1
|
De Clerck I. Outbreak of Rift Valley Fever Retinitis in Rwanda: Novel Imaging Findings and Response to Treatment with Corticosteroids. Ocul Immunol Inflamm 2024; 32:1374-1379. [PMID: 37585678 DOI: 10.1080/09273948.2023.2246549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/21/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE To describe the clinical and epidemiological characteristics of the first epidemic of Rift Valley Fever retinitis in Rwanda and to report novel imaging findings and a possible role for corticosteroids. METHODS Retrospective analysis of all patients who presented with presumed Rift Valley Fever retinitis at the Rwanda Charity Eye Hospital over a period of 4 months in 2022. Multimodal images are reviewed including optical coherence tomography, fluorescein angiography, color, infrared, red-free, and autofluorescence photography. RESULTS The newly identified arciform hyporeflective pattern on infrared imaging was present in 100% of patients. Out of 9 patients treated with oral corticosteroids, 7 (78%) experienced a visual acuity increase of at least 0.2 during follow-up, in comparison to only 4 (28%) out of 14 of untreated patients. Out of four patients treated with a subtenon corticosteroid injection, only one (25%) reached this threshold. Post-hoc pairwise comparison with Bonferroni correction revealed a significant difference in average visual acuity improvement (p = 0.034) between patients receiving oral corticosteroids (0.35 ± 0.07) versus no treatment (0.11 ± 0.04). CONCLUSION The identified arciform hyporeflective pattern on infrared imaging appears to be characteristic of Rift Valley Fever retinitis and should be known to clinicians working in endemic regions. Compared to a historical cohort and to untreated patients in this non-randomized study, there appears to be a benefit of treatment with oral corticosteroids.
Collapse
Affiliation(s)
- Ivo De Clerck
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
- Department of Ophthalmology, Military Hospital Queen Astrid, Brussels, Belgium
- Department of Ophthalmology, Rwanda Charity Eye Hospital, Kamonyi, Rwanda
| |
Collapse
|
2
|
Wilson LR, McElroy AK. Rift Valley Fever Virus Encephalitis: Viral and Host Determinants of Pathogenesis. Annu Rev Virol 2024; 11:309-325. [PMID: 38635867 PMCID: PMC11427164 DOI: 10.1146/annurev-virology-093022-011544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne virus endemic to Africa and the Middle East. RVFV infection can cause encephalitis, which is associated with significant morbidity and mortality. Studies of RVFV encephalitis following percutaneous inoculation, as would occur following a mosquito bite, have historically been limited by a lack of consistent animal models. In this review, we describe new insights into the pathogenesis of RVFV and the opportunities provided by new mouse models. We underscore the need to consider viral strain and route of inoculation when interpreting data obtained using animal models. We discuss the trafficking of RVFV and the role of host genetics and immunity in modulating the pathogenesis of RVFV encephalitis. We also explore potential strategies to prevent and treat central nervous system disease caused by RVFV and discuss remaining knowledge gaps.
Collapse
Affiliation(s)
- Lindsay R Wilson
- Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| | - Anita K McElroy
- Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
3
|
Borrego B, Alonso C, Moreno S, de la Losa N, Sánchez-Cordón PJ, Brun A. The Rift Valley fever (RVF) vaccine candidate 40Fp8 shows an extreme attenuation in IFNARKO mice following intranasal inoculation. PLoS Negl Trop Dis 2024; 18:e0012011. [PMID: 39159263 PMCID: PMC11361746 DOI: 10.1371/journal.pntd.0012011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Rift Valley fever (RVF) is an important zoonotic viral disease affecting several species of domestic and wild ruminants, causing major economic losses and dozens of human deaths in various geographical areas of Africa, where it is endemic. Although it is not present in Europe, there is a risk of its introduction and spread linked to globalisation and climate change. At present, the only measure that could help to prevent the disease is vaccination of flocks in areas at risk of RVF. Available live attenuated vaccines are an effective means of controlling the disease, but their use is often questioned due to residual virulence, particularly in susceptible hosts such as pregnant sheep. On the other hand, no vaccine is currently licensed for use in humans. The development of safe and effective vaccines is therefore a major area of research. In previous studies, we selected under selective mutagenic pressure a highly attenuated RVFV 56/74 virus variant called 40Fp8. This virus showed an extremely attenuated phenotype in both wild-type and immunodeficient A129 (IFNARKO) mice, yet was still able to induce protective immunity after a single inoculation, thus supporting its use as a safe, live attenuated vaccine. To further investigate its safety, in this work we have analysed the attenuation level of 40Fp8 in immunosuppressed mice (A129) when administered by the intranasal route, and compared it with other attenuated RVF viruses that are the basis of vaccines in use or in development. Our results show that 40Fp8 has a much higher attenuated level than these other viruses and confirm its potential as a candidate for safe RVF vaccine development.
Collapse
Affiliation(s)
- Belén Borrego
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Celia Alonso
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Sandra Moreno
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Nuria de la Losa
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Department of INFECTIOUS DISEASES AND GLOBAL HEALTH, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Alejandro Brun
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| |
Collapse
|
4
|
Nsengimana I, Juma J, Roesel K, Gasana MN, Ndayisenga F, Muvunyi CM, Hakizimana E, Hakizimana JN, Eastwood G, Chengula AA, Bett B, Kasanga CJ, Oyola SO. Genomic Epidemiology of Rift Valley Fever Virus Involved in the 2018 and 2022 Outbreaks in Livestock in Rwanda. Viruses 2024; 16:1148. [PMID: 39066310 PMCID: PMC11281637 DOI: 10.3390/v16071148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Rift Valley fever (RVF), a mosquito-borne transboundary zoonosis, was first confirmed in Rwanda's livestock in 2012 and since then sporadic cases have been reported almost every year. In 2018, the country experienced its first large outbreak, which was followed by a second one in 2022. To determine the circulating virus lineages and their ancestral origin, two genome sequences from the 2018 outbreak, and thirty-six, forty-one, and thirty-eight sequences of small (S), medium (M), and large (L) genome segments, respectively, from the 2022 outbreak were generated. All of the samples from the 2022 outbreak were collected from slaughterhouses. Both maximum likelihood and Bayesian-based phylogenetic analyses were performed. The findings showed that RVF viruses belonging to a single lineage, C, were circulating during the two outbreaks, and shared a recent common ancestor with RVF viruses isolated in Uganda between 2016 and 2019, and were also linked to the 2006/2007 largest East Africa RVF outbreak reported in Kenya, Tanzania, and Somalia. Alongside the wild-type viruses, genetic evidence of the RVFV Clone 13 vaccine strain was found in slaughterhouse animals, demonstrating a possible occupational risk of exposure with unknown outcome for people working in meat-related industry. These results provide additional evidence of the ongoing wide spread of RVFV lineage C in Africa and emphasize the need for an effective national and international One Health-based collaborative approach in responding to RVF emergencies.
Collapse
Affiliation(s)
- Isidore Nsengimana
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro P.O. Box 3000, Tanzania
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania
- Rwanda Inspectorate, Competition and Consumer Protection Authority, Kigali P.O. Box 375, Rwanda
- Department of Entomology, and Center for Emerging Zoonotic & Arthropod-Borne Pathogens (CeZAP), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - John Juma
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709, Kenya
| | - Kristina Roesel
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709, Kenya
| | - Methode N. Gasana
- Department of Animal Resource Research and Technology Transfer, Rwanda Agriculture and Animal Resources Development Board (RAB), Huye P.O. Box 5016, Rwanda
| | - Fabrice Ndayisenga
- Department of Animal Resource Research and Technology Transfer, Rwanda Agriculture and Animal Resources Development Board (RAB), Huye P.O. Box 5016, Rwanda
| | | | | | - Jean N. Hakizimana
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania
| | - Gillian Eastwood
- Department of Entomology, and Center for Emerging Zoonotic & Arthropod-Borne Pathogens (CeZAP), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Augustino A. Chengula
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro P.O. Box 3000, Tanzania
| | - Bernard Bett
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709, Kenya
| | - Christopher J. Kasanga
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro P.O. Box 3000, Tanzania
| | - Samuel O. Oyola
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709, Kenya
| |
Collapse
|
5
|
Anywaine Z, Hansen C, Warimwe GM, Abu-Baker Mustapher G, Nyakarahuka L, Balinandi S, Ario AR, Lutwama JJ, Elliott A, Kaleebu P. Severe morbidity and hospital-based mortality from Rift Valley fever disease between November 2017 and March 2020 among humans in Uganda. Virol J 2024; 21:104. [PMID: 38702807 PMCID: PMC11069174 DOI: 10.1186/s12985-024-02377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Rift Valley fever (RVF) is a zoonotic viral disease of increasing intensity among humans in Africa and the Arabian Peninsula. In Uganda, cases reported prior to 2016 were mild or not fully documented. We report in this paper on the severe morbidity and hospital-based mortality of human cases in Uganda. METHODS Between November 2017 and March 2020 human cases reported to the Uganda Virus Research Institute (UVRI) were confirmed by polymerase chain reaction (PCR). Ethical and regulatory approvals were obtained to enrol survivors into a one-year follow-up study. Data were collected on socio-demographics, medical history, laboratory tests, potential risk factors, and analysed using Stata software. RESULTS Overall, 40 cases were confirmed with acute RVF during this period. Cases were not geographically clustered and nearly all were male (39/40; 98%), median age 32 (range 11-63). The median definitive diagnosis time was 7 days and a delay of three days between presumptive and definitive diagnosis. Most patients (31/40; 78%) presented with fever and bleeding at case detection. Twenty-eight (70%) cases were hospitalised, out of whom 18 (64%) died. Mortality was highest among admissions in regional referral (11/16; 69%) and district (4/5; 80%) hospitals, hospitalized patients with bleeding at case detection (17/27; 63%), and patients older than 44 years (9/9; 100%). Survivors mostly manifested a mild gastro-intestinal syndrome with nausea (83%), anorexia (75%), vomiting (75%), abdominal pain (50%), and diarrhoea (42%), and prolonged symptoms of severe disease including jaundice (67%), visual difficulties (67%), epistaxis (50%), haemoptysis (42%), and dysentery (25%). Symptom duration varied between two to 120 days. CONCLUSION RVF is associated with high hospital-based mortality, severe and prolonged morbidity among humans that present to the health care system and are confirmed by PCR. One-health composite interventions should be developed to improve environmental and livestock surveillance, prevent infections, promptly detect outbreaks, and improve patient outcomes.
Collapse
Affiliation(s)
- Zacchaeus Anywaine
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK.
- Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51 - 59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda.
| | - Christian Hansen
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - George M Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Luke Nyakarahuka
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Biosecurity, Ecosystems and Veterinary Public Health, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Stephen Balinandi
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Alex Riolexus Ario
- National Institute of Public Health, Ministry of Health, Kampala, Uganda
| | - Julius J Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Alison Elliott
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
- Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51 - 59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51 - 59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
6
|
Connors KA, Frey ZD, Demers MJ, Wills ZP, Hartman AL. Acute Rift Valley fever virus infection induces inflammatory cytokines and cell death in ex vivo rat brain slice culture. J Gen Virol 2024; 105:001970. [PMID: 38546100 PMCID: PMC10995633 DOI: 10.1099/jgv.0.001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging arboviral disease with pandemic potential. While infection is often self-limiting, a subset of individuals may develop late-onset encephalitis, accounting for up to 20 % of severe cases. Importantly, individuals displaying neurologic disease have up to a 53 % case fatality rate, yet the neuropathogenesis of RVFV infection remains understudied. In this study, we evaluated whether ex vivo postnatal rat brain slice cultures (BSCs) could be used to evaluate RVFV infection in the central nervous system. BSCs mounted an inflammatory response after slicing, which resolved over time, and they were viable in culture for at least 12 days. Infection of rat BSCs with pathogenic RVFV strain ZH501 induced tissue damage and apoptosis over 48 h. Viral replication in BSCs reached up to 1×107 p.f.u. equivalents/ml, depending on inoculation dose. Confocal immunofluorescent microscopy of cleared slices confirmed direct infection of neurons as well as activation of microglia and astrocytes. Further, RVFV-infected rat BSCs produced antiviral cytokines and chemokines, including MCP-1 and GRO/KC. This study demonstrates that rat BSCs support replication of RVFV for ex vivo studies of neuropathogenesis. This allows for continued and complementary investigation into RVFV infection in an ex vivo postnatal brain slice culture format.
Collapse
Affiliation(s)
- Kaleigh A. Connors
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary D. Frey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew J. Demers
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy L. Hartman
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Chemison A, Ramstein G, Jones A, Morse A, Caminade C. Ability of a dynamical climate sensitive disease model to reproduce historical Rift Valley Fever outbreaks over Africa. Sci Rep 2024; 14:3904. [PMID: 38365824 PMCID: PMC10873308 DOI: 10.1038/s41598-024-53774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Rift Valley Fever (RVF) is a zoonosis transmitted by Aedes and Culex mosquitoes, and is considered a priority pathogen by the WHO. RVF epidemics mostly occur in Africa and can decimate livestock herds, causing significant economic losses and posing health risks for humans. RVF transmission is associated with the occurrence of El Niño events that cause floods in eastern Africa and favour the emergence of mosquitoes in wetlands. Different risk models have been developed to forecast RVF transmission risk but very few studies have validated models at pan-African scale. This study aims to validate the skill of the Liverpool Rift Valley Fever model (LRVF) in reproducing RVF epidemics over Africa and to explore the relationship between simulated climatic suitability for RVF transmission and large-scale climate modes of variability such as the El Niño Southern Oscillation (ENSO) and the Dipole Mode Index (DMI). Our results show that the LRVF model correctly simulates RVF transmission hotspots and reproduces large epidemics that affected African countries. LRVF was able to correctly reproduce major RVF epidemics in Somalia, Kenya, Zambia and to a lesser extent for Mauritania and Senegal. The positive phases of ENSO and DMI are associated with an increased risk of RVF over the Horn of Africa, with important time lags. Following research activities should focus on the development of predictive modelling systems at different time scales.
