1
|
Chen Y, Lu S, Shan S, Wu W, He X, Farag MA, Chen W, Zhao C. New insights into phytochemicals via protein glycosylation focused on aging and diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156673. [PMID: 40220419 DOI: 10.1016/j.phymed.2025.156673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Protein glycosylation as a common post-translational modification that has significant impacts on protein folding, enzymatic activity, and interfering with receptor functioning. In recent years, with the rapid development of glycopeptide enrichment and analysis technology and the deepening of glycosylation research, glycosylation has gradually become a sign of disease occurrence and development. Multiple investigations suggest that protein glycosylation affect the advances of diabetes and aging. PURPOSE AND METHODS This review was focused on the action mechanisms of glycosylated proteins production, permanent abnormalities in extracellular matrix component function, inflammatory and reactive oxygen species production, as well as the glycosylated characterizations of diabetes and aging. Further, advances in glycosylation analysis and detection methods are presented for the first time, highlighting for needed future developments. All literatures were gathered from PubMed and Google Scholar. RESULTS Herein, we review how protein glycosylation impacts the progression of diabetes and aging. Specifically, we focus on various types of glycosylation, including N-linked glycosylation, O-linked glycosylation, C-glycosylation, S-glycosylation, and glycophosphatidylinositol (GPI) anchors. N-linked glycosylation and O-linked glycosylation are commonly observed glycosylation forms, wherein O-GlcNAcylation plays a significant role in diabetes, while N-glycan could serve as biomarkers for identifying inflammation and aging. CONCLUSIONS Protein glycosylation produces a vastly larger number of core glycan structures through utilizing at least 173 glycosyltransferases and repeated common scaffolds. Single protein may contain multiple glycosylation sites, and the structure and occupancy of glycan at each site may be different, resulting in the macro heterogeneity of protein glycosylation. This review will contribute to how protein glycosylation impacts the life progress of cells and its association with diseases.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Suyue Lu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuo Shan
- University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| | - Weihao Wu
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Xinxin He
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
He T, Qian W. Immunologic derangement caused by intestinal dysbiosis and stress is the intrinsic basis of reactive arthritis. Z Rheumatol 2024; 83:305-313. [PMID: 38403666 PMCID: PMC11655581 DOI: 10.1007/s00393-024-01480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Reactive arthritis (ReA) is defined as arthritis resulting from infections in other body parts, such as the gastrointestinal and urogenital tracts. The primary clinical manifestations involve acute-onset and self-limiting asymmetric large joint inflammation in the lower limbs. Although bacterial or chlamydia infections have long been recognized as playing a pivotal role in its pathogenesis, recent studies suggest that antibiotic treatment may perpetuate rather than eradicate chlamydia within the host, indicating an involvement of other mechanisms in Reactive arthritis. Reactive arthritis is currently believed to be associated with infection, genetic marker (HLA-B27), and immunologic derangement. As an autoimmune disease, increasing attention has been given to understanding the role of the immune system in Reactive arthritis. This review focuses on elucidating how the immune system mediates reactive arthritis and explores the roles of intestinal dysbiosis-induced immune disorders and stress-related factors in autoimmune diseases, providing novel insights into understanding reactive arthritis.
Collapse
Affiliation(s)
- Tao He
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiqing Qian
- Nanjing City Hospital of Chinese Medicine, 157, Daming Road, Nanjing, Qinhuai District, China.
| |
Collapse
|
3
|
Xue Y, Lin S, Chen M, Ke J, Zhang J, Fan Q, Chen Y, Chen F. Altered colonic microflora and its metabolic profile in mice with acute viral myocarditis induced by coxsackievirus B3. Virol J 2024; 21:295. [PMID: 39550578 PMCID: PMC11568606 DOI: 10.1186/s12985-024-02571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Mounting evidence suggests that the gut-heart axis is critical in the pathogenesis of cardiovascular diseases. The gut serves as the primary pathway through which Coxsackievirus B3 (CVB3) infects its host, leading to acute viral myocarditis (AVMC). However, little is known about the role of gut microflora and its metabolites in the development of AVMC. The AVMC model was established by intraperitoneal injection of CVB3 in mice. Then, 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) untargeted metabolomics profiling were performed to analyze the microflora composition and metabolic profile of colonic contents. Compared to the Control mice, the AVMC mice displayed a significant reduction in gut microflora richness and diversity, as revealed by an increased abundance of Proteobacteria and a decreased abundance of Cyanobacteria and Desulfobacterota. LEfSe analysis indicated that the main genera differing between the two groups were Escherichia-Shigella, Lactobacillus, Clostridium_sensu_stricto_1, Prevotellaceae_UCG-001, and Odoribacter. Based on the criterion of OPLS-DA VIP ≥ 1.0 and p-value < 0.05, a total of 198 differential metabolites (DMs) were identified in the gut, including 79 upregulated and 119 downregulated metabolites, of which lipids and lipid-like molecules accounted for the largest proportion. Notably, both altered gut bacterial taxa and metabolites were significantly enriched in the Lipid metabolism pathway, with Traumatic acid (TA), Alpha-Linolenic acid (ALA), Eicosapentaenoic acid (EPA), and Docosahexaenoic acid (DHA) being the key DMs in the pathway. Additionally, significant positive correlations (|r| > 0.80 and p < 0.05) were found between TA levels and Anaerotruncus and Bilophila abundance, between EPA levels and Clostridium_sensu_stricto_1 abundance, and between DHA levels and Escherichia-Shigella abundance, respectively. CVB3 infection leads to notable alterations in gut microflora composition and its metabolic profile, which may participate in AVMC development. Our findings provide important clues for future in-depth studies on AVMC etiology.
Collapse
Affiliation(s)
- Yimin Xue
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Shirong Lin
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Mingguang Chen
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jun Ke
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jiuyun Zhang
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Qiaolian Fan
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Yimei Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Feng Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
4
|
Sun Y, Li Z, Yan M, Zhao H, He Z, Zhu M. Responses of Intestinal Antioxidant Capacity, Morphology, Barrier Function, Immunity, and Microbial Diversity to Chlorogenic Acid in Late-Peak Laying Hens. Animals (Basel) 2024; 14:2957. [PMID: 39457887 PMCID: PMC11503754 DOI: 10.3390/ani14202957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
This study examined the influence of chlorogenic acid (CGA) on gut antioxidant status, morphology, barrier function, immunity, and cecal microbiota in late-peak laying hens. A total of 240 Hy-Line Brown hens, aged 43 weeks, were randomly assigned to four groups, the basal diet +0, 400, 600, and 800 mg/kg CGA, for 12 weeks. The results revealed that CGA significantly reduced ileal H2O2 and malondialdehyde levels; increased duodenal height, ileal villus height, and villus height-to-crypt depth ratio; while decreasing jejunal crypt depth. The 600 and 800 mg/kg CGA significantly upregulated the duodenal, jejunal, and ileal ZO-1 and occludin gene expression; increased IgG levels in serum and ileum; and upregulated ileal IgA gene expression. The 600 mg/kg CGA significantly upregulated CD3D and CD4 gene expression, while downregulating IL-1β gene expression in duodenum, jejunum, and ileum. Moreover, CGA changed the gut microbiota structure. The SCFA-producing bacteria unclassified_f__Peptostreptococcaceae, unclassified_f_Oscillospiraceae, Pseudoflavonifractor, Lachnospiraceae_FCS020_group, Oscillospira, Elusimicrobium, Eubacterium_ventriosum_group, Intestinimonas, and norank_f_Coriobacteriales_Incertae_Sedis were significantly enriched in the 400, 600, and/or 800 mg/kg CGA groups. The bacteria Lactobacillus, Bacillus, and Akkermansia were significantly enriched in the 600 mg/kg CGA group. Conclusively, dietary CGA (600-800 mg/kg) improved intestinal antioxidant status, morphology, barrier and immune function, and beneficial microbiota growth in late-peak laying hens.
Collapse
Affiliation(s)
- Yue Sun
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhuang Li
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ming Yan
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haitong Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhengxing He
- Dantu Borough Animal Disease Prevention and Control Center, Zhenjiang 212100, China;
| | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
5
|
Panaro MA, Budriesi R, Calvello R, Cianciulli A, Mattioli LB, Corazza I, Rotondo NP, Porro C, Lamonaca A, Ferraro V, Muraglia M, Corbo F, Clodoveo ML, Monaci L, Cavalluzzi MM, Lentini G. Lentil Waste Extracts for Inflammatory Bowel Disease (IBD) Symptoms Control: Anti-Inflammatory and Spasmolytic Effects. Nutrients 2024; 16:3327. [PMID: 39408293 PMCID: PMC11478658 DOI: 10.3390/nu16193327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES In the contest of agro-industrial waste valorization, we focused our attention on lentil seed coats as a source of health-promoting phytochemicals possibly useful in managing inflammatory bowel diseases (IBDs), usually characterized by inflammation and altered intestinal motility. METHODS Both traditional (maceration) and innovative microwave-assisted extractions were performed using green solvents, and the anti-inflammatory and spasmolytic activities of the so-obtained extracts were determined through in vitro and ex vivo assays, respectively. RESULTS The extract obtained through the microwave-assisted procedure using ethyl acetate as the extraction solvent (BEVa) proved to be the most useful in inflammation and intestinal motility management. In LPS-activated Caco-2 cells, BEVa down-regulated TLR4 expression, reduced iNOS expression and the pro-inflammatory cytokine IL-1 production, and upregulated the anti-inflammatory cytokine IL-10 production, thus positively affecting cell inflammatory responses. Moreover, a significant decrease in the longitudinal and circular tones of the guinea pig ileum, with a reduction of transit speed and pain at the ileum level, together with reduced transit speed, pain, and muscular tone at the colon level, was observed with BEVa. HPLC separation combined with an Orbitrap-based high-resolution mass spectrometry (HRMS) technique indicated that 7% of all the identified metabolites were endowed with proven anti-inflammatory and antispasmodic activities, among which niacinamide, apocynin, and p-coumaric acid were the most abundant. CONCLUSIONS Our results suggest that lentil hull extract consumption could contribute to overall intestinal health maintenance, with BEVa possibly representing a dietary supplementation and a promising approach to treating intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.A.P.); (R.C.)
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (R.B.); (L.B.M.)
