1
|
Pereira BP, Silva AO, Awata WMC, Pimenta GF, Ribeiro JM, de Faria Almeida CA, Antonietto CRK, Dos Reis LFC, Esteves A, Torres LHL, de Araújo Paula FB, Ruginsk SG, Tirapelli CR, Rizzi E, Ceron CS. Curcumin Prevents Renal Damage of l-NAME Induced Hypertension in by Reducing MMP-2 and MMP-9. Cell Biochem Funct 2024; 42:e4119. [PMID: 39244707 DOI: 10.1002/cbf.4119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
In the present study, we investigated whether curcumin administration would interfere with the main renal features of l-NAME-induced hypertension model. For this purpose, we conducted both in vitro and in vivo experiments to evaluate renal indicators of inflammation, oxidative stress, and metalloproteinases (MMPs) expression/activity. Hypertension was induced by l-NAME (70 mg/kg/day), and Wistar rats from both control and hypertensive groups were treated with curcumin (50 or 100 mg/kg/day; gavage) or vehicle for 14 days. Blood and kidneys were collected to determine serum creatinine levels, histological alterations, oxidative stress, MMPs expression and activity, and ED1 expression. l-NAME increased blood pressure, but both doses of curcumin treatment reduced these values. l-NAME treatment increased creatinine levels, glomeruli area, Bowman's space, kidney MMP-2 activity, as well as MMP-9 and ED1 expression, and reduced the number of glomeruli. Curcumin treatment prevented the increase in creatinine levels, MMP-2 activity, and reduced MMP-2, MMP-9, ED1, and superoxide levels, as well as increased superoxide dismutase activity and partially prevented glomeruli alterations. Moreover, curcumin directly inhibited MMP-2 activity in vitro. Thus, our main findings demonstrate that curcumin reduced l-NAME-induced hypertension and renal glomerular alterations, inhibited MMP-2 and MMP-9 expression/activity, and reduced oxidative stress and inflammatory processes, which may indirectly impact hypertension-induced renal outcomes.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Alessandra Oliveira Silva
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | - Gustavo Félix Pimenta
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, São Paulo, Brazil
| | - Jéssyca Milene Ribeiro
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | | | - Luis Felipe Cunha Dos Reis
- Department of Structural Biology, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Alessandra Esteves
- Department of Anatomy, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Sílvia Graciela Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carlos Renato Tirapelli
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, São Paulo, Brazil
| | - Ellen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirão Preto, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
2
|
Junqueira A, Gomes MJ, Lima ARR, Pontes THD, Rodrigues EA, Damatto FC, Depra I, Paschoareli GL, Pagan LU, Fernandes AAH, Oliveira-Jr SA, Pacagnelli FL, Okoshi MP, Okoshi K. Effects of concurrent training and N-acetylcysteine supplementation on cardiac remodeling and oxidative stress in middle-aged spontaneously hypertensive rats. BMC Cardiovasc Disord 2024; 24:409. [PMID: 39103770 PMCID: PMC11299285 DOI: 10.1186/s12872-024-04075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND This study evaluated the effects of concurrent isolated training (T) or training combined with the antioxidant N-acetylcysteine (NAC) on cardiac remodeling and oxidative stress in spontaneously hypertensive rats (SHR). METHODS Six-month-old male SHR were divided into sedentary (S, n = 12), concurrent training (T, n = 13), sedentary supplemented with NAC (SNAC, n = 13), and concurrent training with NAC supplementation (TNAC, n = 14) groups. T and TNAC rats were trained three times a week on a treadmill and ladder; NAC supplemented groups received 120 mg/kg/day NAC in rat chow for eight weeks. Myocardial antioxidant enzyme activity and lipid hydroperoxide concentration were assessed by spectrophotometry. Gene expression of NADPH oxidase subunits Nox2, Nox4, p22 phox, and p47 phox was evaluated by real time RT-PCR. Statistical analysis was performed using ANOVA and Bonferroni or Kruskal-Wallis and Dunn. RESULTS Echocardiogram showed concentric remodeling in TNAC, characterized by increased relative wall thickness (S 0.40 ± 0.04; T 0.39 ± 0.03; SNAC 0.40 ± 0.04; TNAC 0.43 ± 0.04 *; * p < 0.05 vs T and SNAC) and diastolic posterior wall thickness (S 1.50 ± 0.12; T 1.52 ± 0.10; SNAC 1.56 ± 0.12; TNAC 1.62 ± 0.14 * mm; * p < 0.05 vs T), with improved contractile function (posterior wall shortening velocity: S 39.4 ± 5.01; T 36.4 ± 2.96; SNAC 39.7 ± 3.44; TNAC 41.6 ± 3.57 * mm/s; * p < 0.05 vs T). Myocardial lipid hydroperoxide concentration was lower in NAC treated groups (S 210 ± 48; T 182 ± 43; SNAC 159 ± 33 *; TNAC 110 ± 23 *# nmol/g tissue; * p < 0.05 vs S, # p < 0.05 vs T and SNAC). Nox 2 and p22 phox expression was higher and p47 phox lower in T than S [S 1.37 (0.66-1.66); T 0.78 (0.61-1.04) *; SNAC 1.07 (1.01-1.38); TNAC 1.06 (1.01-1.15) arbitrary units; * p < 0.05 vs S]. NADPH oxidase subunits did not differ between TNAC, SNAC, and S groups. CONCLUSION N-acetylcysteine supplementation alone reduces oxidative stress in untreated spontaneously hypertensive rats. The combination of N-acetylcysteine and concurrent exercise further decreases oxidative stress. However, the lower oxidative stress does not translate into improved cardiac remodeling and function in untreated spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Adriana Junqueira
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.
