1
|
Lee S, Lee B, Kwon SH, Park J, Kim SH. MCC in the spotlight: Its dual role in signal regulation and oncogenesis. Cell Signal 2025; 131:111756. [PMID: 40118128 DOI: 10.1016/j.cellsig.2025.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The mutated in colorectal cancer (MCC) gene is closely associated with the onset and progression of colorectal cancer. MCC plays a critical role in regulating the cell cycle and various signaling pathways and is recognized to inhibit cancer cell proliferation via the β-catenin signaling pathway. β-catenin is a key component of the WNT signaling pathway that influences cell growth, differentiation, survival, and migration, thereby positioning MCC as an important tumor suppressor. Notably, MCC has also been implicated in other cancer types, including lung, liver, and brain cancers. However, the precise mechanisms by which MCC functions in these malignancies remain inadequately understood. Comprehensive investigations into the interactions among MCC, various signaling pathways, and metabolic processes are essential for uncovering the molecular mechanisms of cancer and the pathological features characteristic of different cancer stages. This review presents the structural characteristics of MCC and its cell growth regulation mechanisms and functional roles within tissues, with the aims of enhancing our understanding of the role of MCC in cancer biology and highlighting potential therapeutic strategies targeting this gene.
Collapse
Affiliation(s)
- Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, South Korea.
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea.
| | - Seon-Hwan Kim
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.
| |
Collapse
|
2
|
Baker JL, Gordon-Dseagu VL, Voortman T, Chan D, Herceg Z, Robinson S, Norat T, Croker H, Ong K, Kampman E. Lifecourse research in cancer: context, challenges, and opportunities when exploring exposures in early life and cancer risk in adulthood. HEALTH OPEN RESEARCH 2025; 6:16. [PMID: 39974286 PMCID: PMC11836561 DOI: 10.12688/healthopenres.13748.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 02/21/2025]
Abstract
As the global population ages, and rates of modifiable risk factors for cancer change, cancer incidence and mortality continue to increase. While we understand many modifiable risk factors related to diet, nutrition, bodyweight, and physical activity in adulthood that influence cancer risk, how exposure during childhood, adolescence, and young adulthood impacts cancer risk is less clear. This is partly because the timeline from initial mutation to cancer development and diagnosis can span several decades. This long latency period creates methodological, ethical, and financial issues; as well as resource and feasibility challenges in the design, implementation, and data analysis of lifecourse studies. As such, the large majority of lifecourse studies are observational, often using recall data which has inherent bias issues. Concurrently, a new research era has begun, with mature birth cohort studies that are phenotyped/genotyped and can support studies on adult cancer risk. Several studies and consortia contain information spanning the lifecourse. These resources can support association, mechanistic and epigenetic investigations into the influences of multi-disciplinary (e.g. genetic, behavioural, environmental) factors, across the lifecourse and critical time periods. Ultimately, we will be able to produce high-quality evidence and identify how/when early life risk factors impact cancer development and survival.
Collapse
Affiliation(s)
- Jennifer L. Baker
- Center for Clinical Research and Prevention, Copenhagen University Hospital-Bispebjerg and Frederiksberg, University of Copenhagen, Frederiksberg, Denmark
| | | | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, Erasmus, Rotterdam, The Netherlands
| | - Doris Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, England, UK
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), World Health Organisation, Lyon, France
| | - Sian Robinson
- AGE Research Group, Newcastle University, Newcastle upon Tyne, England, UK
| | - Teresa Norat
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, England, UK
| | - Helen Croker
- World Cancer Research Fund International, London, England, UK
| | - Ken Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, England, UK
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Masciari CF. Motivational Barriers to Care and the Ethics of Encouragement. AJOB Neurosci 2025:1-13. [PMID: 40085683 DOI: 10.1080/21507740.2025.2474228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
In this paper I argue that by using methods of encouragement, derived from the fields of social psychology, cognitive neuroscience, and behavioral economics, healthcare workers can potentially provide their patients with tools for increasing adherence to their treatment plans. I claim that the shared decision-making model can, and should, be enriched to include a component that encourages patients to follow through with their plans. It is commonsense that it is one thing to decide on a plan, and quite another to stick to it. Even if a plan is one's own, people often backslide with respect to their prior commitments. I appeal to the extensive literatures on decision-making, delay discounting, and willpower to provide some empirically verified tools for motivating patients. Importantly, I argue that contrary to appearances, motivating others to act with respect to their commitments expresses a respect for autonomy and is non-paternalistic.
Collapse
|
4
|
Khamis AA, Elkeiy MM, El-Gamal MM, Saad-Allah KM, Salem MM. Biological and Molecular Efficiency of Paracentrotus lividus Shell in vitro Study: Antioxidant and Angiogenesis Effects Against T47D Breast Cancer Cell Line Via Nrf2/HMOX-1/ and HIF-1α /VEGF Signaling Pathways. Cell Biochem Biophys 2025:10.1007/s12013-025-01678-6. [PMID: 39904870 DOI: 10.1007/s12013-025-01678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
The sea urchin (Paracentrotus lividus) shell investigation reveals a wealth of bioactive compounds. The bioactive ingredients were observed using UPLCMS/MS profiling. The anti-diabetic, antioxidant, antimicrobial, and anti-inflammatory qualities of P. lividus shell extract were assessed concerning NO, MDA, CAT, and SOD levels. Also, cytotoxic, and anti-angiogenic impact on colon (Caco-2) and breast (T47D) carcinoma cells and quantificated of Nrf2/HMOX-1 and HIF-1α/VEGF pathway expression were evaluated. Our findings indicate that the extract possesses remarkable antioxidant activity with IC50 equal to (0.1056 ± 0.083 and 30.42 ± 1.52 μg/mL; for DPPH and ABTS+ respectively), antidiabetic with IC50 (1.572 ± 0.13 μg/mL) and anti-inflammatory with IC50 (2.090 ± 0.49 μg/mL). Notably, it exhibits potent anticancer effects against human breast (T47D) and colon (Caco-2) cancer cell lines, (30.55 ± 1.19 and 31.34 ± 1.22 µg/mL respectively). The extract induces oxidative stress and apoptosis, as evidenced by elevated NO and MDA levels, alongside reduced SOD and CAT activities. Moreover, the downregulation of Nrf2/HMOX-1 and HIF-1α/VEGF pathways expression suggests intricate molecular mechanisms underlying its anticancer properties, potentially involving the modulation of oxidative stress and angiogenesis. These findings underscore the sea urchin (P. lividus) shell as a potent reservoir of bioactive constituents with promising applications in pharmaceutical research and offering new avenues for drug discovery.
Collapse
Affiliation(s)
- Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mai M Elkeiy
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mona M El-Gamal
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Khalil M Saad-Allah
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Manna T, Maji S, Maity M, Debnath B, Panda S, Khan SA, Nath R, Akhtar MJ. Anticancer potential and structure activity studies of purine and pyrimidine derivatives: an updated review. Mol Divers 2025; 29:817-848. [PMID: 38856835 DOI: 10.1007/s11030-024-10870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Cancer is the world's leading cause of death impacting millions of lives globally. The increasing research over the past several decades has focused on the development of new anticancer drugs, but still cancer continues to be a global health challenge. Thus, several new alternative therapeutic strategies have been tried for the drug design and discovery. Purine and pyrimidine heterocyclic compounds have received attention recently due to their potential in targeting various cancers. It is evident from the recently published data over the last decade that incorporation of the purine and pyrimidine rings in the synthesized derivatives resulted in the development of potent anticancer molecules. This review presents synthetic strategies encompassing several examples of recently developed purine and pyrimidine-containing compounds as anticancer agents. In addition, their structure-activity relationships are represented in the schemes indicating the fragment or groups that are essential for the enhanced anticancer activities. Purine and pyrimidines combined with other heterocyclic compounds have resulted in many novel anticancer molecules that address the challenges of drug resistance. The purine and pyrimidine derivatives showed significantly enhanced anticancer activities against targeted receptor proteins with numerous compounds with an IC50 value in the nanomolar range. The review will support medicinal chemists and contribute in progression and development of synthesis of more potent chemotherapeutic drug candidates to mitigate the burden of this dreadful disease.
Collapse
Affiliation(s)
- Tanushree Manna
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Sumit Maji
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Mousumi Maity
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman
| | - Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India.
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata, 700109, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman.
| |
Collapse
|
6
|
Khandelwal D, Bhattacharya A, Kumari V, Gupta SS, Ranjan KR, Mishra V. Leveraging nanomaterials for ultrasensitive biosensors in early cancer detection: a review. J Mater Chem B 2025; 13:802-820. [PMID: 39635753 DOI: 10.1039/d4tb02107j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cancer remains a major global health challenge with a high mortality rate, as evidenced by the rise in new cases every year. Conventional diagnostic methods like PET scans, MRIs, and biopsies, despite being widely used, suffer from significant drawbacks such as high radiation exposure, difficulty in distinguishing malignant from benign tumors, and invasiveness. Early detection, which is crucial for improving treatment outcomes and survival rates, is hindered by the asymptomatic nature of early-stage cancer and the limitations of current diagnostic tools. Cancer biomarkers, detectable in body fluids, offer valuable diagnostic information, and recent advances in nanotechnology have led to the development of highly sensitive nano-biosensors. This review explores recent advancements (2022-2024) in the field of ultrasensitive nano-biosensors, emphasizing the strategic integration of nanomaterials to enhance sensitivity and accuracy in cancer biomarker detection. It highlights how precise nanomaterial positioning in sensor components like electrodes and bioreceptors enables early cancer diagnosis at low biomarker concentrations. These innovations underscore the transformative potential of nanomaterials in revolutionizing early cancer diagnostics, improving patient care, and enhancing survival outcomes.
Collapse
Affiliation(s)
- Drishti Khandelwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Aheli Bhattacharya
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Vanshika Kumari
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | | | - Kumar Rakesh Ranjan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, UP-201313, India.
