1
|
Duxbury EML, Carlsson H, Kimberley A, Ridge Y, Johnson K, Maklakov AA. Reduced insulin/IGF-1 signalling upregulates two anti-viral immune pathways, decreases viral load and increases survival under viral infection in C. elegans. GeroScience 2024; 46:5767-5780. [PMID: 38589671 PMCID: PMC11493891 DOI: 10.1007/s11357-024-01147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Reduced insulin/IGF-1 signalling (rIIS) improves survival across diverse taxa and there is a growing interest in its role in regulating immune function. Whilst rIIS can improve anti-bacterial resistance, the consequences for anti-viral immunity are yet to be systematically examined. Here, we show that rIIS in adult Caenorhabditis elegans increases the expression of key genes in two different anti-viral immunity pathways, whilst reducing viral load in old age, increasing survival and reducing rate-of-senescence under infection by naturally occurring positive-sense single-stranded RNA Orsay virus. We found that both drh-1 in the anti-viral RNA interference (RNAi) pathway and cde-1 in the terminal uridylation-based degradation of viral RNA pathway were upregulated in early adulthood under rIIS and increased anti-viral resistance was not associated with reproductive costs. Remarkably, rIIS increased anti-viral gene expression only in infected worms, potentially to curb the costs of constitutively upregulated immunity. RNA viruses are found across taxa from plants to mammals and we demonstrate a novel role for rIIS in regulating resistance to viral infection. We therefore highlight this evolutionarily conserved signalling pathway as a promising therapeutic target to improve anti-viral immunity.
Collapse
Affiliation(s)
| | - Hanne Carlsson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Annabel Kimberley
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Yvonne Ridge
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Katie Johnson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
2
|
Slaets H, Veeningen N, de Keizer PLJ, Hellings N, Hendrix S. Are immunosenescent T cells really senescent? Aging Cell 2024; 23:e14300. [PMID: 39113243 PMCID: PMC11464117 DOI: 10.1111/acel.14300] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 10/11/2024] Open
Abstract
Loss of proper T-cell functioning is a feature of aging that increases the risk of developing chronic diseases. In aged individuals, highly differentiated T cells arise with a reduced expression of CD28 and CD27 and an increased expression of KLRG-1 or CD57. These cells are often referred to as immunosenescent T cells but may still be highly active and contribute to autoimmunity. Another population of T cells known as exhausted T cells arises after chronic antigen stimulation and loses its effector functions, leading to a failure to combat malignancies and viral infections. A process called cellular senescence also increases during aging, and targeting this process has proven to be fruitful against a range of age-related pathologies in animal models. Cellular senescence occurs in cells that are irreparably damaged, limiting their proliferation and typically leading to chronic secretion of pro-inflammatory factors. To develop therapies against pathologies caused by defective T-cell function, it is important to understand the differences and similarities between immunosenescence and cellular senescence. Here, we review the hallmarks of cellular senescence versus senescent and exhausted T cells and provide considerations for the development of specific therapies against age-related diseases.
Collapse
Affiliation(s)
- Helena Slaets
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Naomi Veeningen
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Peter L. J. de Keizer
- Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Niels Hellings
- Neuro‐Immune Connections and Repair Lab, Department of Immunology and InfectionBiomedical Research Institute, Hasselt UniversityDiepenbeekBelgium
- UMSC–University MS Center, Campus DiepenbeekDiepenbeekBelgium
| | - Sven Hendrix
- Institute of Translational Medicine, Medical School HamburgHamburgGermany
| |
Collapse
|
3
|
Tan JHL, Hwang YY, Chin HX, Liu M, Tan SY, Chen Q. Towards a better preclinical cancer model - human immune aging in humanized mice. Immun Ageing 2023; 20:49. [PMID: 37752597 PMCID: PMC10523735 DOI: 10.1186/s12979-023-00374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Preclinical models are often used for cancer studies and evaluation of novel therapeutics. The relevance of these models has vastly improved with mice bearing a human immune system, especially in the context of immunotherapy. Nonetheless, cancer is an age-related disease, and studies often overlook the effects of aging. Here we have established a humanized mouse model of human immune aging to investigate the role of this phenomenon on liver tumor dynamics. METHODS Multiple organs and tissues (blood, thymus, lung, liver, spleen and bone marrow) were harvested from NOD-scid IL2rγ-/- (NIKO) mice reconstituted with human immune cells, over a period of 60 weeks post-birth, for immune profiling. Young and aging immune cells were compared for transcriptomic changes and functional differences. Effect of immune aging was investigated in a liver cancer humanized mouse model. RESULTS Focusing on the T cell population, which is central to cancer immunosurveillance and immunotherapy, we showed that the proportion of naïve T cells declined while memory subsets and senescent-like cells increased with age. RNA-sequencing revealed that downregulated genes were related to immune responses and processes, and this was corroborated by reduced cytokine production in aging T cells. Finally, we showed faster liver tumor growth in aging than younger humanized mice, which could be attributed to specific pathways of aging T cell exhaustion. CONCLUSION Our work improves on existing humanized (immune) mouse model and highlights the importance of considering immune aging in liver cancer modeling.
