1
|
Shalmon G, Ibrahim R, Israel-Elgali I, Grad M, Shlayem R, Shapira G, Shomron N, Youngster I, Scheinowitz M. Differential Gut Microbiome Profiles in Long-Distance Endurance Cyclists and Runners. Life (Basel) 2024; 14:1703. [PMID: 39768409 PMCID: PMC11677284 DOI: 10.3390/life14121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
We recently have shown that the gut microbiota composition in female and male runners positively correlates with sports, and female runners show similar gut microbiome diversity to male runners. However, gut microbiota composition has not yet been fully investigated in other endurance athletes, such as cyclists. Therefore, in the current study, we investigated the gut microbiome profiles in competitive, non-professional female and male cyclists compared to what we have shown in runners. We aim to understand (1) whether the gut microbiome signature is sport-specific; (2) whether there is a microbiome difference between female and male cyclists and runners; and (3) whether the gut bacteria expressed in cyclists and runners correlates with exercise performance. Our study included 58 subjects: 18 cyclists (9 males), 22 runners (13 males), and 18 control subjects (9 males). Fecal samples were obtained and subjected to taxonomic analysis to assess the relative abundances of species across subjects based on 16S rRNA sequencing results. Both alpha and beta diversity of the bacterial communities were evaluated to identify compositional variations between the groups. Each participant completed a maximal oxygen consumption test and a time-to-exhaustion test at 85% of the measured VO2max. Cyclists performed the test on an SRM ergometer, while runners used a motorized treadmill. Blood lactate levels were measured at 5 min intervals throughout the time-to-exhaustion trials. Alpha diversity demonstrated a significant difference (p-adj < 0.001) between cyclists and runners. Male cyclists showed significantly lower alpha diversity than runners (p-adj < 0.001). The taxonomic analysis of gut microbiota composition between cyclists, runners, and controls showed a lower or higher abundance of fifteen different bacteria. In cyclists, there was a significant positive correlation between six bacteria, and in runners, there was a significant positive correlation between eight bacteria, with weekly training volume, time-to-exhaustion, VO2max, and blood lactate levels. This study suggests potential sport-specific characteristics in long-distance cyclists' and runners' gut microbiome signatures. These findings emphasize the differences in gut microbiota between cyclists and runners, probably due to the difference in physiological and biomechanical conditions related to the activity mode during each sport.
Collapse
Affiliation(s)
- Guy Shalmon
- Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Rawan Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ifat Israel-Elgali
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Meitar Grad
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Rani Shlayem
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Guy Shapira
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Noam Shomron
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ilan Youngster
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Pediatric Infectious Diseases Unit, The Center for Microbiome Research, Shamir Medical Center, Tel Aviv-Yafo 6997801, Israel
| | - Mickey Scheinowitz
- Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
2
|
Shalmon G, Ibrahim R, Israel-Elgali I, Grad M, Shlayem R, Shapira G, Shomron N, Youngster I, Scheinowitz M. Gut Microbiota Composition Positively Correlates with Sports Performance in Competitive Non-Professional Female and Male Runners. Life (Basel) 2024; 14:1397. [PMID: 39598196 PMCID: PMC11595618 DOI: 10.3390/life14111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
There is still a pressing need for further investigation to bridge the gap in understanding the differences in gut microbiota composition between female runners and their male counterparts. We aimed to determine the gut microbiota composition in competitive non-professional female and male runners and to correlate the gut bacteria to performance. Our study included 40 subjects, of which 22 were runners (13 males and 9 females) and 18 control subjects (9 males and 9 females, representing the general population who perform light physical activity with a weekly running volume of ≤5 km per week). Fecal specimens were collected and analyzed for taxonomic profiling to compare species' relative abundances between males and females based on the results of 16SrRNA analysis. Bacterial alpha and beta diversity were assessed to determine the differences in microbial composition between runners and controls, and between sexes. Each participant underwent a maximal oxygen consumption test and a time-to-exhaustion test at 85% of the measured VO2max. Blood lactate was collected every 5 min during the tests. Bacterial alpha diversity showed a significant difference (p = 0.04) between runners and controls. Taxonomic analysis of gut microbiota composition showed a lower Enterobacteriaceae abundance and a higher Methanosphaera abundance in runners compared with the control group. Ten different bacteria (Methanosphaera, Mitsuokella, Prevotellaceae, Megamonas, Rothia, Oscillospira, Bacteroides, Odoribacter, Blautia massiliensis, Butyricicoccus_pullicaecorum) were positively correlated with exercise (VO2max, lactate blood levels, time to exhaustion, and weekly training volume). We found no significant differences in the gut microbiota composition between male and female runners. Gut microbiota composition positively correlates with sports performance in competitive non-professional female and male runners, and female runners show similar gut microbiome diversity to male runners.
Collapse
Affiliation(s)
- Guy Shalmon
- Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Rawan Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ifat Israel-Elgali
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Meitar Grad
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Rani Shlayem
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Guy Shapira
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Noam Shomron
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ilan Youngster
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Pediatric Infectious Diseases Unit, The Center for Microbiome Research, Shamir Medical Center, Tel Aviv 6997801, Israel
| | - Mickey Scheinowitz
- Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
3
|
Malat I, Drancourt M, Grine G. Methanobrevibacter smithii cell variants in human physiology and pathology: A review. Heliyon 2024; 10:e36742. [PMID: 39347381 PMCID: PMC11437934 DOI: 10.1016/j.heliyon.2024.e36742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Methanobrevibacter smithii (M. smithii), initially isolated from human feces, has been recognised as a distinct taxon within the Archaea domain following comprehensive phenotypic, genetic, and genomic analyses confirming its uniqueness among methanogens. Its diversity, encompassing 15 genotypes, mirrors that of biotic and host-associated ecosystems in which M. smithii plays a crucial role in detoxifying hydrogen from bacterial fermentations, converting it into mechanically expelled gaseous methane. In microbiota in contact with host epithelial mucosae, M. smithii centres metabolism-driven microbial networks with Bacteroides, Prevotella, Ruminococcus, Veillonella, Enterococcus, Escherichia, Enterobacter, Klebsiella, whereas symbiotic association with the nanoarchaea Candidatus Nanopusillus phoceensis determines small and large cell variants of M. smithii. The former translocate with bacteria to induce detectable inflammatory and serological responses and are co-cultured from blood, urine, and tissular abscesses with bacteria, prototyping M. smithii as a model organism for pathogenicity by association. The sources, mechanisms and dynamics of in utero and lifespan M. smithii acquisition, its diversity, and its susceptibility to molecules of environmental, veterinary, and medical interest still have to be deeply investigated, as only four strains of M. smithii are available in microbial collections, despite the pivotal role this neglected microorganism plays in microbiota physiology and pathologies.
Collapse
Affiliation(s)
- Ihab Malat
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
4
|
Laserna Mendieta EJ, Martín Dominguez V, Pérez Lucendo I, Granero Cremades I, Ferreirós Martínez R, Álvarez Malé T, Sanz De Benito MÁ, Santander C. Detection capacity of small intestine bacterial or methanogen overgrowth by lactose and fructose breath testing in the adult population. ADVANCES IN LABORATORY MEDICINE 2024; 5:327-332. [PMID: 39252801 PMCID: PMC11382628 DOI: 10.1515/almed-2024-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/01/2024] [Indexed: 09/11/2024]
Abstract
Objectives Exhaled breath tests (BTs) are the main diagnostic method for fructose and lactose malabsorption/intolerance (FI and LI, respectively) and for detecting small intestine bacterial or methanogen overgrowth (SIBO/IMO). Although FI/LI-BTs may provide evidence of the presence of SIBO/IMO, there is limited literature evaluating their reliability for this purpose. The objective of this study was to assess the sensitivity and specificity of FI/LI-BTs in detecting SIBO and their concordance with SIBO-BTs in the identification of IMO. Methods In this retrospective observational study, FI/LI-BTs and SIBO-BTs performed in the same patients within a period of 6 weeks were selected from 652 gas chromatography-based BTs. Results A total of 146 BTs from 67 eligible adult patients were identified. LI-BTs had higher specificity than FI-BT in detecting SIBO (93.8 % vs. 72.7 %). In contrast, FI-BTs showed higher sensitivity (60.0 % vs. 28.6 %) as FI was more frequently established in SIBO-positive patients (70 % vs. 29 %). With regard to IMO, concordance with LI-BT was 100 %, with a 27 % of false negatives on FI-BTs. Conclusions Findings suggestive of SIBO or IMO on LI-BTs were highly consistent with those of SIBO-BTs. In contrast, the rate of false positives for SIBO and the rate of false negative for IMO on FI-BTs was 27 % in both cases.
Collapse
Affiliation(s)
- Emilio José Laserna Mendieta
- Gastroenterology Research Unit, Hospital General de Tomelloso, Tomelloso, Ciudad Real, Spain
- Service of Clinical Laboratory, Hospital Universitario La Princesa, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Verónica Martín Dominguez
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- Department of Gastroenterology, Hospital Universitario La Princesa, Madrid, Spain
| | - Irene Pérez Lucendo
- Service of Clinical Laboratory, Hospital Universitario La Princesa, Madrid, Spain
| | | | | | - Tomás Álvarez Malé
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- Department of Gastroenterology, Hospital Universitario La Princesa, Madrid, Spain
| | | | - Cecilio Santander
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Department of Gastroenterology, Hospital Universitario La Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Laserna Mendieta EJ, Martín Dominguez V, Pérez Lucendo I, Granero Cremades I, Ferreirós Martínez R, Álvarez Malé T, Sanz De Benito MÁ, Santander C. Capacidad de detección de sobrecrecimiento bacteriano o metanogénico intestinal de los test de aliento para intolerancia a lactosa y fructosa en población adulta. ADVANCES IN LABORATORY MEDICINE 2024; 5:333-339. [PMID: 39252812 PMCID: PMC11381627 DOI: 10.1515/almed-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/01/2024] [Indexed: 09/11/2024]
Abstract
Resumen
Objetivos
Los test de aliento espirado (TAE) son la principal herramienta diagnóstica en la evaluación de la malabsorción/intolerancia a fructosa (IF) y lactosa (IL) y para la detección del sobrecrecimiento bacteriano o metanógenico intestinal (SCBI/SCMI). En ocasiones, los TAE-IF/IL muestran hallazgos sugerentes de la presencia de SCBI o SCMI, pero los estudios que evalúan la fiabilidad de éstos son escasos. Nuestro objetivo es analizar la sensibilidad y especificidad de los TAE-IF/IL en la detección de SCBI y la concordancia en la identificación de SCMI.
Métodos
Estudio observacional retrospectivo donde se seleccionaron entre 652 TAE realizados mediante cromatografía de gases aquellos TAE-IF/IL y TAE-SCBI hechos en un mismo paciente en un plazo máximo de 6 semanas.
Resultados
Se encontraron 146 TAE de 67 pacientes adultos que cumplieron el criterio de selección. La especificidad para la detección de SCBI fue mejor para el TAE-IL que para TAE-IF (93,8 vs. 72,7 %). La sensibilidad fue más alta para el TAE-IF (60,0 vs. 28,6 %), porque se observó un mayor porcentaje de IF que de IL entre los pacientes con SCBI positivo (70 vs. 29 %). Para SCMI, la concordancia fue del 100 % para TAE-IL y hubo un 27 % de falsos negativos en TAE-IF.