| |
Collapse
|
7
|
Pandey SK, Sabharwal U, Tripathi S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Androgen Signaling in Prostate Cancer: When a Friend Turns Foe. Endocr Metab Immune Disord Drug Targets 2025; 25:37-56. [PMID: 38831575 DOI: 10.2174/0118715303313528240523101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Usha Sabharwal
- P. G. Department of Biosciences, Centre of Advanced Studies, Satellite Campus, Sardar Patel Maidan, 388120, Gujarat, India
| | - Swati Tripathi
- Section of Electron Microscopy, Supportive Centre for Brain Research, National Institute for Physiological Sciences (NIPS) Okazaki, 444-8787, Japan
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
8
|
Heidari R, Assadollahi V, Marashi SN, Elahian F, Mirzaei SA. The miRNA-mRNA Regulatory Network in Human Hepatocellular Carcinoma by Transcriptomic Analysis From GEO. Cancer Rep (Hoboken) 2025; 8:e70098. [PMID: 39764737 PMCID: PMC11705453 DOI: 10.1002/cnr2.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment. AIM In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs). METHODS AND RESULTS Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes. The reduced levels of tumor suppressor miRNAs or down regulated DEmiRs may be increased levels of oncogenes, the oncomirs or up regulated DEmiRs may be decreased levels of tumor suppressor genes in cancerous cells. According to this strategy, increased and decreased DEGs, also increased and decreased DEmiRs were selected. The multimir package was employed to predict target genes for DEmiRs then DEmiRs-hub gene network created. We identified approximately 1000 overlapping DEGs and 60 DEmiRs. Hub genes included RRM2, MELK, KIF11, KIF23, NCAPG, DLGAP5, BUB1B, AURKB, CCNB1, KIF20A, CCNA2, TTK, PBK, TOP2A, CDK1, MAD2L1, BIRC5, ASPM, CDCA8, and CENPF, all associated with significantly worse survival in HCC. miR-224, miR-24, miR-182, miRNA-1-3p, miR-30a, miR-27a, and miR-214 were identified as important DEmiRs with targeting more than six hub genes. CONCLUSION Generally, our findings offer insight into the interaction of hub genes and miRNAs in the development of HCC by bioinformatics analysis, information that may prove useful in identifying biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Razieh Heidari
- Cancer Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
- Department of Medical Biotechnology, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Vahideh Assadollahi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Seyedeh Negar Marashi
- Department of Medical Biotechnology, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
- Advanced Technology CoresBaylor College of MedicineTexasUSA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
9
|
Chayab L, Leighl NB, Tadrous M, Warren CM, Wong WWL. Trends in Real-World Clinical Outcomes of Patients with Anaplastic Lymphoma Kinase (ALK) Rearranged Non-Small Cell Lung Cancer (NSCLC) Receiving One or More ALK Tyrosine Kinase Inhibitors (TKIs): A Cohort Study in Ontario, Canada. Curr Oncol 2024; 32:13. [PMID: 39851929 PMCID: PMC11764221 DOI: 10.3390/curroncol32010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
The treatment landscape for patients with advanced ALK-positive NSCLC has rapidly evolved following the approval of several ALK TKIs in Canada. However, public funding of ALK TKIs is mostly limited to the first line treatment setting. Using linked provincial health administrative databases, we examined real-world outcomes of patients with advanced ALK-positive NSCLC receiving ALK TKIs in Ontario between 1 January 2012 and 31 December 2021. Demographic, clinical characteristics and treatment patterns were summarized using descriptive statistics. Kaplan-Meier analysis was performed to evaluate progression-free survival (PFS) and overall survival (OS) among the treatment groups. A total of 413 patients were identified. Patients were administered alectinib (n = 154), crizotinib (n = 80), or palliative-intent chemotherapy (n = 55) in the first-line treatment. There was a significant difference in first-line PFS between the treatment groups. The median PFS (mPFS) was not reached for alectinib (95% CI, 568 days-not reached), compared to 8.2 months (95% CI, 171-294 days) for crizotinib (HR = 0.34, p < 0.0001) and 2.4 months (95% CI, 65-100 days) for chemotherapy (HR = 0.14, p < 0.0001). There was no significant difference in first-line OS between the treatment groups. In patients who received more than one line of treatment, there was a significant difference in mOS between patients who received two or more lines of ALK TKIs compared to those who received one line of ALK TKI (mOS = 55 months (95% CI, 400-987 days) and 26 months (95% CI, 1448-2644 days), respectively, HR = 4.64, p < 0.0001). This study confirms the effectiveness of ALK TKIs in real-world practice and supports the potential benefit of multiple lines of ALK TKI on overall survival in patients with ALK-positive NSCLC.
Collapse
Affiliation(s)
- Lara Chayab
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
| | - Natasha B. Leighl
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Mina Tadrous
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Women’s College Research Institute, Toronto, ON M5G 1N8, Canada
| | | | - William W. L. Wong
- School of Pharmacy, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
10
|
Panigrahi P, Pal Y, Pal Kaur S, Vovusha H, Bae H, Nazir S, Lee H, Panigrahi A, Hussain T. Rapid Detection of Explicit Volatile Organic Compounds for Early Diagnosis of Lung Cancer Using MoSi 2N 4 Monolayer. Chem Asian J 2024; 19:e202400956. [PMID: 39353036 DOI: 10.1002/asia.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
In this study, we investigate the adsorption and sensing capabilities of pristine (MoSi2N4) and nitrogen-vacancy induced (MoSi2N4-VN) monolayers towards five potential lung cancer volatile organic compounds (VOCs), such as 2,3,4-trimethylhexane (C9H20), 4-methyloctane (C9H20), o-toluidine (C7H9N), Aniline (C6H7N), and Ethylbenzene (C8H10). Spin-polarized density functional theory (DFT) calculations reveal that MoSi2N4 weakly adsorb the mentioned VOCs, whereas the introduction of nitrogen vacancies significantly enhances the adsorption energies (E a d s ${{E}_{ads}}$ ), both in gas phase and aqueous medium. The MoSi2N4-VN monolayers exhibit a reduced bandgap and facilitate charge transfer upon VOCs adsorption, resulting in enhancedE a d s ${{E}_{ads}}$ values of -0.83, -0.76, -0.49, -0.61, and -0.50 eV for 2,3,4-trimethylhexane, 4-methyloctane, o-toluidine, Aniline, and Ethylbenzene, respectively. Bader charge analysis and spin-polarized density of states (SPDOS) elucidate the charge redistribution and hybridization between MoSi2N4-VN and the adsorbed VOCs. The work function of MoSi2N4-VN is significantly reduced upon VOCs adsorption due to induced dipole moments, enabling smooth charge transfer and selective VOCs sensing. Notably, MoSi2N4-VN monolayers exhibit sensor responses ranging from 16.2 % to 26.6 % towards the VOCs, with discernible selectivity. Importantly, the recovery times of the VOCs desorption is minimal, reinforcing the suitability of MoSi2N4-VN as a rapid, and reusable biosensor platform for efficient detection of lung cancer biomarkers. Thermodynamic analysis based on Langmuir adsorption model shows improved adsorption and detection capabilities MoSi2N4-VN under diverse operating conditions of temperatures and pressures.
Collapse
Affiliation(s)
- Puspamitra Panigrahi
- Centre for Clean Energy and Nano Convergence, Hindustan Institute of Technology and Science, Chennai, 603103, India
| | - Yash Pal
- School of Aeronautical Sciences, Hindustan Institute of Technology and Science, Chennai, India
| | - Surinder Pal Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Hakkim Vovusha
- Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyeonhu Bae
- Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, New South Wales, 2351, Australia
| | - Hoonkyung Lee
- Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Akshay Panigrahi
- Central Institute of Brackishwater Aquaculture (ICAR-CIBA), Hindustan Institute of Technology and Science, 75 Santhome High Road, Chennai, Tamilnadu, 600028, India
| | - Tanveer Hussain
- School of Science and Technology, University of New England, Armidale, New South Wales, 2351, Australia
| |
Collapse
|
11
|
Ooi SL, Micalos PS, Kim J, Pak SC. Rice bran arabinoxylan compound as a natural product for cancer treatment - an evidence-based assessment of the effects and mechanisms. PHARMACEUTICAL BIOLOGY 2024; 62:367-393. [PMID: 38745507 PMCID: PMC11097709 DOI: 10.1080/13880209.2024.2349042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
CONTEXT Rice bran arabinoxylan compound (RBAC) is a natural immunomodulator with anticancer properties. OBJECTIVE This study critically evaluates the available evidence on the biological pathways of RBAC and its effects on cancer treatment. METHODS This secondary analysis of a scoping review includes studies evaluating the mechanisms of RBAC on healthy or malignant cells, animal models, or humans for cancer prevention or treatment. Data from randomized controlled trials on survival and quality of life outcomes were subjectd to meta analysis. RESULTS The evidence synthesis was based on 38 articles. RBAC exhibited antitumor properties by promoting apoptosis and restoring immune function in cancer patients to enhance inflammatory and cytotoxic responses to block tumorigenesis. RBAC works synergistically with chemotherapeutic agents by upregulating drug transport. In a clinical trial, combining RBAC with chemoembolization in treating liver cancer showed improved response, reduced recurrence rates, and prolonged survival. RBAC also augments the endogenous antioxidant system to prevent oxidative stress and protect against radiation side effects. In addition, RBAC has chemoprotective effects. Animals and humans have exhibited reduced toxicity and side effects from chemotherapy. Meta analysis indicates that RBAC treatment increases the survival odds by 4.02-times (95% CI: 1.67, 9.69) in the first year and 2.89-times (95% CI: 1.56, 5.35) in the second year. CONCLUSION RBAC is a natural product with immense potential in cancer treatment. Additional research is needed to characterize, quantify, and standardize the active ingredients in RBAC responsible for the anticancer effects. More well-designed, large-scale clinical trials are required to substantiate the treatment efficacies further.
Collapse
Affiliation(s)
- Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst,Australia
| | - Peter S. Micalos
- School of Dentistry and Medical Sciences, Charles Sturt University, Port Macquarie, Australia
| | - Jeanman Kim
- STR Biotech Co. Ltd, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst,Australia
| |
Collapse
|
12
|
Oliveira I, Rodrigues-Santos P, Ferreira L, Pires das Neves R. Synthetic and biological nanoparticles for cancer immunotherapy. Biomater Sci 2024; 12:5933-5960. [PMID: 39441658 DOI: 10.1039/d4bm00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cancer is becoming the main public health problem globally. Conventional chemotherapy approaches are slowly being replaced or complemented by new therapies that avoid the loss of healthy tissue, limit off-targets, and eradicate cancer cells. Immunotherapy is nowadays an important strategy for cancer treatment, that uses the host's anti-tumor response by activating the immune system and increasing the effector cell number, while, minimizing cancer's immune-suppressor mechanisms. Its efficacy is still limited by poor therapeutic targeting, low immunogenicity, antigen presentation deficiency, impaired T-cell trafficking and infiltration, heterogeneous microenvironment, multiple immune checkpoints and unwanted side effects, which could benefit from improved delivery systems, able to release immunotherapeutic agents to tumor microenvironment and immune cells. Nanoparticles (NPs) for immunotherapy (Nano-IT), have a huge potential to solve these limitations. Natural and/or synthetic, targeted and/or stimuli-responsive nanoparticles can be used to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity. They can also be used as co-adjuvants that enhance the activity of IT effector cells. These nanoparticles can be engineered in the natural context of cell-derived extracellular vesicles (EVs) or exosomes or can be fully synthetic. In this review, a detailed SWOT analysis is done through the comparison of engineered-synthetic and naturaly-derived nanoparticles in terms of their current and future use in cancer immunotherapy.
Collapse
Affiliation(s)
- Inês Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paulo Rodrigues-Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
13
|
Hublikar M, Kadu V, Edake N, Raut D, Shirame S, Ahmed MZ, Makam P, Ahmad MS, Meshram RJ, Bhosale R. Design, Synthesis, Anti-Cancer, Anti-Inflammatory and In Silico Studies of 3-Substituted-2-Oxindole Derivatives. Chem Biodivers 2024; 21:e202400844. [PMID: 39078869 DOI: 10.1002/cbdv.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/29/2024] [Indexed: 09/25/2024]
Abstract
This study focuses on the design and synthesis of 3-substituted-2-oxindole derivatives aimed at developing dual-active molecules with anti-cancer and anti-inflammatory properties. The molecules were designed with diverse structural and functional features while adhering to Lipinski, Veber, and Leeson criteria. Physicochemical properties were assessed using SWISSADME to ensure drug-likeness and favourable pharmacokinetics. Multistep synthetic procedures were employed for molecule synthesis. In vitro evaluations confirmed the dual activity of the derivatives, with specific emphasis on the significance of dialkyl aminomethyl substitutions for potency against various cell lines. 4 a exhibited GI50 value 3.00E-05 against MDA-MB-231, 4 b has shown GI50 value 2E-05 against MDA-MB-231, 4 c has shown GI50 value 6E-05 against VERO, 4 d has shown GI50 value 8E-05 each against both the MDA-MB-231 and MCF-7 and 4 e has shown GI50 values 2E-05 and 5E-05 each against both the MCF-7 and VERO. The analysis indicates that compounds 3 c (71.19 %), 3 e (66.84 %), and 3 g (63.04 %) exhibited significant anti-inflammatory activity. Additionally, in silico binding free energy analysis and interaction studies revealed significant correlations between in vitro and computational data, identifying compounds 4 d, 4 e, 3 b, 3 i, and 3 e as promising candidates. Key residues such as Glu917, Cys919, Lys920, Glu850, Lys838, and Asp1046 were found to play critical roles in ligand binding and kinase inhibition, providing valuable insights for designing potent VEGFR2 inhibitors. The Quantum Mechanics-based Independent Gradient Model analysis further highlighted the electronic interaction landscape, showing larger attractive peaks and higher electron density gradients for compounds 4 d and 4 e compared to Sunitinib, suggesting stronger and more diverse attractive forces. These findings support the potential of these compounds for further development and optimization in anticancer drug design.