- Physiotherapy Department, University of Western Sao Paulo, Presidente Prudente, SP, Brazil.
| | - Mariana J Gomes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Aline R R Lima
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Thierres H D Pontes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Eder A Rodrigues
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Felipe C Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Igor Depra
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Guilherme L Paschoareli
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Luana U Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Ana A H Fernandes
- Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Francis L Pacagnelli
- Physiotherapy Department, University of Western Sao Paulo, Presidente Prudente, SP, Brazil
| | - Marina P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
3
|
Ajibade TO, Esan OO, Osawere IM, Adetona MO, Aina OO, Azeez OI, Obisesan AD, Oyagbemi AA, Ola-Davies OE, Omobowale TO, Saba AB, Adedapo AA, Yakubu MA, Oguntibeju OO. Cardiovascular and renal oxidative stress-mediated toxicities associated with bisphenol-A exposures are mitigated by Curcuma longa in rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:202-214. [PMID: 38966628 PMCID: PMC11221766 DOI: 10.22038/ajp.2023.23367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 07/06/2024]
Abstract
Objective Curcuma longa Rhizome (CLR), due to its potent antioxidant phytochemical constituents, was investigated for its effects on bisphenol A (BPA)-induced cardiovascular and renal damage. Materials and Methods Sixty rats were randomly selected, and grouped as control, BPA (100 mg/ kg), BPA and CLR 100 mg/kg, BPA and CLR 200 mg/kg, CLR 100 mg/kg, and CLR 200 mg/kg for 21 days. Oxidative stress indices, antioxidant status, blood pressure parameters, genotoxicity, and immunohistochemistry were determined. Results Rats exposed to the toxic effects of BPA had heightened blood pressure, lowered frequency of micronucleated polychromatic erythrocytes, and decreased activities of antioxidant enzymes compared with rats treated with CLR. Moreover, administration of CLR significantly (p<0.05) lowered malondialdehyde content and reduced the serum myeloperoxidase activity. Immunohistochemical evaluation revealed significantly (p<0.05) increased expressions of cardiac troponin and Caspase 3 in the BPA group compared with the CLR-treated groups. Conclusion C. longa ameliorated cardiotoxic and nephrotoxic actions of bisphenol-A via mitigation of oxidative stress, hypertension, and genotoxicity.
Collapse
Affiliation(s)
- Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | - Israel Mark Osawere
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | | | - Odunayo Ibraheem Azeez
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Ayobami Deborah Obisesan
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS,Texas Southern University, Houston, TX, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
4
|
Martínez-Casales M, Hernanz R, González-Carnicero Z, Barrús MT, Martín A, Briones AM, Michalska P, León R, Pinilla E, Simonsen U, Alonso MJ. The Melatonin Derivative ITH13001 Prevents Hypertension and Cardiovascular Alterations in Angiotensin II-Infused Mice. J Pharmacol Exp Ther 2024; 388:670-687. [PMID: 38129126 DOI: 10.1124/jpet.123.001586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Inflammatory mechanisms and oxidative stress seem to contribute to the pathogenesis of hypertension. ITH13001 is a melatonin-phenyl-acrylate hybrid that moderately induces the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) and has a potent oxidant scavenging effect compared with other derivatives of its family. Here we investigated the effect of ITH13001 on hypertension and the associated cardiovascular alterations. Angiotensin II (AngII)-infused mice were treated with ITH13001 (1 mg/kg per day, i.p.) for 2 weeks. The ITH13001 treatment prevented: 1) the development of hypertension, cardiac hypertrophy, and increased collagen and B-type natriuretic peptide (Bnp) expression in the heart; 2) the reduction of elasticity, incremental distensibility, fenestrae area, intraluminal diameter, and endothelial cell number in mesenteric resistance arteries (MRA); 3) the endothelial dysfunction in aorta and MRA; 4) the plasma and cardiovascular oxidative stress and the reduced aortic nitric oxide (NO) bioavailability; 5) the increased cardiac levels of the cytokines interleukin (IL)-1β, IL-6, and C-C motif chemokine ligand 2 (Ccl2), the T cell marker cluster of differentiation 3 (Cd3), the inflammasome NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), the proinflammatory enzymes inducible nitric oxide synthase (iNOS) and COX-2, the toll-like receptor 4 (TLR4) adapter protein myeloid differentiation primary response 88 (MyD88), and the nuclear factor kappa B (NF-κB) subunit p65; 6) the greater aortic expression of the cytokines tumor necrosis factor alpha (Tnf-α), Ccl2 and IL-6, Cd3, iNOS, MyD88, and NLRP3. Although ITH13001 increased nuclear Nrf2 levels and heme oxygenase 1 (HO-1) expression in vascular smooth muscle cells, both cardiac and vascular Nrf2, Ho-1, and NADPH quinone dehydrogenase 1 (Nqo1) levels remained unmodified irrespective of AngII infusion. Summarizing, ITH13001 improved hypertension-associated cardiovascular alterations independently of Nrf2 pathway activation, likely due to its direct antioxidant and anti-inflammatory properties. Therefore, ITH13001 could be a useful therapeutic strategy in patients with resistant hypertension. SIGNIFICANCE STATEMENT: Despite the existing therapeutic arsenal, only half of the patients treated for hypertension have adequately controlled blood pressure; therefore, the search for new compounds to control this pathology and the associated damage to end-target organs (cerebral, cardiac, vascular, renal) is of particular interest. The present study demonstrates that a new melatonin derivative, ITH13001, prevents hypertension development and the associated cardiovascular alterations due to its antioxidant and anti-inflammatory properties, making this compound a potential candidate for treatment of resistant hypertensive patients.