Conclusiones
Los hallazgos de SCBI o SCMI encontrados en el TAE-IL son altamente concordantes con los obtenidos en la prueba TAE-SCBI, mientras que los TAE-IF presentan en torno a un 27 % de falsos positivos en la detección de SCBI y otro 27 % de falsos negativos en la identificación de SCMI.
Collapse
Affiliation(s)
- Emilio José Laserna Mendieta
- Unidad de Investigación, Servicio de Digestivo, Hospital General de Tomelloso, Tomelloso, Ciudad Real, España
- Servicio de Análisis Clínicos, Hospital Universitario de La Princesa, Madrid, España
- Instituto de Investigación Sanitaria de La Princesa, Madrid, España
- Instituto de Investigación Sanitaria de Castilla-La Mancha, Toledo, España
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, España
| | - Verónica Martín Dominguez
- Instituto de Investigación Sanitaria de La Princesa, Madrid, España
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa, Madrid, España
| | - Irene Pérez Lucendo
- Servicio de Análisis Clínicos, Hospital Universitario de La Princesa, Madrid, España
| | | | | | - Tomás Álvarez Malé
- Instituto de Investigación Sanitaria de La Princesa, Madrid, España
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa, Madrid, España
| | | | - Cecilio Santander
- Instituto de Investigación Sanitaria de La Princesa, Madrid, España
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, España
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa, Madrid, España
- Departamento de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, España
| |
Collapse
|
6
|
Talamantes S, Steiner F, Spencer S, Neshatian L, Sonu I. Intestinal Methanogen Overgrowth (IMO) Is Associated with Delayed Small Bowel and Colonic Transit Time (TT) on the Wireless Motility Capsule (WMC). Dig Dis Sci 2024; 69:3361-3368. [PMID: 39068378 PMCID: PMC11835418 DOI: 10.1007/s10620-024-08563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Methanogens are associated with gut dysmotility in animal models but have not been robustly studied in humans. The WMC assesses regional transit time (TT) and pH in the GI tract. AIMS To study the segmental TT and pH among patients with SIBO or IMO utilizing WMC. METHODS We conducted a retrospective study of 207 patients who underwent a glucose or lactulose breath test (BT) and WMC from 2010 to 2022. Diagnosis of SIBO and IMO were based on the 2017 North American consensus criteria. TT and pH were extracted from WMC recordings. We tested for differences in means of continuous variables and frequencies of categorical variables using two-sample t tests, Wilcoxon Rank Sum test, Chi-square, and Fisher exact tests. We used R version 3.3.1 (2016-06-21) for all statistical analyses. RESULTS A total of 196 patients met criteria, mean age 47.4 years and 155 (79.1%) females. Of the 86 (43.9%) patients with a positive BT, 42 (58.3%) had IMO only (meeting only CH4 criteria) and 30 (34.9%) met both H2 and CH4 criteria. Colonic TT was longer in patients with a positive BT compared to negative patients (40 h:29 min vs 28 h:51 min, p = 0.028). Small bowel TT and colonic TT were longer in patients with IMO compared to negative patients (SBTT: 5 h:15 min vs 4 h:32 min, p = 0.021; CTT: 44 h:23 min vs 28 h:51 min, p = 0.030). There were no significant differences in segmental pH compared to negative patients. CONCLUSION To our knowledge, this is the largest study of patients who have undergone both BT and WMC. A positive BT was associated with delayed CTT, while having IMO only was associated with both delayed CTT and SBTT, but neither with pH. Future investigation is needed to elucidate whether changes in intestinal microbiota affect gut transit.
Collapse
Affiliation(s)
- Sarah Talamantes
- Division of Gastroenterology & Hepatology, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Faye Steiner
- Division of Gastroenterology & Hepatology, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean Spencer
- Division of Gastroenterology & Hepatology, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Leila Neshatian
- Division of Gastroenterology & Hepatology, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Irene Sonu
- Division of Gastroenterology & Hepatology, Department of Medicine, Stanford University, Palo Alto, CA, USA.
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 430 Broadway Pavilion C 3rd Floor, Redwood City, CA, 94063, USA.
| |
Collapse
|
7
|
Duller S, Vrbancic S, Szydłowski Ł, Mahnert A, Blohs M, Predl M, Kumpitsch C, Zrim V, Högenauer C, Kosciolek T, Schmitz RA, Eberhard A, Dragovan M, Schmidberger L, Zurabischvili T, Weinberger V, Moser AM, Kolb D, Pernitsch D, Mohammadzadeh R, Kühnast T, Rattei T, Moissl-Eichinger C. Targeted isolation of Methanobrevibacter strains from fecal samples expands the cultivated human archaeome. Nat Commun 2024; 15:7593. [PMID: 39217206 PMCID: PMC11366006 DOI: 10.1038/s41467-024-52037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Archaea are vital components of the human microbiome, yet their study within the gastrointestinal tract (GIT) is limited by the scarcity of cultured representatives. Our study presents a method for the targeted enrichment and isolation of methanogenic archaea from human fecal samples. The procedure combines methane breath testing, in silico metabolic modeling, media optimization, FACS, dilution series, and genomic sequencing through Nanopore technology. Additional analyzes include the co-cultured bacteriome, comparative genomics of archaeal genomes, functional comparisons, and structure-based protein function prediction of unknown differential traits. Successful establishment of stable archaeal cultures from 14 out of 16 fecal samples yielded nine previously uncultivated strains, eight of which are absent from a recent archaeome genome catalog. Comparative genomic and functional assessments of Methanobrevibacter smithii and Candidatus Methanobrevibacter intestini strains from individual donors revealed features potentially associated with gastrointestinal diseases. Our work broadens available archaeal representatives for GIT studies, and offers insights into Candidatus Methanobrevibacter intestini genomes' adaptability in critical microbiome contexts.
Collapse
Affiliation(s)
- Stefanie Duller
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Simone Vrbancic
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Łukasz Szydłowski
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Sano Centre for Computational Medicine, Krakow, Poland
| | - Alexander Mahnert
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Marcus Blohs
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Michael Predl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Christina Kumpitsch
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Verena Zrim
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Sano Centre for Computational Medicine, Krakow, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Anna Eberhard
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Melanie Dragovan
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Laura Schmidberger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Tamara Zurabischvili
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Viktoria Weinberger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Adrian Mathias Moser
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Dominique Pernitsch
- Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Rokhsareh Mohammadzadeh
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Torben Kühnast
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Christine Moissl-Eichinger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
8
|
Zeng J, Li Y, Yan J, Chang R, Xu M, Zhou G, Meng J, Liu D, Mao Z, Yang Y. Gut microbiota from patients with Parkinson's disease causes motor deficits in honeybees. Front Microbiol 2024; 15:1418857. [PMID: 39070266 PMCID: PMC11272988 DOI: 10.3389/fmicb.2024.1418857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Parkinson's disease (PD) is possibly caused by genetic factors, environmental factors, and gut microbiota dysbiosis. This study aims to explore whether the microbiota contributes to the behavior abnormalities of PD. Methods We transplanted gut microbiota from patients with PD or healthy controls (HC) into microbiota-free honeybees. We also established two more groups, namely the rotenone (ROT) group, in which PD-like symptoms of honeybees were induced by rotenone, and the conventional (CV) group, in which honeybees were colonized with conventional gut microbiota. The climbing assay was performed to assess the motor capabilities of honeybees. Histopathological examination was conducted to evaluate the integrity of gut mucosa. Tyrosine hydroxylase (TH) gene expression levels and dopamine (DA) concentrations in the brain were also examined. Additionally, metagenomics and full-length 16S rRNA analyses were performed to identify alterations in gut microbiota profiles, both in PD patients and honeybees. Results Honeybees in the PD and ROT groups exhibited slower climbing speeds, downregulated TH gene expression, and impaired gut barriers. Both the HC and PD groups of honeybees successfully harbored a portion of gut microbiota from corresponding human donors, and differences in microbial composition were identified. Morganella morganii and Erysipelatoclostridium ramosum exhibited significantly increased relative abundance in the HC group, while Dorea longicatena, Collinsella aerofaciens, Lactococcus garvieae, Holdemanella biformis, Gemmiger formicilis, and Blautia obeum showed significantly increased relative abundance in the PD group. Functional predictions of microbial communities in the PD group indicated an increased synthesis of hydrogen sulfide and methane. Conclusion A novel PD model was induced in honeybees with rotenone and gut microbiota from PD patients. This study linked PD-related behaviors to altered gut microbiota, highlighting a potential gut microbiota-brain axis involvement in PD pathogenesis. We identify previously unrecognized associations of Dorea longicatena, Collinsella aerofaciens, Lactococcus garvieae, Holdemanella biformis, Gemmiger formicilis, and Blautia obeum with PD. Additionally, pathways related to hydrogen sulfide and methane synthesis have been previously suggested as potential contributors to the development of PD, and our research further supports this hypothesis.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yiyuan Li
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingshuang Yan
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ruqi Chang
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Xu
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guanzhou Zhou
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Meng
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Di Liu
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Chou H, Godbeer L, Allsworth M, Boyle B, Ball ML. Progress and challenges of developing volatile metabolites from exhaled breath as a biomarker platform. Metabolomics 2024; 20:72. [PMID: 38977623 PMCID: PMC11230972 DOI: 10.1007/s11306-024-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The multitude of metabolites generated by physiological processes in the body can serve as valuable biomarkers for many clinical purposes. They can provide a window into relevant metabolic pathways for health and disease, as well as be candidate therapeutic targets. A subset of these metabolites generated in the human body are volatile, known as volatile organic compounds (VOCs), which can be detected in exhaled breath. These can diffuse from their point of origin throughout the body into the bloodstream and exchange into the air in the lungs. For this reason, breath VOC analysis has become a focus of biomedical research hoping to translate new useful biomarkers by taking advantage of the non-invasive nature of breath sampling, as well as the rapid rate of collection over short periods of time that can occur. Despite the promise of breath analysis as an additional platform for metabolomic analysis, no VOC breath biomarkers have successfully been implemented into a clinical setting as of the time of this review. AIM OF REVIEW This review aims to summarize the progress made to address the major methodological challenges, including standardization, that have historically limited the translation of breath VOC biomarkers into the clinic. We highlight what steps can be taken to improve these issues within new and ongoing breath research to promote the successful development of the VOCs in breath as a robust source of candidate biomarkers. We also highlight key recent papers across select fields, critically reviewing the progress made in the past few years to advance breath research. KEY SCIENTIFIC CONCEPTS OF REVIEW VOCs are a set of metabolites that can be sampled in exhaled breath to act as advantageous biomarkers in a variety of clinical contexts.