Collapse
Affiliation(s)
- Alizée Chemison
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA, CNRS, UVSQ, 91190, Gif-sur-Yvette, France
| | - Gilles Ramstein
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA, CNRS, UVSQ, 91190, Gif-sur-Yvette, France
| | - Anne Jones
- IBM Research Laboratory, Daresbury, WA4 4AD, UK
| | - Andy Morse
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
| | - Cyril Caminade
- Earth System Physics, Abdus Salam International Centre for Theoretical Physics, 34151, Trieste, Italy.
| |
Collapse
|
8
|
Freeman TL, McElroy AK. Laboratory Animal Models for Rift Valley Fever Virus Disease. Methods Mol Biol 2024; 2824:425-445. [PMID: 39039428 DOI: 10.1007/978-1-0716-3926-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever virus (RVFV) is an arboviral pathogen of clinical and agricultural relevance. The ongoing development of targeted RVFV prophylactics and therapeutics is overwhelmingly dependent on animal models due to both natural, that is, sporadic outbreaks, and structural, for example, underresourcing of endemic regions, limitations in accessing human patient samples and cohorts. Elucidating mechanisms of viral pathogenesis and testing therapeutics is further complicated by the diverse manifestations of RVFV disease and the heterogeneity of the host response to infection. In this chapter, we describe major clinical manifestations of RVFV infection and discuss the laboratory animal models used to study each.
Collapse
Affiliation(s)
- Tracey L Freeman
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, PA, USA
| | - Anita K McElroy
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA.
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Tinto B, Quellec J, Cêtre-Sossah C, Dicko A, Salinas S, Simonin Y. Rift Valley fever in West Africa: A zoonotic disease with multiple socio-economic consequences. One Health 2023; 17:100583. [PMID: 37664171 PMCID: PMC10474305 DOI: 10.1016/j.onehlt.2023.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 09/05/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an arbovirus that causes Rift Valley fever (RVF), a zoonotic disease that mainly affects domestic and wildlife ruminants and humans. The first epidemic in North-Western and West Africa occurred in Senegal and Mauritania in 1987, two countries where RVF is now endemic. Slaughterhouse workers, farmers, herders and veterinarians are at high risk of exposure to RVF. Beyond the health threat, RVF is considered to cause major socio-economic problems, specifically in developing countries where livestock farming and trade are important economic activities. Indeed, the mortality rate linked to RVF infection can reach 95-100% in newborns and young animals. In West Africa, livestock production is a key factor for food production and for national economics. Epizootics caused by RVF can therefore have serious socio-economic consequences by impacting multisectoral economics, the psycho-social health of pastoral communities, and food security. Improving prevention strategies against RVF, including vaccination, enhancing knowledge of RVF and correcting any inappropriate behaviors by populations of endemics areas, as well as better monitoring of RVF ecological factors are effective ways to better foresee and control outbreaks of RVF and its socio-economical side-effects in countries at high risk of occurrence of the disease.
Collapse
Affiliation(s)
- Bachirou Tinto
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
- Laboratoire National de Référence des Fièvres Hémorragiques Virale, Centre MURAZ, Institut National de Santé Publique (INSP), Bobo-Dioulasso, Burkina Faso
| | - Jordan Quellec
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
| | | | - Amadou Dicko
- Laboratoire central de référence, Institut National de Santé Publique (INSP), Ouagadougou, Burkina Faso
- Ministère de l'Agriculture, des ressources animales et halieutiques du Burkina Faso, Ouagadougou, Burkina Faso
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
| |
Collapse
|
10
|
Aceng FL, Kayiwa J, Elyanu P, Ojwang J, Nyakarahuka L, Balinandi S, Byakika-Tusiime J, Wejuli A, Harris JR, Opolot J. Rift valley fever outbreak in Sembabule District, Uganda, December 2020. ONE HEALTH OUTLOOK 2023; 5:16. [PMID: 38012800 PMCID: PMC10680244 DOI: 10.1186/s42522-023-00092-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Rift Valley Fever (RVF) is a viral zoonosis that can cause severe haemorrhagic fevers in humans and high mortality rates and abortions in livestock. On 10 December 2020, the Uganda Ministry of Health was notified of the death of a 25-year-old male who tested RVF-positive by reverse-transcription polymerase chain reaction (RT-PCR) at the Uganda Virus Research Institute. We investigated to determine the scope of the outbreak, identify exposure factors, and institute control measures. METHODS A suspected case was acute-onset fever (or axillary temperature > 37.5 °C) and ≥ 2 of: headache, muscle or joint pain, unexpected bleeding, and any gastroenteritis symptom in a resident of Sembabule District from 1 November to 31 December 2020. A confirmed case was the detection of RVF virus nucleic acid by RT-PCR or serum IgM antibodies detected by enzyme-linked immunosorbent assay (ELISA). A suspected animal case was livestock (cattle, sheep, goats) with any history of abortion. A confirmed animal case was the detection of anti-RVF IgM antibodies by ELISA. We took blood samples from herdsmen who worked with the index case for RVF testing and conducted interviews to understand more about exposures and clinical characteristics. We reviewed medical records and conducted an active community search to identify additional suspects. Blood samples from animals on the index case's farm and two neighbouring farms were taken for RVF testing. RESULTS The index case regularly drank raw cow milk. None of the seven herdsmen who worked with him nor his brother's wife had symptoms; however, a blood sample from one herdsman was positive for anti-RVF-specific IgM and IgG. Neither the index case nor the additional confirmed case-patient slaughtered or butchered any sick/dead animals nor handled abortus; however, some of the other herdsmen did report high-risk exposures to animal body fluids and drinking raw milk. Among 55 animal samples collected (2 males and 53 females), 29 (53%) were positive for anti-RVF-IgG. CONCLUSIONS Two human RVF cases occurred in Sembabule District during December 2020, likely caused by close interaction between infected cattle and humans. A district-wide animal serosurvey, animal vaccination, and community education on infection prevention practices campaign could inform RVF exposures and reduce disease burden.
Collapse
Affiliation(s)
- Freda Loy Aceng
- Department of Integrated Epidemiology, Surveillance and Public Health Emergencies, Ministry of Health, Kampala, Uganda.
| | - Joshua Kayiwa
- Department of Integrated Epidemiology, Surveillance and Public Health Emergencies, Ministry of Health, Kampala, Uganda
- Uganda Public Health Emergency Operations Centre, Ministry of Health, Kampala, Uganda
| | - Peter Elyanu
- Baylor College of Medicine - Children's Foundation, Kampala, Uganda
| | - Joseph Ojwang
- Division of Global Health Protection, Centers for Disease Control and Prevention, Kampala, Uganda
| | | | | | | | - Alfred Wejuli
- Department of Integrated Epidemiology, Surveillance and Public Health Emergencies, Ministry of Health, Kampala, Uganda
| | - Julie Rebecca Harris
- Division of Global Health Protection, Centers for Disease Control and Prevention, Kampala, Uganda
| | - John Opolot
- Department of Integrated Epidemiology, Surveillance and Public Health Emergencies, Ministry of Health, Kampala, Uganda
| |
Collapse
|
11
|
Rodarte KA, Fair JM, Bett BK, Kerfua SD, Fasina FO, Bartlow AW. A scoping review of zoonotic parasites and pathogens associated with abattoirs in Eastern Africa and recommendations for abattoirs as disease surveillance sites. Front Public Health 2023; 11:1194964. [PMID: 37529427 PMCID: PMC10387540 DOI: 10.3389/fpubh.2023.1194964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Abattoirs are facilities where livestock are slaughtered and are an important aspect in the food production chain. There are several types of abattoirs, which differ in infrastructure and facilities, sanitation and PPE practices, and adherence to regulations. In each abattoir facility, worker exposure to animals and animal products increases their risk of infection from zoonotic pathogens. Backyard abattoirs and slaughter slabs have the highest risk of pathogen transmission because of substandard hygiene practices and minimal infrastructure. These abattoir conditions can often contribute to environmental contamination and may play a significant role in disease outbreaks within communities. To assess further the risk of disease, we conducted a scoping review of parasites and pathogens among livestock and human workers in abattoirs across 13 Eastern African countries, which are hotspots for zoonoses. Our search results (n = 104 articles) showed the presence of bacteria, viruses, fungi, and macroparasites (nematodes, cestodes, etc.) in cattle, goats, sheep, pigs, camels, and poultry. Most articles reported results from cattle, and the most frequent pathogen detected was Mycobacterium bovis, which causes bovine tuberculosis. Some articles included worker survey and questionnaires that suggested how the use of PPE along with proper worker training and safe animal handling practices could reduce disease risk. Based on these findings, we discuss ways to improve abattoir biosafety and increase biosurveillance for disease control and mitigation. Abattoirs are a 'catch all' for pathogens, and by surveying animals at abattoirs, health officials can determine which diseases are prevalent in different regions and which pathogens are most likely transmitted from wildlife to livestock. We suggest a regional approach to biosurveillance, which will improve testing and data gathering for enhanced disease risk mapping and forecasting. Next generation sequencing will be key in identifying a wide range of pathogens, rather than a targeted approach.
Collapse
Affiliation(s)
- Katie A. Rodarte
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Jeanne M. Fair
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Bernard K. Bett
- International Livestock Research Institute and ILRI/BMZ One Health Research, Education, Outreach and Awareness Centre, Nairobi, Kenya
| | - Susan D. Kerfua
- National Livestock Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
| | - Folorunso O. Fasina
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Nairobi, Kenya
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Andrew W. Bartlow
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
12
|
Bowmer A, Ssembatya J, Okot M, Bagyenyi R, Rubanga SV, Kalema-Zikusoka G. Determining the acceptability of a novel One Health vaccine for Rift Valley Fever prior to phase II/III clinical trials in Uganda. One Health 2023; 16:100470. [DOI: 10.1016/j.onehlt.2022.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
|
13
|
Telford C, Nyakarahuka L, Waller L, Kitron U, Shoemaker T. Geostatistical Modeling and Prediction of Rift Valley Fever Seroprevalence among Livestock in Uganda. Am J Trop Med Hyg 2023; 108:712-721. [PMID: 36878208 PMCID: PMC10076992 DOI: 10.4269/ajtmh.22-0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 03/08/2023] Open
Abstract
Uganda reported cases of Rift Valley fever virus (RVFV) for the first time in almost 50 years in 2016, following an outbreak of Rift Valley fever (RVF) that caused four human infections, two of which resulted in death. Subsequent outbreak investigation serosurveys found high seroprevalence of IgG antibodies without evidence of acute infection or IgM antibodies, suggesting the possibility of undetected RVFV circulation prior to the outbreak. After the 2016 outbreak investigation, a serosurvey was conducted in 2017 among domesticated livestock herds across Uganda. Sampling data were incorporated into a geostatistical model to estimate RVF seroprevalence among cattle, sheep, and goats. Variables resulting in the best fit to RVF seroprevalence sampling data included annual variability in monthly precipitation and enhanced vegetation index, topographic wetness index, log human population density percent increase, and livestock species. Individual species RVF seroprevalence prediction maps were created for cattle, sheep, and goats, and a composite livestock prediction was created based on the estimated density of each species across the country. Seroprevalence was greater in cattle compared with sheep and goats. Predicted seroprevalence was greatest in the central and northwestern quadrant of the country, surrounding Lake Victoria, and along the Southern Cattle Corridor. We identified areas that experienced conditions conducive to potential increased RVFV circulation in 2021 in central Uganda. An improved understanding of the determinants of RVFV circulation and locations with high probability of elevated RVF seroprevalence can guide prioritization of disease surveillance and risk mitigation efforts.
Collapse
Affiliation(s)
- Carson Telford
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Luke Nyakarahuka
- Uganda Virus Research Institute
- Department of Biosecurity, Ecosystems and Veterinary Public Health, Makerere University, Kampala, Uganda
| | - Lance Waller
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Uriel Kitron
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Trevor Shoemaker
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
14
|
Griffith EF, Schurer JM, Mawindo B, Kwibuka R, Turibyarive T, Amuguni JH. The Use of Drones to Deliver Rift Valley Fever Vaccines in Rwanda: Perceptions and Recommendations. Vaccines (Basel) 2023; 11:vaccines11030605. [PMID: 36992189 DOI: 10.3390/vaccines11030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Given the recent emergence of Rift Valley Fever (RVF) in Rwanda and its profound impact on livelihoods and health, improving RVF prevention and control strategies is crucial. Vaccinating livestock is one of the most sustainable strategies to mitigate the impact of RVF on health and livelihoods. However, vaccine supply chain constraints severely limit the effectiveness of vaccination programs. In the human health sector, unmanned aerial vehicles, i.e., drones, are increasingly used to improve supply chains and last-mile vaccine delivery. We investigated perceptions of whether delivering RVF vaccines by drone in Rwanda might help to overcome logistical constraints in the vaccine supply chain. We conducted semi-structured interviews with stakeholders in the animal health sector and Zipline employees in Nyagatare District in the Eastern Province of Rwanda. We used content analysis to identify key themes. We found that stakeholders in the animal health sector and Zipline employees believe that drones could improve RVF vaccination in Nyagatare. The primary benefits study participants identified included decreased transportation time, improved cold chain maintenance, and cost savings.
