sharif F. Viral Hepatitis in Pakistan: Past, Present, and Future. Euroasian J Hepatogastroenterol 2016; 6:70-81. [PMID: 29201731 PMCID: PMC5578565 DOI: 10.5005/jp-journals-10018-1172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/29/2015] [Indexed: 12/17/2022] Open
Abstract
Viral hepatitis is a major cause of morbidity and mortality worldwide and a rising cause for concern in Asian countries. Weather it is blood borne or water/food borne hepatotropic virus, increasing burden is alarming for Asian countries. In this review we have evaluated the existing data to estimate the burden of viral hepatitis in populations of all age groups nationwide, along with an assessment of the risk factors and preventive and management strategies currently employed in Pakistan. The aim of our work is to consolidate and supplement the present knowledge regarding viral hepatitis in light of past and present trends and to provide future direction to the existing health policies. How to cite this article Butt AS, Sharif F. Viral Hepatitis in Pakistan: Past, Present, and Future. Euroasian J Hepato-Gastroenterol 2016;6(1):70-81.
Collapse
Affiliation(s)
- Amna Subhan Butt
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatima Sharif
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
14
|
Butt AS. Epidemiology of Viral Hepatitis and Liver Diseases in Pakistan. Euroasian J Hepatogastroenterol 2015; 5:43-48. [PMID: 29201686 PMCID: PMC5578520 DOI: 10.5005/jp-journals-10018-1129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/21/2014] [Indexed: 02/04/2023] Open
Abstract
Pakistan is among ten most populous countries in world. All sorts of hepatitis are highly prevalent in Pakistan. Due to lack of proper mechanisms to handle sewerage, disinfection and lack of clean water supply across the country, hepatitis A and E are endemic in Pakistan. Moreover, Pakistan ranked in intermediate prevalence zone for hepatitis B and C. Also, prevailing socioeconomic conditions, political statuses and unstable healthcare delivery system are not suitable for tackling further progression of hepatitis viruses and its complications. The notable factors related to epidemiology of different hepatitis viruses have been described in this communication.
Collapse
Affiliation(s)
- Amna Subhan Butt
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
15
|
Gurley ES, Hossain MJ, Paul RC, Sazzad HMS, Islam MS, Parveen S, Faruque LI, Husain M, Ara K, Jahan Y, Rahman M, Luby SP. Outbreak of hepatitis E in urban Bangladesh resulting in maternal and perinatal mortality. Clin Infect Dis 2014; 59:658-65. [PMID: 24855146 PMCID: PMC4130310 DOI: 10.1093/cid/ciu383] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/14/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) causes outbreaks of jaundice associated with maternal mortality. Four deaths among pregnant women with jaundice occurred in an urban community near Dhaka, Bangladesh, in late 2008 and were reported to authorities in January 2009. We investigated the etiology and risk factors for jaundice and death. METHODS Field workers identified suspected cases, defined as acute onset of yellow eyes or skin, through house-to-house visits. A subset of persons with suspected HEV was tested for immunoglobulin M (IgM) antibodies to HEV to confirm infection. We used logistic regression analysis to identify risk factors for HEV disease and for death. We estimated the increased risk of perinatal mortality associated with jaundice during pregnancy. RESULTS We identified 4751 suspected HEV cases during August 2008-January 2009, including 17 deaths. IgM antibodies to HEV were identified in 56 of 73 (77%) case-patients tested who were neighbors of the case-patients who died. HEV disease was significantly associated with drinking municipally supplied water. Death among persons with HEV disease was significantly associated with being female and taking paracetamol (acetaminophen). Among women who were pregnant, miscarriage and perinatal mortality was 2.7 times higher (95% confidence interval, 1.2-6.1) in pregnancies complicated by jaundice. CONCLUSIONS This outbreak of HEV was likely caused by sewage contamination of the municipal water system. Longer-term efforts to improve access to safe water and license HEV vaccines are needed. However, securing resources and support for intervention will rely on convincing data about the endemic burden of HEV disease, particularly its role in maternal and perinatal mortality.