Collapse
|
10
|
Wielgosz-Grochowska JP, Domanski N, Drywień ME. Identification of SIBO Subtypes along with Nutritional Status and Diet as Key Elements of SIBO Therapy. Int J Mol Sci 2024; 25:7341. [PMID: 39000446 PMCID: PMC11242202 DOI: 10.3390/ijms25137341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a pathology of the small intestine and may predispose individuals to various nutritional deficiencies. Little is known about whether specific subtypes of SIBO, such as the hydrogen-dominant (H+), methane-dominant (M+), or hydrogen/methane-dominant (H+/M+), impact nutritional status and dietary intake in SIBO patients. The aim of this study was to investigate possible correlations between biochemical parameters, dietary nutrient intake, and distinct SIBO subtypes. This observational study included 67 patients who were newly diagnosed with SIBO. Biochemical parameters and diet were studied utilizing laboratory tests and food records, respectively. The H+/M+ group was associated with low serum vitamin D (p < 0.001), low serum ferritin (p = 0.001) and low fiber intake (p = 0.001). The M+ group was correlated with high serum folic acid (p = 0.002) and low intakes of fiber (p = 0.001) and lactose (p = 0.002). The H+ group was associated with low lactose intake (p = 0.027). These results suggest that the subtype of SIBO may have varying effects on dietary intake, leading to a range of biochemical deficiencies. Conversely, specific dietary patterns may predispose one to the development of a SIBO subtype. The assessment of nutritional status and diet, along with the diagnosis of SIBO subtypes, are believed to be key components of SIBO therapy.
Collapse
Affiliation(s)
| | - Nicole Domanski
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Małgorzata Ewa Drywień
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| |
Collapse
|
11
|
Taclob JA, Kalas MA, McCallum RW. Examining linaclotide for the treatment of chronic idiopathic constipation. Expert Opin Pharmacother 2024; 25:1281-1290. [PMID: 39058326 DOI: 10.1080/14656566.2024.2386160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Chronic idiopathic constipation (CIC) is characterized by infrequent bowel movements and hard stools lasting for at least three months or longer. This disease affects 8-12% of the US population and 10-17% of the world population. Treatment and management involve identifying the primary cause, changing dietary habits, and adequate physical activity. Linaclotide is a guanylate cyclase-agonist acting locally in the luminal surface of the intestinal enterocyte leading to a signal transduction cascade, activation of the cystic fibrosis transmembrane conductance regulator (CFTR), thus increasing secretion of chloride and bicarbonate into the intestinal lumen with eventual increased intestinal fluid and faster transit time. AREAS COVERED We reviewed multiple studies and did a thorough literature review on CIC including its pathophysiology. Through this literature review, we were able to discuss and give the context and rationale for drug regimens indicated for CIC. EXPERT OPINION The era we live in right now is akin to nutrient-rich and fertilized soil as knowledge and resources are abundant. The opportunities and potential are endless. Constipation being more extensively studied, our understanding of medications and diseases broadens, leading to novel medications being discovered. Linaclotide is a pioneer in this aspect and can pave the way for future generations.
Collapse
Affiliation(s)
- Jeff Angelo Taclob
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - M Ammar Kalas
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Richard W McCallum
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
12
|
Arturo Tozzi, Minella R. Dynamics and metabolic effects of intestinal gases in healthy humans. Biochimie 2024; 221:81-90. [PMID: 38325747 DOI: 10.1016/j.biochi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/06/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Many living beings use exogenous and/or endogenous gases to attain evolutionary benefits. We make a comprehensive assessment of one of the major gaseous reservoirs in the human body, i.e., the bowel, providing extensive data that may serve as reference for future studies. We assess the intestinal gases in healthy humans, including their volume, composition, source and local distribution in proximal as well as distal gut. We analyse each one of the most abundant intestinal gases including nitrogen, oxygen, nitric oxide, carbon dioxide, methane, hydrogen, hydrogen sulfide, sulfur dioxide and cyanide. For every gas, we describe diffusive patterns, active trans-barrier transport dynamics, chemical properties, intra-/extra-intestinal metabolic effects mediated by intracellular, extracellular, paracrine and distant actions. Further, we highlight the local and systemic roles of gasotransmitters, i.e., signalling gaseous molecules that can freely diffuse through the intestinal cellular membranes. Yet, we provide testable hypotheses concerning the still unknown effects of some intestinal gases on the myenteric and submucosal neurons.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, Department of Physics, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.
| | | |
Collapse
|
13
|
Zheng X, Chen M, Zhuang Y, Xu J, Zhao L, Qian Y, Shen W. Genetic associations between gut microbiota and allergic rhinitis: an LDSC and MR analysis. Front Microbiol 2024; 15:1395340. [PMID: 38855765 PMCID: PMC11157438 DOI: 10.3389/fmicb.2024.1395340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Background Several studies have suggested a potential link between allergic rhinitis (AR) and gut microbiota. In response, we conducted a meta-analysis of Linkage Disequilibrium Score Regression (LDSC) and Mendelian randomization (MR) to detect their genetic associations. Methods Summary statistics for 211 gut microbiota taxa were gathered from the MiBioGen study, while data for AR were sourced from the Pan-UKB, the FinnGen, and the Genetic Epidemiology Research on Aging (GERA). The genetic correlation between gut microbiota and AR was assessed using LDSC. The principal estimate of causality was determined using the Inverse-Variance Weighted (IVW) method. To assess the robustness of these findings, sensitivity analyses were conducted employing methods such as the weighted median, MR-Egger, and MR-PRESSO. The summary effect estimates of LDSC, forward MR and reverse MR were combined using meta-analysis for AR from different data resources. Results Our study indicated a significant genetic correlation between genus Sellimonas (Rg = -0.64, p = 3.64 × 10-5, Adjust_P = 3.64 × 10-5) and AR, and a suggestive genetic correlation between seven bacterial taxa and AR. Moreover, the forward MR analysis identified genus Gordonibacter, genus Coprococcus2, genus LachnospiraceaeUCG010, genus Methanobrevibacter, and family Victivallaceae as being suggestively associated with an increased risk of AR. The reverse MR analysis indicated that AR was suggestively linked to an increased risk for genus Coprococcus2 and genus RuminococcaceaeUCG011. Conclusion Our findings indicate a causal relationship between specific gut microbiomes and AR. This enhances our understanding of the gut microbiota's contribution to the pathophysiology of AR and lays the groundwork for innovative approaches and theoretical models for future prevention and treatment strategies in this patient population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - WenMing Shen
- Emergency Department, Wujin People’s Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
14
|
Huangfu W, Cao S, Li S, Zhang S, Liu M, Liu B, Zhu X, Cui Y, Wang Z, Zhao J, Shi Y. In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition. Appl Microbiol Biotechnol 2024; 108:314. [PMID: 38683435 PMCID: PMC11058960 DOI: 10.1007/s00253-024-13148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
15
|
Villanueva-Millan MJ, Leite G, Morales W, Sanchez M, Parodi G, Weitsman S, Celly S, Cohrs D, Do H, Barlow GM, Mathur R, Rezaie A, Pimentel M. Hydrogen Sulfide Producers Drive a Diarrhea-Like Phenotype and a Methane Producer Drives a Constipation-Like Phenotype in Animal Models. Dig Dis Sci 2024; 69:426-436. [PMID: 38060167 PMCID: PMC10861391 DOI: 10.1007/s10620-023-08197-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/23/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND We recently demonstrated that diarrhea-predominant irritable bowel syndrome (IBS-D) subjects have higher relative abundance (RA) of hydrogen sulfide (H2S)-producing Fusobacterium and Desulfovibrio species, and constipation-predominant IBS (IBS-C) subjects have higher RA of methanogen Methanobrevibacter smithii. AIMS In this study, we investigate the effects of increased methanogens or H2S producers on stool phenotypes in rat models. METHODS Adult Sprague-Dawley rats were fed high-fat diet (HFD) for 60 days to increase M. smithii levels, then gavaged for 10 days with water (controls) or methanogenesis inhibitors. To increase H2S producers, rats were gavaged with F. varium or D. piger. Stool consistency (stool wet weight (SWW)) and gas production were measured. 16S rRNA gene sequencing was performed on stool samples. RESULTS In HFD diet-fed rats (N = 30), stool M. smithii levels were increased (P < 0.001) after 52 days, correlating with significantly decreased SWW (P < 0.0001) at 59 days (R = - 0.38, P = 0.037). Small bowel M. smithii levels decreased significantly in lovastatin lactone-treated rats (P < 0.0006), and SWW increased (normalized) in lovastatin hydroxyacid-treated rats (P = 0.0246), vs. controls (N = 10/group). SWW increased significantly in D. piger-gavaged rats (N = 16) on day 10 (P < 0.0001), and in F. varium-gavaged rats (N = 16) at all timepoints, vs. controls, with increased stool H2S production. 16S sequencing revealed stool microbiota alterations in rats gavaged with H2S producers, with higher relative abundance (RA) of other H2S producers, particularly Lachnospiraceae and Bilophila in F. varium-gavaged rats, and Sutterella in D. piger-gavaged rats. CONCLUSIONS These findings suggest that increased M. smithii levels result in a constipation-like phenotype in a rat model that is partly reversible with methanogenesis inhibitors, whereas gavage with H2S producers D. piger or F. varium results in increased colonization with other H2S producers and diarrhea-like phenotypes. This supports roles for the increased RA of methanogens and H2S producers identified in IBS-C and IBS-D subjects, respectively, in contributing to stool phenotypes.
Collapse
Affiliation(s)
- Maria J Villanueva-Millan
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Maritza Sanchez
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Shreya Celly
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Daniel Cohrs
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Huongly Do
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA.
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Aryee G, Luecke SM, Dahlen CR, Swanson KC, Amat S. Holistic View and Novel Perspective on Ruminal and Extra-Gastrointestinal Methanogens in Cattle. Microorganisms 2023; 11:2746. [PMID: 38004757 PMCID: PMC10673468 DOI: 10.3390/microorganisms11112746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the extensive research conducted on ruminal methanogens and anti-methanogenic intervention strategies over the last 50 years, most of the currently researched enteric methane (CH4) abatement approaches have shown limited efficacy. This is largely because of the complex nature of animal production and the ruminal environment, host genetic variability of CH4 production, and an incomplete understanding of the role of the ruminal microbiome in enteric CH4 emissions. Recent sequencing-based studies suggest the presence of methanogenic archaea in extra-gastrointestinal tract tissues, including respiratory and reproductive tracts of cattle. While these sequencing data require further verification via culture-dependent methods, the consistent identification of methanogens with relatively greater frequency in the airway and urogenital tract of cattle, as well as increasing appreciation of the microbiome-gut-organ axis together highlight the potential interactions between ruminal and extra-gastrointestinal methanogenic communities. Thus, a traditional singular focus on ruminal methanogens may not be sufficient, and a holistic approach which takes into consideration of the transfer of methanogens between ruminal, extra-gastrointestinal, and environmental microbial communities is of necessity to develop more efficient and long-term ruminal CH4 mitigation strategies. In the present review, we provide a holistic survey of the methanogenic archaea present in different anatomical sites of cattle and discuss potential seeding sources of the ruminal methanogens.
Collapse
Affiliation(s)
- Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| | - Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58102, USA; (C.R.D.); (K.C.S.)
| | - Kendall C. Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58102, USA; (C.R.D.); (K.C.S.)
