1
|
Everson CA, Szabo A, Plyer C, Hammeke TA, Stemper BD, Budde MD. Subclinical brain manifestations of repeated mild traumatic brain injury are changed by chronic exposure to sleep loss, caffeine, and sleep aids. Exp Neurol 2024; 381:114928. [PMID: 39168169 DOI: 10.1016/j.expneurol.2024.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION After mild traumatic brain injury (mTBI), the brain is labile for weeks and months and vulnerable to repeated concussions. During this time, patients are exposed to everyday circumstances that, in themselves, affect brain metabolism and blood flow and neural processing. How commonplace activities interact with the injured brain is unknown. The present study in an animal model investigated the extent to which three commonly experienced exposures-daily caffeine usage, chronic sleep loss, and chronic sleep aid medication-affect the injured brain in the chronic phase. METHODS Subclinical trauma by repeated mTBIs was produced by our head rotational acceleration injury model, which causes brain injury consistent with the mechanism of concussion in humans. Forty-eight hours after a third mTBI, chronic administrations of caffeine, sleep restriction, or zolpidem (sedative hypnotic) began and were continued for 70 days. On Days 30 and 60 post injury, resting state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) were performed. RESULTS Chronic caffeine, sleep restriction, and zolpidem each changed the subclinical brain characteristics of mTBI at both 30 and 60 days post injury, detected by different MRI modalities. Each treatment caused microstructural alterations in DTI metrics in the insular cortex and retrosplenial cortex compared with mTBI, but also uniquely affected other gray and white matter regions. Zolpidem administration affected the largest number of individual structures in mTBI at both 30 and 60 days, and not necessarily toward normalization (sham treatment). Chronic sleep restriction changed local functional connectivity at 30 days in diametrical opposition to chronic caffeine ingestion, and both treatment outcomes were different from sham, mTBI-only and zolpidem comparisons. The results indicate that commonly encountered exposures modify subclinical brain activity and structure long after healing is expected to be complete. CONCLUSIONS Changes in activity and structure detected by fMRI are widely understood to reflect changes in the functions of the affected region which conceivably underlie mTBI neuropathology and symptomatology in the chronic phase after injury.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA,.
| | - Cade Plyer
- Neurology Residency Program, Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, USA.
| | - Thomas A Hammeke
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Stemper
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Matthew D Budde
- Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Panayi N, Schulz P, He P, Hanna B, Lifshitz J, Rowe RK, Sierks MR. Traumatic Brain Injury in Mice Generates Early-Stage Alzheimer's Disease Related Protein Pathology that Correlates with Neurobehavioral Deficits. Mol Neurobiol 2024; 61:7567-7582. [PMID: 38411868 DOI: 10.1007/s12035-024-04035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Traumatic brain injury (TBI) increases the long-term risk of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we demonstrate that protein variant pathology generated in brain tissue of an experimental TBI mouse model is similar to protein variant pathology observed during early stages of AD, and that subacute accumulation of AD associated variants of amyloid beta (Aβ) and tau in the TBI mouse model correlated with behavioral deficits. Male C57BL/6 mice were subjected to midline fluid percussion injury or to sham injury, after which sensorimotor function (rotarod, neurological severity score), cognitive deficit (novel object recognition), and affective deficits (elevated plus maze, forced swim task) were assessed post-injury (DPI). Protein pathology at 7, 14, and 28 DPI was measured in multiple brain regions using an immunostain panel of reagents selectively targeting different neurodegenerative disease-related variants of Aβ, tau, TDP-43, and alpha-synuclein. Overall, TBI resulted in sensorimotor deficits and accumulation of AD-related protein variant pathology near the impact site, both of which returned to sham levels by 14 DPI. Individual mice, however, showed persistent behavioral deficits and/or accumulation of toxic protein variants at 28 DPI. Behavioral outcomes of each mouse were correlated with levels of seven different protein variants in ten brain regions at specific DPI. Out of 21 significant correlations between protein variant levels and behavioral deficits, 18 were with variants of Aβ or tau. Correlations at 28 DPI were all between a single Aβ or tau variant, both of which are strongly associated with human AD cases. These data provide a direct mechanistic link between protein pathology resulting from TBI and the hallmarks of AD.
Collapse
Affiliation(s)
- Nicholas Panayi
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Philip Schulz
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Ping He
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Brandon Hanna
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael R Sierks
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287-6106, USA.
| |
Collapse
|
3
|
Rowe RK, Schulz P, He P, Mannino GS, Opp MR, Sierks MR. Acute sleep deprivation in mice generates protein pathology consistent with neurodegenerative diseases. Front Neurosci 2024; 18:1436966. [PMID: 39114483 PMCID: PMC11303328 DOI: 10.3389/fnins.2024.1436966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Insufficient or disturbed sleep is strongly associated with adverse health conditions, including various neurodegenerative disorders. While the relationship between sleep and neurodegenerative disease is likely bidirectional, sleep disturbances often predate the onset of other hallmark clinical symptoms. Neuronal waste clearance is significantly more efficient during sleep; thus, disturbed sleep may lead to the accumulation of neuronal proteins that underlie neurodegenerative diseases. Key pathological features of neurodegenerative diseases include an accumulation of misfolded or misprocessed variants of amyloid beta (Aβ), tau, alpha synuclein (α-syn), and TarDNA binding protein 43 (TDP-43). While the presence of fibrillar protein aggregates of these neuronal proteins are characteristic of neurodegenerative diseases, the presence of small soluble toxic oligomeric variants of these different proteins likely precedes the formation of the hallmark aggregates. Methods We hypothesized that sleep deprivation would lead to accumulation of toxic oligomeric variants of Aβ, tau, α-syn, and TDP-43 in brain tissue of wild-type mice. Adult mice were subjected to 6 h of sleep deprivation (zeitgeber 0-6) for 5 consecutive days or were left undisturbed as controls. Following sleep deprivation, brains were collected, and protein pathology was assessed in multiple brain regions using an immunostain panel of reagents selectively targeting neurodegenerative disease-related variants of Aβ, tau, α-syn, and TDP-43. Results Overall, sleep deprivation elevated levels of all protein variants in at least one of the brain regions of interest. The reagent PDTDP, targeting a TDP-43 variant present in Parkinson's disease, was elevated throughout the brain. The cortex, caudoputamen, and corpus callosum brain regions showed the highest accumulation of pathology following sleep deprivation. Discussion These data provide a direct mechanistic link between sleep deprivation, and the hallmark protein pathologies of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Philip Schulz
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Ping He
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Grant S. Mannino
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mark R. Opp
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Michael R. Sierks
- Chemical Engineering, The School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Green TRF, Carey SD, Mannino G, Craig JA, Rowe RK, Zielinski MR. Sleep, inflammation, and hemodynamics in rodent models of traumatic brain injury. Front Neurosci 2024; 18:1361014. [PMID: 38426017 PMCID: PMC10903352 DOI: 10.3389/fnins.2024.1361014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Traumatic brain injury (TBI) can induce dysregulation of sleep. Sleep disturbances include hypersomnia and hyposomnia, sleep fragmentation, difficulty falling asleep, and altered electroencephalograms. TBI results in inflammation and altered hemodynamics, such as changes in blood brain barrier permeability and cerebral blood flow. Both inflammation and altered hemodynamics, which are known sleep regulators, contribute to sleep impairments post-TBI. TBIs are heterogenous in cause and biomechanics, which leads to different molecular and symptomatic outcomes. Animal models of TBI have been developed to model the heterogeneity of TBIs observed in the clinic. This review discusses the intricate relationship between sleep, inflammation, and hemodynamics in pre-clinical rodent models of TBI.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Sean D. Carey
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, United States
| | - Grant Mannino
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John A. Craig
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mark R. Zielinski
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, United States
| |
Collapse
|
5
|
Panayi N, Schulz P, He P, Hanna B, Lifshitz J, Rowe R, Sierks MR. Traumatic brain injury in mice generates early-stage Alzheimer's disease related protein pathology that correlates with neurobehavioral deficits. RESEARCH SQUARE 2023:rs.3.rs-2865501. [PMID: 37205508 PMCID: PMC10187431 DOI: 10.21203/rs.3.rs-2865501/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Traumatic brain injury (TBI) increases the long-term risk of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we demonstrate that protein variant pathology generated in brain tissue of an experimental TBI mouse model is similar to protein variant pathology observed in human ADbrains, and that subacute accumulation of two AD associated variants of amyloid beta (Aβ) and tau in the TBI mouse model correlated with behavioral deficits. Male C57BL/6 mice were subjected to midline fluid percussion injury or to sham injury, after which sensorimotor function (rotarod, neurological severity score), cognitive deficit (novel object recognition), and affective deficits (elevated plus maze, forced swim task) were assessed at different days post-injury (DPI). Protein pathology at 7, 14, and 28 DPI was measured in multiple brain regions using an immunostain panel of reagents selectively targeting different neurodegenerative disease-related variants of Aβ, tau, TDP-43, and alpha-synuclein. Overall, TBI resulted in sensorimotor deficits and accumulation of AD-related protein variant pathology near the impact site, both of which returned to sham levels by 14 DPI. Individual mice, however, showed persistent behavioral deficits and/or accumulation of selected toxic protein variants at 28 DPI. Behavioral outcomes of each mouse were correlated with levels of seven different protein variants in ten brain regions at specific DPI. Out of 21 significant correlations between protein variant levels and behavioral deficits, 18 were with variants of Aβ or tau. Correlations at 28 DPI were all between a single Aβ or tau variant, both of which are strongly associated with human AD cases. These data provide a direct mechanistic link between protein pathology resulting from TBI and the hallmarks of AD.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan Lifshitz
- University of Arizona College of Pharmacy: The University of Arizona College of Medicine Phoenix
| | - Rachel Rowe
- University of Colorado at Boulder: University of Colorado Boulder
| | | |
Collapse
|
6
|
Law LM, Griffiths DR, Lifshitz J. Peg Forest Rehabilitation - A novel spatial navigation based cognitive rehabilitation paradigm for experimental neurotrauma. Behav Brain Res 2023; 443:114355. [PMID: 36801425 PMCID: PMC10883691 DOI: 10.1016/j.bbr.2023.114355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Traumatic brain injury (TBI) results from mechanical forces applied to the head. Ensuing cascades of complex pathophysiology transition the injury event into a disease process. The enduring constellation of emotional, somatic, and cognitive impairments degrade quality of life for the millions of TBI survivors suffering from long-term neurological symptoms. Rehabilitation strategies have reported mixed results, as most have not focused on specific symptomatology or explored cellular processes. The current experiments evaluated a novel cognitive rehabilitation paradigm for brain-injured and uninjured rats. The arena is a plastic floor with a cartesian grid of holes for plastic dowels to create new environments with the rearrangement of threaded pegs. Rats received either two weeks of Peg Forest rehabilitation (PFR) or open field exposure starting at 7 days post-injury; or one week starting at either day 7 or 14 post-injury; or served as caged controls. Cognitive performance was assessed on a battery of novel object tasks at 28 days post-injury. The results revealed that two weeks of PFR was required to prevent the onset of cognitive impairments, while one week of PFR was insufficient regardless of when rehabilitation was initiated after injury. Further assessment of the task showed that novel daily arrangements of the environment were required to impart the cognitive performance benefits, as exposure to a static arrangement of pegs for PFR each day did not improve cognitive performance. The results indicate that PFR prevents the onset of cognitive disorders following acquired a mild to moderate brain injury, and potentially other neurological conditions.