Collapse
Affiliation(s)
- Mahesh Hublikar
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Vikas Kadu
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Nagesh Edake
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Dattatraya Raut
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Sachin Shirame
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Mahammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parameshwar Makam
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - Md Sibgatullah Ahmad
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 248007, India
| | - Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 248007, India
| | - Raghunath Bhosale
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| |
Collapse
|
14
|
Serwaa A, Oyawoye F, Owusu IA, Dosoo D, Manu AA, Sobo AK, Fosu K, Olwal CO, Quashie PK, Aikins AR. In vitro analysis suggests that SARS-CoV-2 infection differentially modulates cancer-like phenotypes and cytokine expression in colorectal and prostate cancer cells. Sci Rep 2024; 14:24625. [PMID: 39427065 PMCID: PMC11490510 DOI: 10.1038/s41598-024-75718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) reportedly exacerbates cancer outcomes. However, how COVID-19 influences cancer prognosis and development remains poorly understood. Here, we investigated the effect of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), the etiological agent of COVID-19, on cellular cancer phenotypes the expression of cancer-related markers, and various proinflammatory cytokines. We infected prostate (22RV1) and colorectal (DLD-1) cancer cell lines, which express angiotensin-converting enzyme 2 (ACE2), with spike pseudovirus (sPV) and laboratory stocks of live SARS-CoV-2 viruses. After infection, we quantified changes in the cellular cancer phenotypes, the gene expression levels of some cancer markers, including Ki-67, BCL-2, VIM, MMP9, and VEGF, and proinflammatory cytokines. Phenotypic analysis was performed using MTT and wound healing assays, whereas gene expression analysis was carried out using real-time quantitative PCR (RT-qPCR). We show that SARS-CoV-2 infection impacts several key cellular pathways involved in cell growth, apoptosis, and migration, in prostate and colorectal cancer cells. Our results suggest that SARS-CoV-2 infection does influence various cancer cellular phenotypes and expression of molecular cancer markers and proinflammatory cytokines, albeit in a cell-type-specific manner. Our findings hint at the need for further studies and could have implications for evaluating the impact of other viruses on cancer progression.
Collapse
Affiliation(s)
- Alberta Serwaa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Fatima Oyawoye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Irene Amoakoh Owusu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Daniel Dosoo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Aaron Adom Manu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Augustine Kojo Sobo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Fosu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Charles Ochieng Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Peter Kojo Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Anastasia Rosebud Aikins
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
- Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
15
|
Feunaing RT, Tamfu AN, Gbaweng AJY, Djoko CLT, Ntchapda F, Henoumont C, Laurent S, Talla E, Anouar EH, Zingue S, Dinica RM. 3,3'4-trimethoxy-4'-rutinosylellagic acid and its acetylated derivative: Antioxidant activity and antiproliferative effects on breast cancer cells and molecular docking study. Biomed Pharmacother 2024; 179:117370. [PMID: 39208664 DOI: 10.1016/j.biopha.2024.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancers account for many deaths worldwide and natural compounds and their derivatives are interesting chemotherapeutic agents for cancer drug development. In this study, a natural compound 3,3'4-trimethoxy-4'-rutinosylellagic acid (TR2) and its acetylated derivative 3,3'4-trimethoxy-4'-hexaacetylrutinosylellagic acid (TR22) were evaluated for their antioxidant and anticancer effects against estrogen sensitive (MCF-7) and estrogen non-sensitive (MDA-MB 231) breast adenocarcinoma. In the β-Carotene-linoleic acid assay, DPPH• radical scavenging and CUPRAC assay, the compound TR2 had better activity than the standard α-Tocopherol, while in the ABTS•+ assay, it was more active than both standards α- α-Tocopherol and BHA. Both compounds had good antioxidant effects with TR2 being more active than TR22. Both compounds inhibited growth of breast carcinoma cells when compared to the untreated controls after 72 h. Compound TR22 significantly (p < 0.001) inhibited proliferation of both MCF-7 and MDA-MB 231 breast carcinoma cell lines suggesting that acetylation reaction improves inhibition of breast cancer cells growth. On the contrary, TR2 exhibited better inhibitory effect of clone formation than TR22 suggesting that acetylation reduces the activity in this assay. Both compounds inhibited migration of the cancer cells when compared to the untreated control cells and compound TR2 exhibited greater cellular anti-migration effect than TR22 at the same concentration and after the same period of incubation. Molecular docking studies supplemented the results and revealed that TR2 and TR22 had appreciable interactions with tyrosine kinase with negative binding energies suggesting that they are potent receptor tyrosine kinase inhibitors which can impede on cancer progression.
Collapse
Affiliation(s)
- Romeo Toko Feunaing
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon; Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 'Dunarea de Jos University', 47 Domneasca Str., Galati 800008, Romania.
| | - Abel Joel Yaya Gbaweng
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | | | - Fidele Ntchapda
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Celine Henoumont
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons B-7000, Belgium
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons B-7000, Belgium
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon; Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Ab-dulaziz University, P.O. Box 830 Al-Kharj, Saudi Arabia
| | - Stephane Zingue
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, P.O. Box 1364, Yaounde, Cameroon
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 'Dunarea de Jos University', 47 Domneasca Str., Galati 800008, Romania.
| |
Collapse
|
16
|
Eity TA, Bhuia MS, Chowdhury R, Ahmmed S, Salehin Sheikh, Akter R, Islam MT. Therapeutic Efficacy of Quercetin and Its Nanoformulation Both the Mono- or Combination Therapies in the Management of Cancer: An Update with Molecular Mechanisms. J Trop Med 2024; 2024:5594462. [PMID: 39380577 PMCID: PMC11461079 DOI: 10.1155/2024/5594462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Quercetin, a major representative of the flavonol subclass found abundantly in almost all edible vegetables and fruits, showed remarkable therapeutic properties and was beneficial in numerous degenerative diseases by preventing lipid peroxidation. Quercetin is beneficial in different diseases, such as atherosclerosis and chronic inflammation. This study aims to find out the anticancer activities of quercetin and to determine different mechanisms and pathways which are responsible for the anticancer effect. It also revealed the biopharmaceutical, toxicological characteristics, and clinical utilization of quercetin to evaluate its suitability for further investigations as a reliable anticancer drug. All of the relevant data concerning this compound with cancer was collected using different scientific search engines, including PubMed, Springer Link, Wiley Online, Web of Science, SciFinder, ScienceDirect, and Google Scholar. This review demonstrated that quercetin showed strong anticancer properties, including apoptosis, inhibition of cell proliferation, autophagy, cell cycle arrest, inhibition of angiogenesis, and inhibition of invasion and migration against various types of cancer. Findings also revealed that quercetin could significantly moderate and regulate different pathways, including PI3K/AKT-mTORC1 pathway, JAK/STAT signaling system, MAPK signaling pathway, MMP signaling pathway, NF-κB pathway, and p-Camk2/p-DRP1 pathway. However, this study found that quercetin showed poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of quercetin). Moreover, different investigations revealed that quercetin expressed no toxic effect in the investigated subjects. Based on the view of these findings, it is demonstrated that quercetin might be considered a reliable chemotherapeutic drug candidate in the treatment of different cancers. However, more clinical studies are suggested to establish the proper therapeutic efficacy, safety, and human dose.
Collapse
Affiliation(s)
- Tanzila Akter Eity
- Department of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
| | - Md. Shimul Bhuia
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Shakil Ahmmed
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Rima Akter
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Biotechnology and Genetic Engineering DisciplineKhulna University, Khulna 9208, Bangladesh
| | - Muhammad Torequl Islam
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Pharmacy DisciplineKhulna University, Khulna 9208, Bangladesh
| |
Collapse
|
17
|
Dehghani Z, Ranjbar S, Shahabinezhad F, Sabouri P, Mohammadi Bardbori A. A toxicogenomics-based identification of potential mechanisms and signaling pathways involved in PFCs-induced cancer in human. Toxicol Res (Camb) 2024; 13:tfae151. [PMID: 39323479 PMCID: PMC11420517 DOI: 10.1093/toxres/tfae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction The number of new diagnosed cancer cases and cancer deaths are increasing worldwide. Perfluorinated compounds (PFCs) are synthetic chemicals, which are possible inducers of cancer in human and laboratory animals. Studies showed that PFCs induce breast, prostate, kidney, liver and pancreas cancer by inducing genes being involved in carcinogenic pathways. Methodology This study reviews the association between PFCs induced up-regulation/down-regulation of genes and signaling pathways that are important in promoting different types of cancer. To obtain chemical-gene interactions, an advanced search was performed in the Comparative Toxicogenomics Database platform. Results Five most prevalent cancers were studied and the maps of their signaling pathways were drawn, and colored borders indicate significantly differentially expressed genes if there had been reports of alterations in expression in the presence of PFCs. Conclusion In general, PFCs are capable of inducing cancer in human via altering PPARα and PI3K pathways, evading apoptosis, inducing sustained angiogenesis, alterations in proliferation and blocking differentiation. However, more epidemiological data and mechanistic studies are needed to better understand the carcinogenic effects of PFCs in human.
Collapse
Affiliation(s)
- Zahra Dehghani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical
Sciences, Rokn Abad, Karafarin St., 7146864685, Shiraz, Iran
| | - Farbod Shahabinezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Pooria Sabouri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Afshin Mohammadi Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| |
Collapse
|
18
|
Dallavalasa S, Tulimilli SV, Bettada VG, Karnik M, Uthaiah CA, Anantharaju PG, Nataraj SM, Ramashetty R, Sukocheva OA, Tse E, Salimath PV, Madhunapantula SV. Vitamin D in Cancer Prevention and Treatment: A Review of Epidemiological, Preclinical, and Cellular Studies. Cancers (Basel) 2024; 16:3211. [PMID: 39335182 PMCID: PMC11430526 DOI: 10.3390/cancers16183211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Inhibition of human carcinomas has previously been linked to vitamin D due to its effects on cancer cell proliferation, migration, angiogenesis, and apoptosis induction. The anticancer activity of vitamin D has been confirmed by several studies, which have shown that increased cancer incidence is associated with decreased vitamin D and that dietary supplementation of vitamin D slows down the growth of xenografted tumors in mice. Vitamin D inhibits the growth of cancer cells by the induction of apoptosis as well as by arresting the cells at the G0/G1 (or) G2/M phase of the cell cycle. Aim and Key Scientific Concepts of the Review: The purpose of this article is to thoroughly review the existing information and discuss and debate to conclude whether vitamin D could be used as an agent to prevent/treat cancers. The existing empirical data have demonstrated that vitamin D can also work in the absence of vitamin D receptors (VDRs), indicating the presence of multiple mechanisms of action for this sunshine vitamin. Polymorphism in the VDR is known to play a key role in tumor cell metastasis and drug resistance. Although there is evidence that vitamin D has both therapeutic and cancer-preventive properties, numerous uncertainties and concerns regarding its use in cancer treatment still exist. These include (a) increased calcium levels in individuals receiving therapeutic doses of vitamin D to suppress the growth of cancer cells; (b) hyperglycemia induction in certain vitamin D-treated study participants; (c) a dearth of evidence showing preventive or therapeutic benefits of cancer in clinical trials; (d) very weak support from proof-of-principle studies; and (e) the inability of vitamin D alone to treat advanced cancers. Addressing these concerns, more potent and less toxic vitamin D analogs have been created, and these are presently undergoing clinical trial evaluation. To provide key information regarding the functions of vitamin D and VDRs, this review provided details of significant advancements in the functional analysis of vitamin D and its analogs and VDR polymorphisms associated with cancers.
