1
|
Choi H, Rocha GC, Kim SW. Effects of dietary supplementation of myristic acid on jejunal mucosa-associated microbiota, mucosal immunity, and growth performance of nursery pigs. Anim Sci J 2025; 96:e70027. [PMID: 39777830 PMCID: PMC11707569 DOI: 10.1111/asj.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The objective of this study was to investigate the effects of myristic acid on jejunal mucosal microbiota, mucosal immunity, and growth performance of nursery pigs. Thirty-six pigs (6.6 ± 0.4 kg of body weight) were assigned to three treatments (n = 12) for 35 d in three phases: (NC) basal diet; (PC) NC + bacitracin; and (MA) NC + myristic acid compound. Pigs were euthanized to collect jejunal mucosa, jejunal tissues, and ileal digesta. The PC increased (p < 0.05) the relative abundance (RA) of Lactobacillus spp., and Bifidobacterium boum than the NC group. The MA increased (p < 0.05) RA of Bifidobacterium dentium and Megasphaera spp. than the NC group. The PC tended to decrease IL-8 (p = 0.053) and protein carbonyl (p = 0.075) whereas IgG (p = 0.051) and IL-8 (p = 0.090) in jejunal mucosa were decreased by the MA. The PC increased (p < 0.05) the villus height to crypt depth ratio than the NC group. Both bacitracin and myristic acid improved the intestinal health and growth performance of nursery pigs. Effects of bacitracin were rather immediate whereas the effects of myristic acid were obtained after a 3-week feeding.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| | | | - Sung Woo Kim
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
2
|
Aminullah N, Mostamand A, Zahir A, Mahaq O, Azizi MN. Phytogenic feed additives as alternatives to antibiotics in poultry production: A review. Vet World 2025; 18:141-154. [PMID: 40041511 PMCID: PMC11873379 DOI: 10.14202/vetworld.2025.141-154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/19/2024] [Indexed: 03/06/2025] Open
Abstract
The overuse of antimicrobials in food-producing animals, particularly poultry, has led to growing concerns about multidrug microbial resistance, posing significant risks to both animal and human health. Subtherapeutic doses of antibiotics have traditionally been used to enhance growth and improve economic efficiency in poultry farming. However, these practices have facilitated the emergence of resistant microbial strains, threatening global health security and prompting a search for sustainable alternatives. This review highlights the significance of phytogenic as feed additives (PFAs) as promising substitutes for antibiotic as feed additives (AFAs) in poultry production. PFAs, derived from plant-based compounds, exhibit multiple beneficial properties, including antimicrobial, antioxidative, anti-inflammatory, and immune-modulatory effects. Moreover, they offer the potential to produce high-quality organic poultry products while reducing the likelihood of microbial resistance. Despite these advantages, inconsistent results among studies underscore the importance of standardized approaches to maximize their efficacy. This review aims to evaluate the current status of antibiotic use in poultry farming globally, explore the properties and mechanisms of PFAs, and assess their potential as viable alternatives to antibiotics. By consolidating available knowledge, this review provides insights into the benefits and challenges associated with PFAs, offering guidance for future research and practical applications in sustainable poultry production.
Collapse
Affiliation(s)
- Noor Aminullah
- Department of Pri-Clinic, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Allauddin Mostamand
- Department of Animal Husbandry, Faculty of Animal Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Ahmadullah Zahir
- Department of Food Science and Technology, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Obaidullah Mahaq
- Department of Animal Nutrition and Production, Faculty of Agriculture, Afghan International Islamic University, Kabul 1004, Afghanistan
| | - Mohammad Naeem Azizi
- Department of Pri-Clinic, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| |
Collapse
|
3
|
Schäfer L, Herrero-Encinas J, Rühl M, Zorn H, Most E, Eder K, Ringseis R. Research note: Effect of a biotechnologically produced Pleurotus sapidus mycelium on expression of genes involved in protein synthesis and degradation in breast muscle of broilers. Poult Sci 2024; 103:104450. [PMID: 39504827 PMCID: PMC11570723 DOI: 10.1016/j.psj.2024.104450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Recently, feeding a fungal mycelium from Pleurotus sapidus was found to reduce relative breast muscle weight of broilers. The present study tested the hypothesis that dietary inclusion of P. sapidus mycelium modulates the expression of genes involved in protein anabolic and protein catabolic pathways in breast muscle of broilers. The study included 72 male, 1-day-old Cobb 500 broilers which were randomly assigned to three groups fed three different diets containing either 0 (PSA-0), 25 (PSA-25) and 50 (PSA-50) g/kg diet P. sapidus mycelium in a three-phase feeding system for 35 days. Within the somatropic axis, the mRNA level of GHR was higher and that of IGF1R was lower in group PSA-25 than in group PSA-0 (P < 0.05). Within the mTOR signaling pathway, the mRNA level of S6K1 was higher in group PSA-25 than in group PSA-0 (P < 0.05). Within muscle growth-related genes, the mRNA level of MYOG was lower in groups PSA-25 and PSA-50 than in group PSA-0 (P < 0.05). The relative phosphorylation of proteins involved in protein anabolic pathways (S6K1, RPS6, eIF2a, AKT) did not differ across the three groups. The mRNA of most genes involved in molecular pathways of protein degradation and inhibition of protein synthesis, such as the GCN/eIF2a pathway, the ubiquitin-proteasome pathway, and the autophagy-lysosomal pathway, showed no differences across the three groups. Only the mRNA level of ATG9A was higher in group PSA-25 compared to group PSA-0 (P < 0.05). These observations suggest that a modulation of these signaling pathways is unlikely to explain the reduced relative breast muscle weight in broilers. Nevertheless, future studies are necessary to exclude an effect of feeding P. sapidus mycelium on other less prominent pathways affecting skeletal muscle mass.