Collapse
Affiliation(s)
- Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Level 3 & 4, Singapore, 138648, Republic of Singapore
| | - Hui Xian Chin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Level 3 & 4, Singapore, 138648, Republic of Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Level 3 & 4, Singapore, 138648, Republic of Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
4
|
Grossamide attenuates inflammation by balancing macrophage polarization through metabolic reprogramming of macrophages in mice. Int Immunopharmacol 2022; 112:109190. [PMID: 36116152 DOI: 10.1016/j.intimp.2022.109190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Macrophages exhibited different phenotypes in response to environmental cues. To meet the needs of rapid response to stimuli, M1-activated macrophages preferred glycolysis to oxidative phosphorylation (OXPHOS) in mitochondria to quickly produce energy and obtain ample raw materials to support cell activation at the same time. Activated macrophages produced free radicals and cytokines to eradicate pathogens but also induced oxidative damage and enhanced inflammation. Grossamide (GSE), a lignanamide from Polygonum multiflorum Thunb., exhibited notable anti-inflammatory effects. In this study, the potential of GSE on macrophage polarization was explored. GSE significantly down-regulated the levels of M1 macrophage biomarkers (Cd32a, Cd80 and Cd86) while increased the levels of M2 indicators (Cd163, Mrc1 and Socs1), showing its potential to inhibit LPS-induced M1 polarization of macrophages. This ability has close a link to its effect on metabolic reprogramming of macrophage. GSE shunted nitric oxide (NO) production from arginine by up-regulation of arginase and down-regulation of inducible nitric oxide synthase, thus attenuated the inhibition of NO on OXPHOS. LPS created three breakpoints in the tricarboxylic acid cycle (TCA) cycle of macrophage as evidenced by down-regulated isocitrate dehydrogenase, accumulation of succinate and the inhibited SDH activity, significantly decreased level of oxoglutarate dehydrogenase expression and its substrate α-ketoglutarate. Thus GSE reduced oxidative stress and amended fragmented TCA cycle. As a result, GSE maintained redox (NAD+/NADH) and energy (ATP/ADP) state, reduced extracellular acidification rate and enhanced the oxygen consumption rate. In addition, GSE decreased the release of inflammatory cytokines by inhibiting the activation of the LPS/TLR4/NF-κB pathway. These findings highlighted the central role of immunometabolism of macrophages in its functional plasticity, which invited future study of mode of action of anti-inflammatory drugs from viewpoint of metabolic reprogramming.
Collapse
|
5
|
Wang Y, Chang L, Zhu G, Li G, Kong Q, Lv L, Wang Q, Tian C, Li Y, Zhu X, Pan X. Mechanism of thymus rejuvenation in elderly macaques. Rejuvenation Res 2022; 25:223-232. [PMID: 35876435 DOI: 10.1089/rej.2022.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Senile thymus atrophy is an important factor leading to decreased immune function. Repairing the atrophic thymus tissue structure, rebuilding immune function, and replenishing the number of exogenous stem cells may be effective methods. In this study, BMSCs (Bone Marrow Mesenchymal Stem Cells, BMSCs) were intravenously infused into elderly macaques. We found that thymus area was substantially increased, some thymus tissue regeneration was observed, the degree of thymus tissue fibrosis decreased, collagen fibre deposition decreased, cortical and medulla structures emerge gradually, the number of apoptotic cells decreased significantly, inhibit the expression of apoptosis-related proteins. Bone marrow mesenchymal cells inhibit the expression of genes related to aging. By sequencing the mRNA transcriptome in thymus tissue, the expression pattern of the tissue transcriptome tended to be similar to the thymus expression pattern in young macaques compared with the old group, reverse aging-related proteins. Based on the results, an intravenous infusion designed to increase the number of stem cells in the body effectively repairs the structure of the thymus and rebuilds immune function.