Collapse
Affiliation(s)
- L Matthew Law
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States; University of Arizona College of Medicine, Phoenix, AZ, United States; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.
| | - Daniel R Griffiths
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States; University of Arizona College of Medicine, Phoenix, AZ, United States; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Jonathan Lifshitz
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States; University of Arizona College of Medicine, Phoenix, AZ, United States; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
7
|
Bibineyshvili Y, Schiff ND, Calderon DP. Dexmedetomidine-mediated sleep phase modulation ameliorates motor and cognitive performance in a chronic blast-injured mouse model. Front Neurol 2022; 13:1040975. [PMID: 36388181 PMCID: PMC9663850 DOI: 10.3389/fneur.2022.1040975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 10/22/2024] Open
Abstract
Multiple studies have shown that blast injury is followed by sleep disruption linked to functional sequelae. It is well established that improving sleep ameliorates such functional deficits. However, little is known about longitudinal brain activity changes after blast injury. In addition, the effects of directly modulating the sleep/wake cycle on learning task performance after blast injury remain unclear. We hypothesized that modulation of the sleep phase cycle in our injured mice would improve post-injury task performance. Here, we have demonstrated that excessive sleep electroencephalographic (EEG) patterns are accompanied by prominent motor and cognitive impairment during acute stage after secondary blast injury (SBI) in a mouse model. Over time we observed a transition to more moderate and prolonged sleep/wake cycle disturbances, including changes in theta and alpha power. However, persistent disruptions of the non-rapid eye movement (NREM) spindle amplitude and intra-spindle frequency were associated with lasting motor and cognitive deficits. We, therefore, modulated the sleep phase of injured mice using subcutaneous (SC) dexmedetomidine (Dex), a common, clinically used sedative. Dex acutely improved intra-spindle frequency, theta and alpha power, and motor task execution in chronically injured mice. Moreover, dexmedetomidine ameliorated cognitive deficits a week after injection. Our results suggest that SC Dex might potentially improve impaired motor and cognitive behavior during daily tasks in patients that are chronically impaired by blast-induced injuries.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
| | - Nicholas D. Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Diany P. Calderon
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
8
|
The Effect of Traumatic Brain Injury on Sleep Architecture and Circadian Rhythms in Mice—A Comparison of High-Frequency Head Impact and Controlled Cortical Injury. BIOLOGY 2022; 11:biology11071031. [PMID: 36101412 PMCID: PMC9312487 DOI: 10.3390/biology11071031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Traumatic brain injury (TBI) is a significant risk factor for the development of sleep and circadian rhythm impairments. In order to understand if TBI models with different injury mechanism, severity and pathology have different sleep and circadian rhythm disruptions, we performed a detailed sleep and circadian analysis of the high-frequency head impact TBI model (a mouse model that mimics sports-related head impacts) and the controlled cortical impact TBI model (a mouse model that mimics severe brain trauma). We found that both TBI models disrupt the ability of brain cells to maintain circadian rhythms; however, both injury groups could still maintain circadian behavior patterns. Both the mild head impact model and the severe brain injury model had normal amount of sleep at 7 d after injury; however, the severe brain injury mice had disrupted brain wave patterns during sleep. We conclude that different types of TBI have different patterns of sleep disruptions. Abstract Traumatic brain injury (TBI) is a significant risk factor for the development of sleep and circadian rhythm impairments. In this study we compare the circadian rhythms and sleep patterns in the high-frequency head impact (HFHI) and controlled cortical impact (CCI) mouse models of TBI. These mouse models have different injury mechanisms key differences of pathology in brain regions controlling circadian rhythms and EEG wave generation. We found that both HFHI and CCI caused dysregulation in the diurnal expression of core circadian genes (Bmal1, Clock, Per1,2, Cry1,2) at 24 h post-TBI. CCI mice had reduced locomotor activity on running wheels in the first 7 d post-TBI; however, both CCI and HFHI mice were able to maintain circadian behavior cycles even in the absence of light cues. We used implantable EEG to measure sleep cycles and brain activity and found that there were no differences in the time spent awake, in NREM or REM sleep in either TBI model. However, in the sleep states, CCI mice have reduced delta power in NREM sleep and reduced theta power in REM sleep at 7 d post-TBI. Our data reveal that different types of brain trauma can result in distinct patterns of circadian and sleep disruptions and can be used to better understand the etiology of sleep disorders after TBI.
Collapse
|
9
|
Komoltsev IG, Gulyaeva NV. Brain Trauma, Glucocorticoids and Neuroinflammation: Dangerous Liaisons for the Hippocampus. Biomedicines 2022; 10:biomedicines10051139. [PMID: 35625876 PMCID: PMC9138485 DOI: 10.3390/biomedicines10051139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Glucocorticoid-dependent mechanisms of inflammation-mediated distant hippocampal damage are discussed with a focus on the consequences of traumatic brain injury. The effects of glucocorticoids on specific neuronal populations in the hippocampus depend on their concentration, duration of exposure and cell type. Previous stress and elevated level of glucocorticoids prior to pro-inflammatory impact, as well as long-term though moderate elevation of glucocorticoids, may inflate pro-inflammatory effects. Glucocorticoid-mediated long-lasting neuronal circuit changes in the hippocampus after brain trauma are involved in late post-traumatic pathology development, such as epilepsy, depression and cognitive impairment. Complex and diverse actions of the hypothalamic–pituitary–adrenal axis on neuroinflammation may be essential for late post-traumatic pathology. These mechanisms are applicable to remote hippocampal damage occurring after other types of focal brain damage (stroke, epilepsy) or central nervous system diseases without obvious focal injury. Thus, the liaisons of excessive glucocorticoids/dysfunctional hypothalamic–pituitary–adrenal axis with neuroinflammation, dangerous to the hippocampus, may be crucial to distant hippocampal damage in many brain diseases. Taking into account that the hippocampus controls both the cognitive functions and the emotional state, further research on potential links between glucocorticoid signaling and inflammatory processes in the brain and respective mechanisms is vital.
Collapse
Affiliation(s)
- Ilia G. Komoltsev
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia;
- Moscow Research and Clinical Center for Neuropsychiatry, 115419 Moscow, Russia
| | - Natalia V. Gulyaeva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia;
- Moscow Research and Clinical Center for Neuropsychiatry, 115419 Moscow, Russia
- Correspondence: ; Tel.: +7-495-9524007 or +7-495-3347020
| |
Collapse
|
10
|
Rowe RK, Griesbach GS. Immune-endocrine interactions in the pathophysiology of sleep-wake disturbances following traumatic brain injury: A narrative review. Brain Res Bull 2022; 185:117-128. [DOI: 10.1016/j.brainresbull.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/16/2022]
|
11
|
Topchiy I, Fink AM, Maki KA, Calik MW. Validation of PiezoSleep Scoring Against EEG/EMG Sleep Scoring in Rats. Nat Sci Sleep 2022; 14:1877-1886. [PMID: 36300015 PMCID: PMC9590343 DOI: 10.2147/nss.s381367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Current methods of sleep research in rodents involve invasive surgical procedures of EEG and EMG electrodes implantation. Recently, a new method of measuring sleep, PiezoSleep, has been validated against implanted electrodes in mice and rats. PiezoSleep uses a piezoelectric film transducer to detect the rodent's movements and respiration and employs an algorithm to automatically score sleep. Here, we validate PiezoSleep scoring versus EEG/EMG implanted electrodes sleep scoring in rats. METHODS Adult male Brown Norway and Wistar Kyoto rats were implanted with bilateral stainless-steel screws into the skull for EEG recording and bilateral wire electrodes into the nuchal muscles for EMG assessment. In Brown Norway rats, the EEG/EMG electrode leads were soldered to a miniature connector plug and fixed to the skull. In Wistar Kyoto rats, the EEG/EMG leads were tunneled subcutaneously to a telemetry transmitter implanted in the flank. Rats were allowed to recover from surgery for one week. Brown Norway rats were placed in PiezoSleep cages, and had their headsets connected to cable for recording EEG/EMG signals, which were then manually scored by a human scorer in 10-sec epochs. Wistar Kyoto rats were placed in PiezoSleep cages, and EEG/EMG signals were recorded using a telemetry system (DSI). Sleep was scored automatically in 4-sec epochs using NeuroScore software. PiezoSleep software recorded and scored sleep in the rats. RESULTS Rats implanted with corded EEG/EMG headsets had 85.6% concurrence of sleep-wake scoring with PiezoSleep. Rats implanted with EEG/EMG telemetry had 80.8% concurrence sleep-wake scoring with PiezoSleep. Sensitivity and specificity rates were similar between the EEG/EMG recording systems. Total sleep time and hourly sleep times did not differ in all three systems. However, automatic sleep detection by NeuroScore classified more sleep during the light period compared to the PiezoSleep. CONCLUSION We showed that PiezoSleep system can be a reliable alternative to both automatic and visual EEG/EMG- based sleep-wake scoring in rat.