Collapse
Affiliation(s)
- Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - SubbaRao V Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Vidya G Bettada
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Preethi G Anantharaju
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Rajalakshmi Ramashetty
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia
| | - Paramahans V Salimath
- JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| |
Collapse
|
19
|
Bhat SA, Kumar V, Dhanjal DS, Gandhi Y, Mishra SK, Singh S, Webster TJ, Ramamurthy PC. Biogenic nanoparticles: pioneering a new era in breast cancer therapeutics-a comprehensive review. DISCOVER NANO 2024; 19:121. [PMID: 39096427 PMCID: PMC11297894 DOI: 10.1186/s11671-024-04072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Breast cancer, a widespread malignancy affecting women globally, often arises from mutations in estrogen/progesterone receptors. Conventional treatments like surgery, radiotherapy, and chemotherapy face limitations such as low efficacy and adverse effects. However, nanotechnology offers promise with its unique attributes like targeted delivery and controlled drug release. Yet, challenges like poor size distribution and environmental concerns exist. Biogenic nanotechnology, using natural materials or living cells, is gaining traction for its safety and efficacy in cancer treatment. Biogenic nanoparticles synthesized from plant extracts offer a sustainable and eco-friendly approach, demonstrating significant toxicity against breast cancer cells while sparing healthy ones. They surpass traditional drugs, providing benefits like biocompatibility and targeted delivery. Thus, this current review summarizes the available knowledge on breast cancer (its types, stages, histopathology, symptoms, etiology and epidemiology) with the importance of using biogenic nanomaterials as a new and improved therapy. The novelty of this work lies in its comprehensive examination of the challenges and strategies for advancing the industrial utilization of biogenic metal and metal oxide NPs. Additionally; it underscores the potential of plant-mediated synthesis of biogenic NPs as effective therapies for breast cancer, detailing their mechanisms of action, advantages, and areas for further research.
Collapse
Affiliation(s)
- Shahnawaz Ahmad Bhat
- Jamia Milia Islamia, New Delhi, 110011, India
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India.
| | | | - Yashika Gandhi
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | | | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Program in Materials Science, UFPI, Teresina, Brazil
| | | |
Collapse
|
20
|
Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel) 2024; 13:922. [PMID: 39199168 PMCID: PMC11351814 DOI: 10.3390/antiox13080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants-found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables-neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.
Collapse
Affiliation(s)
| | | | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; (M.Z.); (H.A.)
| |
Collapse
|
21
|
Sharara A, Badran A, Hijazi A, Albahri G, Bechelany M, Mesmar JE, Baydoun E. Comprehensive Review of Cyclamen: Development, Bioactive Properties, and Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:848. [PMID: 39065699 PMCID: PMC11279937 DOI: 10.3390/ph17070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Plants are being researched as potential sources of novel drugs, which has led to a recent acceleration in the discovery of new bioactive compounds. Research on tissue culture technology for the synthesis and processing of plant compounds has skyrocketed, surpassing all expectations. These plants can be bought either raw or as extracts, where some of the chemicals are extracted by mashing the plant in water, alcohol, or another solvent. The use of herbal medicine may open new chances for reducing the onset of infections and treating different diseases including cancer. A perennial plant that blooms in the winter, Cyclamen, is one of the most widely used potted flowers in many nations. Alkaloids, flavonoids, phenols, tannins, saponins, sterols, and glycosides are the main active components of Cyclamen. Analgesic, cytotoxic, antioxidant, antimicrobial, and anti-inflammatory properties have all been demonstrated as potential effects of various extracts of Cyclamen tubers. However, the use of this medicinal plant in official medicine will require further research in the areas of pharmacology. Furthermore, it is necessary to create standard operating procedures for a crude herbal medication. In this regard, this review aims to highlight the key characteristics of the Cyclamen plant, such as its various parts, species, stages of development, and geographic range; pinpoint its intriguing bioactivities, its antioxidant, anti-inflammatory, and its anti-cancerous effects; and ascertain its potential medicinal uses and the main future perspectives.
Collapse
Affiliation(s)
- Aya Sharara
- Plateforme de Recherche et D’Analyse en Sciences de L’Environnement (EDST-PRASE), Beirut P.O. Box 6573/14, Lebanon; (A.S.); (A.H.); (G.A.)
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman P.O. Box 961343, Jordan;
| | - Akram Hijazi
- Plateforme de Recherche et D’Analyse en Sciences de L’Environnement (EDST-PRASE), Beirut P.O. Box 6573/14, Lebanon; (A.S.); (A.H.); (G.A.)
| | - Ghosoon Albahri
- Plateforme de Recherche et D’Analyse en Sciences de L’Environnement (EDST-PRASE), Beirut P.O. Box 6573/14, Lebanon; (A.S.); (A.H.); (G.A.)
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, 34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Joelle Edward Mesmar
- Department of Biology, American University of Beirut, Beirut P.O. Box 110236, Lebanon;
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut P.O. Box 110236, Lebanon;
| |
Collapse
|
22
|
Warrier AV, Vg M, R L N, Krishnan N, Kumari P, Ittycheria SS, Srinivas P. Xenoestrogen and Its Interaction with Human Genes and Cellular Proteins: An In-Silico Study. Asian Pac J Cancer Prev 2024; 25:2077-2087. [PMID: 38918670 PMCID: PMC11382847 DOI: 10.31557/apjcp.2024.25.6.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Breast cancer represents one of the leading causes of death worldwide. Apart from genetic factors, the sex hormone estrogen plays a pivotal role in breast cancer development. We are exposed to a plethora of estrogen mimics on a daily basis via various routes. Nevertheless, how xenoestrogens, the exogenous estrogen mimics, modulate cancer-associated signaling pathways and interact with specific genes is still underexplored. Hence, this study aims to explore the direct or indirect binding partners of xenoestrogens and their expression upon exposure to these estrogenic compounds. METHODS The collection of genes linked to the xenoestrogens Octylphenol, Nonylphenol, Bisphenol-A, and 2,2-bis(4-hydroxyphenyl)-1,1,1-trichloroethane were gathered from the Comparative Toxicogenomics Database. Venny 2.1 was utilized to pinpoint the genes shared by these xenoestrogens. Subsequently, the shared genes underwent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis using the Database for Annotation, Visualization, and Integrated Discovery bioinformatics resource. A xenoestrogen-protein interaction network was constructed using Search Tool for Interactions of Chemicals. The expressions of common genes were studied with the microarray dataset GSE5200 from the Gene Expression Omnibus database. Also, the expression of a common gene set within different breast cancer subtypes was identified using the University of California, Santa Cruz Xena. RESULTS The genes linked to xenoestrogens were identified, and 13 genes were found to interact with all four xenoestrogens. Through DAVID analysis, the genes chosen are found to be enriched for various functions and pathways, including pathways in cancer, chemical carcinogenesis-receptor activation, and estrogen signaling pathways. The results of the Comparative Toxicogenomics Database and the chemical-protein interaction network derived from STITCH were similar. Microarray data analysis showed significantly high expression of all 13 genes in another study, with Bisphenol-A and Nonylphenol treated MCF-7 cells, most of the genes are expressed in luminal A or basal breast cancer subtype. CONCLUSION In summary, the genes associated with the four xenoestrogens were mostly linked to pathways related to tumorigenesis, and the expression of these genes was found to be higher in breast cancer.
Collapse
Affiliation(s)
- Arathy V Warrier
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Manasa Vg
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Neetha R L
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Neethu Krishnan
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Prianka Kumari
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Shreya Sara Ittycheria
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Priya Srinivas
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
23
|
Galica J, Saunders S, Pan Z, Silva A, Ling HK. What do cancer survivors believe caused their cancer? A secondary analysis of cross-sectional survey data. Cancer Causes Control 2024; 35:875-886. [PMID: 38282044 DOI: 10.1007/s10552-023-01846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Given that risk reduction and healthy lifestyles can prevent 4 in 10 cancers, it is important to understand what survivors believe caused their cancer to inform educational initiatives. METHODS In this secondary analysis, we analyzed cancer survivor responses on the Causes Subscale of the Revised Illness Perception Questionnaire, which lists 18 possible causes of illness and a free text question. We used descriptive statistics to determine cancer survivors' agreement with the listed causes and conducted separate partial proportional odds models for the top three causes to examine their associations with sociodemographic and clinical characteristics. Content analysis was used to examine free text responses. RESULTS Of the 1,001 participants, most identified as Caucasian (n = 764, 77%), female (n = 845, 85%), and were diagnosed with breast cancer (n = 656, 66%). The most commonly believed causes of cancer were: stress or worry (n = 498, 51%), pollution in the environment (n = 471, 48%), and chance or bad luck (n = 412, 42%). The associations of sociodemographic and clinical variables varied across the models. Free text responses indicated that hereditary and genetic causes (n = 223, 22.3%) followed by trauma and stress (n = 218, 21.8%) and bad luck or chance (n = 79, 7.9%) were the most important causes of cancer. CONCLUSIONS Study results illuminate cancer survivors' beliefs about varying causes of their cancer diagnosis and identify characteristics of survivors who are more likely to believe certain factors caused their cancer. Results can be used to plan cancer education and risk-reduction campaigns and highlight for whom such initiatives would be most suitable.
Collapse
Affiliation(s)
- Jacqueline Galica
- Queen's University School of Nursing, 92 Barrie Street, Kingston, ON, K7L 3N6, Canada.
| | | | - Ziwei Pan
- Department of Mathematics and Statistics, Queen's University, 48 University Avenue, Kingston, ON, K7L 3N6, Canada
| | - Amina Silva
- Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Hok Kan Ling
- Department of Mathematics and Statistics, Queen's University, 48 University Avenue, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
24
|
Roy N, Paira P. Glutathione Depletion and Stalwart Anticancer Activity of Metallotherapeutics Inducing Programmed Cell Death: Opening a New Window for Cancer Therapy. ACS OMEGA 2024; 9:20670-20701. [PMID: 38764686 PMCID: PMC11097382 DOI: 10.1021/acsomega.3c08890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The cellular defense system against exogenous substances makes therapeutics inefficient as intracellular glutathione (GSH) exhibits an astounding antioxidant activity in scavenging reactive oxygen species (ROS) or reactive nitrogen species (RNS) or other free radicals produced by the therapeutics. In the cancer cell microenvironment, the intracellular GSH level becomes exceptionally high to fight against oxidative stress created by the production of ROS/RNS or any free radicals, which are the byproducts of intracellular redox reactions or cellular respiration processes. Thus, in order to maintain redox homeostasis for survival of cancer cells and their rapid proliferation, the GSH level starts to escalate. In this circumstance, the administration of anticancer therapeutics is in vain, as the elevated GSH level reduces their potential by reduction or by scavenging the ROS/RNS they produce. Therefore, in order to augment the therapeutic potential of anticancer agents against elevated GSH condition, the GSH level must be depleted by hook or by crook. Hence, this Review aims to compile precisely the role of GSH in cancer cells, the importance of its depletion for cancer therapy and examples of anticancer activity of a few selected metal complexes which are able to trigger cancer cell death by depleting the GSH level.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| | - Priyankar Paira
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| |
Collapse
|
25
|
Sikorski J, Matczuk M, Stępień M, Ogórek K, Ruzik L, Jarosz M. Fe 3O 4SPIONs in cancer theranostics-structure versus interactions with proteins and methods of their investigation. NANOTECHNOLOGY 2024; 35:212001. [PMID: 38387086 DOI: 10.1088/1361-6528/ad2c54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
As the second leading cause of death worldwide, neoplastic diseases are one of the biggest challenges for public health care. Contemporary medicine seeks potential tools for fighting cancer within nanomedicine, as various nanomaterials can be used for both diagnostics and therapies. Among those of particular interest are superparamagnetic iron oxide nanoparticles (SPIONs), due to their unique magnetic properties,. However, while the number of new SPIONs, suitably modified and functionalized, designed for medical purposes, has been gradually increasing, it has not yet been translated into the number of approved clinical solutions. The presented review covers various issues related to SPIONs of potential theranostic applications. It refers to structural considerations (the nanoparticle core, most often used modifications and functionalizations) and the ways of characterizing newly designed nanoparticles. The discussion about the phenomenon of protein corona formation leads to the conclusion that the scarcity of proper tools to investigate the interactions between SPIONs and human serum proteins is the reason for difficulties in introducing them into clinical applications. The review emphasizes the importance of understanding the mechanism behind the protein corona formation, as it has a crucial impact on the effectiveness of designed SPIONs in the physiological environment.