Collapse
Affiliation(s)
- Evan F Griffith
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Janna M Schurer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
- Center for One Health, University of Global Health Equity, Kigali 6955, Rwanda
| | - Billy Mawindo
- London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Rita Kwibuka
- School of Veterinary Medicine, College of Agriculture, Animal Sciences, and Veterinary Medicine, The University of Rwanda, Nyagatare 4285, Rwanda
| | - Thierry Turibyarive
- School of Veterinary Medicine, College of Agriculture, Animal Sciences, and Veterinary Medicine, The University of Rwanda, Nyagatare 4285, Rwanda
| | - Janetrix Hellen Amuguni
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
- Center for One Health, University of Global Health Equity, Kigali 6955, Rwanda
| |
Collapse
|
15
|
Development and Validation of Rapid Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification for Detection of Rift Valley Fever Virus. Adv Virol 2023; 2023:1863980. [PMID: 36755743 PMCID: PMC9902148 DOI: 10.1155/2023/1863980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a high-priority zoonotic pathogen with the ability to cause massive loss during its outbreak within a very short period of time. Lack of a highly sensitive, instant reading diagnostic method for RVFV, which is more suitable for on-site testing, is a big gap that needs to be addressed. The aim of this study was to develop a novel one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the rapid detection of RVFV. To achieve this, the selected RVFV M segment nucleotide sequences were aligned using Multiple Sequence Comparison by Log-Expectation (MUSCLE) software in MEGA11 version 11.0.11 program to identify conserved regions. A 211 pb sequence was identified and six different primers to amplify it were designed using NEB LAMP Primer design tool version 1.1.0. The specificity of the designed primers was tested using primer BLAST, and a primer set, specific to RVFV and able to form a loop, was selected. In this study, we developed a single-tube test based on calorimetric RT-LAMP that enabled the visual detection of RVFV within 30 minutes at 65°C. Diagnostic sensitivity and specificity of the newly developed kit were compared with RVFV qRT-PCR, using total RNA samples extracted from 118 blood samples. The colorimetric RT-LAMP assay had a sensitivity of 98.36% and a specificity of 96.49%. The developed RT-LAMP was found to be tenfold more sensitive compared to the RVFV qRT-PCR assay commonly used in the confirmatory diagnosis of RVFV.
Collapse
|
16
|
Abstract
Rift Valley fever virus (RVFV) is an emerging arboviral pathogen that causes disease in both livestock and humans. Severe disease manifestations of Rift Valley fever (RVF) in humans include hemorrhagic fever, ocular disease, and encephalitis. This review describes the current understanding of the pathogenesis of RVF encephalitis. While some data from human studies exist, the development of several animal models has accelerated studies of the neuropathogenesis of RVFV. We review current animal models and discuss what they have taught us about RVFV encephalitis. We briefly describe alternative models that have been used to study other neurotropic arboviruses and how these models may help contribute to our understanding RVFV encephalitis. We conclude with some unanswered questions and future directions.
Collapse
Affiliation(s)
- Kaleigh A Connors
- Center for Vaccine Research, School of Medicine; and Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine; and Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
17
|
Sado FY, Tchetgna HS, Kamgang B, Djonabaye D, Nakouné E, McCall PJ, Ndip RN, Wondji CS. Seroprevalence of Rift Valley fever virus in domestic ruminants of various origins in two markets of Yaoundé, Cameroon. PLoS Negl Trop Dis 2022; 16:e0010683. [PMID: 35951644 PMCID: PMC9397978 DOI: 10.1371/journal.pntd.0010683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/23/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rift Valley fever (RVF) is a mosquito-borne zoonosis endemic in Africa. With little known of the burden or epidemiology of RVF virus (RVFV) in Cameroon, this study aimed to determine the seroprevalence of RVFV in domestic ruminants of various origins in two markets of Yaoundé, Cameroon. METHODOLOGY/PRINCIPAL FINDINGS The origin of animals randomly sampled at two livestock markets in Yaoundé were recorded and plasma samples collected for competitive and capture Enzyme-linked Immunosorbent Assay (ELISA) to determine the prevalence of Immunoglobulins G (IgG) and Immunoglobulins M (IgM) antibodies. Following ELISA IgM results, a real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed to detect RVFV RNA. In June-August 2019, February-March 2020, and March-April 2021, 756 plasma samples were collected from 441 cattle, 168 goats, and 147 sheep. RVFV IgG seroprevalence was 25.7% for all animals, 42.2% in cattle, 2.7% in sheep, and 2.4% in goats. However, IgM seroprevalence was low, at 0.9% in all animals, 1.1% in cattle, 1.4% in sheep, and 0% in goats. The seroprevalence rates varied according to the animal's origin with the highest rate (52.6%) in cattle from Sudan. In Cameroon, IgG and IgM rates respectively were 45.1% and 2.8% in the North, 44.8% and 0% in the Adamawa, 38.6% and 1.7% in the Far-North. All IgM positive samples were from Cameroon. In cattle, 2/5 IgM positive samples were also IgG positive, but both IgM positive samples in sheep were IgG negative. Three (42.9%) IgM positive samples were positive for viral RVFV RNA using qRT-PCR but given the high ct values, no amplicon was obtained. CONCLUSION/SIGNIFICANCE These findings confirm the circulation of RVFV in livestock in Cameroon with prevalence rates varying by location. Despite low IgM seroprevalence rates, RVF outbreaks can occur without being noticed. Further epidemiological studies are needed to have a broad understanding of RVFV transmission in Cameroon.
Collapse
Affiliation(s)
- Francine Yousseu Sado
- Microbiology and Parasitology Department, Centre for Research in Infectious Diseases, Yaounde, Cameroon
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Cameroon
| | - Huguette Simo Tchetgna
- Microbiology and Parasitology Department, Centre for Research in Infectious Diseases, Yaounde, Cameroon
| | - Basile Kamgang
- Microbiology and Parasitology Department, Centre for Research in Infectious Diseases, Yaounde, Cameroon
| | - Doumani Djonabaye
- Microbiology and Parasitology Department, Centre for Research in Infectious Diseases, Yaounde, Cameroon
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, University of Yaounde I, Cameroon
| | - Emmanuel Nakouné
- Laboratory of Influenza, viral hemorrhagic fever, arbovirus, zoonosis, emerging and re-emerging viruses, Institut Pasteur of Bangui, Central African Republic
| | - Philip J. McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, United Kingdom
| | - Roland Ndip Ndip
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Cameroon
| | - Charles S. Wondji
- Microbiology and Parasitology Department, Centre for Research in Infectious Diseases, Yaounde, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
18
|
Sindato C, Karimuribo ED, Vairo F, Misinzo G, Rweyemamu MM, Hamid MMA, Haider N, Tungu PK, Kock R, Rumisha SF, Mbilu T, Ntoumi F, Zumla A, Mboera LEG. Rift Valley fever seropositivity in humans and domestic ruminants and associated risk factors in Sengerema, Ilala, and Rufiji districts, Tanzania. Int J Infect Dis 2022; 122:559-565. [PMID: 35811085 DOI: 10.1016/j.ijid.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Data on Rift Valley fever virus (RVFV) prevalence in urban settings and pastoral areas of Tanzania are scarce. We performed a cross-sectional study of RVFV seroprevalence and determinants in humans and animals from Ilala, Rufiji, and Sengerema districts of Tanzania. METHODS Blood samples from the study participants were tested for anti-RVFV immunoglobulin G (IgG) antibodies using an enzyme-linked immunosorbent assay. Logistic regression was used to determine association between exposure risk practices and RVFV seropositivity. RESULTS The study involved 664 humans, 361 cattle, 394 goats, and 242 sheep. The overall anti-RVFV IgG seroprevalence in humans and animals was 2.1% (95% confidence interval [CI] 0.01-0.04) and 9.5% (n = 95, 95% CI 0.08-0.12), respectively. Seroprevalence in humans in Rufiji, Ilala, and Sengerema was 3.0% (n = 225, 95% CI 0.01-0.06), 1.8% (n = 230, 95% CI-0.005- 0.04), and 1.4% (n = 209, 95% CI 0.01-0.04), respectively (P >0.05). Seroprevalence in animals in Sengerema, Rufiji, and Ilala was 12.1% (n = 40, 95% CI 0.09-0.16), 11.1% (n = 37, 95% CI 0.08-0.15), and 5.4% (n = 18, 95% CI 0.03-0.08), respectively (P = 0.006). Handling of carcasses increased the odds of RVFV seropositivity 12-fold (odds ratio 11.84, 95% CI 1.97-71.16). CONCLUSION The study confirms previous occurrence of RVFV in multiple species in the study districts. Animal handling practices appear to be essential determinants of seropositivity.
Collapse
Affiliation(s)
- Calvin Sindato
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania; National Institute for Medical Research, Tabora Research Centre, Tabora, Tanzania.
| | - Esron D Karimuribo
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania; Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania.
| | - Francesco Vairo
- National Institute for Infectious Diseases Lazzaro Spallanzani, Rome, Italy.
| | - Gerald Misinzo
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania; Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro, Tanzania.
| | - Mark M Rweyemamu
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.
| | | | - Najmul Haider
- The Royal Veterinary College, University of London, Hatfield, United Kingdom.
| | - Patrick K Tungu
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania.
| | - Richard Kock
- The Royal Veterinary College, University of London, Hatfield, United Kingdom.
| | - Susan F Rumisha
- National Institute for Medical Research, The Headquarters, Dar es Salaam, Tanzania; Malaria Atlas Project, Geospatial Health and Development, Telethon Kids Institute, West Perth, Australia.
| | - Togolai Mbilu
- National Institute for Medical Research, Tabora Research Centre, Tabora, Tanzania.
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo; University of Tübingen, Tübingen, Germany.
| | - Alimuddin Zumla
- Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, United Kingdom; NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom.
| | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.
| |
Collapse
|
19
|
Thomas KM, Kibona T, Claxton JR, de Glanville WA, Lankester F, Amani N, Buza JJ, Carter RW, Chapman GE, Crump JA, Dagleish MP, Halliday JEB, Hamilton CM, Innes EA, Katzer F, Livingstone M, Longbottom D, Millins C, Mmbaga BT, Mosha V, Nyarobi J, Nyasebwa OM, Russell GC, Sanka PN, Semango G, Wheelhouse N, Willett BJ, Cleaveland S, Allan KJ. Prospective cohort study reveals unexpected aetiologies of livestock abortion in northern Tanzania. Sci Rep 2022; 12:11669. [PMID: 35803982 PMCID: PMC9270399 DOI: 10.1038/s41598-022-15517-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Livestock abortion is an important cause of productivity losses worldwide and many infectious causes of abortion are zoonotic pathogens that impact on human health. Little is known about the relative importance of infectious causes of livestock abortion in Africa, including in subsistence farming communities that are critically dependent on livestock for food, income, and wellbeing. We conducted a prospective cohort study of livestock abortion, supported by cross-sectional serosurveillance, to determine aetiologies of livestock abortions in livestock in Tanzania. This approach generated several important findings including detection of a Rift Valley fever virus outbreak in cattle; high prevalence of C. burnetii infection in livestock; and the first report of Neospora caninum, Toxoplasma gondii, and pestiviruses associated with livestock abortion in Tanzania. Our approach provides a model for abortion surveillance in resource-limited settings. Our findings add substantially to current knowledge in sub-Saharan Africa, providing important evidence from which to prioritise disease interventions.
Collapse
Affiliation(s)
- Kate M Thomas
- Centre for International Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
- Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania.
- Ministry for Primary Industries, New Zealand Food Safety, Wellington, New Zealand.
| | - Tito Kibona
- Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, United Republic of Tanzania
| | - John R Claxton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William A de Glanville
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Felix Lankester
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
- Global Animal Health Tanzania, Arusha, United Republic of Tanzania
| | - Nelson Amani
- Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania
| | - Joram J Buza
- Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, United Republic of Tanzania
| | - Ryan W Carter
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gail E Chapman
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - John A Crump
- Centre for International Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania
| | | | - Jo E B Halliday
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Caroline Millins
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania
| | - Victor Mosha
- Kilimanjaro Clinical Research Institute, Good Samaritan Foundation, Moshi, United Republic of Tanzania
| | - James Nyarobi
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Obed M Nyasebwa
- Ministry of Livestock and Fisheries, Zonal Veterinary Centre-Arusha, Arusha, United Republic of Tanzania
| | | | - Paul N Sanka
- Tanzania Veterinary Laboratory Agency, Arusha, United Republic of Tanzania
| | - George Semango
- Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, United Republic of Tanzania
| | - Nick Wheelhouse
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Brian J Willett
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Sarah Cleaveland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn J Allan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Ramadan OPC, Berta KK, Wamala JF, Maleghemi S, Rumunu J, Ryan C, Ladu AI, Joseph JLK, Abenego AA, Ndenzako F, Olu OO. Analysis of the 2017-2018 Rift valley fever outbreak in Yirol East County, South Sudan: a one health perspective. Pan Afr Med J 2022; 42:5. [PMID: 36158935 PMCID: PMC9474954 DOI: 10.11604/pamj.supp.2022.42.1.33769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION the emergence and re-emergence of zoonotic diseases have threatened both human and animal health globally since their identification in the 20th century. Rift Valley fever (RVF) virus is a recurrent zoonotic disease in South Sudan, with the earliest RVF cases confirmed in 2007 in Kapoeta North County, Eastern Equatoria state. METHODS we analyzed national RVF outbreak data to describe the epidemiological pattern of the RVF outbreak in Yirol East county in Lakes State. The line list of cases (confirmed, probable, suspected, and non-cases) was used to describe the pattern and risk factors associated with the outbreak. The animal and human blood samples were tested using Enzyme-Linked Immunosorbent Assay (ELISA) (Immunoglobulin IgG and IgM) and Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). Qualitative data were collected from weekly RVF situation reports, and national guidelines and policies. RESULTS between December 2017 and December 2018, 58 suspected human RVF cases were reported. The cases were reclassified based on laboratory and investigations results, such that as of 16th December 2018, there were a total of six (10.3%) laboratory-confirmed, three (5.2%) probable, one (1.7%) suspected, and 48 (82.8%) non-cases were reported. A total of four deaths were reported during the outbreak (case fatality rate (CFR) 6.8% (4/58). A total of 28 samples were collected from animals; of these, six tested positives for RVF (positivity rate of 32.1% (9/28). The outbreak was announced in March 2018, after four months of the first reported suspected RVF case. Several factors were attributed to the delayed notification and outbreak announcement such as lack of multi-sectorial coordination at the state and county level, multi-sectoral coordination at national level mostly attended by public health experts from human health, inadequate animal health surveillance, poor coordination between livestock disease surveillance and public health surveillance, limited in-country laboratory diagnostic capacity, the laboratory results for the animal health took longer than expected, and lack of a national One Health approach strategy. CONCLUSION the outbreak demonstrated gaps to investigate and respond to zoonotic disease outbreaks in South Sudan.