Collapse
Affiliation(s)
- Emily S. Gurley
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
| | | | - Repon C. Paul
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
| | | | - M. Saiful Islam
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
| | - Shahana Parveen
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
| | - Labib I. Faruque
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
| | - Mushtuq Husain
- Ministry of Health and Family Welfare, Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Khorshed Ara
- Ministry of Health and Family Welfare, Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Yasmin Jahan
- Ministry of Health and Family Welfare, Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Mahmudur Rahman
- Ministry of Health and Family Welfare, Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Stephen P. Luby
- icddr,b (International Center for Diarrhoeal Disease Research, Bangladesh)
- Global Disease Detection Branch, Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
16
|
Lagler H, Poeppl W, Winkler H, Herkner H, Faas A, Mooseder G, Burgmann H. Hepatitis E virus seroprevalence in Austrian adults: a nationwide cross-sectional study among civilians and military professionals. PLoS One 2014; 9:e87669. [PMID: 24498349 PMCID: PMC3912018 DOI: 10.1371/journal.pone.0087669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/29/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hepatitis E Virus (HEV) infection is globally increasing. The present study was performed to investigate the HEV seroprevalence, exposure risks as well as occupational risks for military personnel in Austria, a Central European country. METHODS AND FINDINGS A nationwide cross-sectional seroprevalence study was performed in 997 healthy Austrian adults, professional soldiers and civilians. Routine laboratory and HEV specific antibodies were determined. In addition, epidemiological information on possible risk factors for exposure to HEV was obtained. The overall seropositivity for HEV antibodies was 14.3% and significantly increased with age. Seroprevalence was significantly higher among individuals with previous military employments abroad (21.4% vs. 9.9%) and among professional soldiers aged 30-39 years (20.2% vs. 7.3%). No association was found for private travel, occupational or private animal contact or regular outdoor activities. Individuals who tested positive for antibodies against HEV had significantly higher laboratory values regarding liver enzymes, lipid levels and blood fasting glucose. CONCLUSIONS Exposure to HEV is common in Austria. Military employment abroad could be a potential risk factor for HEV infection. Further studies are required to investigate the significance of pathological laboratory results found among asymptomatic individuals previously exposed to HEV.
Collapse
Affiliation(s)
- Heimo Lagler
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Poeppl
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology and Tropical Medicine, Military Hospital Vienna, Vienna, Austria
| | - Heidi Winkler
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Angelus Faas
- Institute for Medical Support, Military Hospital Vienna, Vienna, Austria
| | - Gerhard Mooseder
- Department of Dermatology and Tropical Medicine, Military Hospital Vienna, Vienna, Austria
| | - Heinz Burgmann
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
17
|
Green CA, Ross DA, Bailey MS. Acute hepatitis A virus infections in British Gurkha soldiers. J ROY ARMY MED CORPS 2013; 159:240-2. [DOI: 10.1136/jramc-2013-000035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Zhao Q, Zhang J, Wu T, Li SW, Ng MH, Xia NS, Shih JWK. Antigenic determinants of hepatitis E virus and vaccine-induced immunogenicity and efficacy. J Gastroenterol 2013; 48:159-68. [PMID: 23149436 PMCID: PMC3698418 DOI: 10.1007/s00535-012-0701-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/08/2012] [Indexed: 02/07/2023]
Abstract
There is emerging evidence for an under-recognized hepatitis E virus (HEV) as a human pathogen. Among different reasons for this neglect are the unsatisfactory performance and under-utilization of commercial HEV diagnostic kits; for instance, the number of anti-HEV IgM kits marketed in China is about one-fifth of that of hepatitis A kits. Over the last two decades, substantial progress has been achieved in furthering our knowledge on the HEV-specific immune responses, antigenic features of HEV virions, and development of serological assays and more recently prophylactic vaccines. This review will focus on presenting the evidence of the importance of HEV infection for certain cohorts such as pregnant women, the key antigenic determinants of the virus, and immunogenicity and clinical efficacy conferred by a newly developed prophylactic vaccine. Robust immunogenicity, greater than 195-fold and approximately 50-fold increase of anti-HEV IgG level in seronegative and seropositive vaccinees, respectively, as well as impressive clinical efficacy of this vaccine was demonstrated. The protection rate against the hepatitis E disease and the virus infection was shown to be 100% (95% CI 75-100) and 78% (95% CI 66-86), respectively.