Collapse
Affiliation(s)
- Irina Topchiy
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.,Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA
| | - Anne M Fink
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.,Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA
| | - Katherine A Maki
- Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA.,Translational Biobehavioral and Health Disparities Branch, Clinical Center; National Institutes of Health, Bethesda, MD, USA
| | - Michael W Calik
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.,Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
13
|
Wiseman-Hakes C, Foster E, Langer L, Chandra T, Bayley M, Comper P. Characterizing Sleep and Wakefulness in the Acute Phase of Concussion in the General Population: A Naturalistic Cohort from the Toronto Concussion Study. J Neurotrauma 2021; 39:172-180. [PMID: 34714132 DOI: 10.1089/neu.2021.0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growing literature links concussion to changes in sleep and wakefulness in humans and in rodent models. Sleep has been linked with synaptic reorganization under other conditions; however, the characterization and role of sleep after acute concussion remains poorly understood. While much research has focused on insomnia among patients with chronic or persistent concussion symptoms, there is limited understanding of sleep and acute concussion, its potential role in recovery, and associated risk factors for the development of chronic sleep disturbance. Studies to date are limited by small sample sizes of primarily athlete or military populations. Additional studies among the general population are critical to inform best practice guidelines. We examined the sleep and daytime wakefulness of 472 adults from a naturalistic general population cohort (mean age, 33.3 years, females = 60.8%) within seven days of diagnosed concussion, using a validated, condition-specific measure, the Sleep and Concussion Questionnaire. Participants identified immediate changes in sleep characterized by hypersomnia and difficulty maintaining daytime wakefulness; 35% considered these changes as moderate to severe and 79% required monitoring or follow-up. Females experienced significantly greater severity of changes in sleep compared with males. Positive correlations between severity of sleep and pain and headache were identified. Differences by sex are an important consideration for early intervention and long-term monitoring. Because sleep was compromised by pain, pain management is also an integral part of early intervention. Our findings suggest that assessment of sleep beginning in the acute stage is a critical component of concussion management in the general population.
Collapse
Affiliation(s)
- Catherine Wiseman-Hakes
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Evan Foster
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Translational Research Program, University of Toronto, Toronto, Ontario, Canada
| | - Laura Langer
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Tharshini Chandra
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Mark Bayley
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Physiatry, University of Toronto, Toronto, Ontario, Canada
| | - Paul Comper
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Smith DH, Kochanek PM, Rosi S, Meyer R, Ferland-Beckham C, Prager EM, Ahlers ST, Crawford F. Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury. J Neurotrauma 2021; 38:3204-3221. [PMID: 34210174 PMCID: PMC8820284 DOI: 10.1089/neu.2021.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-clinical models of disease have long played important roles in the advancement of new treatments. However, in traumatic brain injury (TBI), despite the availability of numerous model systems, translation from bench to bedside remains elusive. Integrating clinical relevance into pre-clinical model development is a critical step toward advancing therapies for TBI patients across the spectrum of injury severity. Pre-clinical models include in vivo and ex vivo animal work-both small and large-and in vitro modeling. The wide range of pre-clinical models reflect substantial attempts to replicate multiple aspects of TBI sequelae in humans. Although these models reveal multiple putative mechanisms underlying TBI pathophysiology, failures to translate these findings into successful clinical trials call into question the clinical relevance and applicability of the models. Here, we address the promises and pitfalls of pre-clinical models with the goal of evolving frameworks that will advance translational TBI research across models, injury types, and the heterogenous etiology of pathology.
Collapse
Affiliation(s)
- Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Susanna Rosi
- Departments of Physical Therapy Rehabilitation Science, Neurological Surgery, Weill Institute for Neuroscience, University of California San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Retsina Meyer
- Cohen Veterans Bioscience, New York, New York, USA.,Delix Therapeutics, Inc, Boston, Massachusetts, USA
| | | | | | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate Naval Medical Research Center, Silver Spring, Maryland, USA
| | | |
Collapse
|
15
|
Saber M, Murphy SM, Cho Y, Lifshitz J, Rowe RK. Experimental diffuse brain injury and a model of Alzheimer's disease exhibit disease-specific changes in sleep and incongruous peripheral inflammation. J Neurosci Res 2021; 99:1136-1160. [PMID: 33319441 PMCID: PMC7897258 DOI: 10.1002/jnr.24771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Elderly populations (≥65 years old) have the highest risk of developing Alzheimer's disease (AD) and/or obtaining a traumatic brain injury (TBI). Using translational mouse models, we investigated sleep disturbances and inflammation associated with normal aging, TBI and aging, and AD. We hypothesized that aging results in marked changes in sleep compared with adult mice, and that TBI and aging would result in sleep and inflammation levels similar to AD mice. We used female 16-month-old wild-type (WT Aged) and 3xTg-AD mice, as well as a 2-month-old reference group (WT Adult), to evaluate sleep changes. WT Aged mice received diffuse TBI by midline fluid percussion, and blood was collected from both WT Aged (pre- and post-TBI) and 3xTg-AD mice to evaluate inflammation. Cognitive behavior was tested, and tissue was collected for histology. Bayesian generalized additive and mixed-effects models were used for analyses. Both normal aging and AD led to increases in sleep compared with adult mice. WT Aged mice with TBI slept substantially more, with fragmented shorter bouts, than they did pre-TBI and compared with AD mice. However, differences between WT Aged and 3xTg-AD mice in immune cell populations and plasma cytokine levels were incongruous, cognitive deficits were similar, and cumulative sleep was not predictive of inflammation or behavior for either group. Our results suggest that in similarly aged individuals, TBI immediately induces more profound sleep alterations than in AD, although both diseases likely include cognitive impairments. Unique pathological sleep pathways may exist in elderly individuals who incur TBI compared with similarly aged individuals who have AD, which may warrant disease-specific treatments in clinical settings.
Collapse
Affiliation(s)
- Maha Saber
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Yerin Cho
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ
| | - Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ
| |
Collapse
|
16
|
Konduru SS, Wallace EP, Pfammatter JA, Rodrigues PV, Jones MV, Maganti RK. Sleep-wake characteristics in a mouse model of severe traumatic brain injury: Relation to posttraumatic epilepsy. Epilepsia Open 2021; 6:181-194. [PMID: 33681661 PMCID: PMC7918302 DOI: 10.1002/epi4.12462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/01/2022] Open
Abstract
Study objectives Traumatic brain injury (TBI) results in sequelae that include posttraumatic epilepsy (PTE) and sleep-wake disturbances. Here, we sought to determine whether sleep characteristics could predict development of PTE in a model of severe TBI. Methods Following controlled cortical impact (CCI) or sham injury (craniotomy only), CD-1 mice were implanted with epidural electroencephalography (EEG) and nuchal electromyography (EMG) electrodes. Acute (1st week) and chronic (months 1, 2, or 3) 1-week-long video-EEG recordings were performed after the injury to examine epileptiform activity. High-amplitude interictal events were extracted from EEG using an automated method. After scoring sleep-wake patterns, sleep spindles and EEG delta power were derived from nonrapid eye movement (NREM) sleep epochs. Brain CTs (computerized tomography) were performed in sham and CCI cohorts to quantify the brain lesions. We then employed a no craniotomy (NC) control to perform 1-week-long EEG recordings at week 1 and month 1 after surgery. Results Posttraumatic seizures were seen in the CCI group only, whereas interictal epileptiform activity was seen in CCI or sham. Sleep-wake disruptions consisted of shorter wake or NREM bout lengths and shorter duration or lower power for spindles in CCI and sham. NREM EEG delta power increased in CCI and sham groups compared with NC though the CCI group with posttraumatic seizures had lower power at a chronic time point compared with those without. Follow-up brain CTs showed a small lesion in the sham injury group suggesting a milder form of TBI that may account for their interictal activity and sleep changes. Significance In our TBI model, tracking changes in NREM delta power distinguishes between CCI acutely and animals that will eventually develop PTE, but further work is necessary to identify sleep biomarkers of PTE. Employing NC controls together with sham controls should be considered in future TBI studies.
Collapse
Affiliation(s)
- Sai Sruthi Konduru
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWIUSA
| | - Eli P. Wallace
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWIUSA
- Department of NeuroscienceUniversity of Wisconsin School of Medicine and Public HealthMadisonWIUSA
- Cellular and Molecular Pathology Graduate ProgramUniversity of Wisconsin School of Medicine and Public HealthMadisonWIUSA
| | - Jesse A. Pfammatter
- Department of NeuroscienceUniversity of Wisconsin School of Medicine and Public HealthMadisonWIUSA
| | - Paulo V. Rodrigues
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWIUSA
| | - Mathew V. Jones
- Department of NeuroscienceUniversity of Wisconsin School of Medicine and Public HealthMadisonWIUSA
| | - Rama K. Maganti
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWIUSA
| |
Collapse
|
17
|
Beitchman JA, Lifshitz J, Harris NG, Thomas TC, Lafrenaye AD, Hånell A, Dixon CE, Povlishock JT, Rowe RK. Spatial Distribution of Neuropathology and Neuroinflammation Elucidate the Biomechanics of Fluid Percussion Injury. Neurotrauma Rep 2021; 2:59-75. [PMID: 34223546 PMCID: PMC8240834 DOI: 10.1089/neur.2020.0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffuse brain injury is better described as multi-focal, where pathology can be found adjacent to seemingly uninjured neural tissue. In experimental diffuse brain injury, pathology and pathophysiology have been reported far more lateral than predicted by the impact site. We hypothesized that local thickening of the rodent skull at the temporal ridges serves to focus the intracranial mechanical forces experienced during brain injury and generate predictable pathology. We demonstrated local thickening of the skull at the temporal ridges using contour analysis on magnetic resonance imaging. After diffuse brain injury induced by midline fluid percussion injury (mFPI), pathological foci along the anterior-posterior length of cortex under the temporal ridges were evident acutely (1, 2, and 7 days) and chronically (28 days) post-injury by deposition of argyophilic reaction product. Area CA3 of the hippocampus and lateral nuclei of the thalamus showed pathological change, suggesting that mechanical forces to or from the temporal ridges shear subcortical regions. A proposed model of mFPI biomechanics suggests that injury force vectors reflect off the skull base and radiate toward the temporal ridge, thereby injuring ventral thalamus, dorsolateral hippocampus, and sensorimotor cortex. Surgically thinning the temporal ridge before injury reduced injury-induced inflammation in the sensorimotor cortex. These data build evidence for temporal ridges of the rodent skull to contribute to the observed pathology, whether by focusing extracranial forces to enter the cranium or intracranial forces to escape the cranium. Pre-clinical investigations can take advantage of the predicted pathology to explore injury mechanisms and treatment efficacy.