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.A.P.); (R.C.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.A.P.); (R.C.)
| | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (R.B.); (L.B.M.)
| | - Ivan Corazza
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy;
| | - Natalie Paola Rotondo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy;
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
- Department of Soil, Plant and Food Sciences, University Aldo Moro-Bari, 70126 Bari, Italy
| | - Valeria Ferraro
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| | - Marilena Muraglia
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| | - Filomena Corbo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari, 70124 Bari, Italy;
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| | - Giovanni Lentini
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, 70126 Bari, Italy; (N.P.R.); (V.F.); (M.M.); (F.C.); (G.L.)
| |
Collapse
|
6
|
Fellows RC, Chun SK, Larson N, Fortin BM, Mahieu AL, Song WA, Seldin MM, Pannunzio NR, Masri S. Disruption of the intestinal clock drives dysbiosis and impaired barrier function in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1458. [PMID: 39331712 PMCID: PMC11430476 DOI: 10.1126/sciadv.ado1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Diet is a robust entrainment cue that regulates diurnal rhythms of the gut microbiome. We and others have shown that disruption of the circadian clock drives the progression of colorectal cancer (CRC). While certain bacterial species have been suggested to play driver roles in CRC, it is unknown whether the intestinal clock impinges on the microbiome to accelerate CRC pathogenesis. To address this, genetic disruption of the circadian clock, in an Apc-driven mouse model of CRC, was used to define the impact on the gut microbiome. When clock disruption is combined with CRC, metagenomic sequencing identified dysregulation of many bacterial genera including Bacteroides, Helicobacter, and Megasphaera. We identify functional changes to microbial pathways including dysregulated nucleic acid, amino acid, and carbohydrate metabolism, as well as disruption of intestinal barrier function. Our findings suggest that clock disruption impinges on microbiota composition and intestinal permeability that may contribute to CRC pathogenesis.
Collapse
Affiliation(s)
- Rachel C. Fellows
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Natalie Larson
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Xie L, Chen T, Li H, Xiao J, Wang L, Kim SK, Huang Z, Xie J. An Exopolysaccharide from Genistein-Stimulated Monascus Purpureus: Structural Characterization and Protective Effects against DSS-Induced Intestinal Barrier Injury Associated with the Gut Microbiota-Modulated Short-Chain Fatty Acid-TLR4/MAPK/NF-κB Cascade Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7476-7496. [PMID: 38511260 DOI: 10.1021/acs.jafc.3c09290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease is a major health problem that can lead to prolonged damage to the digestive system. This study investigated the effects of an exopolysaccharide from genistein-stimulated Monascus purpureus (G-EMP) in a mouse model of colitis to clarify its molecular mechanisms and identified its structures. G-EMP (Mw = 56.4 kDa) was primarily consisted of → 4)-α-D-Galp-(1 →, → 2,6)-α-D-Glcp-(1→ and →2)-β-D-Manp-(1 → , with one of the branches being α-D-Manp-(1 →. G-EMP intervention reduced the loss of body weight, degree of colonic damage and shortening, disease activity index scores, and histopathology scores, while restoring goblet cell production and oxidative homeostasis, repairing colonic functions, and regulating inflammatory cytokines. RNA sequencing and Western blot analysis indicated that G-EMP exerts anti-inflammatory properties by suppressing the TLR4/MAPK/NF-κB inflammatory signaling pathway. G-EMP modulated the gut microbiota by improving its diversities, elevating the relative abundances of beneficial bacteria, declining the Firmicutes/Bacteroidota value, and regulating the level of short-chain fatty acids (SCFAs). Correlation analysis demonstrated strong links between SCFAs, gut microbiota, and the inflammatory response, indicating the potential of G-EMP to prevent colitis.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jindan Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Linchun Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
8
|
Zhu L, Cao F, Hu Z, Zhou Y, Guo T, Yan S, Xie Q, Xia X, Yuan H, Li G, Luo F, Lin Q. Cyanidin-3-O-Glucoside Alleviates Alcoholic Liver Injury via Modulating Gut Microbiota and Metabolites in Mice. Nutrients 2024; 16:694. [PMID: 38474822 DOI: 10.3390/nu16050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Alcoholic liver disease (ALD) is primarily caused by long-term excessive alcohol consumption. Cyanidin-3-O-glucoside (C3G) is a widely occurring natural anthocyanin with multiple biological activities. This study aims to investigate the effects of C3G isolated from black rice on ALD and explore the potential mechanism. C57BL/6J mice (male) were fed with standard diet (CON) and Lieber-DeCarli liquid-fed (Eth) or supplemented with a 100 mg/kg/d C3G Diet (Eth-C3G), respectively. Our results showed that C3G could effectively ameliorate the pathological structure and liver function, and also inhibited the accumulation of liver lipids. C3G supplementation could partially alleviate the injury of intestinal barrier in the alcohol-induced mice. C3G supplementation could increase the abundance of Norank_f_Muribaculaceae, meanwhile, the abundances of Bacteroides, Blautia, Collinsella, Escherichia-Shigella, Enterococcus, Prevotella, [Ruminococcus]_gnavus_group, Methylobacterium-Methylorubrum, Romboutsia, Streptococcus, Bilophila, were decreased. Spearman's correlation analysis showed that 12 distinct genera were correlated with blood lipid levels. Non-targeted metabolic analyses of cecal contents showed that C3G supplementation could affect the composition of intestinal metabolites, particularly bile acids. In conclusion, C3G can attenuate alcohol-induced liver injury by modulating the gut microbiota and metabolites, suggesting its potential as a functional food ingredient against alcoholic liver disease.
Collapse
Affiliation(s)
- Lingfeng Zhu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuliang Cao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zuomin Hu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yaping Zhou
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianyi Guo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Sisi Yan
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiutao Xie
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xinxin Xia
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongyan Yuan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
9
|
Skoufou M, Tsigalou C, Vradelis S, Bezirtzoglou E. The Networked Interaction between Probiotics and Intestine in Health and Disease: A Promising Success Story. Microorganisms 2024; 12:194. [PMID: 38258020 PMCID: PMC10818559 DOI: 10.3390/microorganisms12010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Probiotics are known to promote human health either precautionary in healthy individuals or therapeutically in patients suffering from certain ailments. Although this knowledge was empirical in past tomes, modern science has already verified it and expanded it to new limits. These microorganisms can be found in nature in various foods such as dairy products or in supplements formulated for clinical or preventive use. The current review examines the different mechanisms of action of the probiotic strains and how they interact with the organism of the host. Emphasis is put on the clinical therapeutic use of these beneficial microorganisms in various clinical conditions of the human gastrointestinal tract. Diseases of the gastrointestinal tract and particularly any malfunction and inflammation of the intestines seriously compromise the health of the whole organism. The interaction between the probiotic strains and the host's microbiota can alleviate the clinical signs and symptoms while in some cases, in due course, it can intervene in the underlying pathology. Various safety issues of the use of probiotics are also discussed.
Collapse
Affiliation(s)
- Maria Skoufou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Proctology Department, Paris Saint Joseph Hospital Paris, 75014 Paris, France
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
10
|
Zhou Y, Liu X, Gao W, Luo X, Lv J, Wang Y, Liu D. The role of intestinal flora on tumor immunotherapy: recent progress and treatment implications. Heliyon 2024; 10:e23919. [PMID: 38223735 PMCID: PMC10784319 DOI: 10.1016/j.heliyon.2023.e23919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy, specifically immune checkpoint inhibitors, has emerged as a promising approach for treating malignant tumors. The gut, housing approximately 70 % of the body's immune cells, is abundantly populated with gut bacteria that actively interact with the host's immune system. Different bacterial species within the intestinal flora are in a delicate equilibrium and mutually regulate each other. However, when this balance is disrupted, pathogenic microorganisms can dominate, adversely affecting the host's metabolism and immunity, ultimately promoting the development of disease. Emerging researches highlight the potential of interventions such as fecal microflora transplantation (FMT) to improve antitumor immune response and reduce the toxicity of immunotherapy. These remarkable findings suggest the major role of intestinal flora in the development of cancer immunotherapy and led us to the hypothesis that intestinal flora transplantation may be a new breakthrough in modifying immunotherapy side effects.
Collapse
Affiliation(s)
- Yimin Zhou
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xiangdong Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xin Luo
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Junying Lv
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
11
|
Lin C, Fu J, Liu L, Wang H, Wei L. Disruption of intestinal structure, tight junction complex, immune response and microbiota after chronic exposure to copper in swamp eel (Monopterus albus). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109182. [PMID: 37879511 DOI: 10.1016/j.fsi.2023.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
As an essential micronutrient, copper is crucial in aquatic organisms' growth and development. Numerous studies have consistently reported that excessive intake of copper can have harmful effects on organisms. However, there are limited studies on the impact of copper on the intestine of the swamp eel (Monopterus albus). This study aimed to investigate the changes of intestinal histopathology, tight junction complex, immune response, and microbiota in swamp eel treated with 0 mg/L Cu2+, 0.05 mg/L Cu2+, and 0.10 mg/L Cu2+ for 56 d. Intestinal histopathology showed major changes such as the increased number of erythrocytes and goblet cells in the lamina propria, and separation of the lamina propria. The expression of genes involved in tight junction complex (ZO-1, Claudin-3, Claudin-12 and Claudin-15) was significantly changed. In addition, copper exposure significantly increased the mRNA levels of TLR3, TLR7, TLR8, NF-κB, I-κB, TNF-α and IL-8, especially in 0.10 mg/L Cu2+ group. In contrast, the relative expression level of anti-inflammatory cytokine TGF-β was significantly decreased after exposure to copper. Analysis of the intestinal microbiome showed the intestinal microbiota of swamp eels in the control and copper exposure groups were dominated by Firmicutes and Proteobacteria at the phylum level. Notably, copper exposure changed the diversity of the intestinal microbiota and decreased the relative abundance of Firmicutes and Proteobacteria in the intestine of swamp eel. Collectively, this study demonstrates that chronic copper exposure induces intestinal pathologic changes and inflammatory response, disrupts the intestinal microbial diversity and microbiota composition, and decreases intestinal barrier function in swamp eel, which enhances our understanding of copper-induced intestinal toxicity in fish.
Collapse
Affiliation(s)
- Changgao Lin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Jianping Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Lin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China.
| |
Collapse
|
12
|
Cheng J, Liu D, Huang Y, Chen L, Li Y, Yang Z, Fu S, Hu G. Phlorizin Mitigates Dextran Sulfate Sodium-Induced Colitis in Mice by Modulating Gut Microbiota and Inhibiting Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16043-16056. [PMID: 37856155 DOI: 10.1021/acs.jafc.3c01497] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Phlorizin (PHZ) is the main active component of apple peel and presents a potential application value. In the past few years, some reports have suggested that PHZ may have antioxidant and anti-inflammatory effects. Herein, we have attempted to assess the protective effects of PHZ on dextran sodium sulfate (DSS)-induced colitis in mice and to determine the underlying molecular mechanisms. Our results suggested that early intervention with PHZ (20, 40, and 80 mg/kg) significantly reduced the severity of DSS-induced colitis in mice, as presented by a longer colon, improved tight junction protein, decreased disease activity index, and attenuated inflammatory factors. Additionally, early intervention with + (20, 40, and 80 mg/kg) significantly inhibited ferroptosis by decreasing the surrogate ferroptosis marker levels (MDA and Iron Content). Additionally, PHZ (80 mg/kg) increased the diversity of intestinal flora in colitic mice by elevating the levels of beneficial bacteria (Lactobacillaceae and Muribaculaceae) and reducing the levels of harmful bacteria (Lachnospiraceae). This indirectly led to an increase in the amount of short-chain fatty acids. A fecal microbial transplantation (FMT) test was conducted to show that PHZ (80 mg/kg) ameliorated ulcerative colitis (UC) by regulating gut dysbiosis. In conclusion, early intervention with PHZ decreased DSS-induced colitis in mice by preserving their intestinal barrier and regulating their intestinal flora.