Collapse
Affiliation(s)
- Marta Martínez-Casales
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Raquel Hernanz
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Zoe González-Carnicero
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - María T Barrús
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Angela Martín
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Ana M Briones
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Patrycja Michalska
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Rafael León
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Estefano Pinilla
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Ulf Simonsen
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - María J Alonso
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| |
Collapse
|
5
|
Irondi EA, Bankole AO, Awoyale W, Ajani EO, Alamu EO. Antioxidant, enzymes inhibitory, physicochemical and sensory properties of instant bio-yoghurts containing multi-purpose natural additives. Front Nutr 2024; 10:1340679. [PMID: 38274204 PMCID: PMC10808348 DOI: 10.3389/fnut.2023.1340679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
This study aimed to assess the antioxidant, enzyme inhibitory, physicochemical and sensory properties of instant bio-yoghurts containing multi-purpose natural additives. Multi-purpose natural additives were formulated with three natural additives (sweet detar seed, ginger rhizome, and hibiscus calyx flours, as a thickener, flavourant and colourant, respectively) blends at proportions derived from the Design Expert. The additives' synthetic counterparts were formulated with sodium carboxymethylcellulose, vanilla flavor, and red colourant at the same proportions. After that, yoghurt was produced and the additives blends were incorporated into it either in aqueous extract or flour form, yielding bio-yoghurts designated multi-purpose natural additive extract-containing yoghurt (MNAE-yoghurt), multi-purpose natural additive flour-added yoghurt (MNAF-yoghurt), and their multi-purpose synthetic additives-containing counterparts (MSAE-yoghurt and MSAF-yoghurt). A commercially-available bio-yoghurt served as a control. All the yoghurts were lyophilized to obtain instant bio-yoghurts. Subsequently, bioactive components (total phenolics, tannins, total flavonoids and saponins), antioxidants and enzymes [alpha-amylase, alpha-glucosidase, pancreatic lipase, and angiotensin 1-converting enzyme (ACE)] inhibitory activities, as well as proximate, physicochemical and sensory qualities of the bio-yoghurts were determined. The MNAE-yoghurt and MNAF-yoghurt had higher bioactive constituents, total titratable acid levels, and more potent antioxidant and enzyme inhibitory properties, but a lower pH than their synthetic counterparts and the control. The total phenolics, tannins, total flavonoids and saponins levels of MNAE-yoghurt and MNAF-yoghurt were 14.40 ± 0.24 and 16.54 ± 0.62 mg/g, 1.65 ± 0.04 and 1.74 ± 0.08 mg/g, 4.25 ± 0.03 and 4.40 ± 0.02 mg/g, 0.64 ± 0.01 and 0.66 ± 0.02 mg/g, respectively. Among the natural multi-purpose additives-containing bio-yoghurts, MNAF-yoghurt had higher bioactive constituents and stronger antioxidant and enzymes inhibitory properties. Its α-amylase, α-glucosidase, ACE, and pancreatic lipase IC50 values were 72.47 ± 0.47, 74.07 ± 0.02, 25.58 ± 2.58, and 33.56 ± 29.66 μg/mL, respectively. In contrast, MNAE-yoghurt had the highest protein (13.70 ± 0.85%) and the lowest fat (2.63 ± 0.71%) contents. The sensory attributes of all the bio-yoghurts fell within an acceptable likeness range. Overall, the inclusion of multi-purpose natural additives blends enhanced the instant bio-yoghurts' nutritional, health-promoting, and sensory qualities.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | | - Emmanuel Oladeji Alamu
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Oyo, Nigeria
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Southern Africa Research and Administration Hub (SARAH), Lusaka, Zambia
| |
Collapse
|
6
|
Mudgal R, Singh S. Xanthine Oxidoreductase in the Pathogenesis of Endothelial Dysfunction: An Update. Curr Hypertens Rev 2024; 20:10-22. [PMID: 38318826 DOI: 10.2174/0115734021277772240124075120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in the formation of uric acid (UA) and is involved in the generation of reactive oxygen species (ROS). Overproduction of ROS has been linked to the pathogenesis of hypertension, atherosclerosis, and cardiovascular disease, with multiple studies over the last 30 years demonstrating that XOR inhibition is beneficial. The involvement of XOR and its constituents in the advancement of chronic inflammation and ROS, which are responsible for endothelial dysfunction, is the focus of this evidence-based review. An overabundance of XOR products and ROS appears to drive the inflammatory response, resulting in significant endothelium damage. It has also been demonstrated that XOR activity and ED are connected. Diabetes, hypertension, and cardiovascular disease are all associated with endothelial dysfunction. ROS mainly modifies the activity of vascular cells and can be important in normal vascular physiology as well as the development of vascular disease. Suppressing XOR activity appears to decrease endothelial dysfunction, probably because it lessens the generation of reactive oxygen species and the oxidative stress brought on by XOR. Although there has long been a link between higher vascular XOR activity and worse clinical outcomes, new research suggests a different picture in which positive results are mediated by XOR enzymatic activity. Here in this study, we aimed to review the association between XOR and vascular endothelial dysfunction. The prevention and treatment approaches against vascular endothelial dysfunction in atherosclerotic disease.
Collapse
Affiliation(s)
- Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
7
|
Gallego-López MDC, Ojeda ML, Romero-Herrera I, Rua RM, Carreras O, Nogales F. Folic acid antioxidant supplementation to binge drinking adolescent rats improves hydric-saline balance and blood pressure, but fails to increase renal NO availability and glomerular filtration rate. FASEB J 2024; 38:e23341. [PMID: 38031982 DOI: 10.1096/fj.202301609r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.