Collapse
Affiliation(s)
| | | | - Gaohong Zhu
- The First Affiliated Hospital of Kunming Medical University, Kunming, China;
| | - Gonghua Li
- Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan, China;
| | - Qingpeng Kong
- Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan, China;
| | - Longbao Lv
- Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan, China;
| | | | | | - Ye Li
- 920th hospital, Kunming, China;
| | - Xiangqing Zhu
- 920th hospital , Basic Medical Laboratory, Kunming, China;
| | | |
Collapse
|
6
|
Nollens HH, Haney NJ, Stacy NI, Robeck TR. Effects of sex, age, and season on the variation of blood analytes in a clinically healthy ex situ population of bottlenose dolphins ( Tursiops spp.). Vet Q 2021; 40:342-352. [PMID: 33138727 PMCID: PMC7733981 DOI: 10.1080/01652176.2020.1845415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background A comprehensive evaluation of the effects of sex, age, and season on blood analytes in a robust population size of ex situ bottlenose dolphins (Tursiops spp.) has not been investigated to date. Aim To define the variation in hematological and biochemical analytes of dolphins due to sex, age, and season. Methods 1,426 blood samples collected from 156 clinically normal dolphins consisting of 59 males and 97 females in which 37 analytes were measured were retrospectively identified. The dolphins were categorized by age, sex, and season, and categories were compared. Results About 23 (64%) analytes differed by age. The number of differences between adjacent age groups decreased with advancing age. MPV, glucose, BUN, globulins, GGT and Cl progressively increased with age, whereas Abs lymphs, total protein, ALP, CK and Ca progressively decreased with age. Three (8%) of analytes differed between sex, whereas 16 (44%) analytes differed by season. Female dolphins had higher median iron (33 µmol/L) than male dolphins (25 µmol/L). Female dolphins also had higher Abs lymphs and MCHC, but Abs lymphs and MCHC also differed between age and season, respectively. Sex inconsistently and relatively infrequently influences analytes. Delphinids of advancing age experience immune senescence and decreasing renal perfusion or clearance. Conclusions These results demonstrate the importance of considering the influences of sex, age, and season on blood data, provide a baseline for accurate interpretation of clinicopathological analytes of delphinids in managed care, and will be useful for investigations into health, disease, and stressors of wild delphinids.
Collapse
Affiliation(s)
- Hendrik H Nollens
- SeaWorld San Diego, San Diego, CA, USA.,Pacific Marine Mammal Center, Laguna Canyon Rd, Laguna Beach, CA, USA
| | - Nylah J Haney
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Todd R Robeck
- SeaWorld and Busch Gardens Species Preservation Laboratory, SeaWorld Parks and Entertainment, San Diego, CA, USA
| |
Collapse
|
7
|
Yin D, Lin D, Guo H, Gu H, Ying C, Zhang Y, Zhang J, Liu K, Tang W. Integrated analysis of blood mRNAs and microRNAs reveals immune changes with age in the Yangtze finless porpoise (Neophocaena asiaeorientalis). Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110635. [PMID: 34119650 DOI: 10.1016/j.cbpb.2021.110635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Populations of Yangtze finless porpoises (YFPs) have rapidly declined in recent decades, raising the specter of extinction. In order to protect YFPs, a greater understanding of their biology is needed, including studying how their immune functioning changes with age. Here, we systematically studied the hematologic and biochemical parameters, as well as mRNAs and miRNAs profiles of old, adult, and young YFPs. The lymphocyte (LYMPH), neutrophils (NEUT) and eosinophils (EOS) counts in old YFPs were lower than those in young or adult YFPs. When comparing old to adult YFPs, the latter showed higher expression of genes associated with the innate and adaptive immune systems, including complement components, major histocompatibility complex, interleukins, TNF receptors, and chemokines/cytokines. When comparing old to young YFPs, the most striking difference was in higher toll-like receptor signaling in the latter. When comparing adult to young YFPs, the former exhibited higher expression of genes related to adaptive immunity and the FoxO signaling pathway, but lower expression of genes associated with the PI3K-Akt signaling pathway. Negative miRNA-mRNA interactions were predicted in comparisons of the old and adult (326), old and young (316), adult and young (211) groups. Overall, these results delineate a progression from early innate immune function dominance to adaptive immune function enhancement (young to adult) and deterioration (adult to old), and the changes in miRNAs profile correlate with the effects of age on immune functions. This study is the first to observe the changes of immune function of Yangtze finless porpoise with age using transcriptome method, and the study's findings are of great significance for protecting this endangered species.