Collapse
Affiliation(s)
- Ji Cheng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yaping Huang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lisha Chen
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ying Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhanqing Yang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
Horseman TS, Frank AM, Shupp JW, Burmeister DM. Meta-Analysis of Publicly Available Clinical and Preclinical Microbiome Data From Studies of Burn Injury. J Burn Care Res 2023; 44:1041-1050. [PMID: 37352011 DOI: 10.1093/jbcr/irad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 06/25/2023]
Abstract
Following burn injury, alterations in host commensal microbiota across body spaces may leave patients susceptible to opportunistic pathogens and serious sequelae such as sepsis. Generally, studies examining the microbiome postburn have had a limited sample size and lack of longitudinal data, which coupled with experimental and analytic variation, impacts overall interpretation. We performed a meta-analysis of publicly available sequencing data from preclinical and clinical burn studies to determine if there were consistent alterations in the microbiome across various anatomical sites and hosts. Ten human and animal 16S rRNA sequencing studies spanning respiratory, urinary, cutaneous, and gastrointestinal microbiomes were included. Taxonomic classification and alpha and beta diversity metrics were analyzed using QIIME2 v2021.8. Alpha diversity was consistently higher in control samples compared to burn-injured samples which were also different based on host and anatomical location; however, phylogenetic evaluation (ie, Faith PD) elucidated more significant differences compared to taxonomic metrics (ie, Shannon entropy). Beta diversity analysis based on weighted UniFrac showed that rodent specimens clustered less closely to humans than pig samples for both rectal and skin sources. Host species and performing institute were found to have a significant impact on community structure. In rectal samples, bacterial composition in pig and human burn samples included Bacteroidetes, Firmicutes, and Proteobacteria, while rodent samples were dominated by Firmicutes. Proteobacteria and Firmicutes increased on burned skin in each host species. Our results suggest that host species and the performing institute strongly influence microbiome structure. Burn-induced alterations in microbiome diversity and taxa exist across hosts, with phylogenetic metrics more valuable than others. Coordinated, multicenter studies, both clinical and preclinical, within the burn community are needed to more completely realize the diagnostic and therapeutic potential of the microbiome for improving outcomes postburn.
Collapse
Affiliation(s)
- Timothy S Horseman
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrew M Frank
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeffrey W Shupp
- The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - David M Burmeister
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
14
|
Sun Y, Wang S, Liu B, Hu W, Zhu Y. Host-Microbiome Interactions: Tryptophan Metabolism and Aromatic Hydrocarbon Receptors after Traumatic Brain Injury. Int J Mol Sci 2023; 24:10820. [PMID: 37445997 DOI: 10.3390/ijms241310820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Traumatic brain injury refers to the damage caused to intracranial tissues by an external force acting on the head, leading to both immediate and prolonged harmful effects. Neuroinflammatory responses play a critical role in exacerbating the primary injury during the acute and chronic phases of TBI. Research has demonstrated that numerous neuroinflammatory responses are mediated through the "microbiota-gut-brain axis," which signifies the functional connection between the gut microbiota and the brain. The aryl hydrocarbon receptor (AhR) plays a vital role in facilitating communication between the host and microbiota through recognizing specific ligands produced directly or indirectly by the microbiota. Tryptophan (trp), an indispensable amino acid in animals and humans, represents one of the key endogenous ligands for AhR. The metabolites of trp have significant effects on the functioning of the central nervous system (CNS) through activating AHR signalling, thereby establishing bidirectional communication between the gut microbiota and the brain. These interactions are mediated through immune, metabolic, and neural signalling mechanisms. In this review, we emphasize the co-metabolism of tryptophan in the gut microbiota and the signalling pathway mediated by AHR following TBI. Furthermore, we discuss the impact of these mechanisms on the underlying processes involved in traumatic brain injury, while also addressing potential future targets for intervention.
Collapse
Affiliation(s)
- Yanming Sun
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Bingwei Liu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
15
|
Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FSL. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol 2023; 14:1098386. [PMID: 37051522 PMCID: PMC10083300 DOI: 10.3389/fmicb.2023.1098386] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Thousands of microorganisms compose the human gut microbiota, fighting pathogens in infectious diseases and inhibiting or inducing inflammation in different immunological contexts. The gut microbiome is a dynamic and complex ecosystem that helps in the proliferation, growth, and differentiation of epithelial and immune cells to maintain intestinal homeostasis. Disorders that cause alteration of this microbiota lead to an imbalance in the host’s immune regulation. Growing evidence supports that the gut microbial community is associated with the development and progression of different infectious and inflammatory diseases. Therefore, understanding the interaction between intestinal microbiota and the modulation of the host’s immune system is fundamental to understanding the mechanisms involved in different pathologies, as well as for the search of new treatments. Here we review the main gut bacteria capable of impacting the immune response in different pathologies and we discuss the mechanisms by which this interaction between the immune system and the microbiota can alter disease outcomes.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Cerutti Muller
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Daniel Marques Stuart Campos
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Department of Nursing, Universidade Federal do Maranhão, Imperatriz, Brazil
| | - Juliano Peruzzo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Renan Rangel Bonamigo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pathology, Universidade Federal De Ciências Da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Veit
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- *Correspondence: Fernanda Sales Luiz Vianna,
| |
Collapse
|
16
|
Mo K, Yu W, Li J, Zhang Y, Xu Y, Huang X, Ni H. Dietary supplementation with a microencapsulated complex of thymol, carvacrol, and cinnamaldehyde improves intestinal barrier function in weaning piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1994-2003. [PMID: 36347590 DOI: 10.1002/jsfa.12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The authors previously prepared a microencapsulated complex of thymol, carvacrol, and cinnamaldehyde (MEEO). This study aimed to evaluate the effect of MEEO on the intestinal mucosal barrier and homeostasis in weaning piglets. A comparison of the effect of MEEO versus chlortetracycline (CTC) was performed in this study. RESULTS Piglets were divided into three groups - control (Con), MEEO, and CTC groups - and raised for 28 days. The results showed that MEEO significantly elevated the ratio of the villus height and the crypt depth in the jejunum and decreased the crypt depth in the ileum compared with the other groups (P < 0.05); it also upregulated the messenger ribonucleic acid (mRNA) expression of tight junction protein in the small intestine. Compared with the Con group, MEEO increased the concentration of secretory immunoglobulin A (sIgA), cathelicidin antimicrobial peptides (CAMP), and interleukin 10 (IL-10), while decreasing the interleukin 1 beta (IL-1β) concentration in both jejunal and ileal mucosa (P < 0.05). The mRNA expression of jejunal mucosal MUC1 and ileal mucosal MUC2 was increased in the MEEO group compared with the other groups (P < 0.05). Intestinal microbial analysis showed that dietary treatment had little impact on the ileal microbial structure. A significant rise in the genus Lactobacillus was, however, found in the MEEO group. There is a positive correlation between the Lactobacillus and sIgA, and between the Lactobacillus and CAMP, indicating that an improvement in the mucosal barrier function by the addition of MEEO may be associated with the proliferation of Lactobacillus. CONCLUSION Dietary supplementation with MEEO improves intestinal barrier function in weaning piglets, the effect of which was superior to CTC. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaibin Mo
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wengang Yu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jing Li
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yunxiao Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Xu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xianhui Huang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hengjia Ni
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
17
|
Kulcsarova K, Bang C, Berg D, Schaeffer E. Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1079-1106. [PMID: 37927277 PMCID: PMC10657696 DOI: 10.3233/jpd-230206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The increasing global burden of Parkinson's disease (PD), termed the PD pandemic, is exceeding expectations related purely to population aging and is likely driven in part by lifestyle changes and environmental factors. Pesticides are well recognized risk factors for PD, supported by both epidemiological and experimental evidence, with multiple detrimental effects beyond dopaminergic neuron damage alone. The microbiome-gut-brain axis has gained much attention in recent years and is considered to be a significant contributor and driver of PD pathogenesis. In this narrative review, we first focus on how both pesticides and the microbiome may influence PD initiation and progression independently, describing pesticide-related central and peripheral neurotoxicity and microbiome-related local and systemic effects due to dysbiosis and microbial metabolites. We then depict the bidirectional interplay between pesticides and the microbiome in the context of PD, synthesizing current knowledge about pesticide-induced dysbiosis, microbiome-mediated alterations in pesticide availability, metabolism and toxicity, and complex systemic pesticide-microbiome-host interactions related to inflammatory and metabolic pathways, insulin resistance and other mechanisms. An overview of the unknowns follows, and the role of pesticide-microbiome interactions in the proposed body-/brain-first phenotypes of PD, the complexity of environmental exposures and gene-environment interactions is discussed. The final part deals with possible further steps for translation, consisting of recommendations on future pesticide use and research as well as an outline of promising preventive/therapeutic approaches targeted on strengthening or restoring a healthy gut microbiome, closing with a summary of current gaps and future perspectives in the field.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
18
|
Xia X, Lin H, Luo F, Wu X, Zhu L, Chen S, Luo H, Ye F, Peng X, Zhang Y, Yang G, Lin Q. Oryzanol Ameliorates DSS-Stimulated Gut Barrier Damage via Targeting the Gut Microbiota Accompanied by the TLR4/NF-κB/NLRP3 Cascade Response In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15747-15762. [PMID: 36474430 DOI: 10.1021/acs.jafc.2c04354] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a global chronic disease with a long duration and repeated relapse. Currently, there is still a lack of effective approaches to prevent IBD. Food-derived oryzanol (ORY) possesses extensive biological activities, such as ameliorating bowel diseases, antioxidation, and antiobesity. However, the mechanism of ORY in preventing colitis remains unclear. The present research aims to explore the potential mechanism of ORY in dextran sulfate sodium (DSS)-stimulated colitis in a rat model. The results showed that the symptoms of colitis were significantly improved with the administration of ORY. Mechanismly, the expression levels of Zonula occludens-1 (ZO-1), Claudin-1, Occludin, MUC2, and TFF3 were elevated through ORY treatment, suggesting that oral ORY relieved the degree of gut barrier damage of colitis rats. Meanwhile, 16S sequencing results found that ORY supplementation increased the abundances of Alloprevotella, Roseburia, Treponema, Muribaculaceae, and Ruminococcus, which are associated with the synthesis of short-chain fatty acids (SCFAs). Moreover, GC-MS results confirmed that ORY supplementation reversed the DSS-induced reduction of acetic acid, butyric acid, and total acid. Further research indicated that ORY intervention downregulated the TLR4/NF-κB/NLRP3 pathway, which is closely linked to the expression of proinflammatory cytokines and colon injury. Taken together, ORY ameliorates DSS-stimulated gut barrier damage and inflammatory responses via the gut microbiota-TLR4/NF-κB/NLRP3 signaling axis.