Collapse
Affiliation(s)
- Lea Schäfer
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Javier Herrero-Encinas
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; ETS Ingenieria Agronómica, Alimentaria y de Biosistemas, Departamento de Pruducción Agraria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
4
|
İlhan Z, Zengin M, Bacaksız OK, Demir E, Ekin İH, Azman MA. Hypericum perforatum L. (St. John's Wort) in broilers diet improve growth performance, intestinal microflora and immunity. Poult Sci 2024; 103:104419. [PMID: 39427421 PMCID: PMC11536019 DOI: 10.1016/j.psj.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Hypericum perforatum L. (St. John's Wort) extract (HPE), powdered H. perforatum (PHP), and selenium (Se) on growth, intestinal flora, and immunity of broiler chicks were investigated. In total, 504 one-day-old broiler chicks were randomly allocated into 6 dietary treatments, which were then denoted as negative control (NC) group (basal diet), containing organic Se 0.2% in the starter and grower period as positive control (PC), containing 1% PHP in the starter and grower period, and HPE I, HPE II, and HPE III groups containing respectively, 1.5, 3.0, and 4.5 mL / kg HPE in the starter and grower period. The results on performance showed that a significant (P < 0.05) higher body weight of chickens in the HPE III group was observed when compared with that of the NC and PHP groups. Although average daily weight gain and feed intake are significant in the HPE III group, the difference in terms of total feed conversion rate was insignificant (P > 0.05). The liver weights in PC and HPE III were lower compared to HPE I (P < 0.05). The difference in total lactic acid bacteria count (TLABC) between the NC group and all HPE groups was found to be significant (P ˂ 0.05), in addition to TLABC was higher in the HPE III group than other groups (P = 0.001). The highest serum antibody titers to the Newcastle disease vaccine were determined in the HPE III group on the 24th, 35th, and 42nd days of age. IL-1B and IL-6 were found to be insignificant between the groups in chickens (P ˃ 0.05). TNF-α in the HPE III group was greatly increased than the other groups and significant compared to the NC and HPE I groups (P = 0.018). In conclusion, 4.5 mL / kg HPE, which has a low production cost and is easy to extract and without causing environmental problems, varied significantly in their impact on growth performance, intestinal microflora, and immunity of growing broilers.
Collapse
Affiliation(s)
- Ziya İlhan
- Faculty of Veterinary Medicine, Department of Microbiology, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye.
| | - Muhittin Zengin
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye; Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Görükle Campus, Bursa Uludağ University, Nilüfer, Bursa 16059, Türkiye
| | - Oğuz Koray Bacaksız
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| | - Ergün Demir
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| | - İsmail Hakkı Ekin
- Faculty of Veterinary Medicine, Department of Microbiology, Zeve Campus, Van Yüzüncu Yıl University, Van 65040, Türkiye
| | - Mehmet Ali Azman
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| |
Collapse
|
5
|
Schäfer L, Grundmann SM, Rühl M, Zorn H, Seel W, Simon MC, Schuchardt S, Most E, Ringseis R, Eder K. Effects of a biotechnologically produced Pleurotus sapidus mycelium on gut microbiome, liver transcriptome and plasma metabolome of broilers. Poult Sci 2024; 103:103975. [PMID: 38945001 PMCID: PMC11261454 DOI: 10.1016/j.psj.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024] Open
Abstract
Submerged cultivation using low-value agro-industrial side streams allows large-scale and efficient production of fungal mycelia, which has a high nutritional value. As the dietary properties of fungal mycelia in poultry are largely unknown, the present study aimed to investigate the effect of feeding a Pleurotus sapidus (PSA) mycelium as a feed supplement on growth performance, composition of the cecal microbiota and several physiological traits including gut integrity, nutrient digestibility, liver lipids, liver transcriptome and plasma metabolome in broilers. 72 males, 1-day-old Cobb 500 broilers were randomly assigned to 3 different groups and fed 3 different adequate diets containing either 0% (PSA-0), 2.5% (PSA-2.5) and 5% (PSA-5.0) P. sapidus mycelium in a 3-phase feeding system for 35 d. Each group consisted of 6 cages (replicates) with 4 broilers/cage. Body weight gain, feed intake and feed:gain ratio and apparent ileal digestibility of crude protein, ether extract and amino acids were not different between groups. Metagenomic analysis of the cecal microbiota revealed no differences between groups, except that one α-diversity metric (Shannon index) and the abundance of 2 low-abundance bacterial taxa (Clostridia UCG 014, Eubacteriales) differed between groups (P < 0.05). Concentrations of total and individual short-chain fatty acids in the cecal digesta and concentrations of plasma lipopolysaccharide and mRNA levels of proinflammatory genes, tight-junction proteins, and mucins in the cecum mucosa did not differ between groups. None of the plasma metabolites analyzed using targeted-metabolomics differed across the groups. Hepatic transcript profiling revealed a total of 144 transcripts to be differentially expressed between group PSA-5.0 and group PSA-0 but none of these genes was regulated greater 2-fold. Considering either the lack of effects or the very weak effects of feeding the P. sapidus mycelium in the broilers it can be concluded that inclusion of a sustainably produced fungal mycelium in broiler diets at the expense of other feed components has no negative consequences on broilers´ performance and metabolism.