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| |
Collapse
|
17
|
Qian X, Fu Z, Diao C, Zhang W, Tao W, Hu J, Zhang S, Zhao D. Genetic causal relationship between gut microbiome and psoriatic arthritis: a bidirectional two-sample Mendelian randomization study. Front Microbiol 2023; 14:1265786. [PMID: 38029137 PMCID: PMC10644104 DOI: 10.3389/fmicb.2023.1265786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Several observational studies have suggested a potential relationship between gut microbiome and psoriatic arthritis (PsA). However, the causality of this relationship still remains unclear. We aim to explore if the specific gut microbiome is causally associated with PsA at the genetic level and offer valuable insights into the etiology of PsA. Methods In this study, we employed a bidirectional two-sample Mendelian randomization (MR) analysis to investigate the causal effects of the gut microbiome on PsA. Publicly accessible genome-wide association study summary data of gut microbiome were obtained from the MiBioGen consortium (n = 14,306), while the summary statistics of psoriatic arthropathies were sourced from the FinnGen consortium R8 release data (2,776 cases and 221,323 controls). The primary analytical method employed was inverse variance weighted (IVW), complemented by supplementary methods including MR-Egger, weighted median, weighted mode, maximum likelihood, MR-PRESSO, and cML-MA. Reverse MR analysis was performed on the bacteria that were found to be causally associated with PsA in forward MR analysis. Cochran's IVW Q statistic was utilized to assess the heterogeneity of instrumental variables among the selected single nucleotide polymorphisms. Results IVW estimates revealed that Ruminococcaceae_UCG-002 (odds ratio (OR) = 0.792, 95% confidence interval (CI), 0.643-0.977, p = 0.029) exhibited a protective effect on PsA. Conversely, Blautia (OR = 1.362, 95% CI, 1.008-1.842, p = 0.044), Eubacterium_fissicatena_group (OR = 1.28, 95% CI, 1.075-1.524, p = 0.006), and Methanobrevibacter (OR = 1.31, 95% CI, 1.059-1.621, p = 0.013) showed a positive correlation with the risk of PsA. No significant heterogeneity, horizontal pleiotropy, or outliers were observed, and the results of the MR analysis remained unaffected by any single nucleotide polymorphisms. According to the results of reverse MR analysis, no significant causal effect of PsA was found on gut microbiome. Conclusion This study establishes for the first time a causal relationship between the gut microbiome and PsA, providing potential valuable strategies for the prevention and treatment of PsA. Further randomized controlled trials are urgently warranted to support the targeted protective mechanisms of probiotics on PsA.
Collapse
Affiliation(s)
- Xinyu Qian
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhida Fu
- Department of Reproductive Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoyue Diao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenbo Zhang
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weiyu Tao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiaqi Hu
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuqing Zhang
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
18
|
Plummer AM, Matos YL, Lin HC, Ryman SG, Birg A, Quinn DK, Parada AN, Vakhtin AA. Gut-brain pathogenesis of post-acute COVID-19 neurocognitive symptoms. Front Neurosci 2023; 17:1232480. [PMID: 37841680 PMCID: PMC10568482 DOI: 10.3389/fnins.2023.1232480] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Approximately one third of non-hospitalized coronavirus disease of 2019 (COVID-19) patients report chronic symptoms after recovering from the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some of the most persistent and common complaints of this post-acute COVID-19 syndrome (PACS) are cognitive in nature, described subjectively as "brain fog" and also objectively measured as deficits in executive function, working memory, attention, and processing speed. The mechanisms of these chronic cognitive sequelae are currently not understood. SARS-CoV-2 inflicts damage to cerebral blood vessels and the intestinal wall by binding to angiotensin-converting enzyme 2 (ACE2) receptors and also by evoking production of high levels of systemic cytokines, compromising the brain's neurovascular unit, degrading the intestinal barrier, and potentially increasing the permeability of both to harmful substances. Such substances are hypothesized to be produced in the gut by pathogenic microbiota that, given the profound effects COVID-19 has on the gastrointestinal system, may fourish as a result of intestinal post-COVID-19 dysbiosis. COVID-19 may therefore create a scenario in which neurotoxic and neuroinflammatory substances readily proliferate from the gut lumen and encounter a weakened neurovascular unit, gaining access to the brain and subsequently producing cognitive deficits. Here, we review this proposed PACS pathogenesis along the gut-brain axis, while also identifying specific methodologies that are currently available to experimentally measure each individual component of the model.
Collapse
Affiliation(s)
- Allison M. Plummer
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Yvette L. Matos
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Sephira G. Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Aleksandr Birg
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Alisha N. Parada
- Division of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrei A. Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| |
Collapse
|
19
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
20
|
Iancu MA, Profir M, Roşu OA, Ionescu RF, Cretoiu SM, Gaspar BS. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023; 11:2177. [PMID: 37764021 PMCID: PMC10538221 DOI: 10.3390/microorganisms11092177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota represents a community of microorganisms (bacteria, fungi, archaea, viruses, and protozoa) that colonize the gut and are responsible for gut mucosal structural integrity and immune and metabolic homeostasis. The relationship between the gut microbiome and human health has been intensively researched in the past years. It is now widely recognized that gut microbial composition is highly responsible for the general health of the host. Among the diseases that have been linked to an altered gut microbial population are diarrheal illnesses and functional constipation. The capacity of probiotics to modulate the gut microbiome population, strengthen the intestinal barrier, and modulate the immune system together with their antioxidant properties have encouraged the research of probiotic therapy in many gastrointestinal afflictions. Dietary and lifestyle changes and the use of probiotics seem to play an important role in easing constipation and effectively alleviating diarrhea by suppressing the germs involved. This review aims to describe how probiotic bacteria and the use of specific strains could interfere and bring benefits as an associated treatment for diarrhea and constipation.
Collapse
Affiliation(s)
- Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Ruxandra Florentina Ionescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Cardiology I, “Dr. Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
21
|
Keppler F, Boros M, Polag D. Radical-Driven Methane Formation in Humans Evidenced by Exogenous Isotope-Labeled DMSO and Methionine. Antioxidants (Basel) 2023; 12:1381. [PMID: 37507920 PMCID: PMC10376501 DOI: 10.3390/antiox12071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Methane (CH4), which is produced endogenously in animals and plants, was recently suggested to play a role in cellular physiology, potentially influencing the signaling pathways and regulatory mechanisms involved in nitrosative and oxidative stress responses. In addition, it was proposed that the supplementation of CH4 to organisms may be beneficial for the treatment of several diseases, including ischemia, reperfusion injury, and inflammation. However, it is still unclear whether and how CH4 is produced in mammalian cells without the help of microorganisms, and how CH4 might be involved in physiological processes in humans. In this study, we produced the first evidence of the principle that CH4 is formed non-microbially in the human body by applying isotopically labeled methylated sulfur compounds, such as dimethyl sulfoxide (DMSO) and methionine, as carbon precursors to confirm cellular CH4 formation. A volunteer applied isotopically labeled (2H and 13C) DMSO on the skin, orally, and to blood samples. The monitoring of stable isotope values of CH4 convincingly showed the conversion of the methyl groups, as isotopically labeled CH4 was formed during all experiments. Based on these results, we considered several hypotheses about endogenously formed CH4 in humans, including physiological aspects and stress responses involving reactive oxygen species (ROS). While further and broader validation studies are needed, the results may unambiguously serve as a proof of concept for the endogenous formation of CH4 in humans via a radical-driven process. Furthermore, these results might encourage follow-up studies to decipher the potential physiological role of CH4 and its bioactivity in humans in more detail. Of particular importance is the potential to monitor CH4 as an oxidative stress biomarker if the observed large variability of CH4 in breath air is an indicator of physiological stress responses and immune reactions. Finally, the potential role of DMSO as a radical scavenger to counteract oxidative stress caused by ROS might be considered in the health sciences. DMSO has already been investigated for many years, but its potential positive role in medical use remains highly uncertain.
Collapse
Affiliation(s)
- Frank Keppler
- Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Heidelberg University, D-69120 Heidelberg, Germany
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Daniela Polag
- Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
22
|
Yao Q, Yu Z, Meng Q, Chen J, Liu Y, Song W, Ren X, Zhou J, Chen X. The Role of Small Intestinal Bacterial Overgrowth in Obesity and Its Related Diseases. Biochem Pharmacol 2023; 212:115546. [PMID: 37044299 DOI: 10.1016/j.bcp.2023.115546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Obesity has become a major public health problem worldwide and its occurrence is increasing globally. Obesity has also been shown to be involved in the occurrence and development of many diseases and pathological conditions, such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), insulin resistance (IR). In recent years, gut microbiota has received extensive attention as an important regulatory part involved in host diseases and health status. A growing body of evidence suggests that gut microbiota dysbiosis has a significant adverse effect on the host. Small intestinal bacterial overgrowth (SIBO), a type of intestinal microbial dysbiosis, has been gradually revealed to be associated with obesity and its related diseases. The presence of SIBO may lead to the destruction of intestinal barrier integrity, increased intestinal permeability, increased endotoxin levels, activation of inflammatory responses, and translocation of bacteria from the colon to the small intestine. However, the causal relationship between SIBO and obesity and the specific mechanisms have not been well elucidated. This review discusses the cross-talk between SIBO and obesity and its related diseases, and expounds its potential mechanisms and interventions, which may help to discover new therapeutic targets for obesity and its related diseases and develop treatment options.
Collapse
Affiliation(s)
- Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Wenxuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiangfeng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
23
|
Onana Ndong P, Boutallaka H, Marine‐Barjoan E, Ouizeman D, Mroue R, Anty R, Vanbiervliet G, Piche T. Prevalence of small intestinal bacterial overgrowth in irritable bowel syndrome (IBS): Correlating H
2
or CH
4
production with severity of IBS. JGH OPEN 2023; 7:311-320. [PMID: 37125253 PMCID: PMC10134763 DOI: 10.1002/jgh3.12899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Background and Aim The prevalence and the role of small intestinal bacterial overgrowth (SIBO) in irritable bowel syndrome (IBS) remain unclear, as the literature provides heterogeneous information on the subject. The aim of this study was to determine the prevalence of SIBO in IBS and to assess the correlation between methane and hydrogen levels measured during breath tests and the severity of IBS. Method Two-hundred and forty-seven patients with IBS were prospectively included. A glucose breath test (GBT) measured H2 and CH4 production to diagnose SIBO. A test was positive when H2 values exceeded 12 ppm in the first 90 min and/or when a CH4 value exceeded 10 ppm at any time. IBS severity (IBS-SSS), quality of life (GIQLI), and anxiety and depression (HAD) were assessed to investigate the correlation with H2 and CH4 production. Results The prevalence of SIBO in IBS was 36.4% (9.7% with H2, 26.7% with CH4). CH4 levels were significantly higher in the predominantly constipated patients (P = 0.00), while H2 levels were significantly higher within the diarrheal phenotype (P = 0.01). IBS severity was not correlated with either H2 levels (r = 0.02; P = 0.84) or CH4 levels (r = 0.05; P = 0.64). H2 production was inversely correlated with the quality of life (r = -0.24; P = 0.03) and significantly correlated with the HAD scale (r = 0.22; P = 0.03). The pain and discomfort experienced during GBT was not correlated with methane levels (r = -0.09, P = 0.40), hydrogen levels (r = -0.01, P = 0.93), or sum of both (r = 0.06, P = 0.58), but significantly associated with IBS severity (r = 0.50, P <0.00). Conclusion SIBO has a high prevalence in IBS but does not increase its severity. Individual susceptibility to pain may have a greater influence on the severity of IBS.