Collapse
Affiliation(s)
- Xinxin Xia
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- National Center of Dark Tea Product Quality Inspection & Testing (Hunan), Yiyang Testing Institute of Product and Commodity Quality Supervision, Yiyang 413000, Hunan, China
| | - Hai Lin
- National Center of Dark Tea Product Quality Inspection & Testing (Hunan), Yiyang Testing Institute of Product and Commodity Quality Supervision, Yiyang 413000, Hunan, China
| | - Feijun Luo
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiuxiu Wu
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Lingfeng Zhu
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410004, Hunan, China
| | - Shuilian Chen
- National Center of Dark Tea Product Quality Inspection & Testing (Hunan), Yiyang Testing Institute of Product and Commodity Quality Supervision, Yiyang 413000, Hunan, China
| | - Han Luo
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Fan Ye
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xia Peng
- National Center of Dark Tea Product Quality Inspection & Testing (Hunan), Yiyang Testing Institute of Product and Commodity Quality Supervision, Yiyang 413000, Hunan, China
| | - Yan Zhang
- National Center of Dark Tea Product Quality Inspection & Testing (Hunan), Yiyang Testing Institute of Product and Commodity Quality Supervision, Yiyang 413000, Hunan, China
| | - Guliang Yang
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qinlu Lin
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
19
|
Olubodun-Obadun TG, Ishola IO, Adeyemi OO. Impact of environmental toxicants exposure on gut-brain axis in Parkinson disease. Drug Metab Pers Ther 2022; 37:329-336. [PMID: 35377569 DOI: 10.1515/dmpt-2021-0144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
Parkinson disease (PD) is a major public health challenge as many of the current drugs used in its management provide symptomatic relieve without preventing the underlying cause of the neurodegeneration. Similarly, the non-motor complications of PD, especially the gastrointestinal tract (GIT) disturbance increases the disease burden on both the PD patient and caregivers. Different theories have been postulated regarding the mechanisms or pathways involved in PD pathology but gut-brain axis involvement has gained much more momentum. This pathway was first suggested by Braak and colleagues in 2003, where they suggested that PD starts from the GIT before spreading to the brain. However, human exposure to environmental toxicants known to inhibit mitochondrial complex I activity such as rotenone, paraquat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are well associated with PD. Several reports have shown that oral exposure of laboratory animals to rotenone causes mitochondria dysfunction, GIT disturbance, overexpression of alpha synuclein and microbiota imbalance. This review focuses on the mechanism(s) through which rotenone induces PD pathogenesis and potential for therapeutic small molecules targeting these processes at the earliest stages of the disease. We also focused on the interaction between the GI microbiota and PD pathology.
Collapse
Affiliation(s)
- Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| |
Collapse
|
20
|
Hu L, Li G, Shu Y, Hou X, Yang L, Jin Y. Circadian dysregulation induces alterations of visceral sensitivity and the gut microbiota in Light/Dark phase shift mice. Front Microbiol 2022; 13:935919. [PMID: 36177467 PMCID: PMC9512646 DOI: 10.3389/fmicb.2022.935919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND It is well-established that several features of modern lifestyles, such as shift work, jet lag, and using electronics at night, disturb normal circadian rhythm and increase the risk of suffering from functional gastrointestinal disease. Although substantial evidence demonstrates that shift work is closely correlated with the symptoms of visceral hypersensitivity, few basic studies have revealed the mechanism of visceral hypersensitivity induced by circadian rhythm disturbance, especially light/dark phase shifts. Our study explored the mechanism underlying visceral hypersensitivity caused by light/dark phase shift in mice. METHODS A 6-h delay light/dark phase shift mice model was constructed. Visceral hypersensitivity was assessed by abdominal withdrawal reflex (AWR) score induced by colorectal distention (CRD) in vivo and contraction of colonic muscle strips induced by acetylcholine ex vivo. Intestinal permeability was evaluated by transepithelial resistance (TEER) and FD4 permeability. The expression of tight junction proteins was detected by western blotting and immunofluorescence staining. The gut microbiota was examined by 16S rDNA sequencing. Fecal microbiota transplantation (FMT) was performed to confirm the relationship between the light/dark phase shift, gut microbiota, and visceral hypersensitivity. RESULTS We found that light/dark phase shift increased visceral sensitivity and disrupted intestinal barrier function, caused low-grade intestinal inflammation. Moreover, we found decreased microbial species richness and diversity and a shift in microbial community with a decreased proportion of Firmicutes and an elevated abundance of Proteobacteria at the phylum level. Besides, after the light/dark phase shift, the microflora was significantly enriched in biosynthesizing tryptophan, steroid hormone, secondary metabolites, lipids, and lipopolysaccharides. Mice that underwent FMT from the light/dark phase shift mice model exhibited higher visceral hypersensitivity and worse barrier function. Dysbiosis induced by light/dark phase shift can be transmitted to the mice pretreated with antibiotics by FMT not only at the aspect of microbiota composition but also at the level of bacterial function. CONCLUSION Circadian rhythm disturbance induced by the light/dark phase shift produces visceral hypersensitivity similar to the pathophysiology of IBS through modulating the gut microbiota, which may disrupt intestinal barrier function or induce a low-degree gut inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Chen J, Vitetta L. The Role of the Gut-Lung Axis in COVID-19 Infections and Its Modulation to Improve Clinical Outcomes. Front Biosci (Schol Ed) 2022; 14:23. [PMID: 36137978 DOI: 10.31083/j.fbs1403023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 06/16/2023]
Abstract
The main entry point of SARS-CoV-2 is the respiratory tract and as such immune defence in this site determines if the virus will spill-over to the systemic circulation and circulate and infect other major organs. The first line of mucosal immune defence is composed of mucins, an epithelial barrier, and immune cells in the nasal cavity. The lung immune defence is carried out by numerous alveoli. The lung microbiota is a key factor in determining the efficacy of lung mucosal immunity protection. The intestinal microbiota has been demonstrated to affect the severity of COVID-19. Gut dysbiosis is involved in hyperinflammation and multiple organ failure through communications with multiple organs. The gut lung axis could be the earliest axis affected in COVID-19. Through the gut-lung axis, gut dysbiosis can affect the pathogenesis of the lung in COVID-19. In this review, we summarise the effects that gut dysbiosis can progress on the lung, and the lung microbiota. The possible mechanisms and approaches for modulation are discussed.
Collapse
Affiliation(s)
- Jiezhong Chen
- Research Department, Medlab Clinical, Sydney, NSW 2015, Australia
| | - Luis Vitetta
- Research Department, Medlab Clinical, Sydney, NSW 2015, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Abstract
The gastrointestinal ecosystem is formed from interactions between the host, indigenous gut microbiota, and external world. When colonizing the gut, bacteria must overcome barriers imposed by the intestinal environment, such as host immune responses and microbiota-mediated nutrient limitation. Thus, understanding bacterial colonization requires determining how the gut landscape interacts with microbes attempting to establish within the ecosystem. However, the complicated network of interactions between elements of the intestinal environment makes it challenging to uncover emergent properties of the system using only reductionist methods. A systems biology approach, which aims to investigate complex systems by examining the behavior and relationships of all elements of the system, may afford a more holistic perspective of the colonization process. Here, we examine the confluence between the gut landscape and bacterial colonization through the lens of systems biology. We offer an overview of the conceptual and methodological underpinnings of systems biology, followed by a discussion of key elements of the gut ecosystem as they pertain to bacterial establishment and growth. We conclude by reintegrating these elements to guide future comprehensive investigations of the ecosystem in the context of bacterial intestinal colonization.
Collapse
Affiliation(s)
- Madeline R. Barron
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vincent B. Young
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Ghosh S, Banerjee M, Haribabu B, Jala VR. Urolithin A attenuates arsenic-induced gut barrier dysfunction. Arch Toxicol 2022; 96:987-1007. [PMID: 35122514 PMCID: PMC10867785 DOI: 10.1007/s00204-022-03232-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 01/16/2023]
Abstract
Environmental chemicals such as inorganic arsenic (iAs) significantly contribute to redox toxicity in the human body by enhancing oxidative stress. Imbalanced oxidative stress rapidly interferes with gut homeostasis and affects variety of cellular processes such as proliferation, apoptosis, and maintenance of intestinal barrier integrity. It has been shown that gut microbiota are essential to protect against iAs3+-induced toxicity. However, the effect of microbial metabolites on iAs3+-induced toxicity and loss of gut barrier integrity has not been investigated. The objectives of the study are to investigate impact of iAs on gut barrier function and determine benefits of gut microbial metabolite, urolithin A (UroA) against iAs3+-induced adversaries on gut epithelium. We have utilized both colon epithelial cells and in a human intestinal 3D organoid model system to investigate iAs3+-induced cell toxicity, oxidative stress, and gut barrier dysfunction in the presence or absence of UroA. Here, we report that treatment with UroA attenuated iAs3+-induced cell toxicity, apoptosis, and oxidative stress in colon epithelial cells. Moreover, our data suggest that UroA significantly reduces iAs3+-induced gut barrier permeability and inflammatory markers in both colon epithelial cells and in a human intestinal 3D organoid model system. Mechanistically, UroA protected against iAs3+-induced disruption of tight junctional proteins in intestinal epithelial cells through blockade of oxidative stress and markers of inflammation. Taken together, our studies for the first time suggest that microbial metabolites such as UroA can potentially be used to protect against environmental hazards by reducing intestinal oxidative stress and by enhancing gut barrier function.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA.
| |
Collapse
|
24
|
Intestinal barrier disorders and metabolic endotoxemia in obesity: Current knowledge. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The World Health Organization reports that the prevalent problem of excessive weight and obesity currently affects about 1.9 billion people worldwide and is the fifth most common death factor among patients. In view of the growing number of patients with obesity, attention is drawn to the insufficient effectiveness of behavioral treatment methods. In addition to genetic and environmental factors leading to the consumption of excess energy in the diet and the accumulation of adipose tissue, attention is paid to the role of intestinal microbiota in maintaining a normal body weight. Dysbiosis – a disorder in the composition of the gut microbiota – is mentioned as one of the contributing factors to the development of metabolic diseases, including obesity, type 2 diabetes, and cardiovascular disorders. The human gastrointestinal tract is colonized largely by a group of Gram-negative bacteria that are indicated to be a source of lipopolysaccharide (LPS), associated with inducing systemic inflammation and endotoxemia. Research suggests that disturbances in the gut microbiota, leading to damage to the intestinal barrier and an increase in circulating LPS, are implicated in obesity and other metabolic disorders. Plasma LPS and lipopolysaccharide-binding protein (LBP) levels have been shown to be elevated in individuals with excess body weight. Bariatric surgery has become a popular treatment option, leading to stable weight loss and an improvement in obesity-related conditions. The aim of this study was to characterize the factors that promote the induction of metabolic endotoxemia and its associated health consequences, along with the presentation of their changes after bariatric surgery.