Collapse
Affiliation(s)
- Joshua A Beitchman
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA.,Midwestern University, Glendale, Arizona, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA.,Arizona State University, Tempe, Arizona, USA.,Phoenix VA Health Care System, Phoenix, Arizona, USA
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, and Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Theresa Currier Thomas
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA.,Arizona State University, Tempe, Arizona, USA.,Phoenix VA Health Care System, Phoenix, Arizona, USA
| | | | - Anders Hånell
- Virginia Commonwealth University, Richmond, Virginia, USA.,Uppsala University Hospital, Uppsala, Sweden
| | | | | | - Rachel K Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA.,Phoenix VA Health Care System, Phoenix, Arizona, USA
| |
Collapse
|
18
|
Saber M, Rice AD, Christie I, Roberts RG, Knox KS, Nakaji P, Rowe RK, Wang T, Lifshitz J. Remote Ischemic Conditioning Reduced Acute Lung Injury After Traumatic Brain Injury in the Mouse. Shock 2021; 55:256-267. [PMID: 32769821 PMCID: PMC8878575 DOI: 10.1097/shk.0000000000001618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT Traumatic brain injury (TBI) can induce acute lung injury (ALI). The exact pathomechanism of TBI-induced ALI is poorly understood, limiting treatment options. Remote ischemic conditioning (RIC) can mitigate detrimental outcomes following transplants, cardiac arrests, and neurological injuries. In this study, we hypothesized that RIC would reduce TBI-induced ALI by regulating the sphingosine-1-phosphate (S1P)-dependent pathway, a central regulator of endothelial barrier integrity, lymphocyte, and myokine trafficking. Male mice were subjected to either diffuse TBI by midline fluid percussion or control sham injury and randomly assigned among four groups: sham, TBI, sham RIC, or TBI RIC; RIC was performed 1 h prior to TBI. Mice were euthanized at 1-h postinjury or 7 days post-injury (DPI) and lung tissue, bronchoalveolar lavage (BAL) fluid, and blood were collected. Lung tissue was analyzed for histopathology, irisin myokine levels, and S1P receptor levels. BAL fluid and blood were analyzed for cellularity and myokine/S1P levels, respectively. One-hour postinjury, TBI damaged lung alveoli and increased neutrophil infiltration; RIC preserved alveoli. BAL from TBI mice had more neutrophils and higher neutrophil/monocyte ratios compared with sham, where TBI RIC mice showed no injury-induced change. Further, S1P receptor 3 and irisin-associated protein levels were significantly increased in the lungs of TBI mice compared with sham, which was prevented by RIC. However, there was no RIC-associated change in plasma irisin or S1P. At 7 DPI, ALI in TBI mice was largely resolved, with evidence for residual lung pathology. Thus, RIC may be a viable intervention for TBI-induced ALI to preserve lung function and facilitate clinical management.
Collapse
Affiliation(s)
- Maha Saber
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | - Amanda D. Rice
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Immaculate Christie
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | - Rebecca G. Roberts
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Kenneth S. Knox
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Peter Nakaji
- Neurosurgery, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Rachel K. Rowe
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Phoenix VA Health Care System, Phoenix, AZ
| | - Ting Wang
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Jonathan Lifshitz
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Phoenix VA Health Care System, Phoenix, AZ
| |
Collapse
|
19
|
Green TRF, Ortiz JB, Wonnacott S, Williams RJ, Rowe RK. The Bidirectional Relationship Between Sleep and Inflammation Links Traumatic Brain Injury and Alzheimer's Disease. Front Neurosci 2020; 14:894. [PMID: 32982677 PMCID: PMC7479838 DOI: 10.3389/fnins.2020.00894] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) are diseases during which the fine-tuned autoregulation of the brain is lost. Despite the stark contrast in their causal mechanisms, both TBI and AD are conditions which elicit a neuroinflammatory response that is coupled with physical, cognitive, and affective symptoms. One commonly reported symptom in both TBI and AD patients is disturbed sleep. Sleep is regulated by circadian and homeostatic processes such that pathological inflammation may disrupt the chemical signaling required to maintain a healthy sleep profile. In this way, immune system activation can influence sleep physiology. Conversely, sleep disturbances can exacerbate symptoms or increase the risk of inflammatory/neurodegenerative diseases. Both TBI and AD are worsened by a chronic pro-inflammatory microenvironment which exacerbates symptoms and worsens clinical outcome. Herein, a positive feedback loop of chronic inflammation and sleep disturbances is initiated. In this review, the bidirectional relationship between sleep disturbances and inflammation is discussed, where chronic inflammation associated with TBI and AD can lead to sleep disturbances and exacerbated neuropathology. The role of microglia and cytokines in sleep disturbances associated with these diseases is highlighted. The proposed sleep and inflammation-mediated link between TBI and AD presents an opportunity for a multifaceted approach to clinical intervention.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
| | - J. Bryce Ortiz
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
| | - Sue Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Robert J. Williams
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| |
Collapse
|
20
|
Saber M, Pathak KV, McGilvrey M, Garcia-Mansfield K, Harrison JL, Rowe RK, Lifshitz J, Pirrotte P. Proteomic analysis identifies plasma correlates of remote ischemic conditioning in the context of experimental traumatic brain injury. Sci Rep 2020; 10:12989. [PMID: 32737368 PMCID: PMC7395133 DOI: 10.1038/s41598-020-69865-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/20/2020] [Indexed: 12/02/2022] Open
Abstract
Remote ischemic conditioning (RIC), transient restriction and recirculation of blood flow to a limb after traumatic brain injury (TBI), can modify levels of pathology-associated circulating protein. This study sought to identify TBI-induced molecular alterations in plasma and whether RIC would modulate protein and metabolite levels at 24 h after diffuse TBI. Adult male C57BL/6 mice received diffuse TBI by midline fluid percussion or were sham-injured. Mice were assigned to treatment groups 1 h after recovery of righting reflex: sham, TBI, sham RIC, TBI RIC. Nine plasma metabolites were significantly lower post-TBI (six amino acids, two acylcarnitines, one carnosine). RIC intervention returned metabolites to sham levels. Using proteomics analysis, twenty-four putative protein markers for TBI and RIC were identified. After application of Benjamini–Hochberg correction, actin, alpha 1, skeletal muscle (ACTA1) was found to be significantly increased in TBI compared to both sham groups and TBI RIC. Thus, identified metabolites and proteins provide potential biomarkers for TBI and therapeutic RIC in order to monitor disease progression and therapeutic efficacy.
Collapse
Affiliation(s)
- Maha Saber
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA
| | - Khyati V Pathak
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Marissa McGilvrey
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Krystine Garcia-Mansfield
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jordan L Harrison
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA
| | - Rachel K Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA.,Phoenix VA Health Care System, Phoenix, AZ, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA. .,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA. .,Phoenix VA Health Care System, Phoenix, AZ, USA.
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
21
|
Saber M, Giordano KR, Hur Y, Ortiz JB, Morrison H, Godbout JP, Murphy SM, Lifshitz J, Rowe RK. Acute peripheral inflammation and post-traumatic sleep differ between sexes after experimental diffuse brain injury. Eur J Neurosci 2020; 52:2791-2814. [PMID: 31677290 PMCID: PMC7195243 DOI: 10.1111/ejn.14611] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Abstract
Identifying differential responses between sexes following traumatic brain injury (TBI) can elucidate the mechanisms behind disease pathology. Peripheral and central inflammation in the pathophysiology of TBI can increase sleep in male rodents, but this remains untested in females. We hypothesized that diffuse TBI would increase inflammation and sleep in males more so than in females. Diffuse TBI was induced in C57BL/6J mice and serial blood samples were collected (baseline, 1, 5, 7 days post-injury [DPI]) to quantify peripheral immune cell populations and sleep regulatory cytokines. Brains and spleens were harvested at 7DPI to quantify central and peripheral immune cells, respectively. Mixed-effects regression models were used for data analysis. Female TBI mice had 77%-124% higher IL-6 levels than male TBI mice at 1 and 5DPI, whereas IL-1β and TNF-α levels were similar between sexes at all timepoints. Despite baseline sex differences in blood-measured Ly6Chigh monocytes (females had 40% more than males), TBI reduced monocytes by 67% in TBI mice at 1DPI. Male TBI mice had 31%-33% more blood-measured and 31% more spleen-measured Ly6G+ neutrophils than female TBI mice at 1 and 5DPI, and 7DPI, respectively. Compared with sham, TBI increased sleep in both sexes during the first light and dark cycles. Male TBI mice slept 11%-17% more than female TBI mice, depending on the cycle. Thus, sex and TBI interactions may alter the peripheral inflammation profile and sleep patterns, which might explain discrepancies in disease progression based on sex.
Collapse
Affiliation(s)
- Maha Saber
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Katherine R. Giordano
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Yerin Hur
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - J. Bryce Ortiz
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | | | - Jonathan P. Godbout
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ, USA
| | - Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ, USA
| |
Collapse
|
22
|
Pernici CD, Rowe RK, Doughty PT, Madadi M, Lifshitz J, Murray TA. Longitudinal optical imaging technique to visualize progressive axonal damage after brain injury in mice reveals responses to different minocycline treatments. Sci Rep 2020; 10:7815. [PMID: 32385407 PMCID: PMC7210987 DOI: 10.1038/s41598-020-64783-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
A high-resolution, three-dimensional, optical imaging technique for the murine brain was developed to identify the effects of different therapeutic windows for preclinical brain research. This technique tracks the same cells over several weeks. We conducted a pilot study of a promising drug to treat diffuse axonal injury (DAI) caused by traumatic brain injury, using two different therapeutic windows, as a means to demonstrate the utility of this novel longitudinal imaging technique. DAI causes immediate, sporadic axon damage followed by progressive secondary axon damage. We administered minocycline for three days commencing one hour after injury in one treatment group and beginning 72 hours after injury in another group to demonstrate the method’s ability to show how and when the therapeutic drug exerts protective and/or healing effects. Fewer varicosities developed in acutely treated mice while more varicosities resolved in mice with delayed treatment. For both treatments, the drug arrested development of new axonal damage by 30 days. In addition to evaluation of therapeutics for traumatic brain injury, this hybrid microlens imaging method should be useful to study other types of brain injury and neurodegeneration and cellular responses to treatment.