Collapse
Affiliation(s)
- Denghua Yin
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi 214081, China
| | - Danqing Lin
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi 214081, China
| | - Hongyi Guo
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Hailong Gu
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Congping Ying
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi 214081, China
| | - Ya Zhang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Jialu Zhang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi 214081, China
| | - Kai Liu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi 214081, China.
| | - Wenqiao Tang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Fabian DK, Fuentealba M, Dönertaş HM, Partridge L, Thornton JM. Functional conservation in genes and pathways linking ageing and immunity. IMMUNITY & AGEING 2021; 18:23. [PMID: 33990202 PMCID: PMC8120713 DOI: 10.1186/s12979-021-00232-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 12/31/2022]
Abstract
At first glance, longevity and immunity appear to be different traits that have not much in common except the fact that the immune system promotes survival upon pathogenic infection. Substantial evidence however points to a molecularly intertwined relationship between the immune system and ageing. Although this link is well-known throughout the animal kingdom, its genetic basis is complex and still poorly understood. To address this question, we here provide a compilation of all genes concomitantly known to be involved in immunity and ageing in humans and three well-studied model organisms, the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the house mouse Mus musculus. By analysing human orthologs among these species, we identified 7 evolutionarily conserved signalling cascades, the insulin/TOR network, three MAPK (ERK, p38, JNK), JAK/STAT, TGF-β, and Nf-κB pathways that act pleiotropically on ageing and immunity. We review current evidence for these pathways linking immunity and lifespan, and their role in the detrimental dysregulation of the immune system with age, known as immunosenescence. We argue that the phenotypic effects of these pathways are often context-dependent and vary, for example, between tissues, sexes, and types of pathogenic infection. Future research therefore needs to explore a higher temporal, spatial and environmental resolution to fully comprehend the connection between ageing and immunity.
Collapse
Affiliation(s)
- Daniel K Fabian
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK. .,Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Matías Fuentealba
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.,Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
9
|
Har-Noy M, Or R. Allo-priming as a universal anti-viral vaccine: protecting elderly from current COVID-19 and any future unknown viral outbreak. J Transl Med 2020; 18:196. [PMID: 32398026 PMCID: PMC7215129 DOI: 10.1186/s12967-020-02363-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We present the rationale for a novel allo-priming approach to serve the elderly as a universal anti-virus vaccine, as well serving to remodel the aging immune system in order to reverse immunosenescence and inflammaging. This approach has the potential to protect the most vulnerable from disease and provide society an incalculable economic benefit. Allo-priming healthy elderly adults is proposed to provide universal protection from progression of any type of viral infection, including protection against progression of the current outbreak of COVID-19 infection, and any future variants of the causative SARS-CoV-2 virus or the next 'Disease X'. Allo-priming is an alternative approach for the COVID-19 pandemic that provides a back-up in case vaccination strategies to elicit neutralizing antibody protection fails or fails to protect the vulnerable elderly population. The allo-priming is performed using activated, intentionally mismatched, ex vivo differentiated and expanded living Th1-like cells (AlloStim®) derived from healthy donors currently in clinical use as an experimental cancer vaccine. Multiple intradermal injections of AlloStim® creates a dominate titer of allo-specific Th1/CTL memory cells in circulation, replacing the dominance of exhausted memory cells of the aged immune system. Upon viral encounter, by-stander activation of the allo-specific memory cells causes an immediate release of IFN-ϒ, leading to development of an "anti-viral state", by-stander activation of innate cellular effector cells and activation of cross-reactive allo-specific CTL. In this manner, the non-specific activation of allo-specific Th1/CTL initiates a cascade of spatial and temporal immune events which act to limit the early viral titer. The release of endogenous heat shock proteins (HSP) and DAMP from lysed viral-infected cells, in the context of IFN-ϒ, creates of conditions for in situ vaccination leading to viral-specific Th1/CTL immunity. These viral-specific Th1/CTL provide sterilizing immunity and memory for protection from disease recurrence, while increasing the pool of Th1/CTL in circulation capable of responding to the next viral encounter. CONCLUSION Allo-priming has potential to provide universal protection from viral disease and is a strategy to reverse immunosenescence and counter-regulate chronic inflammation (inflammaging). Allo-priming can be used as an adjuvant for anti-viral vaccines and as a counter-measure for unknown biological threats and bio-economic terrorism.