Collapse
Affiliation(s)
- Otim Patrick Cossy Ramadan
- World Health Organization, East and South Africa, Sub Regional Office, Nairobi, Kenya,,Corresponding author Kibebu Kinfu, World Health Organization, Country Office, Juba, South Sudan.
| | | | | | | | - John Rumunu
- Ministry of Health, Juba, Republic of South Sudan
| | - Caroline Ryan
- World Health Organization, East and South Africa, Sub Regional Office, Nairobi, Kenya
| | - Alice Igale Ladu
- World Health Organization (WHO), WHO Country Office, Juba, South Sudan
| | | | | | - Fabian Ndenzako
- World Health Organization (WHO), WHO Country Office, Juba, South Sudan
| | - Olushayo Oluseun Olu
- World Health Organization, East and South Africa, Sub Regional Office, Nairobi, Kenya
| |
Collapse
|
21
|
Rugarabamu S, Rumisha SF, Mwanyika GO, Sindato C, Lim HY, Misinzo G, Mboera LEG. Viral haemorrhagic fevers and malaria co-infections among febrile patients seeking health care in Tanzania. Infect Dis Poverty 2022; 11:33. [PMID: 35462550 PMCID: PMC9036688 DOI: 10.1186/s40249-022-00959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In recent years there have been reports of viral haemorrhagic fever (VHF) epidemics in sub-Saharan Africa where malaria is endemic. VHF and malaria have overlapping clinical presentations making differential diagnosis a challenge. The objective of this study was to determine the prevalence of selected zoonotic VHFs and malaria co-infections among febrile patients seeking health care in Tanzania. METHODS This facility-based cross-sectional study was carried out between June and November 2018 in Buhigwe, Kalambo, Kyela, Kilindi, Kinondoni, Kondoa, Mvomero, and Ukerewe districts in Tanzania. The study involved febrile patients seeking health care from primary healthcare facilities. Blood samples were collected and tested for infections due to malaria, Crimean-Congo haemorrhagic fever (CCHF), Ebola virus disease (EVD), Marburg virus disease (MVD), Rift Valley fever (RVF) and yellow fever (YF). Malaria infections were tested using rapid diagnostics tests while exposure to VHFs was determined by screening for immunoglobulin M antibodies using commercial enzyme-linked immunosorbent assays. The Chi-square test was used to compare the proportions. RESULTS A total of 308 participants (mean age = 35 ± 19 years) were involved in the study. Of these, 54 (17.5%) had malaria infection and 15 (4.8%) were positive for IgM antibodies against VHFs (RVF = 8; CCHF = 2; EBV = 3; MBV = 1; YF = 1). Six (1.9%) individuals had both VHF (RVF = 2; CCHF = 1; EVD = 2; MVD = 1) and malaria infections. The highest co-infection prevalence (0.6%) was observed among individuals aged 46‒60 years (P < 0.05). District was significantly associated with co-infection (P < 0.05) with the highest prevalence recorded in Buhigwe (1.2%) followed by Kinondoni (0.9%) districts. Headache (100%) and muscle, bone, back and joint pains (83.3%) were the most significant complaints among those infected with both VHFs and malaria (P = 0.001). CONCLUSIONS Co-infections of VHF and malaria are prevalent in Tanzania and affect more the older than the younger population. Since the overlapping symptoms in co-infected individuals may challenge accurate diagnosis, adequate laboratory diagnosis should be emphasized in the management of febrile illnesses.
Collapse
Affiliation(s)
- Sima Rugarabamu
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Susan F Rumisha
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Malaria Atlas Project, Geospatial Health and Development, Telethon Kids Institute, Perth, WA, Australia
| | - Gaspary O Mwanyika
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro, Tanzania
- Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Calvin Sindato
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
- National Institute for Medical Research, Tabora Research Centre, Tabora, Tanzania
| | - Hee-Young Lim
- Korea Disease Control and Prevention Agency, National Institute of Health, Osong, Chungchungbukdo, Republic of Korea
| | - Gerald Misinzo
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.
| |
Collapse
|
22
|
Anywaine Z, Lule SA, Hansen C, Warimwe G, Elliott A. Clinical manifestations of Rift Valley fever in humans: Systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010233. [PMID: 35333856 PMCID: PMC8986116 DOI: 10.1371/journal.pntd.0010233] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 04/06/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Rift Valley fever (RVF) is an emerging, neglected, mosquito-borne viral zoonosis associated with significant morbidity, mortality and expanding geographical scope. The clinical signs and symptoms in humans are non-specific and case definitions vary. We reviewed and analysed the clinical manifestations of RVF in humans. METHODS In this systematic review and meta-analysis we searched on different dates, the Embase (from 1947 to 13th October 2019), Medline (1946 to 14th October 2019), Global Health (1910 to 15th October 2019), and Web of Science (1970 to 15th October 2019) databases. Studies published in English, reporting frequency of symptoms in humans, and laboratory confirmed RVF were included. Animal studies, studies among asymptomatic volunteers, and single case reports for which a proportion could not be estimated, were excluded. Quality assessment was done using a modified Hoy and Brooks et al tool, data was extracted, and pooled frequency estimates calculated using random effects meta-analysis. RESULTS Of the 3765 articles retrieved, less than 1% (32 articles) were included in the systematic review and meta-analysis. Nine RVF clinical syndromes were reported including the general febrile, renal, gastrointestinal, hepatic, haemorrhagic, visual, neurological, cardio-pulmonary, and obstetric syndromes. The most common clinical manifestations included fever (81%; 95% Confidence Interval (CI) 69-91; [26 studies, 1286 patients]), renal failure (41%; 23-59; [4, 327]), nausea (38%; 12-67; [6, 325]), jaundice (26%; 16-36; [15, 393]), haemorrhagic disease (26%; 17-36; [16, 277]), partial blindness (24%; 7-45; [11, 225]), encephalitis (21%; 11-33; [4, 327]), cough (4%; 0-17; [4, 11]), and miscarriage (54%) respectively. Death occurred in 21% (95% CI 14-29; [16 studies, 328 patients]) of cases, most of whom were hospitalised. DISCUSSION This study delineates the complex symptomatology of human RVF disease into syndromes. This approach is likely to improve case definitions and detection rates, impact outbreak control, increase public awareness about RVF, and subsequently inform 'one-health' policies. This study provides a pooled estimate of the proportion of RVF clinical manifestations alongside a narrative description of clinical syndromes. However, most studies reviewed were case series with small sample sizes and enrolled mostly in-patients and out-patients, and captured symptoms either sparsely or using broad category terms.
Collapse
Affiliation(s)
- Zacchaeus Anywaine
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- * E-mail:
| | - Swaib Abubaker Lule
- Institute for Global Health, University College London, London, United Kingdom
| | - Christian Hansen
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- MRC International Statistics & Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - George Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- KEMRI WellcomeTrust Research Programme, Kilifi, Kenya
| | - Alison Elliott
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| |
Collapse
|
23
|
Highly adaptive
Phenuiviridae
with biomedical importance in multiple fields. J Med Virol 2022; 94:2388-2401. [DOI: 10.1002/jmv.27618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 11/07/2022]
|
24
|
Sindato C, Karimuribo ED, Swai ES, Mboera LEG, Rweyemamu MM, Paweska JT, Salt J. Safety, Immunogenicity and Antibody Persistence of Rift Valley Fever Virus Clone 13 Vaccine in Sheep, Goats and Cattle in Tanzania. Front Vet Sci 2022; 8:779858. [PMID: 34977212 PMCID: PMC8718550 DOI: 10.3389/fvets.2021.779858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Vaccination is considered to be the best approach to control Rift Valley fever (RVF) in animals and consequently in humans. This study assessed the efficacy and safety of the RVF virus (RVFV) Clone 13 vaccine under field conditions. Methodology: A vaccine trial was conducted in sheep (230), goats (230), and cattle (140) in Ngorongoro district, Tanzania. Half of each of the animal species were vaccinated and the other half received the placebo. Animals were clinically monitored and bled before vaccination and at days 15, 30, 60, 180 and 360 (+/– 10) post-vaccination to measure Immunoglobulin M (IgM) and IgG antibody responses to RVFV. Survival analysis was conducted using cox-proportional hazard regression model to measure the time until an event of interest had occurred and to compare the cumulative proportion of events over time. Results: Of 600 animals included in the study, 120 animals were lost during the study, leaving a total of 480 (243 in the vaccinated group and 237 in the control group) for complete follow-up sampling. There was no adverse reaction reported at the injection site of the vaccine/placebo in all animals. Abortions, deaths, or body temperature variations were not associated with vaccination (p > 0.05). By day 15 post-inoculation, the IgG seroconversion in vaccinated goats, cattle and sheep was 27.0% (n = 115), 20.0% (n = 70) and 10.4% (n = 115), respectively. By day 30 post-inoculation, it was 75.0% (n = 113), 74.1% (n = 112) and 57.1% (n = 70) in vaccinated sheep, goats and cattle, respectively. By day 60 post-inoculation, IgG seroconversion in sheep, goats and cattle was 88.1% (n = 109), 84.3% (n = 108) and 64.60% (n = 65), respectively. By day 180, the IgG seroconversion in sheep, goats and cattle was 88.0% (n = 108), 83.8% (n = 105) and 66.1% (n = 62), respectively. By day 360, the IgG seroconversion in sheep, goats and cattle was 87.2% (n = 94), 85.6% (n = 90) and 66.1% (n = 59), respectively. Only five animals from the vaccinated group were RVFV IgM positive, which included four sheep and a goat. Conclusion: RVFV Clone 13 vaccine was well tolerated by sheep, goats, and cattle. The vaccine induced detectable, but variable levels of IgG responses, and of different duration. The vaccine is considered safe, with high immunogenicity in sheep and goats and moderate in cattle.
Collapse
Affiliation(s)
- Calvin Sindato
- National Institute for Medical Research, Tabora Research Centre, Tabora, Tanzania.,SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Esron D Karimuribo
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.,College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Mark M Rweyemamu
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Janusz T Paweska
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.,National Health Laboratory Service, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Sandringham, South Africa.,Department of Medical Virology, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| | - Jeremy Salt
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Gerken KN, LaBeaud AD, Mandi H, L’Azou Jackson M, Breugelmans JG, King CH. Paving the way for human vaccination against Rift Valley fever virus: A systematic literature review of RVFV epidemiology from 1999 to 2021. PLoS Negl Trop Dis 2022; 16:e0009852. [PMID: 35073355 PMCID: PMC8812886 DOI: 10.1371/journal.pntd.0009852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/03/2022] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rift Valley fever virus (RVFV) is a lethal threat to humans and livestock in many parts of Africa, the Arabian Peninsula, and the Indian Ocean. This systematic review's objective was to consolidate understanding of RVFV epidemiology during 1999-2021 and highlight knowledge gaps relevant to plans for human vaccine trials. METHODOLOGY/PRINCIPAL FINDINGS The review is registered with PROSPERO (CRD42020221622). Reports of RVFV infection or exposure among humans, animals, and/or vectors in Africa, the Arabian Peninsula, and the Indian Ocean during the period January 1999 to June 2021 were eligible for inclusion. Online databases were searched for publications, and supplemental materials were recovered from official reports and research colleagues. Exposures were classified into five groups: 1) acute human RVF cases, 2) acute animal cases, 3) human RVFV sero-surveys, 4) animal sero-surveys, and 5) arthropod infections. Human risk factors, circulating RVFV lineages, and surveillance methods were also tabulated. In meta-analysis of risks, summary odds ratios were computed using random-effects modeling. 1104 unique human or animal RVFV transmission events were reported in 39 countries during 1999-2021. Outbreaks among humans or animals occurred at rates of 5.8/year and 12.4/year, respectively, with Mauritania, Madagascar, Kenya, South Africa, and Sudan having the most human outbreak years. Men had greater odds of RVFV infection than women, and animal contact, butchering, milking, and handling aborted material were significantly associated with greater odds of exposure. Animal infection risk was linked to location, proximity to water, and exposure to other herds or wildlife. RVFV was detected in a variety of mosquito vectors during interepidemic periods, confirming ongoing transmission. CONCLUSIONS/SIGNIFICANCE With broad variability in surveillance, case finding, survey design, and RVFV case confirmation, combined with uncertainty about populations-at-risk, there were inconsistent results from location to location. However, it was evident that RVFV transmission is expanding its range and frequency. Gaps assessment indicated the need to harmonize human and animal surveillance and improve diagnostics and genotyping. Given the frequency of RVFV outbreaks, human vaccination has strong potential to mitigate the impact of this now widely endemic disease.