Collapse
Affiliation(s)
- Chelsea D Pernici
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - P Timothy Doughty
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Mahboubeh Madadi
- Department of Marketing and Business Analytics, Lucas College of Business, San Jose State University, San Jose, CA, USA
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
23
|
Bertrand SJ, Zhang Z, Patel R, O'Ferrell C, Punjabi NM, Kudchadkar SR, Kannan S. Transient neonatal sleep fragmentation results in long-term neuroinflammation and cognitive impairment in a rabbit model. Exp Neurol 2020; 327:113212. [PMID: 31987835 DOI: 10.1016/j.expneurol.2020.113212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022]
Abstract
Sleep fragmentation is an increase in sleep-wake transitions without an overall decrease in total sleep time. Sleep fragmentation is well documented during acute and chronic hospitalization and can result in delirium and memory problems in children. Sleep fragmentation is also often noted in neurodevelopmental disorders. However, it is unclear how sleep fragmentation independent of disease affects brain development and function. We hypothesized that acute sleep fragmentation during the neonatal period in otherwise healthy animals would result in neuroinflammation and would be associated with abnormalities in cognitive development. The orbital shaker method was used to fragment sleep for 72 h in postnatal day 3 New Zealand white rabbit kits (fragmentation group). To control for maternal separation, the sham group was separated from the dam and maintained in the same conditions without undergoing sleep fragmentation. A naïve control group remained with the dam. Kits underwent behavioral testing with novel object recognition and spontaneous alternation T-maze tests at 2-3 weeks post-fragmentation and were sacrificed 3-50 days after fragmentation. Sleep fragmentation resulted in acute and chronic changes in microglial morphology in the hippocampus and cortex, and regional differences in mRNA expression of pro- and anti-inflammatory cytokines at 3, 7 and 50 days post-fragmentation. Impaired novel object recognition and a longer latency in T-maze task completion were noted in the fragmented kits. This was in spite of normalization of sleep architecture noted at 2 months of age in these kits. The results indicate that transient neonatal sleep fragmentation results in short-term and long-term immune alterations in the brain, along with diminished performance in cognitive tasks long-term.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Ruchit Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Caroline O'Ferrell
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Naresh M Punjabi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Sapna R Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America; Department of Pediatrics, Johns Hopkins University School of Medicine, United States of America; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, United States of America.
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America.
| |
Collapse
|
24
|
Beitchman JA, Griffiths DR, Hur Y, Ogle SB, Bromberg CE, Morrison HW, Lifshitz J, Adelson PD, Thomas TC. Experimental Traumatic Brain Injury Induces Chronic Glutamatergic Dysfunction in Amygdala Circuitry Known to Regulate Anxiety-Like Behavior. Front Neurosci 2020; 13:1434. [PMID: 32038140 PMCID: PMC6985437 DOI: 10.3389/fnins.2019.01434] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Up to 50% of traumatic brain injury (TBI) survivors demonstrate persisting and late-onset anxiety disorders indicative of limbic system dysregulation, yet the pathophysiology underlying the symptoms is unclear. We hypothesize that the development of TBI-induced anxiety-like behavior in an experimental model of TBI is mediated by changes in glutamate neurotransmission within the amygdala. Adult, male Sprague-Dawley rats underwent midline fluid percussion injury or sham surgery. Anxiety-like behavior was assessed at 7 and 28 days post-injury (DPI) followed by assessment of real-time glutamate neurotransmission in the basolateral amygdala (BLA) and central nucleus of the amygdala (CeA) using glutamate-selective microelectrode arrays. The expression of anxiety-like behavior at 28 DPI coincided with decreased evoked glutamate release and slower glutamate clearance in the CeA, not BLA. Numerous factors contribute to the changes in glutamate neurotransmission over time. In two additional animal cohorts, protein levels of glutamatergic transporters (Glt-1 and GLAST) and presynaptic modulators of glutamate release (mGluR2, TrkB, BDNF, and glucocorticoid receptors) were quantified using automated capillary western techniques at 28 DPI. Astrocytosis and microglial activation have been shown to drive maladaptive glutamate signaling and were histologically assessed over 28 DPI. Alterations in glutamate neurotransmission could not be explained by changes in protein levels for glutamate transporters, mGluR2 receptors, astrocytosis, and microglial activation. Presynaptic modulators, BDNF and TrkB, were significantly decreased at 28 DPI in the amygdala. Dysfunction in presynaptic regulation of glutamate neurotransmission may contribute to anxiety-related behavior and serve as a therapeutic target to improve circuit function.
Collapse
Affiliation(s)
- Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Daniel R Griffiths
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Yerin Hur
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Sarah B Ogle
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Banner University Medical Center, Phoenix, AZ, United States
| | - Caitlin E Bromberg
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix VA Health Care System, Phoenix, AZ, United States
| | - P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix VA Health Care System, Phoenix, AZ, United States
| |
Collapse
|
25
|
Hajiaghamemar M, Seidi M, Oeur RA, Margulies SS. Toward development of clinically translatable diagnostic and prognostic metrics of traumatic brain injury using animal models: A review and a look forward. Exp Neurol 2019; 318:101-123. [PMID: 31055005 PMCID: PMC6612432 DOI: 10.1016/j.expneurol.2019.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. There is an increasing interest in both clinical and pre-clinical studies to discover biomarkers to accurately diagnose traumatic brain injury (TBI), predict its outcomes, and monitor its progression especially in the developing brain. In humans, the heterogeneity of TBI in terms of clinical presentation, injury causation, and mechanism has contributed to the many challenges associated with finding unifying diagnosis, treatment, and management practices. In addition, findings from adult human research may have little application to pediatric TBI, as age and maturation levels affect the injury biomechanics and neurophysiological consequences of injury. Animal models of TBI are vital to address the variability and heterogeneity of TBI seen in human by isolating the causation and mechanism of injury in reproducible manner. However, a gap between the pre-clinical findings and clinical applications remains in TBI research today. To take a step toward bridging this gap, we reviewed several potential TBI tools such as biofluid biomarkers, electroencephalography (EEG), actigraphy, eye responses, and balance that have been explored in both clinical and pre-clinical studies and have shown potential diagnostic, prognostic, or monitoring utility for TBI. Each of these tools measures specific deficits following TBI, is easily accessible, non/minimally invasive, and is potentially highly translatable between animals and human outcomes because they involve effort-independent and non-verbal tasks. Especially conspicuous is the fact that these biomarkers and techniques can be tailored for infants and toddlers. However, translation of preclinical outcomes to clinical applications of these tools necessitates addressing several challenges. Among the challenges are the heterogeneity of clinical TBI, age dependency of some of the biomarkers, different brain structure, life span, and possible variation between temporal profiles of biomarkers in human and animals. Conducting parallel clinical and pre-clinical research, in addition to the integration of findings across species from several pre-clinical models to generate a spectrum of TBI mechanisms and severities is a path toward overcoming some of these challenges. This effort is possible through large scale collaborative research and data sharing across multiple centers. In addition, TBI causes dynamic deficits in multiple domains, and thus, a panel of biomarkers combining these measures to consider different deficits is more promising than a single biomarker for TBI. In this review, each of these tools are presented along with the clinical and pre-clinical findings, advantages, challenges and prospects of translating the pre-clinical knowledge into the human clinical setting.
Collapse
Affiliation(s)
- Marzieh Hajiaghamemar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Morteza Seidi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
26
|
Tapp ZM, Godbout JP, Kokiko-Cochran ON. A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI. Front Neurol 2019; 10:345. [PMID: 31068886 PMCID: PMC6491704 DOI: 10.3389/fneur.2019.00345] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Each year approximately 1.7 million people sustain a traumatic brain injury (TBI) in the US alone. Associated with these head injuries is a high prevalence of neuropsychiatric symptoms including irritability, depression, and anxiety. Neuroinflammation, due in part to microglia, can worsen or even cause neuropsychiatric disorders after TBI. For example, mounting evidence demonstrates that microglia become “primed” or hyper-reactive with an exaggerated pro-inflammatory phenotype following multiple immune challenges. Microglial priming occurs after experimental TBI and correlates with the emergence of depressive-like behavior as well as cognitive dysfunction. Critically, immune challenges are various and include illness, aging, and stress. The collective influence of any combination of these immune challenges shapes the neuroimmune environment and the response to TBI. For example, stress reliably induces inflammation and could therefore be a gateway to altered neuropathology and behavioral decline following TBI. Given the increasing incidence of stress-related psychiatric disorders after TBI, the degree in which stress affects outcome is of particular interest. This review aims to highlight the role of the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of stress-immune pathway communication following TBI. We will first describe maladaptive neuroinflammation after TBI and how stress contributes to inflammation through both anti- and pro-inflammatory mechanisms. Clinical and experimental data describing HPA-axis dysfunction and consequences of altered stress responses after TBI will be discussed. Lastly, we will review common stress models used after TBI that could better elucidate the relationship between HPA axis dysfunction and maladaptive inflammation following TBI. Together, the studies described in this review suggest that HPA axis dysfunction after brain injury is prevalent and contributes to the dynamic nature of the neuroinflammatory response to brain injury. Experimental stressors that directly engage the HPA axis represent important areas for future research to better define the role of stress-immune pathways in mediating outcome following TBI.
Collapse
Affiliation(s)
- Zoe M Tapp
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Rowe RK, Harrison JL, Morrison HW, Subbian V, Murphy SM, Lifshitz J. Acute Post-Traumatic Sleep May Define Vulnerability to a Second Traumatic Brain Injury in Mice. J Neurotrauma 2019; 36:1318-1334. [PMID: 30398389 PMCID: PMC6479254 DOI: 10.1089/neu.2018.5980] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chronic neurological impairments can manifest from repetitive traumatic brain injury (rTBI), particularly when subsequent injuries occur before the initial injury completely heals. Herein, we apply post-traumatic sleep as a physiological biomarker of vulnerability, hypothesizing that a second TBI during post-traumatic sleep worsens neurological and histological outcomes compared to one TBI or a second TBI after post-traumatic sleep subsides. Mice received sham or diffuse TBI by midline fluid percussion injury; brain-injured mice received one TBI or rTBIs at 3- or 9-h intervals. Over 40 h post-injury, injured mice slept more than shams. Functional assessments indicated lower latencies on rotarod and increased Neurological Severity Scores for mice with rTBIs within 3 h. Anxiety-like behaviors in the open field task were increased for mice with rTBIs at 3 h. Based on pixel density of silver accumulation, neuropathology was greater at 28 days post-injury (DPI) in rTBI groups than sham and single TBI. Cortical microglia morphology was quantified and mice receiving rTBI were de-ramified at 14 DPI compared to shams and mice receiving a single TBI, suggesting robust microglial response in rTBI groups. Orexin-A-positive cells were sustained in the lateral hypothalamus with no loss detected, indicating that loss of wake-promoting neurons did not contribute to post-traumatic sleep. Thus, duration of post-traumatic sleep is a period of vulnerability that results in exacerbated injury from rTBI. Monitoring individual post-traumatic sleep is a potential clinical tool for personalized TBI management, where regular sleep patterns may inform rehabilitative strategies and return-to-activity guidelines.