Collapse
|
25
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Ferrara M, Bertozzi G, Zanza C, Longhitano Y, Piccolella F, Lauritano CE, Volonnino G, Manetti AC, Maiese A, La Russa R. Traumatic Brain Injury and Gut Brain Axis: The Disruption of an Alliance. Rev Recent Clin Trials 2022; 17:268-279. [PMID: 35733301 DOI: 10.2174/1574887117666220622143423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/13/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can be considered a "silent epidemic", causing morbidity, disability, and mortality in all age cohorts. Therefore, a greater understanding of the underlying pathophysiological intricate mechanisms and interactions with other organs and systems is necessary to intervene not only in the treatment but also in the prevention of complications. In this complex of reciprocal interactions, the complex brain-gut axis has captured a growing interest. SCOPE The purpose of this manuscript is to examine and systematize existing evidence regarding the pathophysiological processes that occur following TBI and the influences exerted on these by the brain-gut axis. LITERATURE REVIEW A systematic review of the literature was conducted according to the PRISMA methodology. On the 8th of October 2021, two independent databases were searched: PubMed and Scopus. Following the inclusion and exclusion criteria selected, 24 (12 from PubMed and 12 from Scopus) eligible manuscripts were included in the present review. Moreover, references from the selected articles were also updated following the criteria mentioned above, yielding 91 included manuscripts. DISCUSSION Published evidence suggests that the brain and gut are mutually influenced through four main pathways: microbiota, inflammatory, nervous, and endocrine. CONCLUSION These pathways are bidirectional and interact with each other. However, the studies conducted so far mainly involve animals. An autopsy methodological approach to corpses affected by traumatic brain injury or intestinal pathology could represent the keystone for future studies to clarify the complex pathophysiological processes underlying the interaction between these two main systems.
Collapse
Affiliation(s)
- Michela Ferrara
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, Rome, 00161, Italy
| | - Giuseppe Bertozzi
- Section of Legal Medicine, Department of Clinical and Experimental Medicine, University
of Foggia, Foggia, Italy
| | - Christian Zanza
- Foundation of "Ospedale Alba-Bra Onlus and Department of Anesthesia and Critical Care and Emergency Medicine- "Michele and Pietro Ferrero Hospital" Verduno, Cuneo, Italy
| | - Yaroslava Longhitano
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Fabio Piccolella
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Cristiano Ernesto Lauritano
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Gianpietro Volonnino
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, Rome, 00161, Italy
| | - Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, 56126, Italy
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, 56126, Italy
| | - Raffaele La Russa
- Section of Legal Medicine, Department of Clinical and Experimental Medicine, University
of Foggia, Foggia, Italy
| |
Collapse
|
27
|
Chellappa SL, Engen PA, Naqib A, Qian J, Vujovic N, Rahman N, Green SJ, Garaulet M, Keshavarzian A, Scheer FAJL. Proof-of-principle demonstration of endogenous circadian system and circadian misalignment effects on human oral microbiota. FASEB J 2021; 36:e22043. [PMID: 34861073 DOI: 10.1096/fj.202101153r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Circadian misalignment-the misalignment between the central circadian "clock" and behavioral and environmental cycles (including sleep/wake, fasting/eating, dark/light)-results in adverse cardiovascular and metabolic effects. Potential underlying mechanisms for these adverse effects include alterations in the orogastrointestinal microbiota. However, it remains unknown whether human oral microbiota has endogenous circadian rhythms (i.e., independent of sleep/wake, fasting/eating, and dark/light cycles) and whether circadian misalignment influences oral microbiota community composition. Healthy young individuals [27.3 ± 2.3 years (18-35 years), 4 men and 2 women, body-mass index range: 18-28 kg/m2 ] were enrolled in a stringently controlled 14-day circadian laboratory protocol. This included a 32-h constant routine (CR) protocol (endogenous circadian baseline assessment), a forced desynchrony protocol with four 28-h "days" under ~3 lx to induce circadian misalignment, and a post-misalignment 40-h CR protocol. Microbiota assessments were performed on saliva samples collected every 4 h throughout both CR protocols. Total DNA was extracted and processed using high-throughput 16S ribosomal RNA gene amplicon sequencing. The relative abundance of specific oral microbiota populations, i.e., one of the five dominant phyla, and three of the fourteen dominant genera, exhibited significant endogenous circadian rhythms. Importantly, circadian misalignment dramatically altered the oral microbiota landscape, such that four of the five dominant phyla and eight of the fourteen dominant genera exhibited significant circadian misalignment effects. Moreover, circadian misalignment significantly affected the metagenome functional content of oral microbiota (inferred gene content analysis), as indicated by changes in specific functional pathways associated with metabolic control and immunity. Collectively, our proof-of-concept study provides evidence for endogenous circadian rhythms in human oral microbiota and show that even relatively short-term experimental circadian misalignment can dramatically affect microbiota community composition and functional pathways involved in metabolism and immune function. These proof-of-principle findings have translational relevance to individuals typically exposed to circadian misalignment, including night shift workers and frequent flyers.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Phillip A Engen
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Ankur Naqib
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Jingyi Qian
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Vujovic
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nishath Rahman
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Marta Garaulet
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA.,Department of Physiology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Liang L, Xiong Q, Kong J, Tian C, Miao L, Zhang X, Du H. Intraperitoneal supplementation of iron alleviates dextran sodium sulfate-induced colitis by enhancing intestinal barrier function. Biomed Pharmacother 2021; 144:112253. [PMID: 34607106 DOI: 10.1016/j.biopha.2021.112253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Iron supplementation is necessary for the treatment of anemia, one of the most frequent complications in inflammatory bowel disease (IBD). However, oral iron supplementation leads to an exacerbation of intestinal inflammation. Gut barrier plays a key role in the pathogenesis of IBD. The aim of this study was to characterize the interrelationship between systemic iron, intestinal barrier and the development of intestinal inflammation in a dextran sulfate sodium (DSS) induced experimental colitis mice model. We found that DSS-treated mice developed severe inflammation of colon, but became much healthy when intraperitoneal injection with iron. Iron supplementation alleviated colonic and systemic inflammation by lower histological scores, restorative morphology of colonic villi, and reduced expression of pro-inflammatory cytokines. Moreover, intraperitoneal supplementation of iron enhanced intestinal barrier function by upregulating the colonic expressions of tight junction proteins, restoring intestinal immune homeostasis by regulating immune cell infiltration and T lymphocyte subsets, and increasing mucous secretion of goblet cells in the colon. High-throughput sequencing of fecal 16 S rRNA showed that iron injection significantly increased the relative abundance of Bacteroidetes, which was suppressed in the gut microbiota of DSS-induced colitis mice. These results provided evidences supporting the protective effects of systemic iron repletion by intraperitoneal injection of iron on intestinal barrier functions. The finding highlights a novel approach for the treatment of IBD with iron injection therapy.
Collapse
Affiliation(s)
- Li Liang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Xiong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jingxia Kong
- Department of Investment and Insurance, Zhejiang Financial College, Hangzhou, China
| | - Chenying Tian
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Linfeng Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofeng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huahua Du
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Yracheta J, Muraoka W, Wu X, Burmeister D, Darlington D, Zhao D, Lai Z, Sayyadioskoie S, Cap AP, Bynum J, Nicholson SE. Whole blood resuscitation restores intestinal perfusion and influences gut microbiome diversity. J Trauma Acute Care Surg 2021; 91:1002-1009. [PMID: 34407003 DOI: 10.1097/ta.0000000000003381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Gut dysbiosis, an imbalance in the gut microbiome, occurs after trauma, which may be ameliorated with transfusion. We hypothesized that gut hypoperfusion following trauma causes dysbiosis and that whole blood (WB) resuscitation mitigates these effects. METHODS Anesthetized rats underwent sham (S; laparotomy only, n = 6); multiple injuries (T; laparotomy, liver and skeletal muscle crush injuries, and femur fracture, n = 5); multiple injuries and 40% hemorrhage (H; n = 7); and multiple injuries, hemorrhage, and WB resuscitation (R; n = 7), which was given as 20% estimated blood volume from donor rats 1 hour posttrauma. Baseline cecal mesenteric tissue oxygen (O2) concentration was measured following laparotomy and at 1 hour and 2 hours posttrauma. Fecal samples were collected preinjury and at euthanasia (2 hours). 16S rRNA sequencing was performed on purified DNA, and diversity and phylogeny were analyzed with QIIME (Knight Lab, La Jolla, CA; Caporaso Lab, Flagstaff, AZ) using the Greengenes 16S rRNA database (operational taxonomic units; 97% similarity). α and β diversities were estimated using observed species metrics. Permutational analysis of variance was performed for overall significance. RESULTS In H rats, an average decline of 36% ± 3.6% was seen in the mesenteric O2 concentration at 1 hour without improvement by 2 hours postinjury, which was reversed following resuscitation at 2 hours postinjury (4.1% ± 3.1% difference from baseline). There was no change in tissue O2 concentration in the S or T rats. β Diversity differed among groups for all measured indices except Bray-Curtis, with the spatial median of the S and R rats more similar compared with S and H rats (p < 0.05). While there was no difference in α diversity found among the groups, indices were significantly correlated with mesenteric O2 concentration. Members of the family Enterobacteriaceae were significantly enriched in only 2 hours. CONCLUSION Mesenteric perfusion after trauma and hemorrhage is restored with WB resuscitation, which influences β diversity of the gut microbiome. Whole blood resuscitation may also mitigate the effects of hemorrhage on intestinal dysbiosis, thereby influencing outcomes.