Collapse
Affiliation(s)
- Lea Schäfer
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah M Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Waldemar Seel
- University of Bonn, Nutrition and Microbiota, Institute of Nutrition and Food Sciences, Bonn, Germany
| | - Marie-Christine Simon
- University of Bonn, Nutrition and Microbiota, Institute of Nutrition and Food Sciences, Bonn, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
6
|
Jimoh OA, Ayodele AD, Ojo OA, Okin-Aminu HO, Olarotimi OJ. Effects of turmeric, ginger, cinnamon, and garlic essential oils on HSP70, NFκB, oxidative DNA damage, inflammatory cytokines, and oxidative markers in broiler chickens. Transl Anim Sci 2024; 8:txae127. [PMID: 39346697 PMCID: PMC11439152 DOI: 10.1093/tas/txae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/17/2024] [Indexed: 10/01/2024] Open
Abstract
In recent years, the use of natural bioactive compounds derived from spices has garnered significant interest in poultry production due to their potential to modulate immune responses and oxidative stress. An investigation into the roles of spices essential oils (EO) on inflammatory cytokines, HSP70 and oxidative markers of broiler chickens was conducted in this study. Four spices consisting of garlic, ginger, turmeric, and cinnamon were processed to obtain their respective EO. Two hundred 1-d-old arbo acre broilers were allotted to 5 treatments consisting of B1 (control), B2 (garlic EO), B3 (ginger EO), B4 (Turmeric EO), and B5 (cinnamon EO), with EOs administered to drinking water at 30% (v/v) in a 49-d trial. Blood was sampled for assessment of hematological parameters, and serum obtained were assayed for inflammatory cytokines, antioxidant activities, nuclear factor kappa B (NFκB), 8-hydroxydeoxyguanosine (8-OHdG), and heat shock protein 70 (HSP70) levels using standard procedures. Results obtained revealed that cinnamon EO enhanced erythrocytic indices, leukocyte profile, catalase, glutathione peroxidase and interleukin 10, lowers interleukin 1 beta (IL-1β) and interferon gamma (IFN-γ), enhanced HSP70 and higher 8-OHdG levels in chicken. Garlic EO enhanced monocytes and superoxide dismutase, while reduced IFN-γ and HSP70, but increased IL-1β and tumor necrosis factor alpha (TNF-α) NFκB in broiler chickens. Ginger EO also enhanced erythrocytic indices, total antioxidant activity, lowered IFN-γ and lipid peroxidation, while turmeric EO enhanced total antioxidant activity, catalase and lowered IFN-γ and increased 8ohdg in broiler chickens. In conclusion, this study revealed that ginger and turmeric EO were more beneficial in preventing oxidative DNA damage, cinnamon EO enhanced serum oxidative status and lowered pro-inflammatory cytokines, while garlic EO reduced HSP70 in broiler chickens.
Collapse
Affiliation(s)
- Olatunji Abubakar Jimoh
- Agricultural Technology Department, The Federal Polytechnic Ado-Ekiti, Ekiti State, Ado Ekiti, Nigeria
| | - Ayoola Doris Ayodele
- Department of Animal Management, Doncaster College and University Centre, Doncaster, UK
| | - Olayinka Abosede Ojo
- Department of Animal Production, Fisheries and Aquaculture, Kwara State University Molete, Kwara State, Ilorin, Nigeria
| | | | - Olumuyiwa Joseph Olarotimi
- Department of Animal Science, Adekunle Ajasin University Akungba Akoko, Ondo State, Akungba Akoko, Nigeria
| |
Collapse
|
7
|
Luise D, Correa F, Negrini C, Virdis S, Mazzoni M, Dalcanale S, Trevisi P. Blend of natural and natural identical essential oil compounds as a strategy to improve the gut health of weaning pigs. Animal 2023; 17:101031. [PMID: 38035660 DOI: 10.1016/j.animal.2023.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Weaning is one of the most critical phases in pig's life, often leading to postweaning diarrhoea (PWD). Zinc oxide (ZnO), at pharmacological doses, has been largely used to prevent PWD; however, due to antimicrobial co-resistant and environmental pollution issues, the EU banned its use in June 2022. Natural or natural identical components of essential oils and their mixture with organic acids are possible alternatives studied for their antimicrobial, anti-inflammatory and antioxidant abilities. This study aimed to evaluate the effect of two blends of natural or natural identical components of essential oils and organic acids compared to ZnO on health, performance, and gut health of weaned pigs. At weaning (d0), 96 piglets (7 058 ± 895 g) were assigned to one of four treatments balanced for BW and litter: CO (control treatment), ZnO (2 400 mg/kg ZnO from d0 to d14); Blend1 (cinnamaldehyde, ajowan and clove essential oils, 1 500 mg/kg feed); Blend2 (cinnamaldehyde, eugenol and short- and medium-chain fatty acids, 2 000 mg/kg feed). Pigs were weighed weekly until d35. Faeces were collected at d13 and d35 for microbiota (v3-v4 regions of the 16 s rRNA gene) and Escherichia coli (E. coli) count analysis. At d14 and d35, eight pigs/treatment were slaughtered; pH was recorded on intestinal contents and jejunal samples were collected for morphological and gene expression analysis. From d7-d14, the Blend2 had a lower average daily gain (ADG) than CO and ZnO (P < 0.05). ZnO and Blend1 never differed in ADG and feed intake. At d14, ZnO had a lower caecum pH than all other treatments. The CO treatment had a higher abundance of haemolytic E. coli than Blend1 (P = 0.01). At d13, the ZnO treatment had a lower alpha diversity (P < 0.01) and a different microbial beta diversity (P < 0.001) compared to the other treatments. At d13, the ZnO treatment was characterised by a higher abundance of Prevotellaceae_NK3B31_group (Linear Discriminant Analysis (LDA) score = 4.5, P = 0.011), Parabacteroides (LDA score = 4.5, P adj. = 0.005), the CO was characterised by Oscillospiraceae UCG-005 (LDA score = 4.3, P adj. = 0.005), Oscillospiraceae NK4A214_group (LDA score = 4.2, P adj. = 0.02), the Blend2 was characterised by Megasphaera (LDA score = 4.1, P adj. = 0.045), and Ruminococcus (LDA score = 3.9, P adj. = 0.015) and the Blend1 was characterised by Christensenellaceae_R-7_group (LDA score = 4.6, P adj. < 0.001) and Treponema (LDA score = 4.5, P adj. < 0.001). In conclusion, Blend1 allowed to maintain the gut health of postweaning piglets through modulation of the gut microbiome, the reduction of haemolytic E. coli while Blend2 did not help piglets.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - C Negrini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - S Virdis