Collapse
Affiliation(s)
- Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona
- Phoenix Veteran Affairs Health Care System, Phoenix, Arizona
| | - Jordan L. Harrison
- Department of Basic Medical Sciences, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona
| | | | - Vignesh Subbian
- University of Arizona College of Engineering, Tucson, Arizona
| | - Sean M. Murphy
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, Kentucky
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona
- Phoenix Veteran Affairs Health Care System, Phoenix, Arizona
| |
Collapse
|
28
|
Hsieh TH, Lee HHC, Hameed MQ, Pascual-Leone A, Hensch TK, Rotenberg A. Trajectory of Parvalbumin Cell Impairment and Loss of Cortical Inhibition in Traumatic Brain Injury. Cereb Cortex 2018; 27:5509-5524. [PMID: 27909008 DOI: 10.1093/cercor/bhw318] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
Many neuropsychiatric symptoms that follow traumatic brain injury (TBI), including mood disorders, sleep disturbance, chronic pain, and posttraumatic epilepsy (PTE) are attributable to compromised cortical inhibition. However, the temporal trajectory of cortical inhibition loss and its underlying mechanisms are not known. Using paired-pulse transcranial magnetic stimulation (ppTMS) and immunohistochemistry, we tracked functional and cellular changes of cortical inhibitory network elements after fluid-percussion injury (FPI) in rats. ppTMS revealed a progressive loss of cortical inhibition as early as 2 weeks after FPI. This profile paralleled the increasing levels of cortical oxidative stress, which was accompanied by a gradual loss of parvalbumin (PV) immunoreactivity in perilesional cortex. Preceding the PV loss, we identified a degradation of the perineuronal net (PNN)-a specialized extracellular structure enwrapping cortical PV-positive (PV+) inhibitory interneurons which binds the PV+ cell maintenance factor, Otx2. The trajectory of these impairments underlies the reduced inhibitory tone, which can contribute to posttraumatic neurological conditions, such as PTE. Taken together, our results highlight the use of ppTMS as a biomarker to track the course of cortical inhibitory dysfunction post-TBI. Moreover, the neuroprotective role of PNNs on PV+ cell function suggests antioxidant treatment or Otx2 enhancement as a promising prophylaxis for post-TBI symptoms.
Collapse
Affiliation(s)
- Tsung-Hsun Hsieh
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan
| | - Henry Hing Cheong Lee
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mustafa Qadir Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Takao K Hensch
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Rowe RK, Harrison JL, Ellis TW, Adelson PD, Lifshitz J. Midline (central) fluid percussion model of traumatic brain injury in pediatric and adolescent rats. J Neurosurg Pediatr 2018; 22:22-30. [PMID: 29676680 DOI: 10.3171/2018.1.peds17449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Experimental traumatic brain injury (TBI) models hold significant validity to the human condition, with each model replicating a subset of clinical features and symptoms. TBI is the leading cause of mortality and morbidity in children and teenagers; thus, it is critical to develop preclinical models of these ages to test emerging treatments. Midline fluid percussion injury (FPI) might best represent mild and diffuse clinical brain injury because of the acute behavioral deficits, the late onset of behavioral morbidities, and the absence of gross histopathology. In this study, the authors sought to adapt a midline FPI to postnatal day (PND) 17 and 35 rats. The authors hypothesized that scaling the craniectomy size based on skull dimensions would result in a reproducible injury comparable to the standard midline FPI in adult rats. METHODS PND17 and PND35 rat skulls were measured, and trephines were scaled based on skull size. Custom trephines were made. Rats arrived on PND10 and were randomly assigned to one of 3 cohorts: PND17, PND35, and 2 months old. Rats were subjected to midline FPI, and the acute injury was characterized. The right reflex was recorded, injury-induced apnea was measured, injury-induced seizure was noted, and the brains were immediately examined for hematoma. RESULTS The authors' hypothesis was supported; scaling the trephines based on skull size led to a reproducible injury in the PND17 and PND35 rats that was comparable to the injury in a standard 2-month-old adult rat. The midline FPI suppressed the righting reflex in both the PND17 and PND35 rats. The injury induced apnea in PND17 rats that lasted significantly longer than that in PND35 and 2-month-old rats. The injury also induced seizures in 73% of PND17 rats compared with 9% of PND35 rats and 0% of 2-month-old rats. There was also a significant relationship between the righting reflex time and presence of seizure. Both PND17 and PND35 rats had visible hematomas with an intact dura, indicative of diffuse injury comparable to the injury observed in 2-month-old rats. CONCLUSIONS With these procedures, it becomes possible to generate brain-injured juvenile rats (pediatric [PND17] and adolescent [PND35]) for studies of injury-induced pathophysiology and behavioral deficits, for which rational therapeutic interventions can be implemented.
Collapse
Affiliation(s)
- Rachel K Rowe
- 1Barrow Neurological Institute at Phoenix Children's Hospital.,3Phoenix Veteran Affairs Healthcare System, Phoenix
| | - Jordan L Harrison
- 1Barrow Neurological Institute at Phoenix Children's Hospital.,2Department of Child Health, University of Arizona College of Medicine, Phoenix.,4Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe; and
| | - Timothy W Ellis
- 5Midwestern University, School of Osteopathic Medicine, Glendale, Arizona
| | - P David Adelson
- 1Barrow Neurological Institute at Phoenix Children's Hospital.,2Department of Child Health, University of Arizona College of Medicine, Phoenix
| | - Jonathan Lifshitz
- 1Barrow Neurological Institute at Phoenix Children's Hospital.,4Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe; and
| |
Collapse
|
30
|
Rowe RK, Harrison JL, Zhang H, Bachstetter AD, Hesson DP, O'Hara BF, Greene MI, Lifshitz J. Novel TNF receptor-1 inhibitors identified as potential therapeutic candidates for traumatic brain injury. J Neuroinflammation 2018; 15:154. [PMID: 29789012 PMCID: PMC5964690 DOI: 10.1186/s12974-018-1200-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/13/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) begins with the application of mechanical force to the head or brain, which initiates systemic and cellular processes that are hallmarks of the disease. The pathological cascade of secondary injury processes, including inflammation, can exacerbate brain injury-induced morbidities and thus represents a plausible target for pharmaceutical therapies. We have pioneered research on post-traumatic sleep, identifying that injury-induced sleep lasting for 6 h in brain-injured mice coincides with increased cortical levels of inflammatory cytokines, including tumor necrosis factor (TNF). Here, we apply post-traumatic sleep as a physiological bio-indicator of inflammation. We hypothesized the efficacy of novel TNF receptor (TNF-R) inhibitors could be screened using post-traumatic sleep and that these novel compounds would improve functional recovery following diffuse TBI in the mouse. METHODS Three inhibitors of TNF-R activation were synthesized based on the structure of previously reported TNF CIAM inhibitor F002, which lodges into a defined TNFR1 cavity at the TNF-binding interface, and screened for in vitro efficacy of TNF pathway inhibition (IκB phosphorylation). Compounds were screened for in vivo efficacy in modulating post-traumatic sleep. Compounds were then tested for efficacy in improving functional recovery and verification of cellular mechanism. RESULTS Brain-injured mice treated with Compound 7 (C7) or SGT11 slept significantly less than those treated with vehicle, suggesting a therapeutic potential to target neuroinflammation. SGT11 restored cognitive, sensorimotor, and neurological function. C7 and SGT11 significantly decreased cortical inflammatory cytokines 3 h post-TBI. CONCLUSIONS Using sleep as a bio-indicator of TNF-R-dependent neuroinflammation, we identified C7 and SGT11 as potential therapeutic candidates for TBI.
Collapse
Affiliation(s)
- Rachel K Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA. .,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA. .,Phoenix Veteran Affairs Healthcare System, Phoenix, AZ, USA.
| | - Jordan L Harrison
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hongtao Zhang
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, Spinal Cord and Brain Injury Research Center, and Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - David P Hesson
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Mark I Greene
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.,Phoenix Veteran Affairs Healthcare System, Phoenix, AZ, USA.,Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
31
|
Carlson SW, Henchir J, Dixon CE. Lateral Fluid Percussion Injury Impairs Hippocampal Synaptic Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Receptor Complex Formation. Front Neurol 2017; 8:532. [PMID: 29067000 PMCID: PMC5641299 DOI: 10.3389/fneur.2017.00532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/25/2017] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) and the activation of secondary injury mechanisms have been linked to impaired cognitive function, which, as observed in TBI patients and animal models, can persist for months and years following the initial injury. Impairments in neurotransmission have been well documented in experimental models of TBI, but the mechanisms underlying this dysfunction are poorly understood. Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex facilitates vesicular docking and neurotransmitter release in the synaptic cleft. Published studies highlight a direct link between reduced SNARE complex formation and impairments in neurotransmitter release. While alterations in the SNARE complex have been described following severe focal TBI, it is not known if deficits in SNARE complex formation manifest in a model with reduced severity. We hypothesized that lateral fluid percussion injury (lFPI) reduces the abundance of SNARE proteins, impairs SNARE complex formation, and contributes to impaired neurobehavioral function. To this end, rats were subjected to lFPI or sham injury and tested for acute motor performance and cognitive function at 3 weeks post-injury. lFPI resulted in motor impairment between 1 and 5 days post-injury. Spatial acquisition and spatial memory, as assessed by the Morris water maze, were significantly impaired at 3 weeks after lFPI. To examine the effect of lFPI on synaptic SNARE complex formation in the injured hippocampus, a separate cohort of rats was generated and brains processed to evaluate hippocampal synaptosomal-enriched lysates at 1 week post-injury. lFPI resulted in a significant reduction in multiple monomeric SNARE proteins, including VAMP2, and α-synuclein, and SNARE complex abundance. The findings in this study are consistent with our previously published observations suggesting that impairments in hippocampal SNARE complex formation may contribute to neurobehavioral dysfunction associated with TBI.