Collapse
Affiliation(s)
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rui Manuel Rua
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
8
|
Kanclerska J, Szymańska-Chabowska A, Poręba R, Michałek-Zrąbkowska M, Lachowicz G, Mazur G, Martynowicz H. A Systematic Review of Publications on the Associations Between Sleep Architecture and Arterial Hypertension. Med Sci Monit 2023; 29:e941066. [PMID: 37665688 PMCID: PMC10487188 DOI: 10.12659/msm.941066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 09/06/2023] Open
Abstract
Sleep research has garnered substantial interest among scientists owing to its correlation with various diseases, particularly elevated blood pressure observed in patients with obstructive sleep apnea. This systematic review aims to identify and analyze publications exploring the associations between sleep architecture and arterial hypertension. A comprehensive search of PubMed (MEDLINE), Scopus, and Embase databases yielded 111 reports, of which 7 manuscripts were included in the review. Four of the studies reported a significant reduction in the duration of the N3 phase of sleep in hypertensive patients, while 2 studies found a statistically significant reduction in the duration of the N2 and rapid eye movement (REM) stages of sleep. Three studies indicated increased sleep fragmentation in hypertensive patients. They showed a longer duration of the N1 stage of sleep, shorter duration of overall sleep time, and an increased apnea-hypopnea index in hypertensive patients. These findings underscore the association between the duration of non-REM/REM sleep stages and elevated BP, providing substantial evidence. Moreover, a notable increase in sleep fragmentation was observed among patients with hypertension. However, further research is warranted to expand and deepen our understanding of this intricate relationship. This systematic review serves as a valuable resource, guiding future investigations and contributing to advancements in the field of sleep and arterial hypertension.
Collapse
|
9
|
Mohammed SAD, Liu H, Baldi S, Wang Y, Chen P, Lu F, Liu S. Antihypertensive, antioxidant, and renal protective impact of integrated GJD with captopril in spontaneously hypertensive rats. Sci Rep 2023; 13:10944. [PMID: 37414816 PMCID: PMC10326066 DOI: 10.1038/s41598-023-38020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Hypertension is the most prevalent chronic disease World-wide, and the leading preventable risk factor for cardiovascular disease (CVD). Few patients accomplish the objective of decreasing blood pressure and avoiding hypertensive target organ damage after treatments with antihypertensive agents which opens the door for other treatments, such as herbal-and antihypertensive combination therapy. Captopril (CAP), as a-pril which inhibits angiotensin converting enzyme has long been used in the management of hypertension and CVD. Gedan Jiangya Decoction (GJD) is known for antihypertensive effects in prior studies. The research is aimed to determine whether GJD in combination with captopril has antihypertensive, kidney protective, antioxidant, and vasoactive effects in spontaneously hypertensive rats (SHR). Regular measurements of systolic and diastolic blood pressure (SBP and DBP), and body weight were monitored weekly. H&E staining was utilized to examine histopathology. The combined effects were studied using ELISA, immunohistochemistry, and qRT-PCR. Significant reductions in SBP, DBP, aortic wall thickness, and improvement in renal tissue were observed following GJD + CAP treatment, with increased serum levels of NO, SOD, GSH-Px, and CAT and decreases in Ang II, ET-1, and MDA. Similarly, GJD + CAP treatment of SHR's significantly decreased ET-1 and AGTR1 mRNA and protein expression while increasing eNOS mRNA and protein expression in thoracic aorta and kidney tissue. In conclusion, the present investigation found that GJD + CAP treatment decreases SHR blood pressure, improves aorta remodeling and renal protection, and that this effect could be attributable, in part, due to antioxidant and vascular tone improvement.
Collapse
Affiliation(s)
- Shadi A D Mohammed
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
- School of Pharmacy, Lebanese International University, 18644, Sana'a, Yemen
| | - Hanxing Liu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Salem Baldi
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
10
|
Hajleh MNA, Al-Dujaili EAS. Effects of Turmeric Concentrate on Cardiovascular Risk Factors and Exercise-Induced Oxidative Stress in Healthy Volunteers; an Exploratory Study. Adv Pharm Bull 2023; 13:601-610. [PMID: 37646063 PMCID: PMC10460800 DOI: 10.34172/apb.2023.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Evidence suggests that turmeric intake can improve antioxidant defense, blood pressure (BP), ageing and gut microbiota. The effects of turmeric concentrate (curcumin) intake on cardiovascular risk factors and exercise induced oxidative stress were investigated. Methods A randomized placebo-controlled study was performed to assess the effects of turmeric extract in healthy volunteers before and after a 30 min exercise bout. Participants (n=22) were given either turmeric concentrate or placebo supplements. Anthropometry, BP, pulse wave velocity (PWV), biomarkers of oxidative stress, perceived exertion and lipid peroxidation were assessed. Results In the turmeric group, the expected BP response to exercise following turmeric was blunted and the increase was not significant compared to basal values followed by a decrease in final BP and PWV values. There were no significant differences in all baseline parameters between the placebo and the curcumin groups (P>0.05). A significant increase was observed in urinary antioxidant power (P=0.031) and total polyphenol levels (P=0.022) post turmeric intervention. The distance ran by the participants taking turmeric was significantly longer (P=0.005) compared to basal value. Those who took the placebo did not show significant changes. Conclusion Our study suggests that turmeric concentrate intake can reduce BP and improve antioxidant, anti-inflammatory status and arterial compliance. Turmeric may improve exercise performance and ameliorates oxidative stress. Larger studies are warranted to validate these findings and test more cardiovascular risk factors.