Collapse
Affiliation(s)
- Jaclyn Yracheta
- From the Department of Surgery (J.Y., S.S., S.E.N.), UT Health San Antonio, San Antonio; Coagulation and Blood Research, US Army Institute of Surgical Research (W.M., X.W., D.D., D.Z., A.P.C., J.B., S.E.N.), Fort Sam Houston, Texas; Department of Medicine, Uniformed Services University of the Health Sciences (D.B.), Bethesda, Maryland; and Department of Molecular Medicine (Z.L.), Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yuan Y, Lu L, Bo N, Chaoyue Y, Haiyang Y. Allicin Ameliorates Intestinal Barrier Damage via Microbiota-Regulated Short-Chain Fatty Acids-TLR4/MyD88/NF-κB Cascade Response in Acrylamide-Induced Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12837-12852. [PMID: 34694121 DOI: 10.1021/acs.jafc.1c05014] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acrylamide (AA) is a heat-induced toxicant, which can cause severe damage to health. In the present study, SD rats were used to investigate the potential therapeutic effects of allicin dietary supplementation in the rats with AA-induced intestinal injury. The elevated expression of occludin, claudin-1, zonula occludens-1 (ZO-1), mucin 2, and mucin 3 indicated that oral allicin alleviated the intestinal epithelial barrier breakage induced by AA, compared with the AA-treated group. In the gut microbiota, Bacteroides, Escherichia_Shigella, Dubosiella, and Alloprevotella related to the synthesis of short-chain fatty acids (SCFAs) were negatively affected by AA, while allicin regulated cascade response of the microbiota-SCFAs signaling to reverse the reduction of acetic acid and propionic acid by AA treatment. Allicin also dramatically down-regulated the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), NF-κB signaling pathway proteins, and proinflammatory cytokines by promoting the production of SCFAs in AA-treated rats. Allicin relieved the intestinal barrier injury and inflammation caused by AA as evidenced by the regulation cascade response of the microbiota-SCFAs-TLR4/MyD88/NF-κB signaling pathway. In conclusion, allicin is highly effective in the treatment and prevention of AA-induced intestinal injury.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Li Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Nan Bo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yang Chaoyue
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yan Haiyang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
31
|
Microbiota from Specific Pathogen-Free Mice Reduces Campylobacter jejuni Chicken Colonization. Pathogens 2021; 10:pathogens10111387. [PMID: 34832543 PMCID: PMC8621964 DOI: 10.3390/pathogens10111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni, a prevalent foodborne bacterial pathogen, is mainly transmitted from poultry with few effective prevention approaches. In this study, we aimed to investigate the role of microbiota on C. jejuni chicken colonization. Microbiota from specific pathogen-free (SPF) mouse stools were collected as SPF-Aerobe and SPF-Anaerobe. Birds were colonized with SPF-Aerobe or SPF-Anaerobe at day 0 and infected with C. jejuni AR101 at day 12. Notably, C. jejuni AR101 colonized at 5.3 and 5.6 log10 C. jejuni CFU/g chicken cecal digesta at days 21 and 28, respectively, while both SPF-Aerobe and SPF-Anaerobe microbiota reduced pathogen colonization. Notably, SPF-Aerobe and SPF-Anaerobe increased cecal phylum Bacteroidetes and reduced phylum Firmicutes compared to those in the nontransplanted birds. Interestingly, microbiota from noninfected chickens, SPF-Aerobe, or SPF-Anaerobe inhibited AR101 in vitro growth, whereas microbiota from infected birds alone failed to reduce pathogen growth. The bacterium Enterobacter102 isolated from infected birds transplanted with SPF-Aerobe inhibited AR101 in vitro growth and reduced pathogen gut colonization in chickens. Together, SPF mouse microbiota was able to colonize chicken gut and reduce C. jejuni chicken colonization. The findings may help the development of effective strategies to reduce C. jejuni chicken contamination and campylobacteriosis.
Collapse
|
32
|
Ellis RJ, Iudicello JE, Heaton RK, Isnard S, Lin J, Routy JP, Gianella S, Hoenigl M, Knight R. Markers of Gut Barrier Function and Microbial Translocation Associate with Lower Gut Microbial Diversity in People with HIV. Viruses 2021; 13:1891. [PMID: 34696320 PMCID: PMC8537977 DOI: 10.3390/v13101891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
People with human immunodeficiency virus (HIV) (PWH) have reduced gut barrier integrity ("leaky gut") that permits diffusion of microbial antigens (microbial translocation) such as lipopolysaccharide (LPS) into the circulation, stimulating inflammation. A potential source of this disturbance, in addition to gut lymphoid tissue CD4+ T-cell depletion, is the interaction between the gut barrier and gut microbes themselves. We evaluated the relationship of gut barrier integrity, as indexed by plasma occludin levels (higher levels corresponding to greater loss of occludin from the gut barrier), to gut microbial diversity. PWH and people without HIV (PWoH) participants were recruited from community sources and provided stool, and 16S rRNA amplicon sequencing was used to characterize the gut microbiome. Microbial diversity was indexed by Faith's phylogenetic diversity (PD). Participants were 50 PWH and 52 PWoH individuals, mean ± SD age 45.6 ± 14.5 years, 28 (27.5%) women, 50 (49.0%) non-white race/ethnicity. PWH had higher gut microbial diversity (Faith's PD 14.2 ± 4.06 versus 11.7 ± 3.27; p = 0.0007), but occludin levels were not different (1.84 ± 0.311 versus 1.85 ± 0.274; p = 0.843). Lower gut microbial diversity was associated with higher plasma occludin levels in PWH (r = -0.251; p = 0.0111), but not in PWoH. A multivariable model demonstrated an interaction (p = 0.0459) such that the correlation between Faith's PD and plasma occludin held only for PWH (r = -0.434; p = 0.0017), but not for PWoH individuals (r = -0.0227; p = 0.873). The pattern was similar for Shannon alpha diversity. Antiretroviral treatment and viral suppression status were not associated with gut microbial diversity (ps > 0.10). Plasma occludin levels were not significantly related to age, sex or ethnicity, nor to current or nadir CD4 or plasma viral load. Higher occludin levels were associated with higher plasma sCD14 and LPS, both markers of microbial translocation. Together, the findings suggest that damage to the gut epithelial barrier is an important mediator of microbial translocation and inflammation in PWH, and that reduced gut microbiome diversity may have an important role.
Collapse
Affiliation(s)
- Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, CA 92093, USA
| | - Jennifer E. Iudicello
- Department of Psychiatry, University of California, San Diego, CA 92093, USA; (J.E.I.); (R.K.H.)
| | - Robert K. Heaton
- Department of Psychiatry, University of California, San Diego, CA 92093, USA; (J.E.I.); (R.K.H.)
| | - Stéphane Isnard
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (S.I.); (J.L.); (J.-P.R.)
| | - John Lin
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (S.I.); (J.L.); (J.-P.R.)
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (S.I.); (J.L.); (J.-P.R.)
| | - Sara Gianella
- Department of Medicine, University of California, San Diego, CA 92093, USA; (S.G.); (M.H.)
| | - Martin Hoenigl
- Department of Medicine, University of California, San Diego, CA 92093, USA; (S.G.); (M.H.)
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
33
|
Probiotics Improve Eating Disorders in Mandarin Fish ( Siniperca chuatsi) Induced by a Pellet Feed Diet via Stimulating Immunity and Regulating Gut Microbiota. Microorganisms 2021; 9:microorganisms9061288. [PMID: 34204793 PMCID: PMC8231599 DOI: 10.3390/microorganisms9061288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Eating disorders are directly or indirectly influenced by gut microbiota and innate immunity. Probiotics have been shown to regulate gut microbiota and stimulate immunity in a variety of species. In this study, three kinds of probiotics, namely, Lactobacillus plantarum, Lactobacillus rhamnosus and Clostridium butyricum, were selected for the experiment. The results showed that the addition of three probiotics at a concentration of 108 colony forming unit/mL to the culture water significantly increased the ratio of the pellet feed recipients and survival rate of mandarin fish (Siniperca chuatsi) under pellet-feed feeding. In addition, the three kinds of probiotics reversed the decrease in serum lysozyme and immunoglobulin M content, the decrease in the activity of antioxidant enzymes glutathione and catalase and the decrease in the expression of the appetite-stimulating regulator agouti gene-related protein of mandarin fish caused by pellet-feed feeding. In terms of intestinal health, the three probiotics reduced the abundance of pathogenic bacteria Aeromonas in the gut microbiota and increased the height of intestinal villi and the thickness of foregut basement membrane of mandarin fish under pellet-feed feeding. In general, the addition of the three probiotics can significantly improve eating disorders of mandarin fish caused by pellet feeding.
Collapse
|
34
|
Hou Y, Xu L, Song S, Fan W, Wu Q, Tong X, Yan H. Oral Administration of Brain Protein Combined With Probiotics Induces Immune Tolerance Through the Tryptophan Pathway. Front Mol Neurosci 2021; 14:634631. [PMID: 34122006 PMCID: PMC8192843 DOI: 10.3389/fnmol.2021.634631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
Excessive inflammation leads to secondary immune damage after traumatic brain injury (TBI). The intestinal mucosa is a key component of immune tolerance due to gut-brain axis regulation, but the curative effect is not optimal. Intestinal dysfunction impairs the establishment of immune tolerance in patients with TBI. Therefore, we orally administered brain protein (BP) combined with probiotics to induce immune tolerance and explored the mechanism by which the homeostasis of the microbiota contributes to the enhancement of curative effects by BPs. Herein, we demonstrated that patients with TBI and surgical brain injury (SBI) models of rats had obvious dysbiosis. Notably, the intestinal barrier, proinflammatory cytokines, and activation of microglia demonstrated that excessive inflammatory damage was better controlled in the combined group (oral administration of BP combined with probiotics) than in the BP group (oral administration of BP). Fundamentally, tandem mass tag (TMT)-based quantitative proteomics analysis revealed that BP and probiotics preferentially affect Try-related pathways. A series of experiments further confirmed that Indoleamine 2,3 dioxygenase (IDO)/Kynurenine (Kyn)/Aryl hydrocarbon receptor (AhR) expression was high in the BP group, while Tryptophan hydroxylase 1(TpH1)/5-hydroxytryptamine (5-HT) only changed in the combined group. This study suggests that probiotics can enhance the efficacy of oral BP-induced immune tolerance through the Try pathway.
Collapse
Affiliation(s)
- Yongxin Hou
- School of Medical, Nankai University, Tianjin, China
| | - Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Sirong Song
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Weijia Fan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Qiaoli Wu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
35
|
Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021; 13:1516. [PMID: 33946303 PMCID: PMC8147091 DOI: 10.3390/nu13051516] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Farzaneh Sharifzad
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Rana Bagheri
- College of Liberal Art and Sciences, Portland State University, Portland, OR 97201, USA;
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
36
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Zhang Y, Wang Z, Peng J, Gerner ST, Yin S, Jiang Y. Gut microbiota-brain interaction: An emerging immunotherapy for traumatic brain injury. Exp Neurol 2020; 337:113585. [PMID: 33370556 DOI: 10.1016/j.expneurol.2020.113585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Individuals suffering from traumatic brain injury (TBI) often experience the activation of the immune system, resulting in declines in cognitive and neurological function after brain injury. Despite decades of efforts, approaches for clinically effective treatment are sparse. Evidence on the association between current therapeutic strategies and clinical outcomes after TBI is limited to poorly understood mechanisms. For decades, an increasing number of studies suggest that the gut-brain axis (GBA), a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract, plays a critical role in systemic immune response following neurological diseases. In this review, we detail current knowledge of the immune pathologies of GBA after TBI. These processes may provide a new therapeutic target and rehabilitation strategy developed and used in clinical treatment of TBI patients.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhaoyang Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Stefan T Gerner
- Department of Neurology, University Hospital Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
38
|
Han B, Hoang BX. Opinions on the current pandemic of COVID-19: Use functional food to boost our immune functions. J Infect Public Health 2020; 13:1811-1817. [PMID: 32948484 PMCID: PMC7831995 DOI: 10.1016/j.jiph.2020.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022] Open
Abstract
The pandemic of novel coronavirus caused COVID-19 had resulted in a high number of hospitalizations and deaths and caused a devastating toll on human and society health. The symptoms of the infected patients vary significantly, from life-threatening to mild or even asymptomatic. This clinical observation led to hypothesize on the critical role of host innate immunity in the disease development and progression. As the first defense barrier against microorganisms, the innate immune reaction determines not only the viral infection rate but also immune-mediated response. Therefore, promote healthy behaviors to enhance innate immunity with functional food and nutritional agents may be a rational strategy for minimizing damages caused by viruses to global health.