Collapse
Affiliation(s)
- Shaun W Carlson
- Department of Neurosurgery, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,V.A. Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Jeremy Henchir
- Department of Neurosurgery, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,V.A. Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - C Edward Dixon
- Department of Neurosurgery, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,V.A. Pittsburgh Healthcare System, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Sandsmark DK, Elliott JE, Lim MM. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017; 40:3074241. [PMID: 28329120 PMCID: PMC6251652 DOI: 10.1093/sleep/zsx044] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
Sleep-wake disturbances following traumatic brain injury (TBI) are increasingly recognized as a serious consequence following injury and as a barrier to recovery. Injury-induced sleep-wake disturbances can persist for years, often impairing quality of life. Recently, there has been a nearly exponential increase in the number of primary research articles published on the pathophysiology and mechanisms underlying sleep-wake disturbances after TBI, both in animal models and in humans, including in the pediatric population. In this review, we summarize over 200 articles on the topic, most of which were identified objectively using reproducible online search terms in PubMed. Although these studies differ in terms of methodology and detailed outcomes; overall, recent research describes a common phenotype of excessive daytime sleepiness, nighttime sleep fragmentation, insomnia, and electroencephalography spectral changes after TBI. Given the heterogeneity of the human disease phenotype, rigorous translation of animal models to the human condition is critical to our understanding of the mechanisms and of the temporal course of sleep-wake disturbances after injury. Arguably, this is most effectively accomplished when animal and human studies are performed by the same or collaborating research programs. Given the number of symptoms associated with TBI that are intimately related to, or directly stem from sleep dysfunction, sleep-wake disorders represent an important area in which mechanistic-based therapies may substantially impact recovery after TBI.
Collapse
Affiliation(s)
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Miranda M Lim
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR; Department of Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
33
|
Modarres MH, Kuzma NN, Kretzmer T, Pack AI, Lim MM. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man. Neurobiol Sleep Circadian Rhythms 2017; 2:59-70. [PMID: 31236495 PMCID: PMC6575563 DOI: 10.1016/j.nbscr.2016.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). METHODS We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. RESULTS Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). CONCLUSION AND IMPLICATIONS Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.
Collapse
Affiliation(s)
- Mo H. Modarres
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Affairs Medical Center, Gainesville, FL, United States
| | - Nicholas N. Kuzma
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Department of Physics, Portland State University, Portland, OR, United States
| | - Tracy Kretzmer
- Department of Mental Health and Behavioral Sciences, James A. Haley Veterans’ Hospital, Tampa, FL, United States
| | - Allan I. Pack
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Miranda M. Lim
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Sleep Disorders Clinic, Division of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, OR, United States
- Departments of Medicine, Neurology and Behavioral Neuroscience, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
34
|
Yu W, Parakramaweera R, Teng S, Gowda M, Sharad Y, Thakker-Varia S, Alder J, Sesti F. Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. J Neurosci 2016; 36:11084-11096. [PMID: 27798188 PMCID: PMC5098843 DOI: 10.1523/jneurosci.2273-16.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 01/08/2023] Open
Abstract
The delayed rectifier potassium (K+) channel KCNB1 (Kv2.1), which conducts a major somatodendritic current in cortex and hippocampus, is known to undergo oxidation in the brain, but whether this can cause neurodegeneration and cognitive impairment is not known. Here, we used transgenic mice harboring human KCNB1 wild-type (Tg-WT) or a nonoxidable C73A mutant (Tg-C73A) in cortex and hippocampus to determine whether oxidized KCNB1 channels affect brain function. Animals were subjected to moderate traumatic brain injury (TBI), a condition characterized by extensive oxidative stress. Dasatinib, a Food and Drug Administration-approved inhibitor of Src tyrosine kinases, was used to impinge on the proapoptotic signaling pathway activated by oxidized KCNB1 channels. Thus, typical lesions of brain injury, namely, inflammation (astrocytosis), neurodegeneration, and cell death, were markedly reduced in Tg-C73A and dasatinib-treated non-Tg animals. Accordingly, Tg-C73A mice and non-Tg mice treated with dasatinib exhibited improved behavioral outcomes in motor (rotarod) and cognitive (Morris water maze) assays compared to controls. Moreover, the activity of Src kinases, along with oxidative stress, were significantly diminished in Tg-C73A brains. Together, these data demonstrate that oxidation of KCNB1 channels is a contributing mechanism to cellular and behavioral deficits in vertebrates and suggest a new therapeutic approach to TBI. SIGNIFICANCE STATEMENT This study provides the first experimental evidence that oxidation of a K+ channel constitutes a mechanism of neuronal and cognitive impairment in vertebrates. Specifically, the interaction of KCNB1 channels with reactive oxygen species plays a major role in the etiology of mouse model of traumatic brain injury (TBI), a condition associated with extensive oxidative stress. In addition, a Food and Drug Administration-approved drug ameliorates the outcome of TBI in mouse, by directly impinging on the toxic pathway activated in response to oxidation of the KCNB1 channel. These findings elucidate a basic mechanism of neurotoxicity in vertebrates and might lead to a new therapeutic approach to TBI in humans, which, despite significant efforts, is a condition that remains without effective pharmacological treatments.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Randika Parakramaweera
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Manasa Gowda
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Yashsavi Sharad
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
35
|
Rowe RK, Ziebell JM, Harrison JL, Law LM, Adelson PD, Lifshitz J. Aging with Traumatic Brain Injury: Effects of Age at Injury on Behavioral Outcome following Diffuse Brain Injury in Rats. Dev Neurosci 2016; 38:195-205. [PMID: 27449121 DOI: 10.1159/000446773] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
Development and aging are influenced by external factors with the potential to impact health throughout the life span. Traumatic brain injury (TBI) can initiate and sustain a lifetime of physical and mental health symptoms. Over 1.7 million TBIs occur annually in the USA alone, with epidemiology suggesting a higher incidence for young age groups. Additionally, increasing life spans mean more years to age with TBI. While there is ongoing research of experimental pediatric and adult TBI, few studies to date have incorporated animal models of pediatric, adolescent, and adult TBI to understand the role of age at injury across the life span. Here, we explore repeated behavioral performance between rats exposed to diffuse TBI at five different ages. Our aim was to follow neurological morbidities across the rodent life span with respect to age at injury. A single cohort of male Sprague-Dawley rats (n = 69) was received at postnatal day (PND) 10. Subgroups of this cohort (n = 11-12/group) were subjected to a single moderate midline fluid percussion injury at age PND 17, PND 35, 2 months, 4 months, or 6 months. A control group of naïve rats (n = 12) was assembled from this cohort. The entire cohort was assessed for motor function by beam walk at 1.5, 3, 5, and 7 months of age. Anxiety-like behavior was assessed with the open field test at 8 months of age. Cognitive performance was assessed using the novel object location task at 8, 9, and 10 months of age. Depression-like behavior was assessed using the forced swim test at 10 months of age. Age at injury and time since injury differentially influenced motor, cognitive, and affective behavioral outcomes. Motor and cognitive deficits occurred in rats injured at earlier developmental time points, but not in rats injured in adulthood. In contrast, rats injured during adulthood showed increased anxiety-like behavior compared to uninjured control rats. A single diffuse TBI did not result in chronic depression-like behaviors or changes in body weight among any groups. The interplay of age at injury and aging with an injury are translationally important factors that influence behavioral performance as a quality of life metric. More complete understanding of these factors can direct rehabilitative efforts and personalized medicine for TBI survivors.
Collapse
Affiliation(s)
- Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Ariz., USA
| | | | | | | | | | | |
Collapse
|
36
|
Modarres M, Kuzma NN, Kretzmer T, Pack AI, Lim MM. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man. Neurobiol Sleep Circadian Rhythms 2016; 1:S2451994416300025. [PMID: 28018987 PMCID: PMC5175467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). METHODS We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. RESULTS Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). CONCLUSION AND IMPLICATIONS Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.
Collapse
Affiliation(s)
- Mo Modarres
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Affairs Medical Center, Gainesville, FL
| | - Nicholas N. Kuzma
- Research Service, Veterans Affairs Portland Health Care System, Portland OR
- Department of Physics, Portland State University, Portland, OR
| | - Tracy Kretzmer
- Department of Mental Health and Behavioral Sciences, James A. Haley Veterans’ Hospital, Tampa, FL
| | - Allan I. Pack
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | - Miranda M. Lim
- Research Service, Veterans Affairs Portland Health Care System, Portland OR
- Sleep Disorders Clinic, Division of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland OR
- Departments of Medicine, Neurology and Behavioral Neuroscience, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
37
|
Qu W, Liu NK, Xie XMS, Li R, Xu XM. Automated monitoring of early neurobehavioral changes in mice following traumatic brain injury. Neural Regen Res 2016; 11:248-56. [PMID: 27073377 PMCID: PMC4810988 DOI: 10.4103/1673-5374.177732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury often causes a variety of behavioral and emotional impairments that can develop into chronic disorders. Therefore, there is a need to shift towards identifying early symptoms that can aid in the prediction of traumatic brain injury outcomes and behavioral endpoints in patients with traumatic brain injury after early interventions. In this study, we used the SmartCage system, an automated quantitative approach to assess behavior alterations in mice during an early phase of traumatic brain injury in their home cages. Female C57BL/6 adult mice were subjected to moderate controlled cortical impact (CCI) injury. The mice then received a battery of behavioral assessments including neurological score, locomotor activity, sleep/wake states, and anxiety-like behaviors on days 1, 2, and 7 after CCI. Histological analysis was performed on day 7 after the last assessment. Spontaneous activities on days 1 and 2 after injury were significantly decreased in the CCI group. The average percentage of sleep time spent in both dark and light cycles were significantly higher in the CCI group than in the sham group. For anxiety-like behaviors, the time spent in a light compartment and the number of transitions between the dark/light compartments were all significantly reduced in the CCI group than in the sham group. In addition, the mice suffering from CCI exhibited a preference of staying in the dark compartment of a dark/light cage. The CCI mice showed reduced neurological score and histological abnormalities, which are well correlated to the automated behavioral assessments. Our findings demonstrate that the automated SmartCage system provides sensitive and objective measures for early behavior changes in mice following traumatic brain injury.