Collapse
Affiliation(s)
- Maha Noordin Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, AlAhliyya Amman University, Zip code (19328), Amman, Jordan
| | - Emad Abdol Sahib Al-Dujaili
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
11
|
Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 2023; 24:7898. [PMID: 37175603 PMCID: PMC10178199 DOI: 10.3390/ijms24097898] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions associated with the risk of diabetes mellitus type 2 and cardiovascular diseases (CVDs). Metabolic syndrome is closely related to obesity. Increased adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving metabolic syndrome components, namely insulin resistance, hypertension, and hyperlipidemia. An increasing number of studies confirm the importance of oxidative stress and chronic inflammation in the etiology of metabolic syndrome. However, few studies have reviewed the mechanisms underlying the role of oxidative stress in contributing to metabolic syndrome. In this review, we highlight mechanisms by which reactive oxygen species (ROS) increase mitochondrial dysfunction, protein damage, lipid peroxidation, and impair antioxidant function in metabolic syndrome. Biomarkers of oxidative stress can be used in disease diagnosis and evaluation of severity.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| | - Lombe S. Kabwe
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Martin Chakulya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Annet Kirabo
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| |
Collapse
|
12
|
Effects of exergame and bicycle exercise intervention on blood pressure and executive function in older adults with hypertension: A three-group randomized controlled study. Exp Gerontol 2023; 173:112099. [PMID: 36681131 DOI: 10.1016/j.exger.2023.112099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Management of hypertension and prevention of cognitive decline are challenging public health problems. However, the effects of exergame intervention on blood pressure (BP) remain to be explored, and whether exergame intervention is an effective alternative to traditional physical exercise intervention for older adults with hypertension remains to be demonstrated. This study aimed to explore the effectiveness of moderate-intensity exergame intervention and bicycle exercise training on BP and executive function in older hypertensive patients. A total of 128 participants were randomly assigned to the exergame intervention group (n = 41), bicycle exercise intervention group (n = 44), and control group (n = 43). The intervention groups exercised for 60 min, 3 times per week, for 16 weeks, while the control group maintained their normal lifestyle. The results revealed that there were no significant differences between two intervention groups and control group in systolic BP and diastolic BP changes (ps > 0.05). Both intervention groups demonstrated significant improvements in working memory when compared with control group (exergame intervention group: -461.9 ms, p = 0.025; bicycle exercise intervention group: -470.1 ms, p = 0.021). There were no significant differences in systolic BP, diastolic BP, or working memory between the two intervention groups after 16 weeks of training (ps > 0.05). No difference in inhibition or cognitive flexibility was observed between the intervention and control groups (ps > 0.05). The current results showed that moderate-intensity exergame intervention did not produce significant benefits in reducing BP, but yielded similar beneficial effects in working memory to that of bicycle exercise intervention. More studies are needed on whether exergame intervention has the potential to be a promising supplemental therapeutic tool for older adults with hypertension.
Collapse
|
13
|
Rodríguez JL, Berrios P, Clavo ZM, Marin-Bravo M, Inostroza-Ruiz L, Ramos-Gonzalez M, Quispe-Solano M, Fernández-Alfonso MS, Palomino O, Goya L. Chemical Characterization, Antioxidant Capacity and Anti-Oxidative Stress Potential of South American Fabaceae Desmodium tortuosum. Nutrients 2023; 15:nu15030746. [PMID: 36771451 PMCID: PMC9921092 DOI: 10.3390/nu15030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
It has been proposed that oxidative stress is a pathogenic mechanism to induce cytotoxicity and to cause cardiovascular and neuronal diseases. At present, natural compounds such as plant extracts have been used to reduce the cytotoxic effects produced by agents that induce oxidative stress. Our study aimed to evaluate the antioxidant and cytoprotective capacity of Desmodium tortuosum (D. tortuosum) extract in the co- and pre-treatment in EA.hy926 and SH-SY5Y cell lines subjected to oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Cell viability, reactive oxygen species (ROS), nitric oxide (NO), caspase 3/7 activity, reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), and molecular expression of oxidative stress biomarkers (SOD2, NRF2 and NFκB1) and cell death (APAF1, BAX, Caspase3) were all evaluated. It was observed that the D. tortuosum extract, in a dose-dependent manner, was able to reduce the oxidative and cytotoxicity effects induced by t-BOOH, even normalized to a dose of 200 µg/mL, which would be due to the high content of phenolic compounds mainly phenolic acids, flavonoids, carotenoids and other antioxidant compounds. Finally, these results are indicators that the extract of D. tortuosum could be a natural alternative against the cytotoxic exposure to stressful and cytotoxic chemical agents.
Collapse
Affiliation(s)
- José-Luis Rodríguez
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
- Faculty of Veterinary, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Paola Berrios
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Zoyla-Mirella Clavo
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Manuel Marin-Bravo
- Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Luis Inostroza-Ruiz
- Faculty of Pharmacy, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | | | - Miguel Quispe-Solano
- Faculty of Engineering in Food Industries, Universidad Nacional del Centro del Perú, Huancayo 12006, Peru
| | | | - Olga Palomino
- Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis Goya
- Department of Metabolism and Nutrition, Spanish National Research Council (CSIC), Institute of Food Science, Technology and Nutrition (ICTAN), Jose Antonio Novais 10, 28040 Madrid, Spain
| |
Collapse
|
14
|
Lapi D, Federighi G, Lonardo MS, Chiurazzi M, Muscariello E, Tenore G, Colantuoni A, Novellino E, Scuri R. Effects of physical exercise associated with a diet enriched with natural antioxidants on cerebral hypoperfusion and reperfusion injury in spontaneously hypertensive rats. Front Physiol 2023; 14:1091889. [PMID: 36755790 PMCID: PMC9900024 DOI: 10.3389/fphys.2023.1091889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress is implicated in the pathogenesis of arterial hypertension. The reduction in the bioavailability of nitric oxide (NO) causes endothelial dysfunction, altering the functions of cerebral blood vessels. Physical exercise and intake of antioxidants improve the redox state, increasing the vascular NO production and/or the decrease in NO scavenging by reactive oxygen species (ROS). The present study was aimed at assessing the effects of physical exercise associated with a diet enriched with antioxidants from the Annurca apple in preventing the microvascular damage due to cerebral hypoperfusion and reperfusion injury in spontaneously hypertensive rats (SHRs). The rat pial microcirculation was investigated by intravital fluorescence microscopy through a parietal closed cranial window. As expected, SHRs subjected to physical exercise or an antioxidants-enriched diet showed a reduction of microvascular permeability, ROS formation, and leukocyte adhesion to venular walls, with a major effect of the antioxidants-enriched diet, when compared to untreated SHRs. Moreover, capillary perfusion was preserved by both treatments in comparison with untreated SHRs. Unexpectedly, the combined treatments did not induce higher effects than the single treatment. In conclusion, our results support the efficacy of physical activity or antioxidant supplement in reducing the microvascular alterations due to hypertension and ascribe to an antioxidants-enriched diet effective microvascular protection in SHRs.