Collapse
Affiliation(s)
- Philippe Onana Ndong
- Gastro‐entérologie, Hôpital L'Archet 2 Centre Hospitalier Universitaire de Nice Nice France
| | - Hanae Boutallaka
- Gastro‐entérologie, Hôpital L'Archet 2 Centre Hospitalier Universitaire de Nice Nice France
| | - Eugenia Marine‐Barjoan
- Gastro‐entérologie, Hôpital L'Archet 2 Centre Hospitalier Universitaire de Nice Nice France
| | - Dann Ouizeman
- Gastro‐entérologie, Hôpital L'Archet 2 Centre Hospitalier Universitaire de Nice Nice France
| | - Raja Mroue
- Gastro‐entérologie, Hôpital L'Archet 2 Centre Hospitalier Universitaire de Nice Nice France
| | - Rodolphe Anty
- Gastro‐entérologie, Hôpital L'Archet 2 Centre Hospitalier Universitaire de Nice Nice France
| | - Geoffroy Vanbiervliet
- Gastro‐entérologie, Hôpital L'Archet 2 Centre Hospitalier Universitaire de Nice Nice France
| | - Thierry Piche
- Gastro‐entérologie, Hôpital L'Archet 2 Centre Hospitalier Universitaire de Nice Nice France
| |
Collapse
|
24
|
Lim J, Rezaie A. Pros and Cons of Breath Testing for Small Intestinal Bacterial Overgrowth and Intestinal Methanogen Overgrowth. Gastroenterol Hepatol (N Y) 2023; 19:140-146. [PMID: 37706108 PMCID: PMC10496284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Breath testing is the most widely utilized modality to diagnose small intestinal bacterial overgrowth (SIBO) and/or intestinal methanogen overgrowth (IMO). Although SIBO can be diagnosed with small bowel aspiration and breath testing, IMO can only be diagnosed with breath testing in clinical practice. Breath testing can tailor antibiotic therapy and predict response to treatment; however, the test is limited by its indirect method of measurement and concerns about the variability of orocecal transit time. Like any clinical test, breath testing has inherent strengths and limitations, and results must be interpreted with consideration of the clinical context and influencing factors. Recent studies have demonstrated the expanding clinical utility of breath testing in the diagnosis, management, and prediction of treatment response in SIBO and particularly in IMO along with the identification of distinct breath test patterns such as flat-line and high baseline hydrogen. This article reviews the strengths and limitations of breath testing in diagnosing SIBO and IMO as well as its expanding utility in clinical practice.
Collapse
Affiliation(s)
- Jane Lim
- GI Motility Program, Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ali Rezaie
- GI Motility Program, Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
25
|
Carnero EA, Bock CP, Liu Y, Corbin K, Wohlers-Kariesch E, Ruud K, Moon J, Marcus A, Krajmalnik-Brown R, Muraviev A, Vodopyanov KL, Smith SR. Measurement of 24-h continuous human CH 4 release in a whole room indirect calorimeter. J Appl Physiol (1985) 2023; 134:766-776. [PMID: 36794690 PMCID: PMC10027086 DOI: 10.1152/japplphysiol.00705.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
We describe the technology and validation of a new whole room indirect calorimeter (WRIC) methodology to quantify volume of methane (VCH4) released from the human body over 24 h concurrently with the assessment of energy expenditure and substrate utilization. The new system extends the assessment of energy metabolism by adding CH4, a downstream product of microbiome fermentation that could contribute to energy balance. Our new system consists of an established WRIC combined with the addition of off-axis integrated-cavity output spectroscopy (OA-ICOS) to measure CH4 concentration ([CH4]). Development, validation, and reliability of the system included environmental experiments to measure the stability of the atmospheric [CH4], infusing CH4 into the WRIC and human cross-validation studies comparing [CH4] quantified by OA-ICOS and mid-infrared dual-comb spectroscopy (MIR DCS).Our infusion data indicated that the system measured 24-h [CH4] and VCH4 with high sensitivity, reliability, and validity. Cross-validation studies showed good agreement between OA-ICOS and MIR DCS technologies (r = 0.979, P < 0.0001). Human data revealed 24-h VCH4 was highly variable between subjects and within/between days. Finally, our method to quantify VCH4 released by breath or colon suggested that over 50% of the CH4 was eliminated through the breath. The method allows, for the first time, measurement of 24-h VCH4 (in kcal) and therefore the measurement of the proportion of human energy intake fermented to CH4 by the gut microbiome and released via breath or from the intestine; also, it allows us to track the effects of dietary, probiotic, bacterial, and fecal microbiota transplantation on VCH4.NEW & NOTEWORTHY This is the first time that continuous assessment of CH4 is reported in parallel with measurements of O2 consumption and CO2 production inside a whole room indirect calorimeter in humans and over 24 h. We provide a detailed description of the whole system and its parts. We carried out studies of reliability and validity of the whole system and its parts. CH4 is released in humans during daily activities.
Collapse
Affiliation(s)
- E. A. Carnero
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - C. P. Bock
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Y. Liu
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - K. Corbin
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | | | - K. Ruud
- MEI Research, Ltd., Edina, Minnesota, United States
| | - J. Moon
- MEI Research, Ltd., Edina, Minnesota, United States
| | - A. Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, United States
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, United States
| | - R. Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, United States
| | - A. Muraviev
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, Florida, United States
| | - K. L. Vodopyanov
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, Florida, United States
| | - S. R. Smith
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| |
Collapse
|
26
|
Pan L, Ye H, Pi X, Liu W, Wang Z, Zhang Y, Zheng J. Effects of several flavonoids on human gut microbiota and its metabolism by in vitro simulated fermentation. Front Microbiol 2023; 14:1092729. [PMID: 36819019 PMCID: PMC9932666 DOI: 10.3389/fmicb.2023.1092729] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Flavonoids have antiviral, antitumor, anti-inflammatory, and other biological activities. They have high market value and are widely used in food and medicine fields. They also can regulate gut microbiota and promote human health. However, only a few flavonoids have been reported for their regulatory effects on human gut microbiota. Methods The effects of hesperidin, hesperetin-7-O-glucoside, hesperetin, naringin, prunin, naringenin, rutin, isoquercitrin, and quercetin on gut microbiota structural and metabolic differences in healthy subjects were studied by means of in vitro simulated fermentation technology. Results Results showed that the nine kinds of flavonoids mentioned above, especially hesperetin-7-O-glucoside, prunin, and isoquercitrin, were found to have more effect on the structure of human gut microbiota, and they could significantly enhance Bifidobacterium (p < 0.05). After 24 h of in vitro simulated fermentation, the relative abundance of intestinal probiotics (e.g., Lactobacillus) was increased by the three flavonoids and rutin. Furthermore, the relative abundance of potential pathogenic bacteria was decreased by the addition of hesperetin-7-O-glucoside, naringin, prunin, rutin, and isoquercitrin (e.g., Lachnoclostridium and Bilophila). Notably, prunin could also markedly decrease the content of H2S, NH3, and short-chain fatty acids. This performance fully demonstrated its broad-spectrum antibacterial activity. Discussion This study demonstrates that flavonoids can regulate the imbalance of gut microbiota, and some differences in the regulatory effect are observed due to different structures. This work provides a theoretical basis for the wide application of flavonoids for food and medicine.
Collapse
Affiliation(s)
- Lixia Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hangyu Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yinjun Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianyong Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China,*Correspondence: Jianyong Zheng, ✉
| |
Collapse
|
27
|
Intestinal gas production by the gut microbiota: A review. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Ruigrok RAAA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023; 15:2201155. [PMID: 37074215 PMCID: PMC10120449 DOI: 10.1080/19490976.2023.2201155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renate A. A. A. Ruigrok
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
29
|
Wu L, Xie X, Li Y, Liang T, Zhong H, Yang L, Xi Y, Zhang J, Ding Y, Wu Q. Gut microbiota as an antioxidant system in centenarians associated with high antioxidant activities of gut-resident Lactobacillus. NPJ Biofilms Microbiomes 2022; 8:102. [PMID: 36564415 PMCID: PMC9789086 DOI: 10.1038/s41522-022-00366-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota plays an important role in human health and longevity, and the gut microbiota of centenarians shows unique characteristics. Nowadays, most microbial research on longevity is usually limited to the bioinformatics level, lacking validating information on culturing functional microorganisms. Here, we combined metagenomic sequencing and large-scale in vitro culture to reveal the unique gut microbial structure of the world's longevity town-Jiaoling, China, centenarians and people of different ages. Functional strains were isolated and screened in vitro, and the possible relationship between gut microbes and longevity was explored and validated in vivo. 247 healthy Cantonese natives of different ages participated in the study, including 18 centenarians. Compared with young adults, the gut microbiota of centenarians exhibits higher microbial diversity, xenobiotics biodegradation and metabolism, oxidoreductases, and multiple species (the potential probiotics Lactobacillus, Akkermansia, the methanogenic Methanobrevibacter, gut butyrate-producing members Roseburia, and SCFA-producing species uncl Clostridiales, uncl Ruminococcaceae) known to be beneficial to host metabolism. These species are constantly changing with age. We also isolated 2055 strains from these samples by large-scale in vitro culture, most of which were detected by metagenomics, with clear complementarity between the two approaches. We also screened an age-related gut-resident Lactobacillus with independent intellectual property rights, and its metabolite (L-ascorbic acid) and itself have good antioxidant effects. Our findings underscore the existence of age-related trajectories in the human gut microbiota, and that distinct gut microbiota and gut-resident as antioxidant systems may contribute to health and longevity.
Collapse
Affiliation(s)
- Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Haojie Zhong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Hoegenauer C, Hammer HF, Mahnert A, Moissl-Eichinger C. Methanogenic archaea in the human gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2022; 19:805-813. [PMID: 36050385 DOI: 10.1038/s41575-022-00673-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/24/2022]
Abstract
The human microbiome is strongly interwoven with human health and disease. Besides bacteria, viruses and eukaryotes, numerous archaea are located in the human gastrointestinal tract and are responsible for methane production, which can be measured in clinical methane breath analyses. Methane is an important readout for various diseases, including intestinal methanogen overgrowth. Notably, the archaea responsible for methane production are largely overlooked in human microbiome studies due to their non-bacterial biology and resulting detection issues. As such, their importance for health and disease remains largely unclear to date, in particular as not a single archaeal representative has been deemed to be pathogenic. In this Perspective, we discuss the current knowledge on the clinical relevance of methanogenic archaea. We explain the archaeal unique response to antibiotics and their negative and positive effects on human physiology, and present the current understanding of the use of methane as a diagnostic marker.