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - M Mazzoni
- Department of Veterinary Science, University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - S Dalcanale
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
8
|
Aderemi FA, Alabi OM. Turmeric ( Curcuma longa): an alternative to antibiotics in poultry nutrition. Transl Anim Sci 2023; 7:txad133. [PMID: 38111601 PMCID: PMC10727472 DOI: 10.1093/tas/txad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Turmeric, a common spice in many countries has been used for centuries in traditional medicine for its antimicrobial properties. Recent research has shown that turmeric can be a viable alternative to antibiotics in poultry production. Antibiotic overuse in poultry has led to the development of antibiotic-resistant bacteria, which poses a threat to both animal and human health. Turmeric contains curcumin, a compound that has been shown to have antimicrobial activity against a wide range of bacteria, including those resistant to antibiotics. In addition, turmeric has anti-inflammatory and immunomodulatory properties, which can help boost the immune system of poultry and reduce the need for antibiotics. Studies have shown that turmeric can improve growth performance, and gut health, and reduce the incidence of disease in poultry. Therefore, the use of turmeric as an alternative to antibiotics in poultry production has the potential to not only improve animal health and welfare but also contribute to the fight against antibiotic resistance. This review aims to provide an overview of the recent knowledge on the use of these plant extracts in poultry feeds as feed additives and their effects on poultry performance.
Collapse
Affiliation(s)
- Foluke Abimbola Aderemi
- Animal Science and Fisheries Management Unit, Agriculture Programme, Bowen University, Iwo, Nigeria
| | - Olufemi Mobolaji Alabi
- Animal Science and Fisheries Management Unit, Agriculture Programme, Bowen University, Iwo, Nigeria
| |
Collapse
|
9
|
Kikusato M, Toyomizu M. Mechanisms underlying the Effects of Heat Stress on Intestinal Integrity, Inflammation, and Microbiota in Chickens. J Poult Sci 2023; 60:2023021. [PMID: 37560151 PMCID: PMC10406517 DOI: 10.2141/jpsa.2023021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Poultry meat and egg production benefits from a smaller carbon footprint, as well as feed and water consumption, per unit of product, than other protein sources. Therefore, maintaining a sustainable production of poultry meat is important to meet the increasing global demand for this staple. Heat stress experienced during the summer season or in tropical/subtropical areas negatively affects the productivity and health of chickens. Crucially, its impact is predicted to grow with the acceleration of global warming. Heat stress affects the physiology, metabolism, and immune response of chickens, causing electrolyte imbalance, oxidative stress, endocrine disorders, inflammation, and immunosuppression. These changes do not occur independently, pointing to a systemic mechanism. Recently, intestinal homeostasis has been identified as an important contributor to nutrient absorption and the progression of systemic inflammation. Its mechanism of action is thought to involve neuroendocrine signaling, antioxidant response, the presence of oxidants in the diet, and microbiota composition. The present review focuses on the effect of heat stress on intestinal dysfunction in chickens and the underlying causative factors. Understanding these mechanisms will direct the design of strategies to mitigate the negative effect of heat stress, while benefiting both animal health and sustainable poultry production.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science,
Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science,
Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
Adams JRG, Mehat J, La Ragione R, Behboudi S. Preventing bacterial disease in poultry in the post-antibiotic era: a case for innate immunity modulation as an alternative to antibiotic use. Front Immunol 2023; 14:1205869. [PMID: 37469519 PMCID: PMC10352996 DOI: 10.3389/fimmu.2023.1205869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
The widespread use of antibiotics in the poultry industry has led to the emergence of antibiotic-resistant bacteria, which pose a significant health risk to humans and animals. These public health concerns, which have led to legislation limiting antibiotic use in animals, drive the need to find alternative strategies for controlling and treating bacterial infections. Modulation of the avian innate immune system using immunostimulatory compounds provides a promising solution to enhance poultry immune responses to a broad range of bacterial infections without the risk of generating antibiotic resistance. An array of immunomodulatory compounds have been investigated for their impact on poultry performance and immune responses. However, further research is required to identify compounds capable of controlling bacterial infections without detrimentally affecting bird performance. It is also crucial to determine the safety and effectiveness of these compounds in conjunction with poultry vaccines. This review provides an overview of the various immune modulators known to enhance innate immunity against avian bacterial pathogens in chickens, and describes the mechanisms involved.