Collapse
Affiliation(s)
- Jacek Sikorski
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Marta Stępień
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Karolina Ogórek
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
26
|
Wróbel-Biedrawa D, Podolak I. Anti-Neuroinflammatory Effects of Adaptogens: A Mini-Review. Molecules 2024; 29:866. [PMID: 38398618 PMCID: PMC10891670 DOI: 10.3390/molecules29040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Introduction: Adaptogens are a group of plants that exhibit complex, nonspecific effects on the human body, increasing its ability to adapt, develop resilience, and survive in stress conditions. They are found in many traditional medicinal systems and play a key role in restoring the body's strength and stamina. Research in recent years has attempted to elucidate the mechanisms behind their pharmacological effects, but it appears that these effects are difficult to define precisely and involve multiple molecular pathways. Neuroinflammation: In recent years, chronic inflammation has been recognized as one of the common features of many central nervous system disorders (dementia and other neurodegenerative diseases, depression, anxiety, ischemic stroke, and infections). Because of the specific nature of the brain, this process is called neuroinflammation, and its suppression can result in an improvement of patients' condition and may promote their recovery. Adaptogens as anti-inflammatory agents: As has been discovered, adaptogens display anti-inflammatory effects, which suggests that their application may be broader than previously thought. They regulate gene expression of anti- and proinflammatory cytokines (prostaglandins, leukotriens) and can modulate signaling pathways (e.g., NF-κB). Aim: This mini-review aims to present the anti-neuroinflammatory potential of the most important plants classified as adaptogens: Schisandra chinensis, Eleutherococcus senticosus, Rhodiola rosea and Withania somnifera.
Collapse
Affiliation(s)
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Cracow, Poland;
| |
Collapse
|
27
|
Oguz A, Saglik BN, Oguz M, Ozturk B, Yilmaz M. Novel mitochondrial and DNA damaging fluorescent Calix[4]arenes bearing isatin groups as aromatase inhibitors: Design, synthesis and anticancer activity. Bioorg Med Chem 2024; 98:117586. [PMID: 38171252 DOI: 10.1016/j.bmc.2023.117586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer causes a high rate of mortality all over the world. Therefore, the present study focuses on the anticancer activity of new lower rim-functionalized calix[4]arenes integrated with isatin and the p-position of calixarenes with 1,4-dimethylpyridinium iodine against various human cancer cells such as MCF-7 and MDA-MB-231 breast cancer cell lines, as well as the PNT1A healthy epithelial cell line. It was observed that compound 6c had the lowest values in MCF-7 (8.83 µM) and MDA-MB-231 (3.32 µM). Cell imaging and apoptotic activity studies were performed using confocal microscopy and flow cytometry, respectively. The confocal imaging studies with 6c showed that the compound easily entered the cell, and it was observed that 6c accumulated in the mitochondria. The Comet assay test was used to detect DNA damage of compounds in cells. It was found that treated cells had abnormal tail nuclei and damaged DNA structures compared with untreated cells. In vitro human aromatase enzyme inhibition profiles showed that compound 6c had a remarkable inhibitory effect on aromatase. Compound 6c displayed a significant inhibition capacity on aromatase enzyme with the IC50 value of 0.104 ± 0.004 µM. Thus, not only the anticancer activity of the new fluorescent derivatives, which are the subject of this study, but the aromatase inhibitory profiles have also been proven.
Collapse
Affiliation(s)
- Alev Oguz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey
| | - Begum Nurpelin Saglik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Mehmet Oguz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey
| | - Bahadir Ozturk
- Department of Biochemistry, Medical Faculty, Selcuk University, 42131 Konya, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, University of Selcuk, Campus, 42031 Konya, Turkey.
| |
Collapse
|
28
|
Ahmedah HT, Basheer HA, Almazari I, Amawi KF. Introduction to Nutrition and Cancer. Cancer Treat Res 2024; 191:1-32. [PMID: 39133402 DOI: 10.1007/978-3-031-55622-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
By the beginning of the year 2021, the estimated number of new cancer cases worldwide was about 19.3 million and there were 10.0 million cancer-related deaths. Cancer is one of the deadliest diseases worldwide that can be attributed to genetic and environmental factors, including nutrition. The good nutrition concept focuses on the dietary requirements to sustain life. There is a substantial amount of evidence suggesting that a healthy diet can modulate cancer risk, particularly the risk of colorectal and breast cancers. Many studies have evaluated the correlation between our diet and the risk of cancer development, prevention, and treatment. The effect of diet on cancer development is likely to happen through intertwining mechanisms including inflammation and immune responses. For instance, a greater intake of red and processed meat along with low consumption of fruits and vegetables has been associated with increased levels of inflammatory biomarkers that are implicated in cancer development. On the other hand, the consumption of phytosterols, vitamins, and minerals, which exert antioxidant and anti-inflammatory roles have been linked to lower cancer risk, or even its occurrence prevention. In this book, we aim to summarize the current knowledge on the role of nutrition in cancer to provide the best scientific advice in this regard.
Collapse
Affiliation(s)
- Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, 25732, Saudi Arabia.
| | | | - Inas Almazari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Kawther Faisal Amawi
- Department of Medical Laboratory Science, Faculty of Allied Medical Science, Zarqa University, PO Box 132222, Zarqa, 13132, Jordan
| |
Collapse
|
29
|
Dastan D, Soleymanekhtiari S, Ebadi A. Peptidic Compound as DNA Binding Agent: In Silico Fragment-based Design, Machine Learning, Molecular Modeling, Synthesis, and DNA Binding Evaluation. Protein Pept Lett 2024; 31:332-344. [PMID: 38693737 DOI: 10.2174/0109298665305131240404072542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Cancer remains a global burden, with increasing mortality rates. Current cancer treatments involve controlling the transcription of malignant DNA genes, either directly or indirectly. DNA exhibits various structural forms, including the G-quadruplex (G4), a secondary structure in guanine-rich regions. G4 plays a crucial role in cellular processes by regulating gene expression and telomerase function. Researchers have recently identified G4-stabilizing binding agents as promising anti-cancer compounds. Additionally, peptides have emerged as effective anticancer pharmaceuticals due to their ability to form multiple hydrogen bonds, electrostatic interactions, and van der Waals forces. These properties enable peptides to bind to specific areas of DNA chains selectively. However, despite these advancements, designing G4-binding peptides remains challenging due to a lack of comprehensive information. OBJECTIVE In our present study, we employed an in silico fragment-based approach to design G4- binding peptides. This innovative method combines machine learning classification, molecular docking, and dynamics simulation. METHODS AutoDock Vina and Gromacs performed molecular docking and MD simulation, respectively. The machine learning algorithm was implemented by Scikit-learn. Peptide synthesis was performed using the SPPS method. The DNA binding affinity was measured by applying spectrophotometric titration. RESULTS As a result of this approach, we identified a high-scoring peptide (p10; sequence: YWRWR). The association constant (Ka) between p10 and the ctDNA double helix chain was 4.45 × 105 M-1. Molecular modeling studies revealed that p10 could form a stable complex with the G4 surface. CONCLUSION The obtained Ka value of 4.45 × 105 M-1 indicates favorable interactions. Our findings highlight the role of machine learning and molecular modeling approaches in designing new G4-binding peptides. Further research in this field could lead to targeted treatments that exploit the unique properties of G4 structures.
Collapse
Affiliation(s)
- Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Soleymanekhtiari
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ebadi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
Limami Y, Pinon A, Wahnou H, Oudghiri M, Liagre B, Simon A, Duval RE. Ursolic Acid's Alluring Journey: One Triterpenoid vs. Cancer Hallmarks. Molecules 2023; 28:7897. [PMID: 38067626 PMCID: PMC10707789 DOI: 10.3390/molecules28237897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer is a multifactorial disease characterized by various hallmarks, including uncontrolled cell growth, evasion of apoptosis, sustained angiogenesis, tissue invasion, and metastasis, among others. Traditional cancer therapies often target specific hallmarks, leading to limited efficacy and the development of resistance. Thus, there is a growing need for alternative strategies that can address multiple hallmarks concomitantly. Ursolic acid (UA), a naturally occurring pentacyclic triterpenoid, has recently emerged as a promising candidate for multitargeted cancer therapy. This review aims to summarize the current knowledge on the anticancer properties of UA, focusing on its ability to modulate various cancer hallmarks. The literature reveals that UA exhibits potent anticancer effects through diverse mechanisms, including the inhibition of cell proliferation, induction of apoptosis, suppression of angiogenesis, inhibition of metastasis, and modulation of the tumor microenvironment. Additionally, UA has demonstrated promising activity against different cancer types (e.g., breast, lung, prostate, colon, and liver) by targeting various cancer hallmarks. This review discusses the molecular targets and signaling pathways involved in the anticancer effects of UA. Notably, UA has been found to modulate key signaling pathways, such as PI3K/Akt, MAPK/ERK, NF-κB, and Wnt/β-catenin, which play crucial roles in cancer development and progression. Moreover, the ability of UA to destroy cancer cells through various mechanisms (e.g., apoptosis, autophagy, inhibiting cell growth, dysregulating cancer cell metabolism, etc.) contributes to its multitargeted effects on cancer hallmarks. Despite promising anticancer effects, this review acknowledges hurdles related to UA's low bioavailability, emphasizing the need for enhanced therapeutic strategies.