Collapse
Affiliation(s)
- Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - Ting Wu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - Shao-Wei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - Mun-Hon Ng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - Ning-Shao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - James Wai-Kuo Shih
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| |
Collapse
|
19
|
Kaba M, Moal V, Gérolami R, Colson P. Epidemiology of mammalian hepatitis E virus infection. Intervirology 2013; 56:67-83. [PMID: 23343760 DOI: 10.1159/000342301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/28/2012] [Indexed: 12/26/2022] Open
Abstract
Mammalian hepatitis E virus (HEV), the etiological agent of hepatitis E in humans, is a recently discovered infectious agent. It was identified for the first time in 1983 using electron microscopy on a faecal specimen of a person infected with non-A, non-B enterically-transmitted hepatitis. Based on retrospective and prospective studies, HEV was long described as one of the leading causes of acute viral hepatitis in tropical and subtropical countries, whereas in developed countries hepatitis E was considered an imported disease from HEV hyperendemic countries. Data from studies conducted during the past decade have greatly shifted our knowledge on the epidemiology and clinical spectrum of HEV. Recently, it has been shown that contrary to previous beliefs, hepatitis E is also an endemic disease in several developed countries, particularly in Japan and in Europe, as evidenced by reports of high anti-HEV immunoglobulin G prevalence in healthy individuals and an increasing number of non-travel-related acute hepatitis E cases. Moreover, a porcine reservoir and growing evidence of zoonotic transmission have been reported in these countries. This review summarizes the current knowledge on the epidemiology and prevention of transmission of mammalian HEV.
Collapse
Affiliation(s)
- Mamadou Kaba
- Aix-Marseille Université, URMITE UM63 CNRS 7278 IRD 198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | | | | | | |
Collapse
|
20
|
Abstract
Hepatitis E virus (HEV) was discovered during the Soviet occupation of Afghanistan in the 1980s, after an outbreak of unexplained hepatitis at a military camp. A pooled faecal extract from affected soldiers was ingested by a member of the research team. He became sick, and the new virus (named HEV), was detected in his stool by electron microscopy. Subsequently, endemic HEV has been identified in many resource-poor countries. Globally, HEV is the most common cause of acute viral hepatitis. The virus was not initially thought to occur in developed countries, but recent reports have shown this notion to be mistaken. The aim of this Seminar is to describe recent discoveries regarding HEV, and how they have changed our understanding of its effect on human health worldwide.
Collapse
Affiliation(s)
- Nassim Kamar
- Department of Nephrology, Dialysis and Organ Transplantation, CHU Rangueil, Toulouse, France; Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France; Université Paul Sabatier, Toulouse, France
| | - Richard Bendall
- Clinical Microbiology, Royal Cornwall Hospital Trust, Truro, UK
| | - Florence Legrand-Abravanel
- Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France; Université Paul Sabatier, Toulouse, France; Department of Virology, CHU Purpan, Toulouse, France
| | - Ning-Shao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Samreen Ijaz
- Virus Reference Department, Microbiology Services-Colindale, Health Protection Agency, London, UK
| | - Jacques Izopet
- Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France; Université Paul Sabatier, Toulouse, France; Department of Virology, CHU Purpan, Toulouse, France
| | - Harry R Dalton
- Cornwall Gastrointestinal Unit, Royal Cornwall Hospital Trust, Truro, UK; European Centre of Environment and Human Health, Peninsula College of Medicine and Dentistry, Universities of Exeter and Plymouth, Truro, UK.