Collapse
Affiliation(s)
- Bo Han
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Department of Surgery, University of Southern California, Los Angeles, CA 90033, United States
| | - Ba X Hoang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Department of Surgery, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
39
|
de Greeff A, Schokker D, Roubos-van den Hil P, Ramaekers P, Vastenhouw SA, Harders F, Bossers A, Smits MA, Rebel JMJ. The effect of maternal antibiotic use in sows on intestinal development in offspring. J Anim Sci 2020; 98:5849914. [PMID: 32479635 PMCID: PMC7295330 DOI: 10.1093/jas/skaa181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this study is to investigate the effect of a maternal antibiotic administration during the last week of gestation on the early life intestinal development in neonatal piglets. Colonization of the gut with bacteria starts during birth and plays a major role in the intestinal and immunological development of the intestine. We demonstrate that maternal interventions induced changes in the sows (n = 6 to 8 per treatment) fecal microbiota diversity around birth (P < 0.001, day 1). Whole-genome microarray analysis in small intestinal samples of 1-d old piglets (n = 6 to 8 per treatment) showed significantly expressed genes (Padj < 0.05) which were involved in processes of tight junction formation and immunoglobulin production. Furthermore, when performing morphometry analysis, the number of goblet cells in jejunum was significantly (P < 0.001) lower in piglets from amoxicillin administered sows compared with the respective control piglets. Both significantly expressed genes (Padj < 0.05) and significant morphometry data (jejunum P < 0.05 and ileum P < 0.01) indicate that the crypts of piglets from amoxicillin administered sows deepen around weaning (day 26) as an effect of the amoxicillin administration in sows. The latter might imply that the intestinal development of piglets was delayed by maternal antibiotic administration. Taken together, these results show that maternally oral antibiotic administration changes in early life can affect intestinal development of the offspring piglets for a period of at least 5 wk after the maternal antibiotic administration was finished. These results show that modulation of the neonatal intestine is possible by maternal interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank Harders
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Mari A Smits
- Wageningen Bioveterinary Research, Lelystad, The Netherlands.,Wageningen Livestock Research, Wageningen, The Netherlands
| | | |
Collapse
|
40
|
Probiotics in Treatment of Viral Respiratory Infections and Neuroinflammatory Disorders. Molecules 2020; 25:molecules25214891. [PMID: 33105830 PMCID: PMC7660077 DOI: 10.3390/molecules25214891] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.
Collapse
|
41
|
Malik I, Batra T, Das S, Kumar V. Light at night affects gut microbial community and negatively impacts host physiology in diurnal animals: Evidence from captive zebra finches. Microbiol Res 2020; 241:126597. [PMID: 32979783 DOI: 10.1016/j.micres.2020.126597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/02/2020] [Accepted: 09/14/2020] [Indexed: 01/16/2023]
Abstract
The gastrointestinal tract (GIT) hosts a large number of diverse microorganisms, with mutualistic interactions with the host. Here, in two separate experiments, we investigated whether light at night (LAN) would affect GIT microbiota and, in turn, the host physiology in diurnal zebra finches (Taeniopygia guttata). Experiment I assessed the effects of no-night (LL) and dimly illuminated night (dim light at night, dLAN) on fecal microbiota diversity and host physiology of birds born and raised under 12 h photoperiod (LD; 12 h light: 12 h darkness). Under LL and dLAN, compared to LD, we found a significant increase in the body mass, subcutaneous fat deposition and hepatic accumulation of lipids. Although we found no difference in total 24 h food consumption, LL/ dLAN birds ate also at night, suggesting LAN-induced alteration in daily feeding times. Concurrently, there were marked differences in amplicon sequence and bacterial species richness between LD and LAN, with notable decline in Lactobacillus richness in birds under LL and dLAN. We attributed declined Lactobacillus population as causal (at least partially) to negative effects on the host metabolism. Therefore, in experiment II with similar protocol, birds under LL and dLAN were fed on diet with or without Lactobacillus rhamnosus GG (LGG) supplement. Clearly, LGG supplement ameliorated LL- and dLAN-induced negative effects in zebra finches. These results demonstrate adverse effects of unnatural lighting on GIT bacterial diversity and host physiology, and suggest the role of GIT microbiota in the maintenance of metabolic homeostasis in response to LAN environment in diurnal animals.
Collapse
Affiliation(s)
- Indu Malik
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Twinkle Batra
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Subhajit Das
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
42
|
Li J, Xue H, Ma Q, He X, Ma L, Shi B, Sun S, Yao X. Heterogeneity of CD4 +CD25 +Foxp3 +Treg TCR β CDR3 Repertoire Based on the Differences of Symbiotic Microorganisms in the Gut of Mice. Front Cell Dev Biol 2020; 8:576445. [PMID: 32984355 PMCID: PMC7490519 DOI: 10.3389/fcell.2020.576445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbes play a crucial role in the occurrence and development of autoimmune diseases. The diversity of intestinal microorganisms affected by the living environment, regulate the immune function of peripheral immune organs and local tissues. In the study, the diversity of intestinal microorganisms of Germ-free (GF), Specific Pathogen-free (SPF), and Clean (CL) BALB/c mice were conducted by 16S rDNA sequencing. High-throughput sequencing technology was used to analysis the composition and characterization of TCR β chain CDR3 repertoires in Regulatory T cells (Treg) in intestine and spleen of GF, SPF, and CL mice, so as to investigate the effects of differential composition of intestinal microorganisms on the CD4+CD25+Foxp3+Treg TCR β CDR3 repertoire of intestine and spleen. We observed that GF, SPF, and CL mice have different gut microorganism composition, and the abundance and quantity of microorganisms are positively correlated with the level of feeding environment. Interestingly, incomplete structure of spleen and small intestine in GF mice was found. Moreover, a significant difference in the usage of high frequency unique CDR3 amino acid sequences was detected in the intestinal Treg TCRβ CDR3 repertoire among GF, SPF and CL mice, and there were a greater heterogeneity in the usage frequency of TRBV, TRBJ, and TRBV-TRBJ combinations gene segments. However, the effect of different feeding environment on the mice Treg TCRβ CDR3 repertoire of spleen was weak, implying that the different composition of intestinal microbiota may primarily affect the diversity of the local Treg TCRβ CDR3 repertoire and does not alter the overall properties of the circulating immune system. These results provide basic data to further analyze the mechanism of gut microbes regulating the intestinal mucosal immune system.
Collapse
Affiliation(s)
- Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Huaijuan Xue
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qingqing Ma
- Department of Laboratory Medicine, Guizhou Aerospace Hospital, Zunyi, China
| | - Xiaoyan He
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Bin Shi
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Suhong Sun
- Department of Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
43
|
Speciale A, Saija A, Bashllari R, Molonia MS, Muscarà C, Occhiuto C, Cimino F, Cristani M. Anthocyanins As Modulators of Cell Redox-Dependent Pathways in Non-Communicable Diseases. Curr Med Chem 2020; 27:1955-1996. [PMID: 30417771 DOI: 10.2174/0929867325666181112093336] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/22/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022]
Abstract
Chronic Noncommunicable Diseases (NCDs), mostly represented by cardiovascular diseases, diabetes, chronic pulmonary diseases, cancers, and several chronic pathologies, are one of the main causes of morbidity and mortality, and are mainly related to the occurrence of metabolic risk factors. Anthocyanins (ACNs) possess a wide spectrum of biological activities, such as anti-inflammatory, antioxidant, cardioprotective and chemopreventive properties, which are able to promote human health. Although ACNs present an apparent low bioavailability, their metabolites may play an important role in the in vivo protective effects observed. This article directly addresses the scientific evidences supporting that ACNs could be useful to protect human population against several NCDs not only acting as antioxidant but through their capability to modulate cell redox-dependent signaling. In particular, ACNs interact with the NF-κB and AP-1 signal transduction pathways, which respond to oxidative signals and mediate a proinflammatory effect, and the Nrf2/ARE pathway and its regulated cytoprotective proteins (GST, NQO, HO-1, etc.), involved in both cellular antioxidant defenses and elimination/inactivation of toxic compounds, so countering the alterations caused by conditions of chemical/oxidative stress. In addition, supposed crosstalks could contribute to explain the protective effects of ACNs in different pathological conditions characterized by an altered balance among these pathways. Thus, this review underlines the importance of specific nutritional molecules for human health and focuses on the molecular targets and the underlying mechanisms of ACNs against various diseases.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Romina Bashllari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,"Prof. Antonio Imbesi" Foundation, University of Messina, Messina, Italy
| | - Cristina Occhiuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
44
|
A prospective study in severely injured patients reveals an altered gut microbiome is associated with transfusion volume. J Trauma Acute Care Surg 2020; 86:573-582. [PMID: 30633104 PMCID: PMC6433524 DOI: 10.1097/ta.0000000000002201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Traumatic injury can lead to a compromised intestinal epithelial barrier and inflammation. While alterations in the gut microbiome of critically injured patients may influence clinical outcomes, the impact of trauma on gut microbial composition is unknown. Our objective was to determine if the gut microbiome is altered in severely injured patients and begin to characterize changes in the gut microbiome due to time and therapeutic intervention. METHODS We conducted a prospective, observational study in adult patients (n = 72) sustaining severe injury admitted to a Level I Trauma Center. Healthy volunteers (n = 13) were also examined. Fecal specimens were collected on admission to the emergency department and at 3, 7, 10, and 13 days (±2 days) following injury. Microbial DNA was isolated for 16s rRNA sequencing, and α and β diversities were estimated, according to taxonomic classification against the Greengenes database. RESULTS The gut microbiome of trauma patients was altered on admission (i.e., within 30 minutes following injury) compared to healthy volunteers. Patients with an unchanged gut microbiome on admission were transfused more RBCs than those with an altered gut microbiome (p < 0.001). Although the gut microbiome started to return to a β-diversity profile similar to that of healthy volunteers over time, it remained different from healthy controls. Alternatively, α diversity initially increased postinjury, but subsequently decreased during the hospitalization. Injured patients on admission had a decreased abundance of traditionally beneficial microbial phyla (e.g., Firmicutes) with a concomitant decrease in opportunistic phyla (e.g., Proteobacteria) compared to healthy controls (p < 0.05). Large amounts of blood products and RBCs were both associated with higher α diversity (p < 0.001) and a β diversity clustering closer to healthy controls. CONCLUSION The human gut microbiome changes early after trauma and may be aided by early massive transfusion. Ultimately, the gut microbiome of trauma patients may provide valuable diagnostic and therapeutic insight for the improvement of outcomes postinjury. LEVEL OF EVIDENCE Prognostic and Epidemiological, level III.