Collapse
Affiliation(s)
- Dominga Lapi
- Department of Biology, University of Pisa, Pisa, Italy,*Correspondence: Dominga Lapi,
| | - Giuseppe Federighi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Serena Lonardo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Martina Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Espedita Muscariello
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Giancarlo Tenore
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | | | - Rossana Scuri
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Birhan TA, Molla MD, Tesfa KH. The effect of angiotensin converting enzyme gene insertion/deletion polymorphism on anthropometric and biochemical parameters among hypertension patients: A case-control study from Northwest Ethiopia. PLoS One 2023; 18:e0285618. [PMID: 37200278 DOI: 10.1371/journal.pone.0285618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
INTRODUCTION The angiotensin-converting enzyme (ACE) gene polymorphism has recently been linked with altered anthropometric and biochemical parameters in hypertensive patients. However, these links are still poorly understood and there is scarce evidence on the topic. Therefore, this study aimed to assess the effect of ACE gene insertion/deletion (I/D) polymorphism on anthropometric and biochemical parameters among essential hypertension patients at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. MATERIALS AND METHODS A case-control study with 64 cases and 64 controls was conducted from October 07, 2020, to June 02, 2021. The anthropometric measurements, biochemical parameters, and ACE gene polymorphism were determined using standard operating procedures, enzymatic colorimetric method, and polymerase chain reaction, respectively. A one-way analysis of variance was used to determine the association of genotypes with other study variables. P value < 0.05 was regarded as statistically significant. RESULT The systolic/diastolic blood pressure and blood glucose level (P-value<0.05) were significantly higher among study hypertensive patients with the DD genotype. However, anthropometric measures and lipid profiles of cases and controls were not associated with ACE gene polymorphism (P-value>0.05). CONCLUSION The DD genotype of the ACE gene polymorphism was found to have a significant association with high blood pressure and blood glucose levels in the study population. Advanced studies with a considerable sample size may be needed to utilize the ACE genotype as a biomarker for the early detection of hypertension-related complications.
Collapse
Affiliation(s)
- Tsegaye Adane Birhan
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Kibur Hunie Tesfa
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
16
|
Kachurov J, Stojanovska Z. Antihypertensive role of antioxidants. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Josif Kachurov
- Pliva/Teva pharmaceutical, Nikola Parapunov, 1000 Skopje, North Macedonia
| | | |
Collapse
|
17
|
Gao J, Akbari A, Wang T. Green tea could improve elderly hypertension by modulating arterial stiffness, the activity of the renin/angiotensin/aldosterone axis, and the sodium-potassium pumps in old male rats. J Food Biochem 2022; 46:e14398. [PMID: 36181277 DOI: 10.1111/jfbc.14398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
Hypertension is a major health problem common in the elderly people. Green tea is a popular beverage recommended in folk medicine for lowering blood pressure. However, the molecular mechanisms involved in the antihypertensive effects of green tea are not fully understood. Therefore, the aim of this study was to investigate the antihypertensive effects of green tea on high-salt diet-induced hypertension in old male rats. Forty old male rats were divided into five groups: control, hypertensive, and hypertensive-green tea (2, 4, and 6 g/kg). Heart rate (HR) and systolic blood pressure (SBP) were measured. Cardiac and renal histology were also performed. Lipid profile, NO, angiotensin II (Ang II), and aldosterone were determined, and the expression of eNOS, ATIR and ATIIR, aldosterone receptor, and Atp1a1 were measured. Green tea could significantly decrease HR and SBP, lipid profiles, renin-angiotensin II-aldosterone system activity, and Ang II signaling in kidney tissue of hypertensive rats (p < .01). It also increased Atp1a1, Nrf2, and eNOS expression along with antioxidant enzymes activity and NO concentration (p < .05) and decreased NF-ĸB and iNOS expression and IL-1β levels in the heart, kidneys, and aorta of rats with hypertension. It can be concluded that green tea can improve salt-induced blood pressure by modulating the function of the renin-angiotensin-aldosterone system, enhancing the synthesis of nitric oxide in the endothelium, increasing antioxidant activity and suppressing inflammation in the heart and kidney, improving the expression of the sodium-potassium pump, and reduction in serum lipids and glucose in aged male rats. PRACTICAL APPLICATIONS: The results of this study showed that green tea could improve hypertension in elderly rats by modulating (1) the expression of the sodium-potassium pump in the heart, kidney, and aortic tissues, (2) the activity of the renin-angiotensin II-aldosterone system in kidney, (3) enhancing antioxidant and anti-inflammatory activities in the heart, aorta, and kidneys, (4) enhancing the synthesis of nitric oxide in the endothelium, and (5) lowering lipid profile. The results of these studies show that the consumption of green tea and its products can be a good candidate for the prevention of cardiovascular diseases such as hypertension in the elderly. In addition, attention to its bioactive compounds can be considered by researchers as an independent therapeutic strategy or adjunctive therapy for the treatment of hypertension.