Collapse
Affiliation(s)
- Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | - Alain Simon
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (A.P.); (B.L.)
| | | |
Collapse
|
31
|
Kausar MA, Anwar S, El-Horany HES, Khan FH, Tyagi N, Najm MZ, Sadaf, Eisa AA, Dhara C, Gantayat S. Journey of CAR T‑cells: Emphasising the concepts and advancements in breast cancer (Review). Int J Oncol 2023; 63:130. [PMID: 37830150 PMCID: PMC10622179 DOI: 10.3892/ijo.2023.5578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Cancer is the primary and one of the most prominent causes of the rising global mortality rate, accounting for nearly 10 million deaths annually. Specific methods have been devised to cure cancerous tumours. Effective therapeutic approaches must be developed, both at the cellular and genetic level. Immunotherapy offers promising results by providing sustained remission to patients with refractory malignancies. Genetically modified T‑lymphocytic cells have emerged as a novel therapeutic approach for the treatment of solid tumours, haematological malignancies, and relapsed/refractory B‑lymphocyte malignancies as a result of recent clinical trial findings; the treatment is referred to as chimeric antigen receptor T‑cell therapy (CAR T‑cell therapy). Leukapheresis is used to remove T‑lymphocytes from the leukocytes, and CARs are created through genetic engineering. Without the aid of a major histocompatibility complex, these genetically modified receptors lyse malignant tissues by interacting directly with the carcinogen. Additionally, the outcomes of preclinical and clinical studies reveal that CAR T‑cell therapy has proven to be a potential therapeutic contender against metastatic breast cancer (BCa), triple‑negative, and HER 2+ve BCa. Nevertheless, unique toxicities, including (cytokine release syndrome, on/off‑target tumour recognition, neurotoxicities, anaphylaxis, antigen escape in BCa, and the immunosuppressive tumour microenvironment in solid tumours, negatively impact the mechanism of action of these receptors. In this review, the potential of CAR T‑cell immunotherapy and its method of destroying tumour cells is explored using data from preclinical and clinical trials, as well as providing an update on the approaches used to reduce toxicities, which may improve or broaden the effectiveness of the therapies used in BCa.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Farida Habib Khan
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Department of Community and Family Medicine, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | | | - Sadaf
- Department of Biotechnology, Jamia Millia Islamia, Okhla, New Delhi 110025, India
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia
| | - Chandrajeet Dhara
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122003, Haryana
| | - Saumyatika Gantayat
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122003, Haryana
| |
Collapse
|
32
|
Markowska A, Antoszczak M, Kacprzak K, Markowska J, Huczyński A. Role of Fisetin in Selected Malignant Neoplasms in Women. Nutrients 2023; 15:4686. [PMID: 37960338 PMCID: PMC10648688 DOI: 10.3390/nu15214686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
A promising therapeutic window and cost-effectiveness are just two of the potential advantages of using naturally derived drugs. Fisetin (3,3',4',7-tetrahydroxyflavone) is a natural flavonoid of the flavonol group, commonly found in fruit and vegetables. In recent years, fisetin has gained wide attention across the scientific community because of its broad spectrum of pharmacological properties, including cytotoxic activity against most abundant cancers. By stimulating or inhibiting selected molecular targets or biochemical processes, fisetin could affect the reduction of metastasis or cancer progression, which indicates its chemotherapeutic or chemopreventive role. In this review, we have summarized the results of studies on the anticancer effects of fisetin on selected female malignancies, both in in vitro and in vivo tests, i.e., breast, cervical, and ovarian cancer, published over the past two decades. Until now, no article dedicated exclusively to the action of fisetin on female malignancies has appeared. This review also describes a growing number of nanodelivery systems designed to improve the bioavailability and solubility of this natural compound. The reported low toxicity and activity of fisetin on cancer cells indicate its valuable potential, but large-scale clinical trials are urgently needed to assess real chemotherapeutic efficacy of this flavonoid.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland;
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.A.); (K.K.)
| | - Karol Kacprzak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.A.); (K.K.)
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.A.); (K.K.)
| |
Collapse
|
33
|
Hazrati A, Malekpour K, Mirsanei Z, Khosrojerdi A, Rahmani-Kukia N, Heidari N, Abbasi A, Soudi S. Cancer-associated mesenchymal stem/stromal cells: role in progression and potential targets for therapeutic approaches. Front Immunol 2023; 14:1280601. [PMID: 38022534 PMCID: PMC10655012 DOI: 10.3389/fimmu.2023.1280601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Malignancies contain a relatively small number of Mesenchymal stem/stromal cells (MSCs), constituting a crucial tumor microenvironment (TME) component. These cells comprise approximately 0.01-5% of the total TME cell population. MSC differentiation potential and their interaction with the tumor environment enable these cells to affect tumor cells' growth, immune evasion, metastasis, drug resistance, and angiogenesis. This type of MSC, known as cancer-associated mesenchymal stem/stromal cells (CA-MSCs (interacts with tumor/non-tumor cells in the TME and affects their function by producing cytokines, chemokines, and various growth factors to facilitate tumor cell migration, survival, proliferation, and tumor progression. Considering that the effect of different cells on each other in the TME is a multi-faceted relationship, it is essential to discover the role of these relationships for targeting in tumor therapy. Due to the immunomodulatory role and the tissue repair characteristic of MSCs, these cells can help tumor growth from different aspects. CA-MSCs indirectly suppress antitumor immune response through several mechanisms, including decreasing dendritic cells (DCs) antigen presentation potential, disrupting natural killer (NK) cell differentiation, inducing immunoinhibitory subsets like tumor-associated macrophages (TAMs) and Treg cells, and immune checkpoint expression to reduce effector T cell antitumor responses. Therefore, if these cells can be targeted for treatment so that their population decreases, we can hope for the treatment and improvement of the tumor conditions. Also, various studies show that CA-MSCs in the TME can affect other vital aspects of a tumor, including cell proliferation, drug resistance, angiogenesis, and tumor cell invasion and metastasis. In this review article, we will discuss in detail some of the mechanisms by which CA-MSCs suppress the innate and adaptive immune systems and other mechanisms related to tumor progression.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Gupta M, Ahmad J, Ahamad J, Kundu S, Goel A, Mishra A. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope. Phytother Res 2023; 37:5159-5192. [PMID: 37668281 DOI: 10.1002/ptr.7975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Flavonoids are natural polyphenolic compounds considered safe, pleiotropic, and readily available molecules. It is widely distributed in various food products such as fruits and vegetables and beverages such as green tea, wine, and coca-based products. Many studies have reported the anticancer potential of flavonoids against different types of cancers, including solid tumors. The chemopreventive effect of flavonoids is attributed to various mechanisms, including modulation of autophagy, induction of cell cycle arrest, apoptosis, and antioxidant defense. Despite of significant anticancer activity of flavonoids, their clinical translation is limited due to their poor biopharmaceutical attributes (such as low aqueous solubility, limited permeability across the biological membranes (intestinal and blood-brain barrier), and stability issue in biological systems). A nanoparticulate system is an approach that is widely utilized to improve the biopharmaceutical performance and therapeutic efficacy of phytopharmaceuticals. The present review discusses the significant anticancer potential of promising flavonoids in different cancers and the utilization of nanoparticulate systems to improve their nanoantioxidant activity further to enhance the anticancer activity of loaded promising flavonoids. Although, various plant-derived secondary metabolites including flavonoids have been recommended for treating cancer, further vigilant research is warranted to prove their translational values.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Archit Goel
- All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
35
|
Gupta A, Laha JK. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. CHEM REC 2023; 23:e202300207. [PMID: 37565381 DOI: 10.1002/tcr.202300207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| |
Collapse
|
36
|
Trasierras AM, Luna JM, Ventura S. A contrast set mining based approach for cancer subtype analysis. Artif Intell Med 2023; 143:102590. [PMID: 37673572 DOI: 10.1016/j.artmed.2023.102590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 09/08/2023]
Abstract
The task of detecting common and unique characteristics among different cancer subtypes is an important focus of research that aims to improve personalized therapies. Unlike current approaches mainly based on predictive techniques, our study aims to improve the knowledge about the molecular mechanisms that descriptively led to cancer, thus not requiring previous knowledge to be validated. Here, we propose an approach based on contrast set mining to capture high-order relationships in cancer transcriptomic data. In this way, we were able to extract valuable insights from several cancer subtypes in the form of highly specific genetic relationships related to functional pathways affected by the disease. To this end, we have divided several cancer gene expression databases by the subtype associated with each sample to detect which gene groups are related to each cancer subtype. To demonstrate the potential and usefulness of the proposed approach we have extensively analysed RNA-Seq gene expression data from breast, kidney, and colon cancer subtypes. The possible role of the obtained genetic relationships was further evaluated through extensive literature research, while its prognosis was assessed via survival analysis, finding gene expression patterns related to survival in various cancer subtypes. Some gene associations were described in the literature as potential cancer biomarkers while other results have been not described yet and could be a starting point for future research.
Collapse
Affiliation(s)
- A M Trasierras
- Department of Computer Science and Numerical Analysis, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), Spain; Maimonides Biomedical Research Institute of Cordoba, IMIBIC, University of Cordoba, Córdoba, 14071, Spain; Phytoplant Research S.L.U, Departamento Tecnología y Control, Rabanales 21-Parque Científico Tecnológico de Córdoba, Calle Astrónoma Cecilia Payne, Córdoba, Spain
| | - J M Luna
- Department of Computer Science and Numerical Analysis, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), Spain; Maimonides Biomedical Research Institute of Cordoba, IMIBIC, University of Cordoba, Córdoba, 14071, Spain
| | - S Ventura
- Department of Computer Science and Numerical Analysis, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), Spain; Maimonides Biomedical Research Institute of Cordoba, IMIBIC, University of Cordoba, Córdoba, 14071, Spain.
| |
Collapse
|
37
|
Morii E. Tumor heterogeneity from the viewpoint of pathologists. Pathol Int 2023; 73:394-405. [PMID: 37638598 DOI: 10.1111/pin.13366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023]
Abstract
Morphological and functional heterogeneity are found in tumors, with the latter reflecting the different levels of resistance against antitumor therapies. In a therapy-resistant subpopulation, the expression levels of differentiation markers decrease, and those of immature markers increase. In addition, this subpopulation expresses genes involved in drug metabolism, such as aldehyde dehydrogenase 1A1 (ALDH1A1). Because of their similarity to stem cells, cells in the latter therapy-resistant subpopulation are called cancer stem cells (CSCs). Like normal stem cells, CSCs were originally thought not to arise from non-CSCs, but this hierarchical model is too simple. It is now believed that CSCs are generated from non-CSCs. The plasticity of tumor phenotypes between CSCs and non-CSCs causes difficulty in completely curing tumors. In this review, focusing on ALDH1A1 as a marker for CSCs or immature tumor cells, the dynamics of ALDH1A1-expressing tumor cells and their regulatory mechanisms are described, and the plausible regulatory mechanisms of plasticity of ALDH1A1 expression phenotype are discussed. Genetic mutations are a significant factor for tumorigenesis, but non-mutational epigenetic reprogramming factors yielding tumor heterogeneity are also crucial in determining tumor characteristics. Factors influencing non-mutational epigenetic reprogramming in tumors are also discussed.
Collapse
Affiliation(s)
- Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
38
|
Misnaniarti, Nugraheni WP, Nantabah ZK, Restuningtyas FR, Hartono RK, Rachmawati T, Mubasyiroh R, Kusnali A. Smoking behavior and hypertension among health workers during the COVID-19 pandemic: a case study in Java and Bali-Indonesia. Front Cardiovasc Med 2023; 10:1146859. [PMID: 37645521 PMCID: PMC10462451 DOI: 10.3389/fcvm.2023.1146859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
Background Health workers who should be role models for the community not to smoke and live a healthy life are still consuming cigarettes. Java and Bali (especially Java) are the biggest contributors to health worker deaths due to COVID-19 in Indonesia. This study aims to determine the association of smoking behavior and hypertension among health workers in Java and Bali. The researchers conducted this study in 2021 and designed it with a cross-sectional design. Data was collected online using the Lime Survey as a data collection tool. The data analysis used was logistic regression to determine the association of smoking and hypertension. Result A number of 7.6% of health workers were still smoking and 10.4% were suffering from hypertension during the COVID-19 pandemic. This study shows that the proportion of health workers with hypertension is two times that of smokers (18.0%) compared to non-smokers (9.8%). Logistic regression showed that smoking has a 20% higher risk of developing hypertension (OR = 1.97; 95%CI = 1.01-1.41; p = 0.034). Conclusion Among health workers on the islands of Java and Bali, there are still many who smoke, and this puts them at a higher risk of experiencing hypertension.