Collapse
Affiliation(s)
- Christoph Hoegenauer
- Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Heinz F Hammer
- Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Department of Microbiology, Hygiene and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Department of Microbiology, Hygiene and Environmental Medicine, Medical University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
31
|
Lyu Z, Rotaru AE, Pimentel M, Zhang CJ, Rittmann SKMR. Editorial: The methane moment - Cross-boundary significance of methanogens: Preface. Front Microbiol 2022; 13:1055494. [PMID: 36504803 PMCID: PMC9731359 DOI: 10.3389/fmicb.2022.1055494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Zhe Lyu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States,Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Zhe Lyu
| | - Amelia-Elena Rotaru
- Nordic Center for Earth Evolution (NORDCEE), University of Southern Denmark, Odense, Denmark,Amelia-Elena Rotaru
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States,Mark Pimentel
| | - Cui-Jing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China,Cui-Jing Zhang
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria,Arkeon GmbH, Tulln a.d. Donau, Austria,Simon K.-M. R. Rittmann
| |
Collapse
|
32
|
Gut microbiota: a new avenue to reveal pathological mechanisms of constipation. Appl Microbiol Biotechnol 2022; 106:6899-6913. [PMID: 36190540 DOI: 10.1007/s00253-022-12197-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
Constipation is very pervasive all over the world. It is a common multifactorial gastrointestinal disease, and its etiology and pathomechanism are not completely clear. Now, increasing evidence shows that intestinal flora is closely related to constipation. Intestinal flora is the largest microbiota in the human body and has powerful metabolic functions. Intestinal flora can produce a variety of metabolites, such as bile acids, short-chain fatty acids, tryptophan metabolites, and methane, which have important effects on intestinal motility and secretion. The host can also monitor the intestinal flora and regulate gut dysbacteriosis in constipation. To explore the relationship between intestinal flora and host, the combination of multiomics technology has become the powerful and effective method. Furthermore, the homeostasis restoration of intestinal flora also provides a new strategy for the treatment of constipation. This review aims to explore the interaction between intestinal flora and host in constipation, which contributes to disclose the pathogenesis of constipation and the development of novel drugs for the treatment of constipation from the perspective of intestinal flora. KEY POINTS: • This review highlights the regulation of gut microbiota on the intestinal motility and secretion of host. • The current review gives an insight into the role of the host on the recognition and regulation of intestinal ecology under constipation. • The article also introduces some novel methods of current gut microbiota research and gut microbiota-based constipation therapies.
Collapse
|
33
|
Khan MZ, Lyu R, McMichael J, Gabbard S. Chronic Intestinal Pseudo-Obstruction Is Associated with Intestinal Methanogen Overgrowth. Dig Dis Sci 2022; 67:4834-4840. [PMID: 35001241 DOI: 10.1007/s10620-021-07343-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic intestinal pseudo-obstruction (CIP) is a rare motility disorder characterized by dilated small bowel in the absence of mechanical obstruction. CIP has a known association with small intestinal bacterial overgrowth (SIBO); however, data regarding association with specific subtypes such as methane-positive (M+) and hydrogen-positive (H+) SIBO are limited. Therefore, we conducted this study to characterize subtypes of SIBO in CIP and compare them with non-CIP patients. AIMS The aim is to explore the association and prevalence of hydrogen and methane subtypes of SIBO in patients with CIP. METHODS A retrospective chart review was conducted for 494 patients who underwent glucose breath tests (GBT) in 2019. CIP was diagnosed based on clinical suspicion and after ruling out mechanical obstruction. We also reviewed demographic data, including age, gender, body mass index, tobacco and alcohol history, medical comorbidities, use of proton pump inhibitors, and history of colectomy. RESULTS Among 494 patients, 7.7% (38) had CIP. The prevalence of M+ GBT in CIP patients was higher compared with non-CIP patients, and it was significant [52.6% (20/38) versus 11.8% (54/456), p < 0.001]. The prevalence of H+ GBT in our cohort of CIP patients was similar to that of non-CIP patients [23.7% (9/38) versus 25.7% (117/456), p = 0.941]. CONCLUSION The prevalence of methane-positive GBT was higher in CIP patients than in patients without CIP. This finding further strengthens the hypothesis that the relationship between motility disorders and methanogen overgrowth is facilitative.
Collapse
Affiliation(s)
| | - Ruishen Lyu
- Department of Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - John McMichael
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Scott Gabbard
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
34
|
Nan K, Feig VR, Ying B, Howarth JG, Kang Z, Yang Y, Traverso G. Mucosa-interfacing electronics. NATURE REVIEWS. MATERIALS 2022; 7:908-925. [PMID: 36124042 PMCID: PMC9472746 DOI: 10.1038/s41578-022-00477-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The surface mucosa that lines many of our organs houses myriad biometric signals and, therefore, has great potential as a sensor-tissue interface for high-fidelity and long-term biosensing. However, progress is still nascent for mucosa-interfacing electronics owing to challenges with establishing robust sensor-tissue interfaces; device localization, retention and removal; and power and data transfer. This is in sharp contrast to the rapidly advancing field of skin-interfacing electronics, which are replacing traditional hospital visits with minimally invasive, real-time, continuous and untethered biosensing. This Review aims to bridge the gap between skin-interfacing electronics and mucosa-interfacing electronics systems through a comparison of the properties and functions of the skin and internal mucosal surfaces. The major physiological signals accessible through mucosa-lined organs are surveyed and design considerations for the next generation of mucosa-interfacing electronics are outlined based on state-of-the-art developments in bio-integrated electronics. With this Review, we aim to inspire hardware solutions that can serve as a foundation for developing personalized biosensing from the mucosa, a relatively uncharted field with great scientific and clinical potential.
Collapse
Affiliation(s)
- Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Vivian R. Feig
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Julia G. Howarth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ziliang Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
35
|
Pan R, Wang L, Xu X, Chen Y, Wang H, Wang G, Zhao J, Chen W. Crosstalk between the Gut Microbiome and Colonic Motility in Chronic Constipation: Potential Mechanisms and Microbiota Modulation. Nutrients 2022; 14:nu14183704. [PMID: 36145079 PMCID: PMC9505360 DOI: 10.3390/nu14183704] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic constipation (CC) is a highly prevalent and burdensome gastrointestinal disorder. Accumulating evidence highlights the link between imbalances in the gut microbiome and constipation. However, the mechanisms by which the microbiome and microbial metabolites affect gut movement remain poorly understood. In this review, we discuss recent studies on the alteration in the gut microbiota in patients with CC and the effectiveness of probiotics in treating gut motility disorder. We highlight the mechanisms that explain how the gut microbiome and its metabolism are linked to gut movement and how intestinal microecological interventions may counteract these changes based on the enteric nervous system, the central nervous system, the immune function, and the ability to modify intestinal secretion and the hormonal milieu. In particular, microbiota-based approaches that modulate the levels of short-chain fatty acids and tryptophan catabolites or that target the 5-hydroxytryptamine and Toll-like receptor pathways may hold therapeutic promise. Finally, we discuss the existing limitations of microecological management in treating constipation and suggest feasible directions for future research.
Collapse
Affiliation(s)
- Ruili Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaopeng Xu
- The Department of Clinical Laboratory, Wuxi Xishan People’s Hospital, Wuxi 214105, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haojue Wang
- The Department of of Obstetrics and Gynecology, Wuxi Xishan People’s Hospital, Wuxi 214105, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
36
|
Bushyhead D, Quigley EMM. Small Intestinal Bacterial Overgrowth-Pathophysiology and Its Implications for Definition and Management. Gastroenterology 2022; 163:593-607. [PMID: 35398346 DOI: 10.1053/j.gastro.2022.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022]
Abstract
The concept of small intestinal bacterial overgrowth (SIBO) arose in the context of maldigestion and malabsorption among patients with obvious risk factors that permitted the small bowel to be colonized by potentially injurious colonic microbiota. Such colonization resulted in clinical signs, symptoms, and laboratory abnormalities that were explicable within a coherent pathophysiological framework. Coincident with advances in medical science, diagnostic testing evolved from small bowel culture to breath tests and on to next-generation, culture-independent microbial analytics. The advent and ready availability of breath tests generated a dramatic expansion in both the rate of diagnosis of SIBO and the range of associated gastrointestinal and nongastrointestinal clinical scenarios. However, issues with the specificity of these same breath tests have clouded their interpretation and aroused some skepticism regarding the role of SIBO in this expanded clinical repertoire. Furthermore, the pathophysiological plausibility that underpins SIBO as a cause of maldigestion/malabsorption is lacking in regard to its purported role in irritable bowel syndrome, for example. One hopes that the application of an ever-expanding armamentarium of modern molecular microbiology to the human small intestinal microbiome in both health and disease will ultimately resolve this impasse and provide an objective basis for the diagnosis of SIBO.
Collapse
Affiliation(s)
- Daniel Bushyhead
- Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas.
| | - Eamonn M M Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| |
Collapse
|
37
|
Mafra D, Ribeiro M, Fonseca L, Regis B, Cardozo LFMF, Fragoso Dos Santos H, Emiliano de Jesus H, Schultz J, Shiels PG, Stenvinkel P, Rosado A. Archaea from the gut microbiota of humans: Could be linked to chronic diseases? Anaerobe 2022; 77:102629. [PMID: 35985606 DOI: 10.1016/j.anaerobe.2022.102629] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 11/01/2022]
Abstract
Archaea comprise a unique domain of organisms with distinct biochemical and genetic differences from bacteria. Methane-forming archaea, methanogens, constitute the predominant group of archaea in the human gut microbiota, with Methanobrevibacter smithii being the most prevalent. However, the effect of methanogenic archaea and their methane production on chronic disease remains controversial. As perturbation of the microbiota is a feature of chronic conditions, such as cardiovascular disease, neurodegenerative diseases and chronic kidney disease, assessing the influence of archaea could provide a new clue to mitigating adverse effects associated with dysbiosis. In this review, we will discuss the putative role of archaea in the gut microbiota in humans and the possible link to chronic diseases.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, (RJ), Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil.
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Larissa Fonseca
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Bruna Regis
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | | | | | - Junia Schultz
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955, Saudi Arabia
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Alexandre Rosado
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955, Saudi Arabia
| |
Collapse
|
38
|
Li M, Bekö G, Zannoni N, Pugliese G, Carrito M, Cera N, Moura C, Wargocki P, Vasconcelos P, Nobre P, Wang N, Ernle L, Williams J. Human metabolic emissions of carbon dioxide and methane and their implications for carbon emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155241. [PMID: 35421492 DOI: 10.1016/j.scitotenv.2022.155241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Carbon dioxide (CO2) and methane (CH4) are important greenhouse gases in the atmosphere and have large impacts on Earth's radiative forcing and climate. Their natural and anthropogenic emissions have often been in focus, while the role of human metabolic emissions has received less attention. In this study, exhaled, dermal and whole-body CO2 and CH4 emission rates from a total of 20 volunteers were quantified under various controlled environmental conditions in a climate chamber. The whole-body CO2 emissions increased with temperature. Individual differences were the most important factor for the whole-body CH4 emissions. Dermal emissions of CO2 and CH4 only contributed ~3.5% and ~5.5% to the whole-body emissions, respectively. Breath measurements conducted on 24 volunteers in a companion study identified one third of the volunteers as CH4 producers (exhaled CH4 exceeded 1 ppm above ambient level). The exhaled CH4 emission rate of these CH4 producers (4.03 ± 0.71 mg/h/person, mean ± one standard deviation) was ten times higher than that of the rest of the volunteers (non-CH4 producers; 0.41 ± 0.45 mg/h/person). With increasing global population and the expected large reduction in global anthropogenic carbon emissions in the next decades, metabolic emissions of CH4 (although not CO2) from humans may play an increasing role in regional and global carbon budgets.