Collapse
Affiliation(s)
- Jing Gao
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Tao Wang
- Department of Cardiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Franco C, Sciatti E, Favero G, Bonomini F, Vizzardi E, Rezzani R. Essential Hypertension and Oxidative Stress: Novel Future Perspectives. Int J Mol Sci 2022; 23:ijms232214489. [PMID: 36430967 PMCID: PMC9692622 DOI: 10.3390/ijms232214489] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Among cardiovascular diseases, hypertension is one of the main risk factors predisposing to fatal complications. Oxidative stress and chronic inflammation have been identified as potentially responsible for the development of endothelial damage and vascular stiffness, two of the primum movens of hypertension and cardiovascular diseases. Based on these data, we conducted an open-label randomized study, first, to evaluate the endothelial damage and vascular stiffness in hypertense patients; second, to test the effect of supplementation with a physiological antioxidant (melatonin 1 mg/day for 1 year) in patients with essential hypertension vs. hypertensive controls. Twenty-three patients of either gender were enrolled and randomized 1:1 in two groups (control and supplemented group). The plasmatic total antioxidant capacity (as a marker of oxidative stress), blood pressure, arterial stiffness, and peripheral endothelial function were evaluated at the beginning of the study and after 1 year in both groups. Our results showed that arterial stiffness improved significantly (p = 0.022) in supplemented patients. The endothelial function increased too, even if not significantly (p = 0.688), after 1 year of melatonin administration. Moreover, the supplemented group showed a significative reduction in TAC levels (p = 0.041) correlated with the improvement of arterial stiffness. These data suggest that melatonin may play an important role in reducing the serum levels of TAC and, consequently, in improving arterial stiffness.
Collapse
Affiliation(s)
- Caterina Franco
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Edoardo Sciatti
- Cardiology Unit 1, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (SISDO), 25123 Brescia, Italy
| | - Enrico Vizzardi
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
- Correspondence: (E.V.); (R.R.)
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (SISDO), 25123 Brescia, Italy
- Correspondence: (E.V.); (R.R.)
| |
Collapse
|
19
|
Dawud F, Takyi SA, Arko-Mensah J, Basu N, Egbi G, Ofori-Attah E, Bawuah SA, Fobil JN. Relationship between Metal Exposures, Dietary Macronutrient Intake, and Blood Glucose Levels of Informal Electronic Waste Recyclers in Ghana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12768. [PMID: 36232070 PMCID: PMC9564681 DOI: 10.3390/ijerph191912768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
While metal exposures are generally high among informal electronic waste (e-waste) recyclers, the joint effect of metals and dietary macronutrients on their metabolic health is unknown. Therefore, we investigated the relationship between metal exposures, dietary macronutrients intake, and blood glucose levels of e-waste recyclers at Agbogbloshie using dietary information (48-h recall survey), blood metals (Pb & Cd), and HbA1C levels of 151 participants (100 e-waste recyclers and 51 controls from the Accra, Ghana) in March 2017. A linear regression model was used to estimate the joint relationship between metal exposures, dietary macronutrient intake, and blood glucose levels. Except for dietary proteins, both groups had macronutrient deficiencies. Diabetes prevalence was significantly higher among controls. Saturated fat, OMEGA-3, and cholesterol intake were associated with significant increases in blood glucose levels of recyclers. In a joint model, while 1 mg of cholesterol consumed was associated with a 0.7% increase in blood glucose, 1 g/L of Pb was found to significantly increase blood glucose levels by 0.9% among recyclers. Although the dietary consumption of cholesterol and fat was not high, it is still possible that exposure to Pb and Cd may still increase the risk of diabetes among both e-waste recyclers and the general population.
Collapse
Affiliation(s)
- Fayizatu Dawud
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | - Sylvia Akpene Takyi
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | - John Arko-Mensah
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | | | - Godfred Egbi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
| | - Ebenezer Ofori-Attah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
| | - Serwaa Akoto Bawuah
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | - Julius N. Fobil
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| |
Collapse
|
20
|
Grujić-Milanović J, Jaćević V, Miloradović Z, Milanović SD, Jovović D, Ivanov M, Karanović D, Vajić UJ, Mihailović-Stanojević N. Resveratrol improved kidney function and structure in malignantly hypertensive rats by restoration of antioxidant capacity and nitric oxide bioavailability. Biomed Pharmacother 2022; 154:113642. [PMID: 36942598 DOI: 10.1016/j.biopha.2022.113642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The main cause of death among patients with malignant hypertension is a kidney failure. The promising field in essential and malignant hypertension therapy could be centered on the amelioration of oxidative stress using antioxidant molecules like resveratrol. Resveratrol is a potent antioxidative agent naturally occurred in many plants that possess health-promoting properties. METHODS In the present study, we investigated the therapeutic potential of resveratrol, a polyphenol with anti-oxidative activity, in NG-L-Arginine Methyl Ester (L-NAME) treated spontaneously hypertensive rats (SHR) - malignantly hypertensive rats (MHR). RESULTS Resveratrol significantly improves oxidative damages by modulation of antioxidant enzymes and suppression of prooxidant factors in the kidney tissue of MHR. Enhanced antioxidant defense in the kidney improves renal function and ameliorates the morphological changes in this target organ. Besides, protective properties of resveratrol are followed by the restoration of the nitrogen oxide (NO) pathway. 4) Conclusion: Antioxidant therapy with resveratrol could represent promising therapeutical approach in hypertension, especially malignant, against kidney damage.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia.
| | - Zoran Miloradović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Sladjan D Milanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, biomedical engineering and physics of complex systems, Belgrade, Serbia.