Collapse
|
45
|
Wijdeveld M, Nieuwdorp M, IJzerman R. The interaction between microbiome and host central nervous system: the gut-brain axis as a potential new therapeutic target in the treatment of obesity and cardiometabolic disease. Expert Opin Ther Targets 2020; 24:639-653. [PMID: 32441559 DOI: 10.1080/14728222.2020.1761958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The role of the intestinal microbiota in host cardiometabolic health and disease has gained significant attention over recent decades. Previous studies have shown effects on metabolic health through gut microbiota modulation; this suggests diverse interaction pathways that constitute the communication between gut microbiota and host central nervous system, the so-called gut-brain axis. AREAS COVERED This article provides an overview of the various mechanisms that may mediate the gut-brain axis. It places an emphasis on cardiometabolic health, including effects of short-chain fatty acids (SCFA), alterations in neurotransmitters and gut peptides and microbial effects on chronic inflammation and immune function. Moreover, this paper sheds light on whether these mechanisms afford therapeutic targets to promote metabolic health. To this end, a PubMed search with the terms 'gut microbiota,' 'obesity' and 'insulin sensitivity' was performed. EXPERT OPINION Many properties of the human gut microbiome are associated with the central regulation of appetite and metabolic status. Some of these relationships are causal and there are positive effects from certain intervention methods. Microbial manipulation may offer a means to prevent or treat obesity and associated co-morbidities. However, to establish direct causal relations between altered gut microbiota and metabolic disease, clinical intervention studies are necessary.
Collapse
Affiliation(s)
- Madelief Wijdeveld
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers , Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers , Amsterdam, The Netherlands
| | - Richard IJzerman
- Department of Endocrinology, Amsterdam University Medical Centers , Amsterdam, The Netherlands
| |
Collapse
|
46
|
Giuffrè M, Campigotto M, Campisciano G, Comar M, Crocè LS. A story of liver and gut microbes: how does the intestinal flora affect liver disease? A review of the literature. Am J Physiol Gastrointest Liver Physiol 2020; 318:G889-G906. [PMID: 32146836 DOI: 10.1152/ajpgi.00161.2019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Each individual is endowed with a unique gut microbiota (GM) footprint that mediates numerous host-related physiological functions, such as nutrient metabolism, maintenance of the structural integrity of the gut mucosal barrier, immunomodulation, and protection against microbial pathogens. Because of increased scientific interest in the GM, its central role in the pathophysiology of many intestinal and extraintestinal conditions has been recognized. Given the close relationship between the gastrointestinal tract and the liver, many pathological processes have been investigated in the light of a microbial-centered hypothesis of hepatic damage. In this review we introduce to neophytes the vast world of gut microbes, including prevalent bacterial distribution in healthy individuals, how the microbiota is commonly analyzed, and the current knowledge of the role of GM in liver disease pathophysiology. Also, we highlight the potentials and downsides of GM-based therapy.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy
| | - Michele Campigotto
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy
| | - Giuseppina Campisciano
- Istituto di Ricovero e Cura a Carattere Scientifico Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Manola Comar
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Lory Saveria Crocè
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy.,Clinica Patologie del Fegato, Azienda Sanitaria Universitaria Integrata di Trieste, Italy.,Fondazione Italiana Fegato, Trieste, Italy
| |
Collapse
|
47
|
Bansal M, Fu Y, Alrubaye B, Abraha M, Almansour A, Gupta A, Liyanage R, Wang H, Hargis B, Sun X. A secondary bile acid from microbiota metabolism attenuates ileitis and bile acid reduction in subclinical necrotic enteritis in chickens. J Anim Sci Biotechnol 2020; 11:37. [PMID: 32190299 PMCID: PMC7069026 DOI: 10.1186/s40104-020-00441-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Background Clostridium perfringens-induced chicken necrotic enteritis (NE) is responsible for substantial economic losses worldwide annually. Recently, as a result of antibiotic growth promoter prohibition, the prevalence of NE in chickens has reemerged. This study was aimed to reduce NE through titrating dietary deoxycholic acid (DCA) as an effective antimicrobial alternative. Materials and methods Day-old broiler chicks were assigned to six groups and fed diets supplemented with 0 (basal diet), 0.8, 1.0 and 1.5 g/kg (on top of basal diet) DCA. The birds were challenged with Eimeria maxima (20,000 oocysts/bird) at d 18 and C. perfringens (109 CFU/bird per day) at d 23, 24, and 25 to induce NE. The birds were sacrificed at d 26 when ileal tissue and digesta were collected for analyzing histopathology, mRNA accumulation and C. perfringens colonization by real-time PCR, targeted metabolomics of bile acids, fluorescence in situ hybridization (FISH), or terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results At the cellular level, birds infected with E. maxima and C. perfringens developed subclinical NE and showed shortening villi, crypt hyperplasia and immune cell infiltration in ileum. Dietary DCA alleviated the NE-induced ileal inflammation in a dose-dependent manner compared to NE control birds. Consistent with the increased histopathological scores, subclinical NE birds suffered body weight gain reduction compared to the uninfected birds, an effect attenuated with increased doses of dietary DCA. At the molecular level, the highest dose of DCA at 1.5 g/kg reduced C. perfringens luminal colonization compared to NE birds using PCR and FISH. Furthermore, the dietary DCA reduced subclinical NE-induced intestinal inflammatory gene expression and cell apoptosis using PCR and TUNEL assays. Upon further examining ileal bile acid pool through targeted metabolomics, subclinical NE reduced the total bile acid level in ileal digesta compared to uninfected birds. Notably, dietary DCA increased total bile acid and DCA levels in a dose-dependent manner compared to NE birds. Conclusion These results indicate that DCA attenuates NE-induced intestinal inflammation and bile acid reduction and could be an effective antimicrobial alternative against the intestinal disease.
Collapse
Affiliation(s)
- Mohit Bansal
- 1Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O409, Fayetteville, AR 72701 USA
| | - Ying Fu
- 1Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O409, Fayetteville, AR 72701 USA.,2CEMB, University of Arkansas, Fayetteville, AR 72701 USA
| | - Bilal Alrubaye
- 1Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O409, Fayetteville, AR 72701 USA.,2CEMB, University of Arkansas, Fayetteville, AR 72701 USA
| | - Mussie Abraha
- 1Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O409, Fayetteville, AR 72701 USA
| | - Ayidh Almansour
- 1Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O409, Fayetteville, AR 72701 USA.,2CEMB, University of Arkansas, Fayetteville, AR 72701 USA
| | - Anamika Gupta
- 1Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O409, Fayetteville, AR 72701 USA
| | - Rohana Liyanage
- 3Department of Chemistry, University of Arkansas, Fayetteville, AR 72701 USA
| | - Hong Wang
- 1Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O409, Fayetteville, AR 72701 USA
| | - Billy Hargis
- 1Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O409, Fayetteville, AR 72701 USA
| | - Xiaolun Sun
- 1Center of Excellence for Poultry Science, University of Arkansas, 1260 W Maple St. O409, Fayetteville, AR 72701 USA.,2CEMB, University of Arkansas, Fayetteville, AR 72701 USA.,3Department of Chemistry, University of Arkansas, Fayetteville, AR 72701 USA
| |
Collapse
|
48
|
Manipulation of microbiota with probiotics as an alternative for treatment of hepatic encephalopathy. Nutrition 2019; 73:110693. [PMID: 32065881 DOI: 10.1016/j.nut.2019.110693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Hepatic encephalopathy is a cerebral alteration mainly caused by hepatic insufficiency or portosystemic shunt. It ranges from minimal neurologic manifestations to coma in its overt stage. The multifactorial pathophysiology of hepatic encephalopathy has rendered numerous treatment alternatives, among which the modification of dysbiosis and hyperammonemia are currently considered to be effective, not only clinically, but also regarding cost. Recent work has developed knowledge of probiotics in different clinical settings including the relationship of the gut microenvironment to liver cirrhosis. The aim of this review was to analyze the results of clinical trials on the effect of different probiotics on hepatic encephalopathy.
Collapse
|
49
|
Microbial metabolite deoxycholic acid controls Clostridium perfringens-induced chicken necrotic enteritis through attenuating inflammatory cyclooxygenase signaling. Sci Rep 2019; 9:14541. [PMID: 31601882 PMCID: PMC6787040 DOI: 10.1038/s41598-019-51104-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
Necrotic enteritis (NE) caused by Clostridium perfringens infection has reemerged as a prevalent poultry disease worldwide due to reduced usage of prophylactic antibiotics under consumer preferences and regulatory pressures. The lack of alternative antimicrobial strategies to control this disease is mainly due to limited insight into the relationship between NE pathogenesis, microbiome, and host responses. Here we showed that the microbial metabolic byproduct of secondary bile acid deoxycholic acid (DCA), at as low as 50 µM, inhibited 82.8% of C. perfringens growth in Tryptic Soy Broth (P < 0.05). Sequential Eimeria maxima and C. perfringens challenges significantly induced NE, severe intestinal inflammation, and body weight (BW) loss in broiler chickens. These negative effects were diminished (P < 0.05) by 1.5 g/kg DCA diet. At the cellular level, DCA alleviated NE-associated ileal epithelial death and significantly reduced lamina propria cell apoptosis. Interestingly, DCA reduced C. perfringens invasion into ileum (P < 0.05) without altering the bacterial ileal luminal colonization. Molecular analysis showed that DCA significantly reduced inflammatory mediators of Infγ, Litaf, Il1β, and Mmp9 mRNA accumulation in ileal tissue. Mechanism studies revealed that C. perfringens induced (P < 0.05) elevated expression of inflammatory mediators of Infγ, Litaf, and Ptgs2 (Cyclooxygenases-2 (COX-2) gene) in chicken splenocytes. Inhibiting the COX signaling by aspirin significantly attenuated INFγ-induced inflammatory response in the splenocytes. Consistent with the in vitro assay, chickens fed 0.12 g/kg aspirin diet protected the birds against NE-induced BW loss, ileal inflammation, and intestinal cell apoptosis. In conclusion, microbial metabolic product DCA prevents NE-induced BW loss and ileal inflammation through attenuating inflammatory response. These novel findings of microbiome protecting birds against NE provide new options on developing next generation antimicrobial alternatives against NE.
Collapse
|
50
|
Moderate Traumatic Brain Injury Alters the Gastrointestinal Microbiome in a Time-Dependent Manner. Shock 2019; 52:240-248. [DOI: 10.1097/shk.0000000000001211] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|