| |
Collapse
|
21
|
Zhang J, Li SW, Wu T, Zhao Q, Ng MH, Xia NS. Hepatitis E virus: neutralizing sites, diagnosis, and protective immunity. Rev Med Virol 2012; 22:339-49. [DOI: 10.1002/rmv.1719] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/13/2012] [Accepted: 03/29/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health; Xiamen University; Xiamen; China
| | - Shao-Wei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health; Xiamen University; Xiamen; China
| | - Ting Wu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health; Xiamen University; Xiamen; China
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health; Xiamen University; Xiamen; China
| | - Mun-Hon Ng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health; Xiamen University; Xiamen; China
| | - Ning-Shao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health; Xiamen University; Xiamen; China
| |
Collapse
|
22
|
Rein DB, Stevens GA, Theaker J, Wittenborn JS, Wiersma ST. The global burden of hepatitis E virus genotypes 1 and 2 in 2005. Hepatology 2012; 55:988-97. [PMID: 22121109 DOI: 10.1002/hep.25505] [Citation(s) in RCA: 481] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED We estimated the global burden of hepatitis E virus (HEV) genotypes 1 and 2 in 2005. HEV is an emergent waterborne infection that causes source-originated epidemics of acute disease with a case fatality rate thought to vary by age and pregnancy status. To create our estimates, we modeled the annual disease burden of HEV genotypes 1 and 2 for 9 of 21 regions defined for the Global Burden of Diseases, Injuries, and Risk Factors Study (the GBD 2010 Study), which represent 71% of the world's population. We estimated the seroprevalence of anti-HEV antibody and annual incidence of infection for each region using data from 37 published national studies and the DISMOD 3, a generic disease model designed for the GBD Study. We converted incident infections into three mutually exclusive results of infection: (1) asymptomatic episodes, (2) symptomatic disease, and (3) death from HEV. We also estimated incremental cases of stillbirths among infected pregnant women. For 2005, we estimated 20.1 (95% credible interval [Cr.I.]: 2.8-37.0) million incident HEV infections across the nine GBD Regions, resulting in 3.4 (95% Cr.I.: 0.5-6.5) million symptomatic cases, 70,000 (95% Cr.I.: 12,400-132,732) deaths, and 3,000 (95% Cr.I.: 1,892-4,424) stillbirths. We estimated a probability of symptomatic illness given infection of 0.198 (95% Cr.I.: 0.167-0.229) and a probability of death given symptomatic illness of 0.019 (95% Cr.I.: 0.017-0.021) for nonpregnant cases and 0.198 (95% Cr.I.: 0.169-0.227) for pregnant cases. CONCLUSION The model was most sensitive to estimates of age-specific incidence of HEV disease.
Collapse
Affiliation(s)
- David B Rein
- NORC at the University of Chicago, Atlanta, GA 30306, USA.
| | | | | | | | | |
Collapse
|
23
|
Khan A, Tanaka Y, Kurbanov F, Elkady A, Abbas Z, Azam Z, Subhan A, Raza S, Hamid S, Jafri W, Shih J, Xia N, Takahashi K, Mishiro S, Mizokami M. Investigating an outbreak of acute viral hepatitis caused by hepatitis E virus variants in Karachi, South Pakistan. J Med Virol 2011; 83:622-629. [PMID: 21328376 DOI: 10.1002/jmv.22036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Hepatitis E is a classic water-borne disease in developing countries. Detection of anti-HEV IgM and IgG antibodies, in addition to HEV RNA are useful epidemiological markers in diagnosis of hepatitis E. This study was conducted to investigate an outbreak of acute viral hepatitis in South-Pakistan. Anti-HEV IgM and IgG were assessed comparatively with serological kits manufactured by Abbott, Cosmic, TGH, and Wantai, selecting HEV RNA as reference assay. Molecular evolutionary analysis was performed by phylogeny and HEV spread time analysis by Bayesian Coalescent Theory approach. Of the 89 patients, 24 (26.9%) did not have acute hepatitis viral marker. Of the remaining 65 cases, 4 (6.1%) were positive for anti-HAV IgM, one (1.5%) for anti-HBc IgM, 2 (3%) for HCV, 53 (81.5%) for anti-HEV IgM, and 5 (7.7%) were hepatitis-negative. The Wantai test was 100% sensitive and specific followed by Cosmic (98.1% and 100%), TGH (98.1% and 97.2%) and Abbott (79.2% and 83.3%). Two HEV variant strains were detected by phylogeny responsible for this acute hepatitis outbreak. Estimates on demographic history of HEV showed that HEV in Pakistan has remained at a steady nonexpanding phase from around 1970 to the year 2005, in which it expanded explosively with the emergence of new HEV variants. In conclusion, the limited sensitivity of available assay (Abbott anti-HEV EIA) may be a concern in HEV diagnosis in Pakistan. This study cautions that the dissemination of the variant strains to other areas of Pakistan may lead to explosive HEV outbreaks.