Collapse
Affiliation(s)
- Keli N. Gerken
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - A. Desirée LaBeaud
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Henshaw Mandi
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | | | | - Charles H. King
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
26
|
Barbeau DJ, Cartwright HN, Harmon JR, Spengler JR, Spiropoulou CF, Sidney J, Sette A, McElroy AK. Identification and Characterization of Rift Valley Fever Virus-Specific T Cells Reveals a Dependence on CD40/CD40L Interactions for Prevention of Encephalitis. J Virol 2021; 95:e0150621. [PMID: 34495703 PMCID: PMC8577384 DOI: 10.1128/jvi.01506-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an arbovirus found throughout Africa. It causes disease that is typically mild and self-limiting; however, some infected individuals experience severe manifestations, including hepatitis, encephalitis, or even death. Reports of RVFV encephalitis are notable among immunosuppressed individuals, suggesting a role for adaptive immunity in preventing this severe complication. This phenomenon has been modeled in C57BL/6 mice depleted of CD4 T cells prior to infection with DelNSs RVFV (RVFV containing a deletion of nonstructural protein NSs), resulting in late-onset encephalitis accompanied by high levels of viral RNA in the brain in 30% of animals. In this study, we sought to define the specific type(s) of CD4 T cells that mediate protection from RVFV encephalitis. The viral epitopes targeted by CD4 and CD8 T cells were defined in C57BL/6 mice, and tetramers for both CD4 and CD8 T cells were generated. RVFV-specific CD8 T cells were expanded and of a cytotoxic and proliferating phenotype in the liver following infection. RVFV-specific CD4 T cells were identified in the liver and spleen following infection and phenotyped as largely Th1 or Tfh subtypes. Knockout mice lacking various aspects of pathways important in Th1 and Tfh development and function were used to demonstrate that T-bet, CD40, CD40L, and major histocompatibility complex class II (MHC-II) mediated protection from RVFV encephalitis, while gamma interferon (IFN-γ) and interleukin-12 (IL-12) were dispensable. Virus-specific antibody responses correlated with protection from encephalitis in all mouse strains, suggesting that Tfh/B cell interactions modulate clinical outcome in this model. IMPORTANCE The prevention of RVFV encephalitis requires intact adaptive immunity. In this study, we developed reagents to detect RVFV-specific T cells and provide evidence for Tfh cells and CD40/CD40L interactions as critical mediators of this protection.
Collapse
Affiliation(s)
- Dominique J. Barbeau
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, UPMC Children’s Hospital, Pittsburgh, Pennsylvania, USA
| | - Haley N. Cartwright
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, UPMC Children’s Hospital, Pittsburgh, Pennsylvania, USA
| | - Jessica R. Harmon
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, USA
| | - Jessica R. Spengler
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California, USA
| | - Anita K. McElroy
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, UPMC Children’s Hospital, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Mayanja MN, Mwiine FN, Lutwama JJ, Ssekagiri A, Egesa M, Thomson EC, Kohl A. Mosquito-borne arboviruses in Uganda: history, transmission and burden. J Gen Virol 2021; 102. [PMID: 34609940 DOI: 10.1099/jgv.0.001680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquito-transmitted arboviruses constitute a large proportion of emerging infectious diseases that are both a public health problem and a threat to animal populations. Many such viruses were identified in East Africa, a region where they remain important and from where new arboviruses may emerge. We set out to describe and review the relevant mosquito-borne viruses that have been identified specifically in Uganda. We focused on the discovery, burden, mode of transmission, animal hosts and clinical manifestation of those previously involved in disease outbreaks. A search for mosquito-borne arboviruses detected in Uganda was conducted using search terms 'Arboviruses in Uganda' and 'Mosquitoes and Viruses in Uganda' in PubMed and Google Scholar in 2020. Twenty-four mosquito-borne viruses from different animal hosts, humans and mosquitoes were documented. The majority of these were from family Peribunyaviridae, followed by Flaviviridae, Togaviridae, Phenuiviridae and only one each from family Rhabdoviridae and Reoviridae. Sixteen (66.7%) of the viruses were associated with febrile illnesses. Ten (41.7%) of them were first described locally in Uganda. Six of these are a public threat as they have been previously associated with disease outbreaks either within or outside Uganda. Historically, there is a high burden and endemicity of arboviruses in Uganda. Given the many diverse mosquito species known in the country, there is also a likelihood of many undescribed mosquito-borne viruses. Next generation diagnostic platforms have great potential to identify new viruses. Indeed, four novel viruses, two of which were from humans (Ntwetwe and Nyangole viruses) and two from mosquitoes (Kibale and Mburo viruses) were identified in the last decade using next generation sequencing. Given the unbiased approach of detection of viruses by this technology, its use will undoubtedly be critically important in the characterization of mosquito viromes which in turn will inform other diagnostic efforts.
Collapse
Affiliation(s)
- Martin N Mayanja
- School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.,Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Frank N Mwiine
- School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Julius J Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Alfred Ssekagiri
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses Egesa
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
28
|
Mayanja MN, Mwiine FN, Lutwama JJ, Ssekagiri A, Egesa M, Thomson EC, Kohl A. Mosquito-borne arboviruses in Uganda: history, transmission and burden. J Gen Virol 2021; 102. [PMID: 34166178 DOI: 10.1099/jgv.0.001615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquito-transmitted arboviruses constitute a large proportion of emerging infectious diseases that are both a public health problem and a threat to animal populations. Many such viruses were identified in East Africa, a region where they remain important and from where new arboviruses may emerge. We set out to describe and review the relevant mosquito-borne viruses that have been identified specifically in Uganda. We focused on the discovery, burden, mode of transmission, animal hosts and clinical manifestation of those previously involved in disease outbreaks. A search for mosquito-borne arboviruses detected in Uganda was conducted using search terms 'Arboviruses in Uganda' and 'Mosquitoes and Viruses in Uganda' in PubMed and Google Scholar in 2020. Twenty-four mosquito-borne viruses from different animal hosts, humans and mosquitoes were documented. The majority of these were from family Peribunyaviridae, followed by Flaviviridae, Togaviridae, Phenuiviridae and only one each from family Rhabdoviridae and Reoviridae. Sixteen (66.7 %) of the viruses were associated with febrile illnesses. Ten (41.7 %) of them were first described locally in Uganda. Six of these are a public threat as they have been previously associated with disease outbreaks either within or outside Uganda. Historically, there is a high burden and endemicity of arboviruses in Uganda. Given the many diverse mosquito species known in the country, there is also a likelihood of many undescribed mosquito-borne viruses. New generation diagnostic platforms have great potential to identify new viruses. Indeed, four novel viruses, two of which were from humans (Ntwetwe and Nyangole viruses) and two from mosquitoes (Kibale and Mburo viruses) including the 2010 yellow fever virus (YFV) outbreak were identified in the last decade using next generation sequencing. Given the unbiased approach of detection of viruses by this technology, its use will undoubtedly be critically important in the characterization of mosquito viromes which in turn will inform other diagnostic efforts.
Collapse
Affiliation(s)
- Martin N Mayanja
- School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.,Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Frank N Mwiine
- School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Julius J Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Alfred Ssekagiri
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses Egesa
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
29
|
Rugarabamu S, Mwanyika GO, Rumisha SF, Sindato C, Lim HY, Misinzo G, Mboera LEG. Seroprevalence and associated risk factors of selected zoonotic viral hemorrhagic fevers in Tanzania. Int J Infect Dis 2021; 109:174-181. [PMID: 34242761 DOI: 10.1016/j.ijid.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To determine the seroprevalence of selected zoonotic viral hemorrhagic fevers (VHFs) and their associated risk factors in Tanzania. METHODS Blood samples were collected from consenting outpatients and community members in eight districts selected from five ecological zones of Tanzania. Serum was harvested and tested for the presence of immunoglobulin G (IgG) and M (IgM) antibodies against Crimean-Congo hemorrhagic fever (CCHF), Ebola virus disease (EVD), Marburg virus disease (MVD), Rift Valley fever (RVF), and yellow fever (YF). RESULTS The presence of IgM and IgG antibodies against CCHF, EVD, MVD, RVF, and YF was detected in 64 of 500 samples (12.8%). The prevalences of IgM and IgG antibodies to CCHF, EVD, MVD, RFV, and YF were 2.0%, 3.4%, 1.2%, 4.8%, and 1.4%, respectively. Contact with wild animals (OR = 1.2, CI = 1.3-1.6) and keeping goats (OR = 1.3, CI = 1.5-1.9) were significantly associated with RVF, while contact with bats (OR = 1.2, CI = 1.1-1.5) was associated with MVD. CONCLUSION The findings of this study provide evidence of exposure to CCHF, EVD, MVD, RVF, and YF in Tanzania. Since most of these VHFs occurred without apparent clinical forms of the disease, these findings call for the need to strengthen the surveillance system and management of febrile illnesses in Tanzania.
Collapse
Affiliation(s)
- Sima Rugarabamu
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania; Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro, Tanzania; Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Gaspary O Mwanyika
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania; Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro, Tanzania; Mbeya University of Science and Technology, Mbeya, Tanzania.
| | - Susan F Rumisha
- National Institute for Medical Research, Headquarters, Dar es Salaam, Tanzania; Malaria Atlas Project, Geospatial Health and Development, Telethon Kids Institute, Perth, Western Australia.
| | - Calvin Sindato
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania; National Institute for Medical Research, Tabora Research Centre, Tabora, Tanzania.
| | - Hee-Young Lim
- Korea Disease Control and Prevention Agency, National Institute of Health, Osong, Chungchungbukdo, Republic of Korea.
| | - Gerald Misinzo
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania; Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro, Tanzania.
| | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.
| |
Collapse
|
30
|
Petrova V, Kristiansen P, Norheim G, Yimer SA. Rift valley fever: diagnostic challenges and investment needs for vaccine development. BMJ Glob Health 2021; 5:bmjgh-2020-002694. [PMID: 32816810 PMCID: PMC7437696 DOI: 10.1136/bmjgh-2020-002694] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 11/04/2022] Open
Abstract
Rift valley fever virus (RVFV) is a causative agent of a viral zoonosis that constitutes a major clinical burden in wild and domestic ruminants. The virus causes major outbreaks in livestock (sheep, goats, cattle and camels) and can be transmitted to humans by contaminated animal products or via arthropod vectors. Human-to-human transmission has not been reported to date, but spill-over events from animals have led to outbreaks in humans in Africa and the Arabian Peninsula. Currently, there is no licensed human vaccine against RVFV and the virus is listed as a priority pathogen by the World Health Organisation (WHO) due to the high epidemic potential and the lack of effective countermeasures. Multiple large RVFV outbreaks have been reported since the virus was discovered. During the last two decades, over 4000 cases and ~1000 deaths have been reported. The lack of systematic surveillance to estimate the true burden and incidence of human RVF disease is a challenge for planning future vaccine efficacy evaluation. This creates a need for robust diagnostic methodologies that can be deployed in remote regions to aid case confirmation, assessment of seroprevalence as well as pathogen surveillance required for the different stages of vaccine evaluation. Here, we perform comprehensive landscaping of the available diagnostic solutions for detection of RVFV in humans. Based on the identified gaps in the currently available in-house and commercially available methods, we highlight the specific investment needs for diagnostics that are critical for accelerating the development of effective vaccines against RVFV.
Collapse
Affiliation(s)
| | - Paul Kristiansen
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| | | | - Solomon A Yimer
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| |
Collapse
|
31
|
Sanderson CE, Jori F, Moolla N, Paweska JT, Oumer N, Alexander KA. Silent Circulation of Rift Valley Fever in Humans, Botswana, 2013-2014. Emerg Infect Dis 2021; 26:2453-2456. [PMID: 32946735 PMCID: PMC7510741 DOI: 10.3201/eid2610.191837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We evaluated the prevalence of Rift Valley fever virus IgG and IgM in human serum samples (n = 1,276) collected in 2013–2014 in northern Botswana. Our findings provide evidence of active circulation of this virus in humans in the absence of clinical disease in this region.
Collapse
|
32
|
Odendaal L, Davis AS, Venter EH. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021; 13:v13040709. [PMID: 33923863 PMCID: PMC8073615 DOI: 10.3390/v13040709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) infects humans and a wide range of ungulates and historically has caused devastating epidemics in Africa and the Arabian Peninsula. Lesions of naturally infected cases of Rift Valley fever (RVF) have only been described in detail in sheep with a few reports concerning cattle and humans. The most frequently observed lesion in both ruminants and humans is randomly distributed necrosis, particularly in the liver. Lesions supportive of vascular endothelial injury are also present and include mild hydropericardium, hydrothorax and ascites; marked pulmonary congestion and oedema; lymph node congestion and oedema; and haemorrhages in many tissues. Although a complete understanding of RVF pathogenesis is still lacking, antigen-presenting cells in the skin are likely the early targets of the virus. Following suppression of type I IFN production and necrosis of dermal cells, RVFV spreads systemically, resulting in infection and necrosis of other cells in a variety of organs. Failure of both the innate and adaptive immune responses to control infection is exacerbated by apoptosis of lymphocytes. An excessive pro-inflammatory cytokine and chemokine response leads to microcirculatory dysfunction. Additionally, impairment of the coagulation system results in widespread haemorrhages. Fatal outcomes result from multiorgan failure, oedema in many organs (including the lungs and brain), hypotension, and circulatory shock. Here, we summarize current understanding of RVF cellular tropism as informed by lesions caused by natural infections. We specifically examine how extant knowledge informs current understanding regarding pathogenesis of the haemorrhagic fever form of RVF, identifying opportunities for future research.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Correspondence: (L.O.); (A.S.D.)
| | - A Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (L.O.); (A.S.D.)