Collapse
Affiliation(s)
- Mengze Li
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany; Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, USA.
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark; Department of Architecture, College of Architecture, Art and Design, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Nora Zannoni
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Giovanni Pugliese
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany; Department of Anaesthesia and Intensive Care, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Mariana Carrito
- Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Nicoletta Cera
- Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Catarina Moura
- Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Priscila Vasconcelos
- Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Pedro Nobre
- Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Nijing Wang
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Lisa Ernle
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Jonathan Williams
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
| |
Collapse
|
39
|
Yu L, Duan H, Yu Y, Zhang Q, Zhao J, Zhang H, Zhai Q, Tian F, Chen W. Dose-dependent effects of chronic lead toxicity in vivo: Focusing on trace elements and gut microbiota. CHEMOSPHERE 2022; 301:134670. [PMID: 35452643 DOI: 10.1016/j.chemosphere.2022.134670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 05/26/2023]
Abstract
Dose-dependent effects of chronic Pb exposure-induced injuries, especially on the trace elements and gut microbiota in mice, have not been explored. In the present study, we investigated these aspects using C57BL/6 mouse models that were exposed to Pb via drinking water with Pb concentrations of 0.1, 0.5, and 1.0 g/L for 8 weeks. The results showed that with the increase in chronic Pb exposure dose, the Pb levels in the blood and tissues, Zn levels in the kidney and brain were elevated, and the levels of bone Zn, kidney Fe, brain Mg, Ca, and Fe, renal catalase activity, and glutathione levels, as well as the expression of colonic zonula occludens-1 and occludin, decreased with a strong linear correlation. Moreover, the relative abundance of Marvinbryantia and Ruminococcus 1 increased, while that of Lactobacillus and Roseburia decreased linearly with the Pb exposure dose. PICRUSt analysis revealed that chronic Pb exposure had a greater impact on the metabolism of macronutrients, trace elements, and neurodegenerative injury. These findings suggest that chronic Pb exposure disrupts trace element levels in tissues, especially in the brain, and induces gut dysbiosis in a dose-dependent manner, which is different from the dose-effect of acute Pb toxicity.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yaqi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
40
|
Madigan KE, Bundy R, Weinberg RB. Distinctive Clinical Correlates of Small Intestinal Bacterial Overgrowth with Methanogens. Clin Gastroenterol Hepatol 2022; 20:1598-1605.e2. [PMID: 34597730 DOI: 10.1016/j.cgh.2021.09.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Most patients with small intestinal bacterial overgrowth (SIBO) produce hydrogen by fermentation of dietary carbohydrates; however, ∼30% of patients with SIBO are colonized with Archaea, anaerobic organisms that produce methane. SIBO is associated with a plethora of symptoms and conditions, but their diagnostic significance is unclear. We aimed to determine if specific symptoms and conditions are associated with methanogenic SIBO. METHODS This study received institutional review board approval (IRB00059873). In this retrospective cross-sectional study, we queried a database of glucose breath tests conducted for suspected SIBO at our tertiary care medical center, which included data on the presence or absence of gastrointestinal symptoms and conditions often associated with SIBO. All patients had undergone a standardized breath testing protocol. RESULTS In a cohort of 1461 patients, 33.1% were SIBO positive; of these, 49.8% produced only hydrogen, 38.8% produced only methane, and 11.4% produced both gases. The following factors distinguished patients with hydrogen-producing SIBO, but not methanogenic SIBO, from SIBO-negative patients: vitamin B12 deficiency (odds ratio, 1.44; confidence interval [CI], 1.01-2.06; P = .046), Roux-en-Y gastric bypass (odds ratio, 2.14; CI, 1.09-4.18; P = .027), cholecystectomy (odds ratio, 1.42; CI, 1.06-1.91; P = .020), and diabetes (odds ratio, 1.59; CI, 1.13-2.24; P = .008). The absence of vitamin B12 deficiency was the sole discriminating factor between methanogenic and hydrogenic SIBO (odds ratio, 0.57; CI, 0.34-0.97; P = .038). CONCLUSIONS Patients with SIBO caused by methane-producing Archaea display a different spectrum of associated symptoms and clinical conditions compared with patients with SIBO caused by hydrogen-producing bacteria, particularly a lower incidence of vitamin B12 deficiency.
Collapse
Affiliation(s)
- Katelyn E Madigan
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Richa Bundy
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Richard B Weinberg
- Department of Internal Medicine-Gastroenterology, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina.
| |
Collapse
|
41
|
Wei L, Singh R, Ghoshal UC. Enterochromaffin Cells-Gut Microbiota Crosstalk: Underpinning the Symptoms, Pathogenesis, and Pharmacotherapy in Disorders of Gut-Brain Interaction. J Neurogastroenterol Motil 2022; 28:357-375. [PMID: 35719046 PMCID: PMC9274469 DOI: 10.5056/jnm22008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Disorders of gut-brain interaction (DGBIs) are common conditions in community and clinical practice. As specialized enteroendocrine cells, enterochromaffin (EC) cells produce up to 95% of total body serotonin and coordinate luminal and basolateral communication in the gastrointestinal (GI) tract. EC cells affect a broad range of gut physiological processes, such as motility, absorption, secretion, chemo/mechanosensation, and pathologies, including visceral hypersensitivity, immune dysfunction, and impaired gastrointestinal barrier function. We aim to review EC cell and serotonin-mediated physiology and pathophysiology with particular emphasis on DGBIs. We explored the knowledge gap and attempted to suggest new perspectives of physiological and pathophysiological insights of DGBIs, such as (1) functional heterogeneity of regionally distributed EC cells throughout the entire GI tract; (2) potential pathophysiological mechanisms mediated by EC cell defect in DGBIs; (3) cellular and molecular mechanisms characterizing EC cells and gut microbiota bidirectional communication; (4) differential modulation of EC cells through GI segment-specific gut microbiota; (5) uncover whether crosstalk between EC cells and (i) luminal contents; (ii) enteric nervous system; and (iii) central nervous system are core mechanisms modulating gut-brain homeostasis; and (6) explore the therapeutic modalities for physiological and pathophysiological mechanisms mediated through EC cells. Insights discussed in this review will fuel the conception and realization of pathophysiological mechanisms and therapeutic clues to improve the management and clinical care of DGBIs.
Collapse
Affiliation(s)
- Lai Wei
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, NV, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
42
|
Thomas CM, Desmond-Le Quéméner E, Gribaldo S, Borrel G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat Commun 2022; 13:3358. [PMID: 35688919 PMCID: PMC9187648 DOI: 10.1038/s41467-022-31038-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
Archaea are common constituents of the gut microbiome of humans, ruminants, and termites but little is known about their diversity and abundance in other animals. Here, we analyse sequencing and quantification data of archaeal and bacterial 16S rRNA genes from 250 species of animals covering a large taxonomic spectrum. We detect the presence of archaea in 175 animal species belonging to invertebrates, fish, amphibians, birds, reptiles and mammals. We identify five dominant gut lineages, corresponding to Methanobrevibacter, Methanosphaera, Methanocorpusculum, Methanimicrococcus and "Ca. Methanomethylophilaceae". Some archaeal clades, notably within Methanobrevibacter, are associated to certain hosts, suggesting specific adaptations. The non-methanogenic lineage Nitrososphaeraceae (Thaumarchaeota) is frequently present in animal samples, although at low abundance, but may have also adapted to the gut environment. Host phylogeny, diet type, fibre content, and intestinal tract physiology are major drivers of the diversity and abundance of the archaeome in mammals. The overall abundance of archaea is more influenced by these factors than that of bacteria. Methanogens reducing methyl-compounds with H2 can represent an important fraction of the overall methanogens in many animals. Together with CO2-reducing methanogens, they are influenced by diet and composition of gut bacteria. Our results provide key elements toward our understanding of the ecology of archaea in the gut, an emerging and important field of investigation.
Collapse
Affiliation(s)
- Courtney M Thomas
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Unit Evolutionary Biology of the Microbial Cell, F-75015, Paris, France
- Sorbonne Université, Collège doctoral, F-75005, Paris, France
| | | | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Unit Evolutionary Biology of the Microbial Cell, F-75015, Paris, France
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Unit Evolutionary Biology of the Microbial Cell, F-75015, Paris, France.