Collapse
Affiliation(s)
- Anis Khan
- Department of Virology and Liver Unit, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miyahara K, Miyake Y, Yasunaka T, Ikeda F, Takaki A, Iwasaki Y, Kobashi H, Kang JH, Takahashi K, Arai M, Yamamoto K. Acute hepatitis due to hepatitis E virus genotype 1 as an imported infectious disease in Japan. Intern Med 2010; 49:2613-6. [PMID: 21139302 DOI: 10.2169/internalmedicine.49.4221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An 18-year-old Nepalese man was admitted due to general malaise and anorexia a month after coming to Japan. Laboratory tests showed elevation of transaminase and positivity for IgM anti-HEV antibody. Serum HEV RNA was detected by RT-PCR amplifications. An HEV genome phylogenetic tree, constructed using an 821-nucleotide sequence in the open reading frame 1, indicated that the genotype was 1. HEV genotype 1 is epidemic in South Asia, Africa and South America, and the incidence of acute hepatitis due to HEV genotype 1 is low in Japan. Thereafter, attention should be paid to HEV genotype 1 infection as an imported infectious disease.
Collapse
Affiliation(s)
- Koji Miyahara
- Department of Gastroenterology & Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Outbreak of hepatitis E virus infection in Darfur, Sudan: effectiveness of real-time reverse transcription-PCR analysis of dried blood spots. J Clin Microbiol 2009; 47:1931-3. [PMID: 19339474 DOI: 10.1128/jcm.02245-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biological samples collected in refugee camps during an outbreak of hepatitis E were used to compare the accuracy of hepatitis E virus RNA amplification by real-time reverse transcription-PCR (RT-PCR) for sera and dried blood spots (concordance of 90.6%). Biological profiles (RT-PCR and serology) of asymptomatic individuals were also analyzed.
Collapse
|
26
|
Amini-Bavil-Olyaee S, Trautwein C, Tacke F. Hepatitis E vaccine: current status and future prospects. Future Virol 2009. [DOI: 10.2217/17460794.4.2.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HEV, a positive ssRNA and nonenveloped virus, is endemic in many developing countries and one of the most frequent causes of acute hepatitis after fecal–oral transmission. Pregnant women are at particular risk for a fatal course of disease, including maternal and fetal mortality. Recent reports indicate that HEV genotype 3, possibly related to zoonotic transmission, may cause chronic hepatitis in some immunosuppressed organ transplant patients. Various approaches have been conducted to develop HEV vaccines, but only one candidate, a recombinant HEV (rHEV) vaccine generated from Spodoptera frugiperda-9 cells by baculoviruses expressing the HEV capsid antigen, has reached clinical Phase I and II trials so far. These trials suggest that the rHEV vaccine is safe and can prevent clinically overt acute hepatitis E in high-risk populations. We herein review the different approaches in HEV-vaccine development and critically discuss the current status and future directions of the rHEV vaccine used in clinical trials.
Collapse
Affiliation(s)
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| |
Collapse
|
27
|
Shata MT, Navaneethan U. The mystery of hepatitis E seroprevalence in developed countries: is there subclinical infection due to hepatitis E virus? Clin Infect Dis 2008; 47:1032-4. [PMID: 18781881 DOI: 10.1086/591971] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
28
|
Escribà JM, Nakoune E, Recio C, Massamba PM, Matsika-Claquin MD, Goumba C, Rose AMC, Nicand E, García E, Leklegban C, Koffi B. Hepatitis E, Central African Republic. Emerg Infect Dis 2008; 14:681-3. [PMID: 18394300 PMCID: PMC2570933 DOI: 10.3201/eid1404.070833] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatitis E, Central African Republic
Collapse
|
29
|
Myint KSA, Endy TP, Gibbons RV, Laras K, Mammen MP, Sedyaningsih ER, Seriwatana J, Glass JS, Narupiti S, Corwin AL. Evaluation of diagnostic assays for hepatitis E virus in outbreak settings. J Clin Microbiol 2006; 44:1581-3. [PMID: 16597900 PMCID: PMC1448661 DOI: 10.1128/jcm.44.4.1581-1583.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of hepatitis. We evaluated five HEV antibody diagnostic assays by using outbreak specimens. The Abbott immunoglobulin G (IgG), Genelabs IgG, and Walter Reed Army Institute of Research (WRAIR) IgM assays were about 90% sensitive; the Abbott IgG and WRAIR total Ig and IgM assays were more than 90% specific.