Collapse
Affiliation(s)
- Misnaniarti
- Public Health Faculty, Sriwijaya University, Kota Palembang, Indonesia
| | - Wahyu Pudji Nugraheni
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Cibinong, Indonesia
| | - Zainul Khaqiqi Nantabah
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Cibinong, Indonesia
| | | | | | - Tety Rachmawati
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Cibinong, Indonesia
| | - Rofingatul Mubasyiroh
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Cibinong, Indonesia
| | - Asep Kusnali
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Cibinong, Indonesia
| |
Collapse
|
39
|
Najafi S, Mortezaee K. Advances in dendritic cell vaccination therapy of cancer. Biomed Pharmacother 2023; 164:114954. [PMID: 37257227 DOI: 10.1016/j.biopha.2023.114954] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
Traditionally, vaccines have helped eradication of several infectious diseases and also saved millions of lives in the human history. Those prophylactic vaccines have acted through inducing immune responses against a live attenuated, killed organism or antigenic subunits to protect the recipient against a real infection caused by the pathogenic microorganism. Nevertheless, development of anticancer vaccines as valuable targets in human health has faced challenges and requires further optimizations. Dendritic cells (DCs) are the most potent antigen presenting cells (APCs) that play essential roles in tumor immunotherapies through induction of CD8+ T cell immunity. Accordingly, various strategies have been tested to employ DCs as therapeutic vaccines for exploiting their activity against tumor cells. Application of whole tumor cells or purified/recombinant antigen peptides are the most common approaches for pulsing DCs, which then are injected back into the patients. Although some hopeful results are reported for a number of DC vaccines tested in animal and clinical trials of cancer patients, such approaches are still inefficient and require optimization. Failure of DC vaccination is postulated due to immunosuppressive tumor microenvironment (TME), overexpression of checkpoint proteins, suboptimal avidity of tumor-associated antigen (TAA)-specific T lymphocytes, and lack of appropriate adjuvants. In this review, we have an overview of the current experiments and trials evaluated the anticancer efficacy of DC vaccination as well as focusing on strategies to improve their potential including combination therapy with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
40
|
Bernatoniene J, Jakstas V, Kopustinskiene DM. Phenolic Compounds of Rhodiola rosea L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases. Int J Mol Sci 2023; 24:12293. [PMID: 37569669 PMCID: PMC10418374 DOI: 10.3390/ijms241512293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The roots and rhizomes of Rhodiola rosea L. (Crassulaceae), which is widely growing in Northern Europe, North America, and Siberia, have been used since ancient times to alleviate stress, fatigue, and mental and physical disorders. Phenolic compounds: phenylpropanoids rosavin, rosarin, and rosin, tyrosol glucoside salidroside, and tyrosol, are responsible for the biological action of R. rosea, exerting antioxidant, immunomodulatory, anti-aging, anti-fatigue activities. R. rosea extract formulations are used as alternative remedies to enhance mental and cognitive functions and protect the central nervous system and heart during stress. Recent studies indicate that R. rosea may be used to treat diabetes, cancer, and a variety of cardiovascular and neurological disorders such as Alzheimer's and Parkinson's diseases. This paper reviews the beneficial effects of the extract of R. rosea, its key active components, and their possible use in the treatment of chronic diseases. R. rosea represents an excellent natural remedy to address situations involving decreased performance, such as fatigue and a sense of weakness, particularly in the context of chronic diseases. Given the significance of mitochondria in cellular energy metabolism and their vulnerability to reactive oxygen species, future research should prioritize investigating the potential effects of R. rosea main bioactive phenolic compounds on mitochondria, thus targeting cellular energy supply and countering oxidative stress-related effects.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
| |
Collapse
|
41
|
Högberg J, Järnberg J. Approaches for the setting of occupational exposure limits (OELs) for carcinogens. Crit Rev Toxicol 2023:1-37. [PMID: 37366107 DOI: 10.1080/10408444.2023.2218887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
This article addresses issues of importance for occupational exposure limits (OELs) and chemical carcinogens with a focus on non-threshold carcinogens. It comprises scientific as well as regulatory issues. It is an overview, not a comprehensive review. A central topic is mechanistic research and insights, and its implications for cancer risk assessment. Alongside scientific advancements, the approaches of hazard identification and qualitative and quantitative risk assessment have developed over the years. The key steps in a quantitative risk assessment are outlined, with special attention given to the dose-response assessment and the derivation of an OEL using risk calculations or default assessment factors. The work procedures of several bodies performing cancer hazard identifications and quantitative risk assessments, as well as regulatory procedures to derive OELs for non-threshold carcinogens, are presented. Non-threshold carcinogens for which the European Union (EU) introduced binding OELs in 2017-2019 serve as illustrations together with some currently used strategies in the EU and elsewhere. Available knowledge supports the derivation of health-based OELs (Hb-OELs) for non-threshold carcinogens, and the use of a risk-based approach with low-dose linear extrapolation (linear non-threshold, LNT) as the default for non-threshold carcinogens. However, there is a need to develop methods that allow recent years' advances in cancer research to be used for improving risk estimates. It is recommended that defined risk levels (terminology and numerical values) are harmonised, and that both collective and individual risks are considered and clearly communicated. Socioeconomic aspects should be dealt with transparently and separated from the scientific health risk assessment.
Collapse
Affiliation(s)
- Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
42
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
43
|
Chayab L, Konstantelos N, Leighl NB, Tadrous M, Wong WWL. A Systematic Review of the Cost-Effectiveness Analyses of Anaplastic Lymphoma Kinase (ALK) Inhibitors in Patients with Locally Advanced or Metastatic Non-small Cell Lung Cancer (NSCLC). PHARMACOECONOMICS 2023:10.1007/s40273-023-01279-2. [PMID: 37268866 DOI: 10.1007/s40273-023-01279-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND The anaplastic lymphoma kinase (ALK) inhibitor treatment landscape is rapidly evolving, providing patients with ALK-positive (+) non-small cell lung cancer (NSCLC) with multiple therapy options, multiple lines of treatments, and prolonged survival. However, these recent treatment advances have resulted in additional increases in treatment costs. The objective of this article is to review the economic evidence of ALK inhibitors in patients with ALK+ NSCLC. METHODS The systematic review was conducted in accordance with the Joanna Briggs Institute (JBI) systematic reviews of economic evaluation. The population included adult patients with locally advanced (stage IIIb/c) or metastatic (stage IV) NSCLC cancer with confirmed ALK fusions. The interventions included the ALK inhibitors alectinib, brigatinib, ceritinib, crizotinib, ensartinib, or lorlatinib. The comparators included the listed ALK inhibitors, chemotherapy, or best supportive care. The review considered cost-effectiveness analysis studies (CEAs) that reported incremental cost-effectiveness ratio in quality-adjusted life years and/or in life years gained. Published literature was searched in Medline (via Ovid) by 4 January 2023, in Embase (via Ovid) by 4 January 2023, in International Pharmaceutical Abstracts (via Ovid) by 4 January 2023, and in Cochrane library (via Wiley) by 11 January 2023. Preliminary screening of titles and abstracts was conducted against the inclusion criteria by two independent researchers followed by a full text of selected citations. Search results are presented in a Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram. Critical appraisal was conducted using the validated Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS) tool as well as the Phillips et al. 2004 appraisal tool to assess the reporting and quality of the economic evaluations. Data were extracted from the final set of articles and presented in a table of characteristics of included studies, an overview of study methods of included studies, and a summarization of outcomes of included studies. RESULTS A total of 19 studies met all inclusion criteria. The majority of the studies were in the first-line treatment setting (n = 15). Included CEAs varied in the interventions and comparators being evaluated and were conducted from different country perspectives, limiting their comparability. Outcomes from the included CEAs showed that ALK inhibitors may be considered a cost-effective treatment option for patients with ALK+ NSCLC in the first-line and subsequent lines of treatment setting. However, the probability of cost effectiveness of ALK inhibitors ranged from 46 to 100% and were mostly achieved at willingness-to-pay thresholds of $100,000 USD or higher (> $30,000 or higher in China) in the first-line treatment setting and at thresholds of $50,000 USD or higher in subsequent lines of treatment setting. The number of published full-text CEAs is low and the studies represent a handful of country perspectives. The source of survival data was dependent on data from randomized controlled trials (RCTs). Where RCT data were not available, indirect treatment comparisons or matched adjusted indirect comparisons were performed using efficacy data from different clinical studies. Real world evidence was rarely used for efficacy and costing data inputs. CONCLUSION The findings summarized available evidence on cost effectiveness of ALK inhibitors for the treatment of patients with locally advanced or metastatic ALK+ NSCLC across lines of treatment settings and generated a valuable overview of analytical approaches utilized to support future economic analyses. To help further inform treatment and policy decisions, this review emphasizes the need for comparative cost effectiveness of multiple ALK inhibitors simultaneously using real-world data sources with broad representation of settings.
Collapse
Affiliation(s)
- Lara Chayab
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| | | | - Natasha B Leighl
- Princess Margaret Hospital, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mina Tadrous
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Women's College Research Institute, Toronto, ON, Canada
| | - William W L Wong
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
44
|
Smith D, Jheeta S, López-Cortés GI, Street B, Fuentes HV, Palacios-Pérez M. On the Inheritance of Microbiome-Deficiency: Paediatric Functional Gastrointestinal Disorders, the Immune System and the Gut–Brain Axis. GASTROINTESTINAL DISORDERS 2023; 5:209-232. [DOI: 10.3390/gidisord5020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Like the majority of non-communicable diseases that have recently gained attention, functional gastrointestinal (GI) disorders (FGID) in both children and adults are caused by a variety of medical conditions. In general, while it is often thought that common conditions such as obesity may cause other problems, for example, asthma or mental health issues, more consideration needs to be given to the possibility that they could both be brought on by a single underlying problem. Based on the variations in non-communicable disease, in recent years, our group has been revisiting the exact role of the intestinal microbiome within the Vertebrata. While the metabolic products of the microbiome have a role to play in the adult, our tentative conclusion is that the fully functioning, mutualistic microbiome has a primary role: to transfer antigen information from the mother to the neonate in order to calibrate its immune system, allowing it to survive within the microbial environment into which it will emerge. Granted that the microbiome possesses such a function, logic suggests the need for a robust, flexible, mechanism allowing for the partition of nutrition in the mature animal, thus ensuring the continued existence of both the vertebrate host and microbial guest, even under potentially unfavourable conditions. It is feasible that this partition process acts by altering the rate of peristalsis following communication through the gut–brain axis. The final step of this animal–microbiota symbiosis would then be when key microbes are transferred from the female to her progeny, either live offspring or eggs. According to this scheme, each animal inherits twice, once from its parents’ genetic material and once from the mother’s microbiome with the aid of the father’s seminal microbiome, which helps determine the expression of the parental genes. The key point is that the failure of this latter inheritance in humans leads to the distinctive manifestations of functional FGID disorders including inflammation and gut motility disturbances. Furthermore, it seems likely that the critical microbiome–gut association occurs in the first few hours of independent life, in a process that we term handshaking. Note that even if obvious disease in childhood is avoided, the underlying disorders may intrude later in youth or adulthood with immune system disruption coexisting with gut–brain axis issues such as excessive weight gain and poor mental health. In principle, investigating and perhaps supplementing the maternal microbiota provide clinicians with an unprecedented opportunity to intervene in long-term disease processes, even before the child is born.