Collapse
Affiliation(s)
- James R. G. Adams
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Avian Immunology, The Pirbright Institute, Woking, United Kingdom
| | - Jai Mehat
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
11
|
Griela E, Mountzouris KC. Nutrigenomic profiling of reduced specification diets and phytogenic inclusion effects on critical toll-like receptor signaling, mitogen-activated protein kinase-apoptosis, and PI3K-Akt-mTOR gene components along the broiler gut. Poult Sci 2023; 102:102675. [PMID: 37088046 PMCID: PMC10141502 DOI: 10.1016/j.psj.2023.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
The effects of concurrent reduction of dietary metabolizable energy (ME) and crude protein (CP) levels combined or not with the dietary inclusion of a phytogenic feed additive (PFA) were studied using a nutrigenomics approach. In particular, the expression of 26 critical genes relevant for inflammation control (TLR pathway), cellular apoptosis (MAPK pathway) cell growth and nutrient metabolism (PI3K-Akt-mTOR pathway) was profiled along the broiler intestine. Two dietary types (L and H) differing in metabolizable energy and crude protein levels (L: 95% and H: 100% of optimal Cobb 500 recommendations for ME and CP requirements) supplemented or not with PFA (- or +) and their interactions (L-, L+, H-, H+) were evaluated. There were only 3 total interactions (mTOR, IL8, and HRAS P < 0.05) between diet type and PFA inclusion indicating limited concurrent effects. Diet type, L upregulated genes related with inflammation mainly in the jejunum, ileum, and cecum (P < 0.05) and MAPK pathway in the ileum and cecum (P < 0.05). Moreover, diet type L negatively affected the expression of genes related to PI3K-Akt-mTOR pathway mainly in duodenum and cecum (P < 0.05). On the other hand, PFA inclusion downregulated (P < 0.05) genes related with TLR signaling pathway (TLR2B, MyD88, TLR3, IL8, LITAF) along the intestine and MAPK pathway genes (APO1, FOS) in jejunum (P < 0.05). Finally, PFA supplementation regulated nutrient sensing and metabolism in the cecum in a manner perceived as beneficial for growth. In conclusion, the study results highlight that the reduced ME and CP specifications, especially in the absence of PFA, regulate inflammation, apoptosis and nutrient metabolism processes at homeostatic control levels that hinder maximizing the availability of dietary energy and nutrients for growth purposes. Inclusion of PFA helped to adjust the respective homeostatic responses and control to levels supporting broiler performance, especially at reduced specification diets.
Collapse
Affiliation(s)
- Eirini Griela
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantinos C Mountzouris
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
12
|
Dos Santos IC, Barbosa LN, Grossi GD, de Paula Ferreira LR, Ono JM, Martins LA, Alberton LR, Gonçalves DD. Presence of Staphylococcus spp. carriers of the mecA gene in the nasal cavity of piglets in the nursery phase. Res Vet Sci 2023; 155:51-55. [PMID: 36634542 DOI: 10.1016/j.rvsc.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
The presence of Staphylococcus spp. resistant to methicillin in the nasal cavity of swine has been previously reported. Considering the possible occurrence of bacterial resistance and presence of resistance genes in intensive swine breeding and the known transmissibility and dispersion potential of such genes, this study aimed to investigate the prevalence of resistance to different antibiotics and the presence of the mecA resistance gene in Staphylococcus spp. from piglets recently housed in a nursery. For this, 60 nasal swabs were collected from piglets at the time of their housing in the nursery, and then Staphylococcus spp. were isolated and identified in coagulase-positive (CoPS) and coagulase-negative (CoNS) isolates. These isolates were subjected to the disk-diffusion test to evaluate the bacterial resistance profile and then subjected to molecular identification of Staphylococcus aureus and analyses of the mecA gene through polymerase chain reaction. Of the 60 samples collected, 60 Staphylococcus spp. were isolated, of which 38 (63.33%) were classified as CoNS and 22 (36.67%) as CoPS. Of these, ten (45.45%) were identified as Staphylococcus aureus. The resistance profile of these isolates showed high resistance to different antibiotics, with 100% of the isolates resistant to chloramphenicol, clindamycin, and erythromycin, 98.33% resistant to doxycycline, 95% resistant to oxacillin, and 85% resistant to cefoxitin. Regarding the mecA gene, 27 (45%) samples were positive for the presence of this gene, and three (11.11%) were phenotypically sensitive to oxacillin and cefoxitin. This finding highlights the importance of researching the phenotypic profile of resistance to different antimicrobials and resistance genes in the different phases of pig rearing to identify the real risk of these isolates from a One Health perspective. The present study revealed the presence of samples resistant to different antibiotics in recently weaned production animal that had not been markedly exposed to antimicrobials as growth promoters or even as prophylactics. This information highlights the need for more research on the possible sharing of bacteria between sows and piglets, the environmental pressure within production environments, and the exposure of handlers during their transport, especially considering the community, hospital, and political importance of the presence of circulating resistant strains.
Collapse
Affiliation(s)
- Isabela Carvalho Dos Santos
- Bolsista PROSUP/CAPES - Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Lidiane Nunes Barbosa
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Giovana Dantas Grossi
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | | | - Jacqueline Midori Ono
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Lisiane Almeida Martins
- Faculdade de Ensino Superior Santa Bárbara (FAESB), Rua Onze de Agosto, 2900, Jardim Lucila, 18277-000 Tatuí, SP, Brazil
| | - Luiz Rômulo Alberton
- Propig soluções Ltda, Estrada Linha Andreis - Cerro Azul, SN, Zona Rural - Bom Sucesso do Sul, PR, Brazil
| | - Daniela Dib Gonçalves
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil.
| |
Collapse
|
13
|
Dietary Corn Silk ( Stigma maydis) Extract Supplementation Modulate Production Performance, Immune Response and Redox Balance in Corticosterone-Induced Oxidative Stress Broilers. Animals (Basel) 2023; 13:ani13030441. [PMID: 36766330 PMCID: PMC9913160 DOI: 10.3390/ani13030441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Immunosuppression is a serious consequence of oxidative stress exposure that negatively affects the productivity and profitability of birds, as well as their well-being. Thus, the present investigation was designed to evaluate the potential of corn silk extract (CSE) supplementation to overcome the negative impacts of oxidative stress induced by corticosterone administration (CORT) in broiler chickens. A total of 280 one day old Cobb 500 male chicks were divided into four groups in 2 × 2 factorial arrangements. The experimental groups included CSE supplementation (0 or 500 mg/kg diet, from 20 to 35 days of age) and CORT administration (0 or 25 mg/kg diet, from 22 to 35 days of age) as independent factors. At the end of week five of age, production performance parameters were measured. The humoral and cell-mediated immune response parameters, redox status, and stress markers were determined. Data revealed deleterious effects of CORT administration on the broilers' body weight, body weight gain, and feed conversion ratio. Moreover, an exponential increase in stress marker levels, in addition to immunosuppression and redox imbalance, were associated with CORT administration. However, CSE supplementation, with its high total phenols content, partially alleviated the negative impacts of CORT administration, as shown by a significant improvement in immune response parameters and antioxidant activity, as well as a reduction in stress marker levels. Furthermore, CSE supplementation to non-stressed birds even significantly improved total antioxidant activity, total white blood cells (TWBCs) count, T-lymphocyte stimulating index, and wattle thickness. It can be concluded that, under stress conditions in commercial broiler farms, dietary CSE supplementation can strongly be recommended to modulate the negative impacts of stress. Therefore, CSE can be used as an effective immunomodulator and antioxidant agent to increase commercial broiler farm productivity and profitability.