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0002, South Africa;
- College of Public Health Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
33
|
Hassan A, Muturi M, Mwatondo A, Omolo J, Bett B, Gikundi S, Konongoi L, Ofula V, Makayotto L, Kasiti J, Oele E, Onyango C, Gura Z, Njenga K, Munyua P. Epidemiological Investigation of a Rift Valley Fever Outbreak in Humans and Livestock in Kenya, 2018. Am J Trop Med Hyg 2020; 103:1649-1655. [PMID: 32748778 PMCID: PMC7543801 DOI: 10.4269/ajtmh.20-0387] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
On the last week of May of 2018, a community-based syndromic surveillance system detected mass abortions and deaths of young livestock in northeastern Kenya. Two weeks later, Rift Valley fever (RVF) was confirmed in humans presenting with febrile illness and hemorrhagic syndrome in the same region. A joint animal and human response team carried out an investigation to characterize the outbreak and identify drivers of disease transmission. Here, we describe the outbreak investigation and findings. A total of 106 human cases were identified in the months of May and June 2018: 92% (98) and 8% (8) of these cases occurring in the northern and western regions of Kenya, respectively. Seventy-six (72%) were probable cases, and 30 (28%) were laboratory confirmed by ELISA and/or PCR. Among the confirmed cases, the median age was 27.5 years (interquartile range = 20), and 60% (18) were males. Overall, the case fatality rate was 7% (n = 8). The majority of the confirmed cases, 19 (63%), reported contact with livestock during slaughter and consumption of meat from sick animals. All confirmed cases had fever, 40% (12) presented with hemorrhagic syndrome, and 23% (7) presented with jaundice. Forty-three livestock herds with at least one suspect and/or confirmed animal case were identified. Death of young animals was reported in 93% (40) and abortions in 84% (36) of livestock herds. The outbreak is indicative of the emergence potential of RVF in traditionally high- and low-risk areas and the risk posed by zoonosis to livestock keepers.
Collapse
Affiliation(s)
- Abdala Hassan
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | | | | | - Jack Omolo
- Kenya Zoonotic Disease Unit, Nairobi, Kenya
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Limbaso Konongoi
- Kenya Medical Research Institute, Center for Virus Research, Nairobi, Kenya
| | - Victor Ofula
- Kenya Medical Research Institute, Center for Virus Research, Nairobi, Kenya
| | - Lyndah Makayotto
- Division of Disease Surveillance and Response, Ministry of Health, Nairobi, Kenya
| | - Jacqueline Kasiti
- Directorate of Veterinary Services, Central Veterinary Laboratory, Nairobi, Kenya
| | - Elizabeth Oele
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | - Clayton Onyango
- Division of Global Health Protection, Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Zeinab Gura
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | - Kariuki Njenga
- Washington State University Global Health Program-Kenya, Washington State University, Pullman, Washington
| | - Peninah Munyua
- Division of Global Health Protection, Centers for Disease Control and Prevention, Nairobi, Kenya
| |
Collapse
|
34
|
Abstract
Rift Valley fever virus (RVFV) is a pathogen of both humans and livestock in Africa and the Middle East. Severe human disease is associated with hepatitis and/or encephalitis. Current pathogenesis studies rely on rodents and nonhuman primates, which have advantages and disadvantages. We evaluated disease progression in Mustela putorius furo (the ferret) following intradermal (i.d.) or intranasal (i.n.) infection. Infected ferrets developed hyperpyrexia, weight loss, lymphopenia, and hypoalbuminemia. Three of four ferrets inoculated intranasally with RVFV developed central nervous system (CNS) disease that manifested as seizure, ataxia, and/or hind limb weakness at 8 to 11 days postinfection (dpi). Animals with clinical CNS disease had transient viral RNAemia, high viral RNA loads in the brain, and histopathological evidence of encephalitis. The ferret model will facilitate our understanding of how RVFV accesses the CNS and has utility for the evaluation of vaccines and/or therapeutics in preventing RVFV CNS disease.IMPORTANCE Animal models of viral disease are very important for understanding how viruses make people sick and for testing out drugs and vaccines to see if they can prevent disease. In this study, we identify the ferret as a model of encephalitis caused by Rift Valley fever virus (RVFV). This novel model will allow researchers to evaluate ways to prevent RVFV encephalitis.
Collapse
|
35
|
Budodo RM, Horumpende PG, Mkumbaye SI, Mmbaga BT, Mwakapuja RS, Chilongola JO. Serological evidence of exposure to Rift Valley, Dengue and Chikungunya Viruses among agropastoral communities in Manyara and Morogoro regions in Tanzania: A community survey. PLoS Negl Trop Dis 2020; 14:e0008061. [PMID: 32687540 PMCID: PMC7402518 DOI: 10.1371/journal.pntd.0008061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/04/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022] Open
Abstract
Tanzania has recently experienced outbreaks of dengue in two coastal regions of Dar es Salaam and Tanga. Chikungunya and Rift Valley Fever outbreaks have also been recorded in the past decade. Little is known on the burden of the arboviral disease causing viruses (Dengue, Rift Valley and Chikungunya) endemically in the inter-epidemic periods. We aimed at determining the prevalence of the dengue, rift valley and chikungunya among humans in two geo ecologically distinct sites. The community-based cross-sectional study was conducted in Magugu in Manyara region and Wami-Dakawa in Morogoro region in Tanzania. Venous blood was collected from participants of all age groups, serum prepared from samples and subjected to ELISA tests for RVFV IgG/IgM, DENV IgG/IgM, and CHIKV IgM/IgG. Samples that were positive for IgM ELISA tests were subjected to a quantitative RT PCR for each virus. A structured questionnaire was used to collect socio-demographic information. Data analysis was performed by using SPSSv22. A total of 191 individuals from both sites participated in the study. Only one individual was CHIKV seropositive in Magugu, but none was seropositive or positive for either RVFV or DENV. Of the 122 individuals from Wami-Dakawa site, 16.39% (n = 20) had recent exposure to RVFV while 9.83% (n = 12) were seropositive for CHIKV. All samples were negative by RVFV and CHIKV qPCR. Neither infection nor exposure to DENV was observed in participants from both sites. Being more than 5 in a household, having no formal education and having recently travelled to an urban area were risk factors associated with RVFV and CHIKV seropositivity. We report a considerable exposure to RVFV and CHIKV among Wami-Dakawa residents during the dry season and an absence of exposure of the viruses among humans in Magugu site. In both sites, neither DENV exposure nor infection was detected.
Collapse
Affiliation(s)
- Rule M. Budodo
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Pius G. Horumpende
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Department of Public Health and Research, Lugalo Military College of Medical Sciences (MCMS) and General Military Hospital (GMH), Dar es Salaam, Tanzania
| | - Sixbert I. Mkumbaye
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Directorate of Research and Consultancies, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | | | - Jaffu O. Chilongola
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
36
|
Harmon JR, Barbeau DJ, Nichol ST, Spiropoulou CF, McElroy AK. Rift Valley fever virus vaccination induces long-lived, antigen-specific human T cell responses. NPJ Vaccines 2020; 5:17. [PMID: 32140261 PMCID: PMC7048758 DOI: 10.1038/s41541-020-0166-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus of clinical significance in both livestock and humans. A formalin-inactivated virus preparation was initially developed for human use and tested in laboratory workers in the 1960s. Vaccination resulted in generation of neutralizing antibody titers in most recipients, but neutralization titers waned over time, necessitating frequent booster doses. In this study, T cell-based immune responses to the formalin-inactivated vaccine were examined in a cohort of seven individuals who received between 1 and 6 doses of the vaccine. RVFV-specific T cell responses were detectable up to 24 years post vaccination. Peripheral blood mononuclear cells from this cohort of individuals were used to map out the viral epitopes targeted by T cells in humans. These data provide tools for assessing human RVFV-specific T cell responses and are thus a valuable resource for future human RVFV vaccine efforts.
Collapse
Affiliation(s)
- Jessica R Harmon
- US Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30333 United States
| | - Dominique J Barbeau
- 2University of Pittsburgh, Division of Pediatric Infectious Disease, 3501 Fifth Ave, Pittsburgh, PA 15261 United States
| | - Stuart T Nichol
- US Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30333 United States
| | - Christina F Spiropoulou
- US Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30333 United States
| | - Anita K McElroy
- US Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30333 United States.,2University of Pittsburgh, Division of Pediatric Infectious Disease, 3501 Fifth Ave, Pittsburgh, PA 15261 United States
| |
Collapse
|
37
|
Javelle E, Lesueur A, Pommier de Santi V, de Laval F, Lefebvre T, Holweck G, Durand GA, Leparc-Goffart I, Texier G, Simon F. The challenging management of Rift Valley Fever in humans: literature review of the clinical disease and algorithm proposal. Ann Clin Microbiol Antimicrob 2020; 19:4. [PMID: 31969141 PMCID: PMC6977312 DOI: 10.1186/s12941-020-0346-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/12/2020] [Indexed: 01/01/2023] Open
Abstract
Rift Valley Fever (RVF) is an emerging zoonotic arbovirus with a complex cycle of transmission that makes difficult the prediction of its expansion. Recent outbreaks outside Africa have led to rediscover the human disease but it remains poorly known. The wide spectrum of acute and delayed manifestations with potential unfavorable outcome much complicate the management of suspected cases and prediction of morbidity and mortality during an outbreak. We reviewed literature data on bio-clinical characteristics and treatments of RVF human illness. We identified gaps in the field and provided a practical algorithm to assist clinicians in the cases assessment, determination of setting of care and prolonged follow-up.
Collapse
Affiliation(s)
- Emilie Javelle
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France. .,IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.
| | - Alexandre Lesueur
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France
| | - Vincent Pommier de Santi
- IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.,French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France
| | - Franck de Laval
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France.,INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Aix Marseille Univ, Marseille, France
| | - Thibault Lefebvre
- French Military Health Service, RSMA Medical Unit, Paris, Mayotte, France
| | - Guillaume Holweck
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France
| | - Guillaume André Durand
- French Armed Forces Biomedical Research Institute (IRBA)-CNR des arbovirus-IHU Méditerranée Infection, Marseille, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| | - Isabelle Leparc-Goffart
- French Armed Forces Biomedical Research Institute (IRBA)-CNR des arbovirus-IHU Méditerranée Infection, Marseille, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| | - Gaëtan Texier
- IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.,French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France
| | - Fabrice Simon
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
38
|
Shoemaker TR, Nyakarahuka L, Balinandi S, Ojwang J, Tumusiime A, Mulei S, Kyondo J, Lubwama B, Sekamatte M, Namutebi A, Tusiime P, Monje F, Mayanja M, Ssendagire S, Dahlke M, Kyazze S, Wetaka M, Makumbi I, Borchert J, Zufan S, Patel K, Whitmer S, Brown S, Davis WG, Klena JD, Nichol ST, Rollin PE, Lutwama J. First Laboratory-Confirmed Outbreak of Human and Animal Rift Valley Fever Virus in Uganda in 48 Years. Am J Trop Med Hyg 2020; 100:659-671. [PMID: 30675833 PMCID: PMC6402942 DOI: 10.4269/ajtmh.18-0732] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In March 2016, an outbreak of Rift Valley fever (RVF) was identified in Kabale district, southwestern Uganda. A comprehensive outbreak investigation was initiated, including human, livestock, and mosquito vector investigations. Overall, four cases of acute, nonfatal human disease were identified, three by RVF virus (RVFV) reverse transcriptase polymerase chain reaction (RT-PCR), and one by IgM and IgG serology. Investigations of cattle, sheep, and goat samples from homes and villages of confirmed and probable RVF cases and the Kabale central abattoir found that eight of 83 (10%) animals were positive for RVFV by IgG serology; one goat from the home of a confirmed case tested positive by RT-PCR. Whole genome sequencing from three clinical specimens was performed and phylogenetic analysis inferred the relatedness of 2016 RVFV with the 2006–2007 Kenya-2 clade, suggesting previous introduction of RVFV into southwestern Uganda. An entomological survey identified three of 298 pools (1%) of Aedes and Coquillettidia species that were RVFV positive by RT-PCR. This was the first identification of RVFV in Uganda in 48 years and the 10th independent viral hemorrhagic fever outbreak to be confirmed in Uganda since 2010.