Collapse
Affiliation(s)
- Khin Saw Aye Myint
- Department of Virology, USAMC-AFRIMS, 315/6 Rajvithi Road, Bangkok 1040, Thailand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guthmann JP, Klovstad H, Boccia D, Hamid N, Pinoges L, Nizou JY, Tatay M, Diaz F, Moren A, Grais RF, Ciglenecki I, Nicand E, Guerin PJ. A large outbreak of hepatitis E among a displaced population in Darfur, Sudan, 2004: the role of water treatment methods. Clin Infect Dis 2006; 42:1685-91. [PMID: 16705572 DOI: 10.1086/504321] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 02/18/2006] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The conflict in Darfur, Sudan, was responsible for the displacement of 1.8 million civilians. We investigated a large outbreak of hepatitis E virus (HEV) infection in Mornay camp (78,800 inhabitants) in western Darfur. METHODS To describe the outbreak, we used clinical and demographic information from cases recorded at the camp between 26 July and 31 December 2004. We conducted a case-cohort study and a retrospective cohort study to identify risk factors for clinical and asymptomatic hepatitis E, respectively. We collected stool and serum samples from animals and performed a bacteriological analysis of water samples. Human samples were tested for immunoglobulin G and immunoglobulin M antibody to HEV (for serum samples) and for amplification of the HEV genome (for serum and stool samples). RESULTS In 6 months, 2621 hepatitis E cases were recorded (attack rate, 3.3%), with a case-fatality rate of 1.7% (45 deaths, 19 of which involved were pregnant women). Risk factors for clinical HEV infection included age of 15-45 years (odds ratio, 2.13; 95% confidence interval, 1.02-4.46) and drinking chlorinated surface water (odds ratio, 2.49; 95% confidence interval, 1.22-5.08). Both factors were also suggestive of increased risk for asymptomatic HEV infection, although this was not found to be statistically significant. HEV RNA was positively identified in serum samples obtained from 2 donkeys. No bacteria were identified from any sample of chlorinated water tested. CONCLUSIONS Current recommendations to ensure a safe water supply may have been insufficient to inactivate HEV and control this epidemic. This research highlights the need to evaluate current water treatment methods and to identify alternative solutions adapted to complex emergencies.
Collapse
|
31
|
Stoszek SK, Engle RE, Abdel-Hamid M, Mikhail N, Abdel-Aziz F, Medhat A, Fix AD, Emerson SU, Purcell RH, Strickland GT. Hepatitis E antibody seroconversion without disease in highly endemic rural Egyptian communities. Trans R Soc Trop Med Hyg 2005; 100:89-94. [PMID: 16257427 DOI: 10.1016/j.trstmh.2005.05.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 05/16/2005] [Accepted: 05/18/2005] [Indexed: 02/08/2023] Open
Abstract
Hepatitis E virus (HEV) is enterically transmitted and causes self-limiting acute viral hepatitis (AVH) primarily in less developed countries. A prospective cohort study to assess incidence of, and risk factors for, seroconversion to HEV (anti-HEV) was conducted in two Egyptian villages with a 67.7% anti-HEV prevalence. Nine hundred and nineteen villagers who were initially anti-HEV-negative were followed for 10.7 months. Thirty-four (3.7%) had strong anti-HEV serologic responses at follow-up giving an estimated anti-HEV incidence of 41.6/1,000 person-years. No significant associations were found between anti-HEV seroincidence and demographic and socioeconomic factors, source of water, household plumbing or sanitation, hand and vegetable washing, ownership of animals, jaundice and many other variables. None of the seroconverting subjects gave a history compatible with AVH during the interval. We hypothesize that both zoonotic and anthroponotic transmission of avirulent (possibly genotype-3) HEV is occurring extensively in these rural villages. An alternative explanation for the lack of morbidity among anti-HEV incident cases could be initial asymptomatic infections occur during early childhood with subsequent antibody titer boosting without illness upon re-exposure to the virus.