Collapse
|
14
|
Weinert-Nelson JR, Ely DG, Flythe MD, Hamilton TA, May JB, Ferrell JL, Hamilton MC, LeeAnn Jacks W, Davis BE. Red clover supplementation modifies rumen fermentation and promotes feed efficiency in ram lambs. J Anim Sci 2023; 101:skad036. [PMID: 36751104 PMCID: PMC9994598 DOI: 10.1093/jas/skad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
Red clover produces isoflavones, including biochanin A, which have been shown to have microbiological effects on the rumen while also promoting growth in beef cattle. The objective was to determine if supplementation of biochanin A via red clover hay would produce similar effects on the rumen microbiota and improve growth performance of lambs. Twenty-four individually-housed Polypay ram lambs (initial age: 114 ± 1 d; initial weight: 38.1 ± 0.59 kg) were randomly assigned to one of three experimental diets (85:15 concentrate:roughage ratio; N = 8 rams/treatment): CON-control diet in which the roughage component (15.0%, w/w, of the total diet) consisted of orchardgrass hay; 7.5-RC-red clover hay substituted for half (7.5%, w/w, of the total diet) of the roughage component; and 15-RC-the entire roughage component (15.0%, w/w, of the total diet) consisted of red clover hay. Feed intake and weight gain were measured at 14-d intervals for the duration of the 56-d trial, and rumen microbiological measures were assessed on days 0, 28, and 56. Red clover supplementation impacted growth performance of ram lambs. Average daily gains (ADG) were greater in ram lambs supplemented with red clover hay (7.5-RC and 15-RC) than for those fed the CON diet (P < 0.05). Conversely, dry matter intake (DMI) was lower in 7.5-RC and 15-RC than for CON lambs (P = 0.03). Differences in ADG and DMI resulted in greater feed efficiency in ram lambs supplemented with red clover hay (both 7.5-RC and 15-RC) compared to CON (P < 0.01). Rumen microbiota were also altered by red clover supplementation. The total viable number of hyper-ammonia-producing bacteria in 7.5-RC and 15-RC decreased over the course of the experiment and were lower than CON by day 28 (P ≤ 0.04). Amylolytic bacteria were also lower in 15-RC than in CON (P = 0.03), with a trend for lower amylolytic bacteria in 7.5-RC (P = 0.08). In contrast, there was tendency for greater cellulolytic bacteria in red clover supplemented lambs than in CON (P = 0.06). Red clover supplementation also increased fiber utilization, with greater ex vivo dry matter digestibility of hay for both 7.5-RC and 15-RC compared to CON by day 28 (P < 0.03). Results of this study indicate that low levels of red clover hay can elicit production benefits in high-concentrate lamb finishing systems through alteration of the rumen microbiota.
Collapse
Affiliation(s)
- Jennifer R Weinert-Nelson
- United States Department of Agriculture, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY 40506, USA
| | - Donald G Ely
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Michael D Flythe
- United States Department of Agriculture, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY 40506, USA
| | - Tracy A Hamilton
- United States Department of Agriculture, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY 40506, USA
| | - John B May
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Jessica L Ferrell
- United States Department of Agriculture, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY 40506, USA
| | - Matthew C Hamilton
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Whitney LeeAnn Jacks
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Brittany E Davis
- United States Department of Agriculture, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY 40506, USA
| |
Collapse
|
15
|
Grando MA, Costa V, Genova JL, Rupolo PE, de Azevedo LB, Costa LB, Carvalho ST, Ribeiro TP, Monteiro DP, de Oliveira Carvalho PL. Blend of essential oils can reduce diarrheal disorders and improve liver antioxidant status in weaning piglets. Anim Biosci 2023; 36:119-131. [PMID: 35760400 PMCID: PMC9834649 DOI: 10.5713/ab.22.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE This study was to assess the effects of different doses of an essential oil blend (EOB) on growth performance, diarrhea occurrence (DO), hematological and blood biochemical profile, intestinal morphometry, morphology and microbiology, relative weight and length of organs, digestive content pH, and liver antioxidant status in weaning piglets. METHODS A total of 135 barrows (7.09±0.29 kg body weight) were allotted randomly in a randomized complete block design based on body weight with nine replications and three animals per pen. Dietary treatments were a negative control (NC): basal diet; positive control (PC): NC plus 125 mg performance-enhancing antibiotic (enramycin 8%)/kg diet; NC plus 100 mg EOB/kg diet (EO100); NC plus 200 mg EOB/kg diet (EO200); and NC plus 400 mg EOB/kg diet (EO400). Diarrhea occurrence was monitored daily, and performance at the end of each phase. RESULTS Gain to feed ratio was greater (p<0.05) in starter II pigs fed EO400 and EO200 than in those fed EO100. Pigs fed EO400 had lower (p<0.05) DO than those fed NC and EO100 in the total period. Pre-starter II pigs fed NC had (p<0.05) lower serum total protein and plasma protein than pigs fed PC. Pigs fed EO100 showed smaller (p<0.05) mean corpuscular volume (MCV) than pigs fed EO400. Starter II pigs fed EO400 had (p<0.05) greater MCV and lower mean corpuscular hemoglobin and erythrocytes than those fed EO100. There was a greater concentration (p<0.05) of band cells for PC, similar to EO400 and EO200. Performance-enhancing antibiotic and EOB to diets increased (p<0.05) liver superoxide dismutase activity. CONCLUSION Adding 200 and 400 mg EOB/kg diet decreased DO and was advantageous to hematological and blood biochemical profile and liver antioxidant status without being detrimental to growth performance and gastrointestinal health in nursery pigs.