Collapse
Affiliation(s)
- Trevor R Shoemaker
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia.,Viral Special Pathogens Branch, Centers for Disease Control and Prevention-Uganda, Entebbe, Uganda
| | - Luke Nyakarahuka
- Department of Biosecurity, Ecosystems and Veterinary Public Health, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.,Department of Arbovirology, Emerging and Reemerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Stephen Balinandi
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention-Uganda, Entebbe, Uganda
| | - Joseph Ojwang
- Global Health Security Unit, Centers for Disease Control and Prevention-Uganda, Kampala, Uganda
| | - Alex Tumusiime
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention-Uganda, Entebbe, Uganda
| | - Sophia Mulei
- Department of Arbovirology, Emerging and Reemerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jackson Kyondo
- Department of Biosecurity, Ecosystems and Veterinary Public Health, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | | | | | | | | | - Fred Monje
- Ministry of Agriculture, Animal Industry and Fisheries, Kampala, Uganda
| | - Martin Mayanja
- Department of Arbovirology, Emerging and Reemerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Melissa Dahlke
- Public Health Emergency Operations Centre, Ministry of Health, Kampala, Uganda
| | - Simon Kyazze
- Public Health Emergency Operations Centre, Ministry of Health, Kampala, Uganda
| | - Milton Wetaka
- Public Health Emergency Operations Centre, Ministry of Health, Kampala, Uganda
| | - Issa Makumbi
- Public Health Emergency Operations Centre, Ministry of Health, Kampala, Uganda
| | - Jeff Borchert
- Global Health Security Unit, Centers for Disease Control and Prevention-Uganda, Kampala, Uganda
| | - Sara Zufan
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ketan Patel
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shannon Whitmer
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shelley Brown
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - William G Davis
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John D Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Pierre E Rollin
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Julius Lutwama
- Department of Arbovirology, Emerging and Reemerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
39
|
Allen ER, Krumm SA, Raghwani J, Halldorsson S, Elliott A, Graham VA, Koudriakova E, Harlos K, Wright D, Warimwe GM, Brennan B, Huiskonen JT, Dowall SD, Elliott RM, Pybus OG, Burton DR, Hewson R, Doores KJ, Bowden TA. A Protective Monoclonal Antibody Targets a Site of Vulnerability on the Surface of Rift Valley Fever Virus. Cell Rep 2019; 25:3750-3758.e4. [PMID: 30590046 PMCID: PMC6315105 DOI: 10.1016/j.celrep.2018.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/30/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
The Gn subcomponent of the Gn-Gc assembly that envelopes the human and animal pathogen, Rift Valley fever virus (RVFV), is a primary target of the neutralizing antibody response. To better understand the molecular basis for immune recognition, we raised a class of neutralizing monoclonal antibodies (nAbs) against RVFV Gn, which exhibited protective efficacy in a mouse infection model. Structural characterization revealed that these nAbs were directed to the membrane-distal domain of RVFV Gn and likely prevented virus entry into a host cell by blocking fusogenic rearrangements of the Gn-Gc lattice. Genome sequence analysis confirmed that this region of the RVFV Gn-Gc assembly was under selective pressure and constituted a site of vulnerability on the virion surface. These data provide a blueprint for the rational design of immunotherapeutics and vaccines capable of preventing RVFV infection and a model for understanding Ab-mediated neutralization of bunyaviruses more generally.
Collapse
Affiliation(s)
- Elizabeth R Allen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Stefanie A Krumm
- Kings College London, Department of Infectious Diseases, 2nd Floor, Borough Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Jayna Raghwani
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Old Road, Oxford OX3 7LF, UK
| | - Steinar Halldorsson
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Angela Elliott
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Victoria A Graham
- National Infection Service, Virology & Pathogenesis, Public Health England, Porton Down, Salisbury, SP4 0JG Wiltshire, UK
| | - Elina Koudriakova
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Daniel Wright
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - George M Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7FZ, UK; Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Stuart D Dowall
- National Infection Service, Virology & Pathogenesis, Public Health England, Porton Down, Salisbury, SP4 0JG Wiltshire, UK
| | - Richard M Elliott
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Roger Hewson
- National Infection Service, Virology & Pathogenesis, Public Health England, Porton Down, Salisbury, SP4 0JG Wiltshire, UK
| | - Katie J Doores
- Kings College London, Department of Infectious Diseases, 2nd Floor, Borough Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Stedman A, Wright D, Wichgers Schreur PJ, Clark MHA, Hill AVS, Gilbert SC, Francis MJ, van Keulen L, Kortekaas J, Charleston B, Warimwe GM. Safety and efficacy of ChAdOx1 RVF vaccine against Rift Valley fever in pregnant sheep and goats. NPJ Vaccines 2019; 4:44. [PMID: 31646004 PMCID: PMC6802222 DOI: 10.1038/s41541-019-0138-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic mosquito-borne virus that was first discovered in Kenya in 1930 and has since spread to become endemic in much of Africa and the Arabian Peninsula. Rift Valley fever (RVF) causes recurrent outbreaks of febrile illness associated with high levels of mortality and poor outcomes during pregnancy-including foetal malformations, spontaneous abortion and stillbirths-in livestock, and associated with miscarriage in humans. No vaccines are available for human use and those licensed for veterinary use have potential drawbacks, including residual virulence that may contraindicate their use in pregnancy. To address this gap, we previously developed a simian adenovirus vectored vaccine, ChAdOx1 RVF, that encodes RVFV envelope glycoproteins. ChAdOx1 RVF is fully protective against RVF in non-pregnant livestock and is also under development for human use. Here, we now demonstrate that when administered to pregnant sheep and goats, ChAdOx1 RVF is safe, elicits high titre RVFV neutralizing antibody, and provides protection against viraemia and foetal loss, although this protection is not as robust for the goats. In addition, we provide a description of RVFV challenge in pregnant goats and contrast this to the pathology observed in pregnant sheep. Together, our data further support the ongoing development of ChAdOx1 RVF vaccine for use in livestock and humans.
Collapse
Affiliation(s)
- Anna Stedman
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
| | - Daniel Wright
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | | | - Madeleine H. A. Clark
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Adrian V. S. Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Michael J. Francis
- BioVacc Consulting Ltd, The Red House, 10 Market Square, Amersham, HP7 0DQ UK
| | - Lucien van Keulen
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
| | - George M. Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ UK
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108 Kenya
| |
Collapse
|
41
|
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that was first discovered in Kenya in 1930 and is now endemic throughout multiple African countries and the Arabian Peninsula. RVF virus primarily infects domestic livestock (sheep, goats, cattle) causing high rates of neonatal mortality and abortion, with human infection resulting in a wide variety of clinical outcomes, ranging from self-limiting febrile illness to life-threatening haemorrhagic diatheses, and miscarriage in pregnant women. Since its discovery, RVF has caused many outbreaks in Africa and the Arabian Peninsula with major impacts on human and animal health. However, options for the control of RVF outbreaks are limited by the lack of licensed human vaccines or therapeutics. For this reason, RVF is prioritized by the World Health Organization for urgent research and development of countermeasures for the prevention and control of future outbreaks. In this review, we highlight the current understanding of RVF, including its epidemiology, pathogenesis, clinical manifestations and status of vaccine development.
Collapse
Affiliation(s)
- Daniel Wright
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Thomas A. Bowden
- Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Oxford OX1 2JD, UK
| | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
42
|
Lindahl JF, Ragan IK, Rowland RR, Wainaina M, Mbotha D, Wilson W. A multiplex fluorescence microsphere immunoassay for increased understanding of Rift Valley fever immune responses in ruminants in Kenya. J Virol Methods 2019; 269:70-76. [PMID: 30974177 DOI: 10.1016/j.jviromet.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/07/2019] [Accepted: 04/07/2019] [Indexed: 10/27/2022]
Abstract
Rift Valley fever virus (RVFV) is an important mosquito-borne pathogen with devastating impacts on agriculture and public health. With outbreaks being reported beyond the continent of Africa to the Middle East, there is great concern that RVFV will continue to spread to non-endemic areas such as the Americas and Europe. There is a need for safe and high throughput serological assays for rapid detection of RVFV during outbreaks and for surveillance. We evaluated a multiplexing fluorescence microsphere immunoassay (FMIA) for the detection of IgG and IgM antibodies in ruminant sera against the RVFV nucleocapsid Np, glycoprotein Gn, and non-structural protein NSs. Sheep and cattle sera from a region in Kenya with previous outbreaks were tested by FMIA and two commercially available competitive ELISAs (BDSL and IDvet). Our results revealed strong detection of RVFV antibodies against the Np, Gn and NSs antigen targets. Additionally, testing of samples with FMIA Np and Gn had 100% agreement with the IDvet ELISA. The targets developed in the FMIA assay provided a basis for a larger ruminant disease panel that can simultaneously screen several abortive and zoonotic pathogens.
Collapse
Affiliation(s)
- Johanna F Lindahl
- International Livestock Research Institute, Nairobi, Kenya; Zoonosis Science Center, Uppsala University, Uppsala, Sweden; Swedish University of Agricultural Research, Uppsala, Sweden.
| | - Izabela K Ragan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Deborah Mbotha
- International Livestock Research Institute, Nairobi, Kenya; Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | - William Wilson
- Arthropod-Borne Animal Diseases Research Unit, USDA, ARS, Manhattan, KS, USA
| |
Collapse
|
43
|
Msimang V, Thompson PN, Jansen van Vuren P, Tempia S, Cordel C, Kgaladi J, Khosa J, Burt FJ, Liang J, Rostal MK, Karesh WB, Paweska JT. Rift Valley Fever Virus Exposure amongst Farmers, Farm Workers, and Veterinary Professionals in Central South Africa. Viruses 2019; 11:v11020140. [PMID: 30736488 PMCID: PMC6409972 DOI: 10.3390/v11020140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
Rift Valley fever (RVF) is a re-emerging arboviral disease of public health and veterinary importance in Africa and the Arabian Peninsula. Major RVF epidemics were documented in South Africa in 1950⁻1951, 1974⁻1975, and 2010⁻2011. The number of individuals infected during these outbreaks has, however, not been accurately estimated. A total of 823 people in close occupational contact with livestock were interviewed and sampled over a six-month period in 2015⁻2016 within a 40,000 km² study area encompassing parts of the Free State and Northern Cape provinces that were affected during the 2010⁻2011 outbreak. Seroprevalence of RVF virus (RVFV) was 9.1% (95% Confidence Interval (CI95%): 7.2⁻11.5%) in people working or residing on livestock or game farms and 8.0% in veterinary professionals. The highest seroprevalence (SP = 15.4%; CI95%: 11.4⁻20.3%) was detected in older age groups (≥40 years old) that had experienced more than one known large epidemic compared to the younger participants (SP = 4.3%; CI95%: 2.6⁻7.3%). The highest seroprevalence was in addition found in people who injected animals, collected blood samples (Odds ratio (OR) = 2.3; CI95%: 1.0⁻5.3), slaughtered animals (OR = 3.9; CI95%: 1.2⁻12.9) and consumed meat from an animal found dead (OR = 3.1; CI95%: 1.5⁻6.6), or worked on farms with dams for water storage (OR = 2.7; CI95%: 1.0⁻6.9). We estimated the number of historical RVFV infections of farm staff in the study area to be most likely 3849 and 95% credible interval between 2635 and 5374 based on seroprevalence of 9.1% and national census data. We conclude that human RVF cases were highly underdiagnosed and heterogeneously distributed. Improving precautions during injection, sample collection, slaughtering, and meat processing for consumption, and using personal protective equipment during outbreaks, could lower the risk of RVFV infection.
Collapse
Affiliation(s)
- Veerle Msimang
- Epidemiology Section, Department of Animal Production Studies; Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham 2192, South Africa.
| | - Peter N Thompson
- Epidemiology Section, Department of Animal Production Studies; Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.
| | - Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham 2192, South Africa.
| | - Stefano Tempia
- MassGenics, Duluth, GA 30026, USA.
- Influenza Division, Centers for Disease Control and Prevention, Pretoria 0001, South Africa; Influenza Division and Centers for Disease Control and Prevention, Atlanta, GA 30301, USA.
| | | | - Joe Kgaladi
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham 2192, South Africa.
| | - Jimmy Khosa
- National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham 2192, South Africa.
| | - Felicity J Burt
- Division of Virology, National Health Laboratory Service and Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | | | | | | | - Janusz T Paweska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham 2192, South Africa.
| |
Collapse
|
44
|
Rift Valley fever: An open-source transmission dynamics simulation model. PLoS One 2019; 14:e0209929. [PMID: 30625221 PMCID: PMC6326482 DOI: 10.1371/journal.pone.0209929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/13/2018] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever (RVF) is one of the major viral zoonoses in Africa, affecting humans and several domestic animal species. The epidemics in eastern Africa occur in a 5-15 year cycle coinciding with abnormally high rainfall generally associated to the warm phase of the El Niño event. However, recently, evidence has been gathered of inter-epidemic transmission. An open-source, easily applicable, accessible and modifiable model was built to simulate the transmission dynamics of RVF. The model was calibrated using data collected in the Kilombero Valley in Tanzania with people and cattle as host species and Ædes mcintoshi, Æ. ægypti and two Culex species as vectors. Simulations were run over a period of 27 years using standard parameter values derived from two previous studies in this region. Our model predicts low-level transmission of RVF, which is in line with epidemiological studies in this area. Emphasis in our simulation was put on both the dynamics and composition of vector populations in three ecological zones, in order to elucidate the respective roles played by different vector species: the model output did indicate the necessity of Culex involvement and also indicated that vertical transmission in Ædes mcintoshi may be underestimated. This model, being built with open-source software and with an easy-to-use interface, can be adapted by researchers and control program managers to their specific needs by plugging in new parameters relevant to their situation and locality.