| | - Djurdjica Jovović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Milan Ivanov
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Danijela Karanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Una-Jovana Vajić
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Nevena Mihailović-Stanojević
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| |
Collapse
|
21
|
Silybin induces endothelium-dependent vasodilation via TRPV4 channels in mouse mesenteric arteries. Hypertens Res 2022; 45:1954-1963. [PMID: 36056206 DOI: 10.1038/s41440-022-01000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Silybin is a flavonolignan extracted from the seeds of Silybum marianum that has been used as a dietary supplement for treating hepatic diseases and components of metabolic syndrome such as diabetes, obesity and hypertension. Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels that regulate vascular endothelial function and blood flow. However, the relationship between silybin and TRPV4 channels in small mesenteric arteries remains unknown. In our study, we carried out a molecular docking experiment by using Discovery Studio v3.5 to predict the binding of silybin to TRPV4. Activation of TRPV4 with silybin was detected via intracellular Ca2+ concentration ([Ca2+]i) measurement and patch clamp experiments. The molecular docking results showed that silybin was likely to bind to the ankyrin repeat domain of TPRV4. [Ca2+]i measurements in mesenteric arterial endothelial cells (MAECs) and TRPV4-overexpressing HEK293 (TRPV4-HEK293) cells demonstrated that silybin induced Ca2+ influx by activating TRPV4 channels. The patch clamp experiments indicated that in TRPV4-HEK293 cells, silybin induced TRPV4-mediated cation currents. In addition, in high-salt-induced hypertensive mice, oral administration of silybin decreased systolic blood pressure (SBP) and significantly improved the arterial dilatory response to acetylcholine. Our findings provide the first evidence that silybin could induce mesenteric endothelium-dependent vasodilation and reduce blood pressure in high-salt-induced hypertensive mice via TRPV4 channels, thereby revealing the potential effect of silybin on preventing endothelial dysfunction-related cardiovascular diseases.
Collapse
|
22
|
Li ZY, Ma Q, Li X, Yu SY, Zuo J, Wang CJ, Li WJ, Ba Y, Yu FF. Association of AGTR1 gene methylation and its genetic variant in Chinese farmer with hypertension: A case-control study. Medicine (Baltimore) 2022; 101:e29712. [PMID: 35866766 PMCID: PMC9302313 DOI: 10.1097/md.0000000000029712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The objective was to determine the potential associations of the angiotensin II receptor type 1 (AGTR1) gene polymorphism, methylation, and lipid metabolism in Chinese farmers with hypertension. A case-control study was conducted in Wuzhi county of Henan province in China in 2013 to 2014. A total of 1034 local residents (35-74 years, 386 hypertensive cases, and 648 normotensive subjects) were enrolled in this study. Triglyceride (TG), total cholesterol (TC), high-density lipoprotein, and low-density lipoprotein were measured using automatic chemistry analyzer. The AGTR1 gene promoter methylation level was measured using quantitative methylation-specific polymerase chain reaction method. The single nucleotide polymorphism rs275653 was genotyped with TaqMan probe assay at an applied biosystems platform. The gender, body mass index (BMI), TG, TC, and family history of hypertension in the hypertension group were significantly higher than those in control group (P < .05). No significant difference was observed in the distribution of AGTR1 rs275653 polymorphism in the hypertension and controls (P > .05). The AGTR1 gene methylation in subjects carrying different genotypes was not significantly observed (P > .05). The logistic regression analysis found the AGTR1 gene methylation level was negative correlation with hypertension in the present study (odds ratio, 0.946, 95% confidence interval, 0.896-0.999) through adjusting for age, gender, BMI, education, smoking, alcohol drinking, fruit and vegetable intake, pickles intake, and family history of hypertension. The association of AGTR1 gene hypomethylation and essential hypertension was observed in Chinese farmers; no significant difference was observed in the distribution of AGTR1 rs275653 polymorphism.
Collapse
Affiliation(s)
- Zhi-yuan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Ma
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing Li
- Yantai Municipal Commission of Health and Family Planning, Yantai, Shandong, China
| | - Shui-yuan Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Juan Zuo
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chong-jian Wang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wen-jie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fang-fang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Fang-fang Yu, Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan Province, 450001 China (e-mail: )
| |
Collapse
|
23
|
Ojeda ML, Nogales F, Del Carmen Gallego-López M, Carreras O. Binge drinking during the adolescence period causes oxidative damage-induced cardiometabolic disorders: A possible ameliorative approach with selenium supplementation. Life Sci 2022; 301:120618. [PMID: 35533761 DOI: 10.1016/j.lfs.2022.120618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
Binge drinking (BD) is the most common alcohol consumption model among adolescents. BD exposure during adolescence disrupts the nervous system function, being involved in the major mortality causes at this age: motor vehicle accidents, homicides and suicides. Recent studies have also shown that BD consumption during adolescence affects liver, renal and cardiovascular physiology, predisposing adolescents to future adult cardiometabolic damage. BD is a particularly pro-oxidant alcohol consumption pattern, because it leads to the production of a great source of reactive oxygen species (ROS) via the microsomal ethanol oxidizing system, also decreasing the antioxidant activity of glutathione peroxidase (GPx). Selenium (Se) is a mineral which plays a pivotal role against oxidation; it forms part of the catalytic center of different antioxidant selenoproteins such as GPxs (GPx1, GPx4, GPx3) and selenoprotein P (SelP). Specifically, GPx4 has an essential role in mitochondria, preventing their oxidation, apoptosis and NFkB-inflamative response, being this function even more relevant in heart's tissue. Se serum levels are decreased in acute and chronic alcoholic adult patients, being correlated to the severity of oxidation, liver damage and metabolic profile. Experimental studies have described that Se supplementation to alcohol exposed mice clearly decreases oxidative and liver damage. However, clinical BD effects on Se homeostasis and selenoproteins' tissue distribution related to oxidation during adolescence are not yet studied. In this narrative review we will describe the use of sodium selenite supplementation as an antioxidant therapy in adolescent BD rats in order to analyze Se homeostasis implication during BD exposure, oxidative balance, apoptosis and inflammation, mainly in liver, kidney, and heart. These biomolecular changes and the cardiovascular function will be analyzed. Se supplementation therapies could be a good strategy to prevent the oxidation, inflammation and apoptosis generated in tissues by BD during adolescence, such as liver, kidney and heart, improving cardiovascular functioning.
Collapse
|