Collapse
Affiliation(s)
- Michael Har-Noy
- Cancer Immunotherapy and Immunobiology Center, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel. .,Immunovative Therapies, Ltd, Malcha Technology Park, B1/F1, 9695101, Jerusalem, Israel. .,Mirror Biologics, Inc., 4824 E Baseline Rd #113, Phoenix, AZ, USA.
| | - Reuven Or
- Cancer Immunotherapy and Immunobiology Center, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| |
Collapse
|
10
|
Kowalik MM, Trzonkowski P, Łasińska-Kowara M, Mital A, Smiatacz T, Jaguszewski M. COVID-19 - Toward a comprehensive understanding of the disease. Cardiol J 2020; 27:99-114. [PMID: 32378729 PMCID: PMC8016030 DOI: 10.5603/cj.a2020.0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/07/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
The evidence on the pathophysiology of the novel coronavirus SARS-CoV-2 infection is rapidly growing. Understanding why some patients suffering from COVID-19 are getting so sick, while others are not, has become an informal imperative for researchers and clinicians around the globe. The answer to this question would allow rationalizing the fear surrounding this pandemic. Understanding of the pathophysiology of COVID-19 relies on an understanding of interplaying mechanisms, including SARS-CoV-2 virulence, human immune response, and complex inflammatory reactions with coagulation playing a major role. An interplay with bacterial co-infections, as well as the vascular system and microcirculation affected throughout the body should also be examined. More importantly, a compre-hensive understanding of pathological mechanisms of COVID-19 will increase the efficacy of therapy and decrease mortality. Herewith, presented is the current state of knowledge on COVID-19: beginning from the virus, its transmission, and mechanisms of entry into the human body, through the pathological effects on the cellular level, up to immunological reaction, systemic and organ presentation. Last but not least, currently available and possible future therapeutic and diagnostic options are briefly commented on.
Collapse
Affiliation(s)
- Maciej M Kowalik
- Department of Cardiac Anesthesiology, Medical University of Gdańsk, Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland.
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Dębinki 1, 80-209 Gdańsk, Poland
| | - Magdalena Łasińska-Kowara
- Department of Cardiac Anesthesiology, Medical University of Gdańsk, Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Andrzej Mital
- Department of Hematology and Transplantology, Medical University of Gdansk, Poland
| | | | - Miłosz Jaguszewski
- 1st Department of Cardiology, University Catheterization Laboratories, Medical University of Gdansk, Poland
| |
Collapse
|
11
|
Insights from In Vivo Studies of Cellular Senescence. Cells 2020; 9:cells9040954. [PMID: 32295081 PMCID: PMC7226957 DOI: 10.3390/cells9040954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence is the dynamic process of durable cell-cycle arrest. Senescent cells remain metabolically active and often acquire a distinctive bioactive secretory phenotype. Much of our molecular understanding in senescent cell biology comes from studies using mammalian cell lines exposed to stress or extended culture periods. While less well understood mechanistically, senescence in vivo is becoming appreciated for its numerous biological implications, both in the context of beneficial processes, such as development, tumor suppression, and wound healing, and in detrimental conditions, where senescent cell accumulation has been shown to contribute to aging and age-related diseases. Importantly, clearance of senescent cells, through either genetic or pharmacological means, has been shown to not only extend the healthspan of prematurely and naturally aged mice but also attenuate pathology in mouse models of chronic disease. These observations have prompted an investigation of how and why senescent cells accumulate with aging and have renewed exploration into the characteristics of cellular senescence in vivo. Here, we highlight our molecular understanding of the dynamics that lead to a cellular arrest and how various effectors may explain the consequences of senescence in tissues. Lastly, we discuss how exploitation of strategies to eliminate senescent cells or their effects may have clinical utility.