Collapse
Affiliation(s)
- Maiara Ananda Grando
- Animal Science, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 85960-000,
Brazil,Corresponding Authors: Maiara Ananda Grando, Tel: +55-45-99924-9941,, E-mail: . Jansller Luiz Genova, Tel: +55-67-98220-8861,, E-mail:
| | - Vanessa Costa
- Animal Science, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 85960-000,
Brazil
| | - Jansller Luiz Genova
- Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900,
Brazil,Corresponding Authors: Maiara Ananda Grando, Tel: +55-45-99924-9941,, E-mail: . Jansller Luiz Genova, Tel: +55-67-98220-8861,, E-mail:
| | - Paulo Evaristo Rupolo
- Animal Science, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 85960-000,
Brazil
| | - Liliana Bury de Azevedo
- Animal Science, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 85960-000,
Brazil
| | - Leandro Batista Costa
- Animal Science, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Curitiba, 80215-901,
Brazil
| | - Silvana Teixeira Carvalho
- Animal Science, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 85960-000,
Brazil
| | | | | | | |
Collapse
|
16
|
P R A, P S H, S AK, S P, Prakash G, Savanth V V, M P, Chopra H, Emran TB, Dey A, Dhama K, Chandran D. Essential oils as valuable feed additive: A narrative review of the state of knowledge about their beneficial health applications and enhancement of production performances in poultry. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2022; 10:1290-1317. [DOI: 10.18006/2022.10(6).1290.1317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
New research has begun to develop safe and effective alternatives to feed-antibiotics as growth enhancers in response to mounting pressure on the poultry sector to do so. There is a significant demand for poultry products all across the world right now. To achieve this goal, key performance indicators are optimized, such as the rate of chicken growth, the amount of feed used, and the health of the flock as a whole. As a result of this growing need, various alternatives to antibiotics have entered the market. New approaches are desperately needed to keep poultry productivity and efficiency at a high level in the face of mounting pressure to limit the use of antibiotics. Recent years have seen an uptick in interest in the potential of aromatic plant extracts as growth and health boosters in poultry. The great majority of plants' positive effects are accounted for by essential oils (EOs) and other secondary metabolites. EOs have been proven to promote digestive secretion production, improve blood circulation, exert antioxidant qualities, reduce levels of dangerous microbes, and maybe improve the immune status of poultry. EOs are often believed to be safe, non-toxic alternatives because they are all-natural, chemical-free, and devoid of potentially harmful deposits. EOs are extracted from plants, and while there are thousands of them, only approximately 300 have been deemed to have significant commercial value. Many different types of bacteria, viruses, fungi, and parasites are negatively affected by EOs in multiple studies conducted both in vitro and in vivo. The review covers the fundamentals of EOs, their anti-oxidant and immunomodulatory capabilities, their growth-promoting benefits, and their effectiveness against numerous diseases in poultry.
Collapse
|
17
|
Serradell A, Montero D, Fernández-Montero Á, Terova G, Makol A, Valdenegro V, Acosta F, Izquierdo MS, Torrecillas S. Gill Oxidative Stress Protection through the Use of Phytogenics and Galactomannan Oligosaccharides as Functional Additives in Practical Diets for European Sea Bass ( Dicentrarchus labrax) Juveniles. Animals (Basel) 2022; 12:ani12233332. [PMID: 36496852 PMCID: PMC9737065 DOI: 10.3390/ani12233332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study is to evaluate the potential of two functional additives as gill endogenous antioxidant capacity boosters in European sea-bass juveniles fed low-FM/FO diets when challenged against physical and biological stressors. For that purpose, two isoenergetic and isonitrogenous diets with low FM (10%) and FO (6%) contents were supplemented with 5000 ppm plant-derived galactomannan-oligosaccharides (GMOS) or 200 ppm of a mixture of garlic and labiate plant essential oils (PHYTO). A control diet was void from supplementation. Fish were fed the experimental diet for nine weeks and subjected to a confinement stress challenge (C challenge) or a confinement stress challenge combined with an exposure to the pathogen Vibrio anguillarum (CI challenge). Both GMOS and PHYTO diets attenuated fish stress response, inducing lower circulating plasma cortisol and down-regulating nfκβ2 and gr relative gene-expression levels in the gill. This attenuated stress response was associated with a minor energetic metabolism response in relation to the down-regulation of nd5 and coxi gene expression.