Collapse
Affiliation(s)
- David Smith
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Sohan Jheeta
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Georgina I. López-Cortés
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | | | - Hannya V. Fuentes
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - Miryam Palacios-Pérez
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| |
Collapse
|
45
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
46
|
Ben Chabchoubi I, Lam SS, Pane SE, Ksibi M, Guerriero G, Hentati O. Hazard and health risk assessment of exposure to pharmaceutical active compounds via toxicological evaluation by zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:120698. [PMID: 36435277 DOI: 10.1016/j.envpol.2022.120698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts of these PhACs on aquatic organisms. In this review, efforts were made to reveal correlation between the occurrence in the environment, ecotoxicological and health risks of different PhACs via toxicological evaluation by zebrafish (Danio rerio). This animal model served as a bioindicator for any health impacts after the exposure to these contaminants and to better understand the responses in relation to human diseases. This review paper focused on the calculation of Risk Quotients (RQs) of 34 PhACs based on environmental and ecotoxicological data available in the literature and prediction from the ECOSAR V2.2 software. To the best of the authors' knowledge, this is the first report on the risk assessment of PhACs by the two different methods as mentioned above. RQs showed greater difference in potential environmental risks of the PhACs. These differences in risk values underline the importance of environmental and experimental factors in exposure conditions and the interpretation of RQ values. While the results showed high risk to Danio rerio of the majority of PhACs, risk qualification of the others varied between moderate to insignifiant. Further research is needed to assess pharmaceutical hazards when present in wastewater before discharge and monitor the effectiveness of treatment processes. The recent new advances in the morphological assessment of toxicant-exposed zebrafish larvae for the determination of test compounds effects on the developmental endpoints were also discussed. This review emphasizes the need for strict regulations on the release of PhACs into environmental media in order to minimize their toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia; Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Su Shiung Lam
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Stacey Ellen Pane
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Mohamed Ksibi
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Giulia Guerriero
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia; Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4.5, B.P 1175, 3038, Sfax, Tunisia.
| |
Collapse
|
47
|
Brown R, Sillence E, Pepper G. Perceptions of control over different causes of death and the accuracy of risk estimations. ZEITSCHRIFT FUR GESUNDHEITSWISSENSCHAFTEN = JOURNAL OF PUBLIC HEALTH 2023; 32:1-14. [PMID: 37361271 PMCID: PMC10102679 DOI: 10.1007/s10389-023-01910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 06/28/2023]
Abstract
Background A large number of deaths could be avoided by improving health behaviours. The degree to which people invest in their long-term health is influenced by how much they believe they can control their risk of death. Identifying causes of death believed to be uncontrollable, but likely to occur, may provide actionable targets for health interventions to increase control beliefs and encourage healthier behaviours. Method We recruited a nationally representative online sample of 1500 participants in the UK. We assessed perceived control, perceived personal likelihood of death, certainty of risk estimation, and perceived knowledge for 20 causes of death. We also measured overall perceived uncontrollable mortality risk (PUMR) and perceived prevalence for each of the Office for National Statistics' categories of avoidable death. Findings Risk of death due to cancer was considered highly likely to occur but largely beyond individual control. Cardiovascular disease was considered moderately controllable and a likely cause of death. Drugs and alcohol were perceived as risks both high in control and low in likelihood of death. However, perceptions of control over specific causes of death were found not to predict overall PUMR, with the exception of cardiovascular disease. Finally, our sample substantially overestimated the prevalence of drug and alcohol-related deaths in the UK. Conclusions We suggest that more can be done by public health communicators to emphasise the lifestyle and behavioural changes that individuals can make to reduce their general cancer risk. More work is needed to understand the barriers to engaging with preventative behaviours and maintaining a healthy heart. Finally, we call for greater journalistic responsibility when reporting health risks to the public. Supplementary Information The online version contains supplementary material available at 10.1007/s10389-023-01910-8.
Collapse
Affiliation(s)
- Richard Brown
- Psychology Department, Northumbria University, Northumberland Building, Newcastle, NE1 8SG UK
| | - Elizabeth Sillence
- Psychology Department, Northumbria University, Northumberland Building, Newcastle, NE1 8SG UK
| | - Gillian Pepper
- Psychology Department, Northumbria University, Northumberland Building, Newcastle, NE1 8SG UK
| |
Collapse
|
48
|
Papp KA, Melosky B, Sehdev S, Hotte SJ, Beecker JR, Kirchhof MG, Turchin I, Dutz JP, Gooderham MJ, Gniadecki R, Hong CH, Lambert J, Lynde CW, Prajapati VH, Vender RB. Use of Systemic Therapies for Treatment of Psoriasis in Patients with a History of Treated Solid Tumours: Inference-Based Guidance from a Multidisciplinary Expert Panel. Dermatol Ther (Heidelb) 2023; 13:867-889. [PMID: 36929121 PMCID: PMC10060504 DOI: 10.1007/s13555-023-00905-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Patients with treated solid tumours (TSTs) are a highly heterogeneous population at an increased risk for malignancy compared with the general population. When treating psoriasis in patients with a history of TSTs, clinicians are concerned about the immunosuppressive nature of psoriasis therapies, the possibility of augmenting cancer recurrence/progression, and infectious complications. No direct, high-level evidence exists to address these concerns. OBJECTIVES We aim to provide a structured framework supporting healthcare professional and patient discussions on the risks and benefits of systemic psoriasis therapy in patients with previously TSTs. Our goal was to address the clinically important question, "In patients with TSTs, does therapy with systemic agents used for psoriasis increase the risk of malignancy or malignancy recurrence?" METHODS We implemented an inference-based approach relying on indirect evidence when direct clinical trial and real-world data were absent. We reviewed indirect evidence supporting inferences on the status of immune function in patients with TSTs. Recommendations on systemic psoriasis therapies in patients with TSTs were derived using an inferential heuristic. RESULTS We identified five indirect indicators of iatrogenic immunosuppression informed by largely independent bodies of evidence: (1) overall survival, (2) rate of malignancies with psoriasis and systemic psoriasis therapies, (3) rate of infections with psoriasis and systemic psoriasis therapies, (4) common disease biochemical pathways for solid tumours and systemic psoriasis therapies, and (5) solid organ transplant outcomes. On the basis of review of the totality of this data, we provided inference-based conclusions and ascribed level of support for each statement. CONCLUSIONS Prior to considering new therapies for psoriasis, an understanding of cancer prognosis should be addressed. Patients with TSTs and a good cancer prognosis will have similar outcomes to non-TST patients when treated with systemic psoriasis therapies. For patients with TSTs and a poor cancer prognosis, the quality-of-life benefits of treating psoriasis may outweigh the theoretical risks.
Collapse
Affiliation(s)
- Kim A Papp
- Probity Medical Research Inc., Waterloo, ON, Canada.
- Alliance Clinical Research, Waterloo, ON, Canada.
| | - Barbara Melosky
- Medical Oncology, BC Cancer Vancouver Centre, Vancouver, BC, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sandeep Sehdev
- Division of Medical Oncology, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Sebastien J Hotte
- Juravinski Cancer Centre, Hamilton, ON, Canada
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Jennifer R Beecker
- Probity Medical Research Inc., Waterloo, ON, Canada
- University of Ottawa, Ottawa, ON, Canada
- Division of Dermatology, The Ottawa Hospital, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mark G Kirchhof
- University of Ottawa, Ottawa, ON, Canada
- Division of Dermatology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Irina Turchin
- Probity Medical Research Inc., Waterloo, ON, Canada
- Brunswick Dermatology Centre, Fredericton, NB, Canada
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jan P Dutz
- Skin Care Centre, Vancouver, BC, Canada
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Melinda J Gooderham
- Probity Medical Research Inc., Waterloo, ON, Canada
- SKiN Centre for Dermatology, Peterborough, ON, Canada
| | - Robert Gniadecki
- Division of Dermatology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Chih-Ho Hong
- Probity Medical Research Inc., Waterloo, ON, Canada
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
- Dr. Chih-ho Hong Medical Inc., Surrey, BC, Canada
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
- Dermatology Research Unit, Ghent University, Ghent, Belgium
| | - Charles W Lynde
- Probity Medical Research Inc., Waterloo, ON, Canada
- Lynde Institute for Dermatology, Markham, ON, Canada
- Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vimal H Prajapati
- Probity Medical Research Inc., Waterloo, ON, Canada
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Community Pediatrics, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Section of Pediatric Rheumatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Dermatology Research Institute, Calgary, AB, Canada
- Skin Health & Wellness Centre, Calgary, AB, Canada
| | - Ronald B Vender
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Dermatrials Research Inc., Hamilton, ON, Canada
| |
Collapse
|
49
|
Das S, Devireddy R, Gartia MR. Surface Plasmon Resonance (SPR) Sensor for Cancer Biomarker Detection. BIOSENSORS 2023; 13:396. [PMID: 36979608 PMCID: PMC10046379 DOI: 10.3390/bios13030396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
A biomarker is a physiological observable marker that acts as a stand-in and, in the best-case scenario, forecasts a clinically significant outcome. Diagnostic biomarkers are more convenient and cost-effective than directly measuring the ultimate clinical outcome. Cancer is among the most prominent global health problems and a major cause of morbidity and death globally. Therefore, cancer biomarker assays that are trustworthy, consistent, precise, and verified are desperately needed. Biomarker-based tumor detection holds a lot of promise for improving disease knowledge at the molecular scale and early detection and surveillance. In contrast to conventional approaches, surface plasmon resonance (SPR) allows for the quick and less invasive screening of a variety of circulating indicators, such as circulating tumor DNA (ctDNA), microRNA (miRNA), circulating tumor cells (CTCs), lipids, and proteins. With several advantages, the SPR technique is a particularly beneficial choice for the point-of-care identification of biomarkers. As a result, it enables the timely detection of tumor markers, which could be used to track cancer development and suppress the relapse of malignant tumors. This review emphasizes advancements in SPR biosensing technologies for cancer detection.
Collapse
|
50
|
Han Mİ, İmamoğlu N. Design, Synthesis, and Anticancer Evaluation of Novel Tetracaine Hydrazide-Hydrazones. ACS OMEGA 2023; 8:9198-9211. [PMID: 36936335 PMCID: PMC10018687 DOI: 10.1021/acsomega.2c07192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Tetracaine is an ester derivative used as a local anesthetic molecule. In this study, a series of novel Tetracaine derivatives bearing hydrazide-hydrazone moiety were designed, synthesized, and evaluated for anticancer activity. The structures of these compounds were characterized by spectral (1H NMR,13C NMR, FT-IR, and HRMS analyses) methods. All synthesized compounds were screened for anticancer activity against two different human cancer cell lines (Colo-205 and HepG2). Among the synthesized molecules, compounds 2f and 2m showed the most potent anticancer activity against the Colo-205 cell line (IC50 = 50.0 and 20.5 μM, respectively). Compounds 2k, 2p, and 2s demonstrated the best anticancer activity against the HepG2 cell line (IC50 = 30.5, 35.9, and 20.8 μM, respectively). mRNA transcription levels of Bax and caspase-3 genes were determined by real-time polymerase chain reaction (qRT-PCR) analysis of both Colo-205 and HepG2 cell lines. Doxorubicin was used as a positive sensitivity reference standard. qRT-PCR analysis showed that there was a time-dependent rise in the expression levels of Bax and Caspase 3 on apoptosis. Inhibition of apoptotic proteins PI3K, Akt, PTEN, pPTEN, FoXO1, FoXO3a, TXNIP, and p27 was investigated in Colo-205 and HepG2 cells treated with compounds 2f, 2m, 2k, 2p, and 2s by using Western blotting.
Collapse
Affiliation(s)
- M. İhsan Han
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Nalan İmamoğlu
- Department
of Basic Sciences, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|