Collapse
|
12
|
Raddatz MA, Madhur MS, Merryman WD. Adaptive immune cells in calcific aortic valve disease. Am J Physiol Heart Circ Physiol 2019; 317:H141-H155. [PMID: 31050556 DOI: 10.1152/ajpheart.00100.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent and has no pharmaceutical treatment. Surgical replacement of the aortic valve has proved effective in advanced disease but is costly, time limited, and in many cases not optimal for elderly patients. This has driven an increasing interest in noninvasive therapies for patients with CAVD. Adaptive immune cell signaling in the aortic valve has shown potential as a target for such a therapy. Up to 15% of cells in the healthy aortic valve are hematopoietic in origin, and these cells, which include macrophages, T lymphocytes, and B lymphocytes, are increased further in calcified specimens. Additionally, cytokine signaling has been shown to play a causative role in aortic valve calcification both in vitro and in vivo. This review summarizes the physiological presence of hematopoietic cells in the valve, innate and adaptive immune cell infiltration in disease states, and the cytokine signaling pathways that play a significant role in CAVD pathophysiology and may prove to be pharmaceutical targets for this disease in the near future.
Collapse
Affiliation(s)
- Michael A Raddatz
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Meena S Madhur
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee.,Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
13
|
Nollens HH, Robeck TR, Schmitt TL, Croft LL, Osborn S, McBain JF. Effect of age, sex, and season on the variation in blood analytes of a clinically normal ex situ population of killer whales (Orcinus orca). Vet Clin Pathol 2019; 48:100-113. [PMID: 30676655 PMCID: PMC6850284 DOI: 10.1111/vcp.12697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022]
Abstract
Background The effects of sex, age, and season on blood analyte concentrations have not been investigated for the killer whale (Orcinus orca). Defining these changes provides background data for improving the care of managed populations and defines normal changes that could occur in wild counterparts. Objectives We aimed to define hematologic and serum biochemical variation by age, sex, and season for an ex situ killer whale population. Methods Blood samples collected from killer whales during normal wellness exams were retrospectively identified. Killer whales were categorized by age; calf (0‐2.9 years), juvenile (3‐10.9 years), early adult (11‐20.9 years), adult (21‐30.9 years), and aged (>30.9 years); sex; and season. Standard CBC and biochemistry were collated, and only samples without evidence of disease were used. A mixed effects maximum likelihood regression with animal identification (ID) as the random effects variable was used to compare groups with a significance set at P ≤ 0.01. Results All analytes differed by age, while only four differed by sex. Red blood cell parameters and associated renal analytes increased with age, while liver‐associated analytes and glucose decreased. Season affected 59% of the blood analytes. Conclusions Aged killer whales showed strong evidence of altered physiology as compared with younger animals. Anemia did not develop with age as was observed in one bottlenose dolphin population. Observed decreases in renal function could be caused by chronic disease or dehydration. Decreases in immune function parameters suggest immune senescence. These results provide background data for evaluating the health of managed and free‐ranging killer whales.