| |
Collapse
|
43
|
Zhou Q, Zhang D, Zhang H, Wan X, Hu B, Zou Q, Su D, Peng H, Huang D, Ren D. Effects of Xiao Chengqi Formula on Slow Transit Constipation by Assessing Gut Microbiota and Metabolomics Analysis in vitro and in vivo. Front Pharmacol 2022; 13:864598. [PMID: 35774604 PMCID: PMC9237644 DOI: 10.3389/fphar.2022.864598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
The Xiao Chengqi (XCQ) formula is a newly constituted traditional Chinese medicine prescription in the treatment of intestinal motility deficiency and is effective in patients with slow transit constipation (STC). XCQ formula was reconstructed based on a "Chengqi" decoction. Astragali Radix, Angelicae Sinensis Radix, and cooked ground Salviae Miltiorrhizae Radix et Rhizoma were added to the prescription to enhance. An STC rat model was constructed and treated with the formula to understand the detailed mechanism by which XCQ promotes intestinal peristalsis. The effects of the XCQ formula on intestinal microflora and metabolic levels and the possible molecular mechanism of its regulation were explored using 16S rDNA sequencing, metabolomics sequencing, and tissue RNA sequencing. The results showed a significant decrease in the abundance of Roseburia spp. in the feces of STC rats, a significant decrease in the content of butyl aminobenzene (BAB) in feces, and an increase in the number of interstitial cells of Cajal (ICC) in the colon of STC rats. Furthermore, in vitro and in vivo experiments revealed that BAB could activate IL-21R on the ICC surface, upregulate the phosphorylation of the downstream molecules STAT3 and ERK, and inhibit loperamide-induced ICC apoptosis. Therefore, the XCQ formula can improve the defecation status of patients with STC by protecting ICC activity, promoting the colonization of Roseburia spp. to promote peristalsis, and increasing the BAB content after metabolism.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Heng Zhang
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyang Wan
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bang Hu
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zou
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Su
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dandan Huang
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Donglin Ren
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Patel SM, Young MC. The Identification and Management of Small Intestinal Bacterial Overgrowth. Phys Med Rehabil Clin N Am 2022; 33:587-603. [PMID: 35989053 DOI: 10.1016/j.pmr.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Zhang Q, Zhao W, Zhao Y, Duan S, Liu WH, Zhang C, Sun S, Wang T, Wang X, Hung WL, Wang R. In vitro Study of Bifidobacterium lactis BL-99 With Fructooligosaccharide Synbiotics Effected on the Intestinal Microbiota. Front Nutr 2022; 9:890316. [PMID: 35571919 PMCID: PMC9096902 DOI: 10.3389/fnut.2022.890316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics and prebiotics relieve constipation by altering the composition of the intestinal microbiota. However, their synergistic mechanism of action remains unclear. Herein, an in vitro fermentation model was constructed to examine the synergistic effects of Bifidobacterium lactis BL-99 and fructooligosaccharide (FOS) on the regulation of intestinal microbiota from a population with constipation. The utilization of FOS was promoted by BL-99, and the increase rate being 22.33%. Relative to the BL-99 and the FOS groups, the BL-99_FOS group showed a highly significant increase in acetic acid content (P < 0.01) and a marked decrease in CO2 and H2S contents (P < 0.01) in the fermentation broth. In addition, the BL-99_FOS combination significantly changed the structure of the intestinal microbiota, enhanced the relative abundances of beneficial bacteria that relieved constipation, including Bifidobacterium, Fecalibacterium, Lactobacillus, Subdoligranulum, and Blautia, and decreased those of the harmful bacteria, including Bilophila and Escherichia-Shigella. These findings suggested that BL-99 and FOS synergistically regulated the composition and structure of the intestinal microbiota from the population with constipation and increased acetic acid and decreased CO2 and H2S levels, thereby providing a theoretical basis for the application of synbiotics.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Wen Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Yuyang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Siyuan Sun
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Tingting Wang
- Hangzhou Hailu Medical Technology Co., Ltd., Hangzhou, China
| | - Xin Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Zhang Q, Zhao W, Zhao Y, Duan S, Liu WH, Zhang C, Sun S, Wang T, Wang X, Hung WL, Wang R. In vitro Study of Bifidobacterium lactis BL-99 With Fructooligosaccharide Synbiotics Effected on the Intestinal Microbiota. Front Nutr 2022; 9:890316. [PMID: 35571919 DOI: 10.3389/fnut.2022.890316if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 07/26/2024] Open
Abstract
Probiotics and prebiotics relieve constipation by altering the composition of the intestinal microbiota. However, their synergistic mechanism of action remains unclear. Herein, an in vitro fermentation model was constructed to examine the synergistic effects of Bifidobacterium lactis BL-99 and fructooligosaccharide (FOS) on the regulation of intestinal microbiota from a population with constipation. The utilization of FOS was promoted by BL-99, and the increase rate being 22.33%. Relative to the BL-99 and the FOS groups, the BL-99_FOS group showed a highly significant increase in acetic acid content (P < 0.01) and a marked decrease in CO2 and H2S contents (P < 0.01) in the fermentation broth. In addition, the BL-99_FOS combination significantly changed the structure of the intestinal microbiota, enhanced the relative abundances of beneficial bacteria that relieved constipation, including Bifidobacterium, Fecalibacterium, Lactobacillus, Subdoligranulum, and Blautia, and decreased those of the harmful bacteria, including Bilophila and Escherichia-Shigella. These findings suggested that BL-99 and FOS synergistically regulated the composition and structure of the intestinal microbiota from the population with constipation and increased acetic acid and decreased CO2 and H2S levels, thereby providing a theoretical basis for the application of synbiotics.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Wen Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Yuyang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Siyuan Sun
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Tingting Wang
- Hangzhou Hailu Medical Technology Co., Ltd., Hangzhou, China
| | - Xin Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Leszkowicz J, Plata-Nazar K, Szlagatys-Sidorkiewicz A. Can Lactose Intolerance Be a Cause of Constipation? A Narrative Review. Nutrients 2022; 14:1785. [PMID: 35565753 PMCID: PMC9105309 DOI: 10.3390/nu14091785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Lactose intolerance and constipation are common in children and impact everyday life, not only for patients but also their families. Both conditions can be comorbid with other diseases or form a part of their clinical presentation, but constipation is not usually associated with lactose intolerance. The typical symptoms of lactose intolerance include abdominal pain, bloating, flatus, diarrhoea, borborygmi, and less frequently nausea and vomiting. In approximately 30% of cases, constipation can be a symptom of lactose intolerance. Constipation is characterized by infrequent bowel movements, hard and/or large stools, painful defecation, and faecal incontinence, and is often accompanied by abdominal pain. This paper provides a narrative review on lactose intolerance, its epidemiology, pathogenesis, the correlation between lactose intolerance and constipation in children, and potential mechanisms of such association.
Collapse
Affiliation(s)
- Julia Leszkowicz
- Department of Paediatrics, Gastroenterology, Allergology and Paediatric Nutrition, Faculty of Medicine, Medical University of Gdańsk, Nowe Ogrody 1-6, 80-803 Gdańsk, Poland; (K.P.-N.); (A.S.-S.)
| | | | | |
Collapse
|
48
|
Chen L, Wang J. Gut microbiota and inflammatory bowel disease. WIREs Mech Dis 2022; 14:e1540. [PMID: 35266651 DOI: 10.1002/wsbm.1540] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Gut microbiota refers to the complex aggregation of microbes in gut, including bacteria, archaea, fungi, and viruses, and they exert marked influence on the host's health. Perturbations in the gut microbiota have been closely linked to initiation and progression of IBD, which has become a disease with accelerating incidence worldwide, but it remains to be thoroughly investigated how microbial involvement might contribute to IBD. In this review, we discuss the current research findings concerning alterations in the gut microbiota, trans-kingdom interaction between the members of the gut microbiota, their interactions with the immune system of host, their potential role in the IBD pathogenesis, and the relationship between gut microbiota and IBD. We hope to provide a better understanding of the causes of IBD and shed light on the development of microbiome-based therapeutic approaches, which might be a promising strategy to alleviate, manage, and eventually cure IBD. This article is categorized under: Infectious Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| |
Collapse
|
49
|
Mirza AI, Zhu F, Knox N, Forbes JD, Van Domselaar G, Bernstein CN, Graham M, Marrie RA, Hart J, Yeh EA, Arnold DL, Bar-Or A, O'Mahony J, Zhao Y, Hsiao W, Banwell B, Waubant E, Tremlett H. Metagenomic Analysis of the Pediatric-Onset Multiple Sclerosis Gut Microbiome. Neurology 2022; 98:e1050-e1063. [PMID: 34937787 PMCID: PMC8967388 DOI: 10.1212/wnl.0000000000013245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Little is known of the functional potential of the gut microbiome in pediatric-onset multiple sclerosis (MS). We performed metagenomic analyses using stool samples from individuals with pediatric-onset MS and unaffected controls. METHODS Persons ≤21 years old enrolled in the Canadian Pediatric Demyelinating Disease Network providing a stool sample were eligible. Twenty patients with MS (McDonald criteria) with symptom onset <18 years were matched to 20 controls by sex, age (±3 years), stool consistency, and race. Microbial taxonomy and functional potentials were estimated from stool sample-derived metagenomic reads and compared by disease status (MS vs controls) and disease-modifying drug (DMD) exposure using alpha diversity, relative abundance, and prevalence using Wilcoxon rank sum, ALDEx2, and Fisher exact tests, respectively. RESULTS Individuals with MS were aged 13.6 years (mean) at symptom onset and 8 were DMD-naive. Mean ages at stool sample were 16.1 and 15.4 years for MS and control participants, respectively; 80% were girls. Alpha diversity of enzymes and proteins did not differ by disease or DMD status (p > 0.20), but metabolic pathways, gene annotations, and microbial taxonomy did. Individuals with MS (vs controls) exhibited higher methanogenesis prevalence (odds ratio 10, p = 0.044) and Methanobrevibacter abundance (log2 fold change [LFC] 1.7, p = 0.0014), but lower homolactic fermentation abundance (LFC -0.48, p = 0.039). Differences by DMD status included lower phosphate butyryl transferase for DMD-naive vs exposed patients with MS (LFC -1.0, p = 0.033). DISCUSSION The gut microbiome's functional potential and taxonomy differed between individuals with pediatric-onset MS vs controls, including higher prevalence of a methane-producing pathway from Archaea and depletion of the lactate fermentation pathway. DMD exposure was associated with butyrate-producing enzyme enrichment. Together these findings indicate that the gut microbiome of individuals with MS may have a disturbed functional potential.
Collapse
Affiliation(s)
- Ali I Mirza
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Feng Zhu
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Natalie Knox
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Jessica D Forbes
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Gary Van Domselaar
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Charles N Bernstein
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Morag Graham
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Ruth Ann Marrie
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Janace Hart
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - E Ann Yeh
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Douglas L Arnold
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Amit Bar-Or
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Julia O'Mahony
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Yinshan Zhao
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - William Hsiao
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Brenda Banwell
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Emmanuelle Waubant
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Helen Tremlett
- From the Department of Medicine (Neurology) (A.I.M., F.Z., Y.Z., H.T.), The University of British Columbia, Vancouver; National Microbiology Laboratory (N.K., G.V.D., M.G.), Public Health Agency of Canada; Department of Medical Microbiology and Infectious Diseases (N.K., G.V.D., M.G.), Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences (C.N.B., R.A.M.), and Inflammatory Bowel Disease Clinical and Research Centre (C.N.B.), University of Manitoba, Winnipeg; Roy Romanow Provincial Laboratory (J.D.F.), Regina; Department of Pathology and Laboratory Medicine (J.D.F.), College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Neurology (J.H., E.W.), University of California San Francisco; Department of Pediatrics (Neurology) (E.A.Y., J.O.), The Hospital for Sick Children, Toronto; Department of Neurology and Neurosurgery (D.L.A.), Montreal Neurological Institute, McGill University, Montreal, Canada; Centre for Neuroinflammation and Experimental Therapeutics and Department of Neurology (A.B.-O.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Faculty of Health Sciences (W.H.), Simon Fraser University, Burnaby, Canada; and The Children's Hospital of Philadelphia (B.B.), PA.
| |
Collapse
|
50
|
PASSOS MDCF, ALVARIZ RC, ANDRÉ EA, BARBUTI RC, FILLMANN HS, MURAD-REGADAS SM, REZENDE FILHO J, PERROTTI M, GUEDES L. DIAGNOSIS AND MANAGEMENT OF CHRONIC IDIOPATHIC CONSTIPATION: A NARRATIVE REVIEW FROM A BRAZILIAN EXPERT TASK FORCE. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:137-144. [DOI: 10.1590/s0004-2803.202200001-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT Background Chronic idiopathic constipation (CIC) is a condition that widely affects the global population, represents relevant healthcare resource utilization and costs, and impacts the individual’s well-being. Objective To review the consensus of expert societies and published guidelines on the diagnosis and treatment of CIC in adults, seeking to assist reasoning and decision-making for medical management of patients with CIC and provide a practical reference material. Methods A Brazilian medical task force searched the scientific literature in the following electronic databases: MEDLINE/PubMed, SciELO, EMBASE and Cochrane, using the following descriptors: chronic constipation, diagnosis, management of chronic constipation. In addition, a review of articles on the mechanism of action, safety, and efficacy of therapeutic options available in Brazil was carried out. Results The diagnostic approach and the understanding of the pathophysiology present in CIC are essential items to indicate the appropriate therapy and to understand the ecosystem of the patient’s needs. Conclusion CIC is a common condition in adults, occurring more frequently in the elderly and in women. Proper management is defined by detailed medical history and physical examination, together with appropriate therapeutics, regardless pharmacological or not, and depending on the best moment of indication. This way, the impact on quality of life is also optimized.
Collapse
|