Collapse
Affiliation(s)
- Wenrui Qu
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Goodman Campbell Brain and Spine, Indianapolis, IN, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Goodman Campbell Brain and Spine, Indianapolis, IN, USA
| | | | - Rui Li
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Goodman Campbell Brain and Spine, Indianapolis, IN, USA
| |
Collapse
|
38
|
Yaghouby F, Donohue KD, O'Hara BF, Sunderam S. Noninvasive dissection of mouse sleep using a piezoelectric motion sensor. J Neurosci Methods 2016; 259:90-100. [PMID: 26582569 PMCID: PMC4715949 DOI: 10.1016/j.jneumeth.2015.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/01/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Changes in autonomic control cause regular breathing during NREM sleep to fluctuate during REM. Piezoelectric cage-floor sensors have been used to successfully discriminate sleep and wake states in mice based on signal features related to respiration and other movements. This study presents a classifier for noninvasively classifying REM and NREM using a piezoelectric sensor. NEW METHOD Vigilance state was scored manually in 4-s epochs for 24-h EEG/EMG recordings in 20 mice. An unsupervised classifier clustered piezoelectric signal features quantifying movement and respiration into three states: one active; and two inactive with regular and irregular breathing, respectively. These states were hypothesized to correspond to Wake, NREM, and REM, respectively. States predicted by the classifier were compared against manual EEG/EMG scores to test this hypothesis. RESULTS Using only piezoelectric signal features, an unsupervised classifier distinguished Wake with high (89% sensitivity, 96% specificity) and REM with moderate (73% sensitivity, 75% specificity) accuracy, but NREM with poor sensitivity (51%) and high specificity (96%). The classifier sometimes confused light NREM sleep - characterized by irregular breathing and moderate delta EEG power - with REM. A supervised classifier improved sensitivities to 90, 81, and 67% and all specificities to over 90% for Wake, NREM, and REM, respectively. COMPARISON WITH EXISTING METHODS Unlike most actigraphic techniques, which only differentiate sleep from wake, the proposed piezoelectric method further dissects sleep based on breathing regularity into states strongly correlated with REM and NREM. CONCLUSIONS This approach could facilitate large-sample screening for genes influencing different sleep traits, besides drug studies or other manipulations.
Collapse
Affiliation(s)
- Farid Yaghouby
- Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave., Lexington, KY 40506-0108, United States
| | - Kevin D Donohue
- Electrical and Computer Engineering, University of Kentucky, Lexington, KY, United States
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Sridhar Sunderam
- Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave., Lexington, KY 40506-0108, United States.
| |
Collapse
|
39
|
Harrison JL, Rowe RK, Ellis TW, Yee NS, O’Hara BF, Adelson PD, Lifshitz J. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain Behav Immun 2015; 47:131-40. [PMID: 25585137 PMCID: PMC4468045 DOI: 10.1016/j.bbi.2015.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/22/2014] [Accepted: 01/01/2015] [Indexed: 02/09/2023] Open
Abstract
Traumatic brain injury (TBI) is induced by mechanical forces which initiate a cascade of secondary injury processes, including inflammation. Therapies which resolve the inflammatory response may promote neural repair without exacerbating the primary injury. Specific derivatives of omega-3 fatty acids loosely grouped as specialized pro-resolving lipid mediators (SPMs) and termed resolvins promote the active resolution of inflammation. In the current study, we investigate the effect of two resolvin molecules, RvE1 and AT-RvD1, on post-traumatic sleep and functional outcome following diffuse TBI through modulation of the inflammatory response. Adult, male C57BL/6 mice were injured using a midline fluid percussion injury (mFPI) model (6-10min righting reflex time for brain-injured mice). Experimental groups included mFPI administered RvE1 (100ng daily), AT-RvD1 (100ng daily), or vehicle (sterile saline) and counterbalanced with uninjured sham mice. Resolvins or saline were administered daily for seven consecutive days beginning 3days prior to TBI to evaluate proof-of-principle to improve outcome. Immediately following diffuse TBI, post-traumatic sleep was recorded for 24h post-injury. For days 1-7 post-injury, motor outcome was assessed by rotarod. Cognitive function was measured at 6days post-injury using novel object recognition (NOR). At 7days post-injury, microglial activation was quantified using immunohistochemistry for Iba-1. In the diffuse brain-injured mouse, AT-RvD1 treatment, but not RvE1, mitigated motor and cognitive deficits. RvE1 treatment significantly increased post-traumatic sleep in brain-injured mice compared to all other groups. RvE1 treated mice displayed a higher proportion of ramified microglia and lower proportion of activated rod microglia in the cortex compared to saline or AT-RvD1 treated brain-injured mice. Thus, RvE1 treatment modulated post-traumatic sleep and the inflammatory response to TBI, albeit independently of improvement in motor and cognitive outcome as seen in AT-RvD1-treated mice. This suggests AT-RvD1 may impart functional benefit through mechanisms other than resolution of inflammation alone.
Collapse
Affiliation(s)
- Jordan L. Harrison
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ
| | - Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
,Phoenix Veteran Affairs Healthcare System, Phoenix, AZ
| | - Timothy W. Ellis
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
,College of Osteopathic Medicine, Midwestern University, Glendale, AZ
| | - Nicole S. Yee
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Bruce F. O’Hara
- Department of Biology, University of Kentucky College of Arts and Sciences, Lexington, KY
,Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - P. David Adelson
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, USA; Phoenix Veteran Affairs Healthcare System, Phoenix, AZ, USA.
| |
Collapse
|
40
|
Abstract
Sleep is expressed as a circadian rhythm and the two phenomena exist in a poorly understood relationship. Light affects each, simultaneously influencing rhythm phase and rapidly inducing sleep. Light has long been known to modulate sleep, but recent discoveries support its use as an effective nocturnal stimulus for eliciting sleep in certain rodents. “Photosomnolence” is mediated by classical and ganglion cell photoreceptors and occurs despite the ongoing high levels of locomotion at the time of stimulus onset. Brief photic stimuli trigger rapid locomotor suppression, sleep, and a large drop in core body temperature (Tc; Phase 1), followed by a relatively fixed duration interval of sleep (Phase 2) and recovery (Phase 3) to pre-sleep activity levels. Additional light can lengthen Phase 2. Potential retinal pathways through which the sleep system might be light-activated are described and the potential roles of orexin (hypocretin) and melanin-concentrating hormone are discussed. The visual input route is a practical avenue to follow in pursuit of the neural circuitry and mechanisms governing sleep and arousal in small nocturnal mammals and the organizational principles may be similar in diurnal humans. Photosomnolence studies are likely to be particularly advantageous because the timing of sleep is largely under experimenter control. Sleep can now be effectively studied using uncomplicated, nonintrusive methods with behavior evaluation software tools; surgery for EEG electrode placement is avoidable. The research protocol for light-induced sleep is easily implemented and useful for assessing the effects of experimental manipulations on the sleep induction pathway. Moreover, the experimental designs and associated results benefit from a substantial amount of existing neuroanatomical and pharmacological literature that provides a solid framework guiding the conduct and interpretation of future investigations.
Collapse
|
41
|
Skopin MD, Kabadi SV, Viechweg SS, Mong JA, Faden AI. Chronic decrease in wakefulness and disruption of sleep-wake behavior after experimental traumatic brain injury. J Neurotrauma 2014; 32:289-96. [PMID: 25242371 DOI: 10.1089/neu.2014.3664] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) can cause sleep-wake disturbances and excessive daytime sleepiness. The pathobiology of sleep disorders in TBI, however, is not well understood, and animal models have been underused in studying such changes and potential underlying mechanisms. We used the rat lateral fluid percussion (LFP) model to analyze sleep-wake patterns as a function of time after injury. Rapid-eye movement (REM) sleep, non-REM (NREM) sleep, and wake bouts during light and dark phases were measured with electroencephalography and electromyography at an early as well as chronic time points after LFP. Moderate TBI caused disturbances in the ability to maintain consolidated wake bouts during the active phase and chronic loss of wakefulness. Further, TBI resulted in cognitive impairments and depressive-like symptoms, and reduced the number of orexin-A-positive neurons in the lateral hypothalamus.
Collapse
Affiliation(s)
- Mark D Skopin
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine , Baltimore, Maryland
| | | | | | | | | |
Collapse
|
42
|
Harrison JL, Rowe RK, O’Hara BF, Adelson PD, Lifshitz J. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse. Exp Brain Res 2014; 232:2709-19. [DOI: 10.1007/s00221-014-3948-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/03/2014] [Indexed: 01/28/2023]
|
43
|
Rowe RK, Harrison JL, O'Hara BF, Lifshitz J. Diffuse brain injury does not affect chronic sleep patterns in the mouse. Brain Inj 2014; 28:504-10. [PMID: 24702469 DOI: 10.3109/02699052.2014.888768] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE To test if the current model of diffuse brain injury produces chronic sleep disturbances similar to those reported by TBI patients. METHODS AND PROCEDURES Adult male C57BL/6 mice were subjected to moderate midline fluid percussion injury (n = 7; 1.4 atm; 6-10 minutes righting reflex time) or sham injury (n = 5). Sleep-wake activity was measured post-injury using a non-invasive, piezoelectric cage system. Chronic sleep patterns were analysed weekly for increases or decreases in percentage sleep (hypersomnia or insomnia) and changes in bout length (fragmentation). MAIN OUTCOMES AND RESULTS During the first week after diffuse TBI, brain-injured mice exhibited increased mean percentage sleep and mean bout length compared to sham-injured mice. Further analysis indicated the increase in mean percentage sleep occurred during the dark cycle. Injury-induced changes in sleep, however, did not extend beyond the first week post-injury and were not present in weeks 2-5 post-injury. CONCLUSIONS Previously, it has been shown that the midline fluid percussion model used in this study immediately increased post-traumatic sleep. The current study extended the timeline of investigation to show that sleep disturbances extended into the first week post-injury, but did not develop into chronic sleep disturbances. However, the clinical prevalence of TBI-related sleep-wake disturbances warrants further experimental investigation.
Collapse
Affiliation(s)
- Rachel K Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix, AZ , USA
| | | | | | | |
Collapse
|