Collapse
Affiliation(s)
| | - Todd R Robeck
- SeaWorld and Busch Gardens Species Preservation Laboratory, SeaWorld Parks and Entertainment, San Diego, California
| | - Todd L Schmitt
- Veterinary Services, SeaWorld San Diego, San Diego, California
| | - Lara L Croft
- Veterinary Services, SeaWorld Orlando, Orlando, Florida
| | - Steve Osborn
- Veterinary Services, SeaWorld San Antonio, San Antonio, Texas
| | - James F McBain
- Veterinary Services, SeaWorld San Diego, San Diego, California
| |
Collapse
|
14
|
Bischof J, Gärtner F, Zeiser K, Kunz R, Schreiner C, Hoffer E, Burster T, Knippschild U, Zimecki M. Immune Cells and Immunosenescence. Folia Biol (Praha) 2019; 65:53-63. [PMID: 31464181 DOI: 10.14712/fb2019065020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Aging is associated with progressive loss of physiological integrity, leading to impaired physical and mental functions as well as increased morbidity and mortality. With advancing age, the immune system is no longer able to adequately control autoimmunity, infections, or cancer. The abilities of the elderly to slow down undesirable effects of aging may depend on the genetic background, lifestyle, geographic region, and other presently unknown factors. Although most aspects of the immunity are constantly declining in relation to age, some features are retained, while e.g. the ability to produce high levels of cytokines, response to pathogens by increased inflammation, and imbalanced proteolytic activity are found in the elderly, and might eventually cause harm. In this context, it is important to differentiate between the effect of immunosenescence that is contributing to this decline and adaptations of the immune system that can be quickly reversed if necessary.
Collapse
Affiliation(s)
- J Bischof
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - F Gärtner
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - K Zeiser
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - R Kunz
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - C Schreiner
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - E Hoffer
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - T Burster
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan Republic
| | - U Knippschild
- Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - M Zimecki
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
15
|
Sugahara H, Okai S, Odamaki T, Wong CB, Kato K, Mitsuyama E, Xiao JZ, Shinkura R. Decreased Taxon-Specific IgA Response in Relation to the Changes of Gut Microbiota Composition in the Elderly. Front Microbiol 2017; 8:1757. [PMID: 28955323 PMCID: PMC5601059 DOI: 10.3389/fmicb.2017.01757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022] Open
Abstract
Gut microbiota is known to change with aging; however, the underlying mechanisms have not been well elucidated. Immunoglobulin A (IgA) is the dominant class of antibody secreted by the intestinal mucosa, and are thought to play a key role in the regulation of the gut microbiota. T cells regulate the magnitude and nature of microbiota-specific IgA responses. However, it is also known that T cells become senescent in elderly people. Therefore, we speculated that the age-related changes of IgA response against the gut microbiota might be one of the mechanisms causing the age-associated changes of gut microbiota composition. To prove our hypothesis, fecal samples from 40 healthy subjects (adult group: n = 20, an average of 35 years old; elderly group: n = 20, an average of 76 years old) were collected, and the gut microbiota composition and the response of IgA to gut microbiota were investigated. The relative abundance of Bifidobacteriaceae was significantly lower, whereas those of Clostridiaceae, Clostridiales;f__ and Enterobacteriaceae were significantly higher in the elderly group than in the adult group. There was no significant difference in the fecal IgA concentration between the adult and elderly groups. However, the taxon-specific IgA response to some bacterial taxa was different between the adult and elderly groups. To evaluate inter-group differences in the taxon-specific IgA response to each bacterial taxon, the IgA-indices were calculated, and the IgA-indices of Clostridiaceae and Enterobacteriaceae were found to be significantly lower in the elderly group than the adult group. In addition, Clostridiales;f__ and Enterobacteriaceae were significantly enriched in the IgA+ fraction in the adult group but not in the elderly group, whereas Clostridiaceae was significantly enriched in the IgA- fraction in the elderly group but not in the adult group. Some species assigned to Clostridiaceae or Enterobacteriaceae are known to be pathogenic bacteria. Our results suggest the possible contribution of decreased IgA response in the increased abundance of bacterial taxa with potential pathogenicity in the intestinal environment of the elderly. Our findings contribute to the understanding of the regulatory factor for the changes in the gut microbiota composition with aging.
Collapse
Affiliation(s)
- Hirosuke Sugahara
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd.Zama, Japan
| | - Shinsaku Okai
- Applied Immunology, Graduate School of Biological Science, Nara Institute of Science and TechnologyIkoma, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd.Zama, Japan
| | - Chyn B Wong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd.Zama, Japan
| | - Kumiko Kato
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd.Zama, Japan
| | - Eri Mitsuyama
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd.Zama, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd.Zama, Japan
| | - Reiko Shinkura
- Applied Immunology, Graduate School of Biological Science, Nara Institute of Science and TechnologyIkoma, Japan
| |
Collapse
|