Collapse
|
45
|
CD4 T Cells, CD8 T Cells, and Monocytes Coordinate To Prevent Rift Valley Fever Virus Encephalitis. J Virol 2018; 92:JVI.01270-18. [PMID: 30258000 DOI: 10.1128/jvi.01270-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an arbovirus that causes disease in livestock and humans in Africa and the Middle East. While human disease is typically mild and self-limiting, some individuals develop severe manifestations, such as hepatitis, hemorrhagic fever, or encephalitis. Encephalitis occurs 2 to 3 weeks after acute illness; therefore, we hypothesized that it was a result of an inadequate adaptive immunity. To test this hypothesis in vivo, we used an attenuated virus (DelNSsRVFV) that does not typically cause disease in mice. We first characterized the normal immune response to infection with DelNSsRVFV in immunocompetent mice and noted expansion of natural killer cells and monocytes, as well as activation of both CD8 and CD4 T cells. Depleting C57BL/6 mice of CD4 T cells prior to DelNSsRVFV infection resulted in encephalitis in 30% of the mice; in encephalitic mice, we noted infiltration of T cells and inflammatory monocytes into the brain. CD4 and CD8 codepletion in C57BL/6 mice, as well as CD4 depletion in CCR2 knockout mice, increased the frequency of encephalitis, demonstrating that these cell types normally contributed to the prevention of disease. Encephalitic mice had similar viral RNA loads in the brain regardless of which cell types were depleted, suggesting that CD4 T cells, CD8 T cells, and inflammatory monocytes did little to control viral replication in the brain. CD4-depleted mice exhibited diminished humoral and T cell memory responses, suggesting that these immune mechanisms contributed to peripheral control of virus, thus preventing infection of the brain.IMPORTANCE RVFV is found in Africa and the Middle East and is transmitted by mosquitos or through contact with infected animals. Infected individuals can develop mild disease or more severe forms, such as hepatitis or encephalitis. In order to understand why some individuals develop encephalitis, we first need to know which immune functions protect those who do not develop this form of disease. In this study, we used a mouse model of RVFV infection to demonstrate that CD4 T cells, CD8 T cells, and monocytes all contribute to prevention of encephalitis. Their likely mechanism of action is preventing RVFV from ever reaching the brain.
Collapse
|
46
|
Walters AW, Kujawa MR, Albe JR, Reed DS, Klimstra WB, Hartman AL. Vascular permeability in the brain is a late pathogenic event during Rift Valley fever virus encephalitis in rats. Virology 2018; 526:173-179. [PMID: 30396029 DOI: 10.1016/j.virol.2018.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/08/2018] [Accepted: 10/19/2018] [Indexed: 01/19/2023]
Abstract
Rift Valley fever virus (RVFV) is a zoonotic disease of livestock that causes several clinical outcomes in people including febrile disease, hemorrhagic fever, and/or encephalitis. After aerosol infection with RVFV, Lewis rats develop lethal encephalitic disease, and we use this as a model for studying disease mechanisms of RVFV infection in the brain. Permeability of the brain vasculature in relation to virus invasion and replication is not known. Here, we found that vascular permeability in the brain occurred late in the course of infection and corresponded temporally to expression of matrix metalloproteinase-9 (MMP-9). Virus replication was ongoing within the central nervous system for several days prior to detectable vascular leakage. Based on this study, vascular permeability was not required for entry of RVFV into the brain of rats. Prevention of vascular leakage late in infection may be an important component for prevention of lethal neurological disease in the rat model.
Collapse
Affiliation(s)
- Aaron W Walters
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Michael R Kujawa
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Joseph R Albe
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Zhao Y, Zheng X, He S, Li Y, Wang W, Gai W, Wong G, Wang H, Yan F, Xue F, Feng N, Wang T, Gao Y, Yang S, Qiu X, Xia X. Equine immunoglobulin F(ab') 2 fragments protect mice from Rift Valley fever virus infection. Int Immunopharmacol 2018; 64:217-222. [PMID: 30199846 DOI: 10.1016/j.intimp.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Rift Valley fever virus (RVFV) is an emerging arbovirus in Africa and the Arabian Peninsula, in which infection with RVFV poses a serious threat to humans and livestock globally. Approved treatments for RVFV infection, especially for use in humans, have not yet been developed. There is an urgent need for effective drugs to prevent RVFV disease. METHODS In previous study, we developed RVFV virus like particles (VLPs) expressing the surface glycoproteins Gn and Gc. The morphology was shown to be similar to live RVFV under electron microscopy. In this study, we immunized horses with RVFV VLPs, prepared the immunoglobulin F(ab')2 fragments, and characterized its in vitro neutralization and in vivo efficacy in mice. RESULTS F(ab')2 was found to potently neutralize RVFV in VeroE6 cells, and passive transfer of immunoglobulin F(ab')2 fragments resulting in reduced mortality in RVFV infected mice. CONCLUSION Our results show that passive immunotherapy with equine immunoglobulin F(ab')2 fragments is a promising strategy to treat RVFV infections.
Collapse
Affiliation(s)
- Yongkun Zhao
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China
| | - Shihua He
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg R3E3R2, Canada
| | - Yuetao Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Wei Wang
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China; Department of Bone Metabolism, School of Stomatology, Shandong University, Jinan 250012, China
| | - Weiwei Gai
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China
| | - Gary Wong
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg R3E3R2, Canada
| | - Hualei Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Feihu Yan
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China
| | - Feng Xue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Feng
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Tiecheng Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Yuwei Gao
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Songtao Yang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China.
| | - Xiangguo Qiu
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg R3E3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg R3E0J9, Canada.
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
48
|
Ahmed A, Makame J, Robert F, Julius K, Mecky M. Sero-prevalence and spatial distribution of Rift Valley fever infection among agro-pastoral and pastoral communities during Interepidemic period in the Serengeti ecosystem, northern Tanzania. BMC Infect Dis 2018; 18:276. [PMID: 29898686 PMCID: PMC6001121 DOI: 10.1186/s12879-018-3183-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/03/2018] [Indexed: 11/30/2022] Open
Abstract
Background In the past two decades, Rift Valley Fever (RVF) outbreaks have been reported twice in Tanzania, with the most recent outbreak occurring in 2006/07. Given the ecology and climatic factors that support mosquito vectors in the Serengeti ecosystem, we hypothesized a continued transmission of RVF virus (RVFV) during interepidemic periods. This study was carried out to determine sero-prevalence, spatial distribution and factors associated with RVF in at-risk agro-pastoral and pastoral communities in the Serengeti Ecosystem in northern Tanzania. Methods A cross sectional study was carried out to establish the general exposure to RVFV by detecting anti–RVFV IgG and anti–RVFV IgM using ELISA techniques. The health facilities where human subjects were blood sampled concurrent with interviews included Bunda District Designated Hospital, Wasso DDH, Endulen hospital, Arash, Malambo, Olbabal, and Piyaya dispenaries (Ngorongoro district) and Nyerere DDH (Serengeti district) respectively. In addition, human subjects from Lamadi ward (Busega district) were recruited while receiving medical service at Bunda DDH. We conducted logistic regression to assess independent risk factor and mapped the hotspot areas for exposure to RVFV. Results A total of 751 subjects (males = 41.5%; females = 58.5%) with a median age of 35.5 years were enrolled at out-patient clinics. Of them, 34 (4.5, 95%CI 3.3–6.3%) tested positive for anti–RVFV IgG. Of the 34 that tested positive for anti–RVFV IgG, six (17.6%) tested positive for anti–RVFV IgM. Odds of exposure were higher among pastoral communities (aOR 2.9, 95% C.I: 1.21–6.89, p < 0.01), and agro-pastoral communities residing in Ngorongoro District (aOR 1.8, 95% C.I 1.14–3.39, p = 0.03). Hotspot areas for exposure to RVFV were Malambo, Olbalbal and Piyaya wards in Ngorongoro district, and Lamadi ward in Busega district. Conclusions The study found both previous and recent exposure of RVFV in humans residing in the Serengeti ecosystem as antibodies against both IgG and IgM were detected. Detection of anti-RVF IgM suggests an ongoing transmission of RVFV in humans during inter-epidemic periods. Residents of Ngorongoro district were most exposed to RVFV compared to Bunda and Serengeti districts. Therefore, the risk of exposure to RVFV was higher among pastoral communities compared to farming communities.
Collapse
Affiliation(s)
- Abade Ahmed
- Tanzania Field Epidemiology and Laboratory Training Program, Ministry of Health, Community Development, Gender, Elderly and Children, P.O Box 71286, Ocean Road, Dar es Salaam, Tanzania.
| | - Jabir Makame
- Tanzania Field Epidemiology and Laboratory Training Program, Ministry of Health, Community Development, Gender, Elderly and Children, P.O Box 71286, Ocean Road, Dar es Salaam, Tanzania.,Department of Microbiology and Immunology, Muhimbili University of Health and Allied Science, Dar es Salaam, Tanzania
| | | | - Keyyu Julius
- Tanzania Wildlife Research Institute, Arusha, Tanzania
| | - Matee Mecky
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Science, Dar es Salaam, Tanzania
| |
Collapse
|
49
|
Rift Valley fever in animals and humans: Current perspectives. Antiviral Res 2018; 156:29-37. [PMID: 29857007 DOI: 10.1016/j.antiviral.2018.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 02/03/2023]
Abstract
Rift Valley fever (RVF) is an ecologically complex emerging arboviral disease that causes significant illness in both livestock and people. This review article is designed to assist the reader in understanding the varied aspects of RVF disease in animals and humans. The historical facets of RVF disease, including the evolution of human outbreaks, are presented and discussed. The different clinical presentations of human RVF disease and the underlying causes are then addressed. We explore the exposure and transmission potential of RVF in animals and people. In the concluding section, we discuss the historical role of RVF as a biological weapon. We conclude with an outline of the important unanswered questions for ongoing research into this important zoonotic disease.
Collapse
|
50
|
Oyas H, Holmstrom L, Kemunto NP, Muturi M, Mwatondo A, Osoro E, Bitek A, Bett B, Githinji JW, Thumbi SM, Widdowson MA, Munyua PM, Njenga MK. Enhanced surveillance for Rift Valley Fever in livestock during El Niño rains and threat of RVF outbreak, Kenya, 2015-2016. PLoS Negl Trop Dis 2018; 12:e0006353. [PMID: 29698487 PMCID: PMC5919633 DOI: 10.1371/journal.pntd.0006353] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background In mid-2015, the United States’ Pandemic Prediction and Forecasting Science and Technical Working Group of the National Science and Technology Council, Food and Agriculture Organization Emergency Prevention Systems, and Kenya Meteorological Department issued an alert predicting a high possibility of El-Niño rainfall and Rift Valley Fever (RVF) epidemic in Eastern Africa. Methodology/Principal findings In response to the alert, the Kenya Directorate of Veterinary Services (KDVS) carried out an enhanced syndromic surveillance system between November 2015 and February 2016, targeting 22 RVF high-risk counties in the country as identified previously through risk mapping. The surveillance collected data on RVF-associated syndromes in cattle, sheep, goats, and camels from >1100 farmers through 66 surveillance officers. During the 14-week surveillance period, the KDVS received 10,958 reports from participating farmers and surveillance officers, of which 362 (3.3%) had at least one syndrome. The reported syndromes included 196 (54.1%) deaths in young livestock, 133 (36.7%) abortions, and 33 (9.1%) hemorrhagic diseases, with most occurring in November and December, the period of heaviest rainfall. Of the 69 herds that met the suspect RVF herd definition (abortion in flooded area), 24 (34.8%) were defined as probable (abortions, mortalities in the young ones, and/or hemorrhagic signs) but none were confirmed. Conclusion/Significance This surveillance activity served as an early warning system that could detect RVF disease in animals before spillover to humans. It was also an excellent pilot for designing and implementing syndromic surveillance in animals in the country, which is now being rolled out using a mobile phone-based data reporting technology as part of the global health security system. Occurrence of Rift Valley Fever (RVF) outbreak is associated with heavy El-Niño rainfall. In July 2015, an alert on the likelihood of El-Niño rainfall and RVF outbreak in Eastern Africa region was issued by the United States, Food and Agriculture Organization, and Kenya Meteorological Department. In response to the alert, the Kenya Directorate of Veterinary Services (KDVS) carried out an enhanced syndromic surveillance system between November 2015 and February 2016 in the 22 counties that had previously been identified as RVF high-risk counties. The surveillance system collected data on RVF-associated syndromes and risk factors in cattle, sheep, goats and camels from more than 1100 farmers. Of the 10,958 field reports submitted, 45 were consistent with suspect RVF disease and 24 of these identified as probable RVF, triggering an immediate response. Whereas investigations of the suspect cases and laboratory testing did not confirm RVF cases, the surveillance system served as an excellent early warning system that could detect disease in animal before spillover to humans.
Collapse
Affiliation(s)
- Harry Oyas
- Veterinary Epidemiology and Economics Unit, Kenya Ministry of Agriculture, livestock and Fisheries, Nairobi, Kenya
| | - Lindsey Holmstrom
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Naomi P. Kemunto
- Washington State University Global Health Program-Kenya, Washington State University, Nairobi, Kenya
| | - Matthew Muturi
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Athman Mwatondo
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Eric Osoro
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Austine Bitek
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Bernard Bett
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Jane W. Githinji
- Veterinary Epidemiology and Economics Unit, Kenya Ministry of Agriculture, livestock and Fisheries, Nairobi, Kenya
| | - Samuel M. Thumbi
- Washington State University Global Health Program-Kenya, Washington State University, Nairobi, Kenya
| | - Marc-Alain Widdowson
- Division of Global Health Protection, United States’ Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Peninah M. Munyua
- Division of Global Health Protection, United States’ Centers for Disease Control and Prevention, Nairobi, Kenya
| | - M. Kariuki Njenga
- Washington State University Global Health Program-Kenya, Washington State University, Nairobi, Kenya
- * E-mail:
| |
Collapse
|