Collapse
Affiliation(s)
- Sonia K Stoszek
- International Health Division, Department of Epidemiology and Preventive Medicine, School of Medicine, University of Maryland, 660 W. Redwood Street, Baltimore, MD 20201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhou YH, Purcell RH, Emerson SU. A truncated ORF2 protein contains the most immunogenic site on ORF2: antibody responses to non-vaccine sequences following challenge of vaccinated and non-vaccinated macaques with hepatitis E virus. Vaccine 2005; 23:3157-65. [PMID: 15837215 DOI: 10.1016/j.vaccine.2004.12.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 12/17/2004] [Accepted: 12/21/2004] [Indexed: 12/13/2022]
Abstract
A candidate hepatitis E vaccine is composed of amino acids (aa) 112-607 of the 660-aa protein encoded by open reading frame 2 (ORF2) of hepatitis E virus (HEV). We have studied the antibody response to vaccine-associated epitopes and to epitopes excluded from the vaccine to determine if important epitopes were omitted from the vaccine and if antibody responses to these regions could be used to differentiate between infection and vaccination. ELISAs were developed based on genotype 1 ORF2 peptides, containing aa 112-607 (vaccine), 458-607 (minimum neutralization site), 1-111 (N-terminus) and 607-660 (C-terminus), as well as on ORF3 peptides, containing aa 1-123 (complete) and 91-123 (C-terminus). All naive macaques infected with HEV genotype 1, 2, 3 or 4 produced antibodies to all ORF2 peptides. Anti-ORF3 was detected in both monkeys infected with genotype 1 virus and in one of two infected with genotype 2 virus. These antibody responses were considerably weaker than those directed against the neutralization site. In contrast, vaccinated animals that were challenged with HEV had a diminished or absent immune response to the peptides not included in the vaccine. Thus, only minor epitopes were excluded from the vaccine; they had limited utility for distinguishing between vaccination and infection.
Collapse
Affiliation(s)
- Yi-Hua Zhou
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC-8009, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
33
|
Abstract
In the first half of 2004, acute hepatitis E virus infections diagnosed in Victoria, Australia, increased 7-fold. Of the interviewed patients with highly reactive serologic results, 90% reported recent clinically compatible illness and overseas travel. The increase is compared with a background of exposure in countries in which hepatitis E is endemic.
Collapse
|
34
|
Abstract
Hepatitis E accounts for the major part of enterally transmitted non-A, non-B hepatitis worldwide. Its agent, the hepatitis E virus (HEV), is a small, single-stranded RNA virus. Only one serotype of HEV is recognised. Infection results in protective immunity with long-lived neutralising antibodies. In developing countries with poor sanitary conditions and high population density, hepatitis E causes water-borne epidemics with substantial mortality rates in pregnant women. In addition, more than 50% of cases of acute hepatic failure and sporadic acute hepatitis are due to hepatitis E. The overall prevalence rates of antibodies to the HEV in populations native to these areas rarely exceed 25%. Hence, many individuals remain susceptible to hepatitis E infection, making hepatitis E an important public health concern. In this context, the development of an HEV vaccine is warranted. Because HEV does not grow adequately in cell cultures the development of a vaccine based on inactivated or attenuated whole-virus particles is not feasible. HEV vaccines currently under study are based on recombinant proteins derived from immunogenic parts of the HEV capsid gene. Other approaches such as DNA-based vaccines or transgenic tomatoes have also been developed. Several recombinant protein-based vaccines elicited neutralising antibodies and protective immunity in vaccinated non-human primates. One such vaccine has passed phase I trial and is currently under further evaluation in field trials. Even so, several questions remain to be answered before vaccination programmes could be implemented.
Collapse
Affiliation(s)
- Harald Claus Worm
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Clinic Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
| | | |
Collapse
|
35
|
Yu C, Engle RE, Bryan JP, Emerson SU, Purcell RH. Detection of immunoglobulin M antibodies to hepatitis E virus by class capture enzyme immunoassay. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:579-86. [PMID: 12853389 PMCID: PMC164280 DOI: 10.1128/cdli.10.4.579-586.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The measurement of antibodies to hepatitis E virus (anti-HEV) has been essential for understanding the epidemiology of hepatitis E. Studies to determine the prevalence of HEV infections require a reliable serologic assay that is sensitive and specific. It is also important to distinguish the acute from the convalescent phase of an infection; this usually requires the detection of the immunoglobulin M (IgM) class of antibody. Few enzyme immunoassays (EIAs) that measure IgM anti-HEV have been described, and most have utilized the sandwich method. The present study describes an EIA that detects IgM anti-HEV by antibody class capture methodology. The assay was validated by using serum and/or plasma panels from experimentally infected nonhuman primates. It was used to demonstrate an anamnestic response and the reappearance of IgM anti-HEV in a chimpanzee experimentally challenged with HEV at two different times 45 months apart. The class capture method was more sensitive than the sandwich EIA when used to test clinical samples from two hepatitis E epidemics in Pakistan; it also had the advantage of distinguishing IgM anti-HEV in the presence of high titers of IgG anti-HEV.
Collapse
Affiliation(s)
- C Yu
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA.
| | | | | | | | | |
Collapse
|