Collapse
Affiliation(s)
- Antonio Serradell
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
- Correspondence:
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, 2-21100 Varese, Italy
| | - Alex Makol
- Global Solution Aquaculture Unit, Delacon Biotechnik Gmbh, 24-4209 Engerwitzdorf, Austria
| | | | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| | - María Soledad Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| |
Collapse
|
18
|
Li C, Xu Z, Chen W, Zhou C, Wang C, Wang M, Liang J, Wei P. The Use of Star Anise-Cinnamon Essential Oil as an Alternative Antibiotic in Prevention of Salmonella Infections in Yellow Chickens. Antibiotics (Basel) 2022; 11:1579. [PMID: 36358233 PMCID: PMC9686846 DOI: 10.3390/antibiotics11111579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 03/05/2024] Open
Abstract
Salmonella is capable of harming human and animal health, and its multidrug resistance (MDR) has always been a public health problem. In addition, antibiotic-free or antibiotic-reduced policies have been implemented in poultry production. Therefore, the search for antibiotic alternatives is more urgent than ever before. The aim of this study was to assess the antibacterial activity of star anise-cinnamon essential oil (SCEO) in vitro and its prophylactic effect against the infections of Salmonella pullorum, Salmonella give, and Salmonella kentucky in vivo. The results demonstrated that SCEO is effective against Salmonella pullorum, Salmonella give, and Salmonella kentucky in vitro. Supplementation with SCEO could significantly decrease the infections of Salmonella pullorum and Salmonella give, whereas it could slightly but not significantly decrease the infection of Salmonella kentucky, while also significantly alleviating the body weight (BW) loss caused by the infections of Salmonella pullorum, Salmonella give, and Salmonella kentucky in Yellow chickens. The SCEO had the best prophylactic effect against the infection of Salmonella give in Yellow chickens, followed by the infection of Salmonella pullorum and the infection of Salmonella kentucky. The SCEO, used as an antibiotic alternative, could be an effective prevention strategy against the infections of Salmonella pullorum, Salmonella give, and Salmonella kentucky in Yellow chickens.
Collapse
Affiliation(s)
- Changcheng Li
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Ziheng Xu
- School of Public Health and Management, Guang University of Chinese Medical, Nanning 530200, China
| | - Wenyan Chen
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Chenyu Zhou
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Can Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Min Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Jingzhen Liang
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, China
| |
Collapse
|
19
|
Kalia VC, Shim WY, Patel SKS, Gong C, Lee JK. Recent developments in antimicrobial growth promoters in chicken health: Opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155300. [PMID: 35447189 DOI: 10.1016/j.scitotenv.2022.155300] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
With a continuously increasing human population is an increasing global demand for food. People in countries with a higher socioeconomic status tend to switch their preferences from grains to meat and high-value foods. Their preference for chicken as a source of protein has grown by 70% over the last three decades. Many studies have shown the role of feed in regulating the animal gut microbiome and its impact on host health. The microbiome absorbs nutrients, digests foods, induces a mucosal immune response, maintains homeostasis, and regulates bioactive metabolites. These metabolic activities are influenced by the microbiota and diet. An imbalance in microbiota affects host physiology and progressively causes disorders and diseases. With the use of antibiotics, a shift from dysbiosis with a higher density of pathogens to homeostasis can occur. However, the progressive use of higher doses of antibiotics proved harmful and resulted in the emergence of multidrug-resistant microbes. As a result, the use of antibiotics as feed additives has been banned. Researchers, regulatory authorities, and managers in the poultry industry have assessed the challenges associated with these restrictions. Research has sought to identify alternatives to antibiotic growth promoters for poultry that do not have any adverse effects. Modulating the host intestinal microbiome by regulating dietary factors is much easier than manipulating host genetics. Research efforts have led to the identification of feed additives, including bacteriocins, immunostimulants, organic acids, phytogenics, prebiotics, probiotics, phytoncides, and bacteriophages. In contrast to focusing on one or more of these alternative bioadditives, an improved feed conversion ratio with enhanced poultry products is possible by employing a combination of feed additives. This article may be helpful in future research towards developing a sustainable poultry industry through the use of the proposed alternatives.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| | - Woo Yong Shim
- Samsung Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Chunjie Gong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
20
|
Wilson VC, Ramirez SM, Murugesan GR, Hofstetter U, Kerr BJ. Effects of feeding variable levels of mycotoxins with or without a mitigation strategy on growth performance, gut permeability, and oxidative biomarkers in nursery pigs. Transl Anim Sci 2022; 6:txac126. [DOI: 10.1093/tas/txac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The objectives were to determine how high levels (> 2.5 mg/kg diet) of deoxynivalenol (DON), in conjunction with other naturally occurring mycotoxins (MTX) would impact growth, intestinal integrity, and oxidative status, with or without a mitigation strategy, in nursery pigs. One-hundred and five pigs (5.5 ± 0.52 kg) were randomly allotted to 35 pens and fed dietary treatments for 45 d. Treatments were factorially arranged with the inclusion of MTX being low (L-MTX; < 1 mg/kg diet) or high (H-MTX; > 2.5 mg/kg diet) in combination with no mitigation strategy or the inclusion of a mitigation strategy (Biofix® Plus, BPL; 1.5 mg/kg diet). There was no interaction between MTX level and BPL inclusion on average daily gain (ADG) or gain to feed ratio (GF), (P > 0.10). Compared to pigs fed diets containing L-MTX, feeding pigs diets containing H-MTX decreased ADG and GF (P < 0.05). The addition of BPL had no effect on ADG (P > 0.10), but improved GF (P = 0.09). There was an interaction between MTX and BPL on average daily feed intake (ADFI), where the addition of BPL had no effect on ADFI of pigs fed L-MTX diets but improved ADFI of pigs fed H-MTX diets (P = 0.09). An interaction was detected between MTX and BPL on protein oxidation as measured by plasma protein carbonyls (PC, P = 0.01), where the inclusion of BPL decreased plasma PC in pigs fed H-MTX diets to a greater extent than pigs fed the L-MTX diets. There was no interaction between MTX and BPL, or an effect of MTX or BPL on DNA damage as measured by 8-hydroxy-2ʹdexoxyguanosine (P > 0.10). There was no interaction between MTX and BPL, or a BPL effect on lipid damage as measured by thiobarbituic acid reactive substances (TBARS, P > 0.10), but pigs fed diets containing H-MTX exhibited lower concentrations of plasma TBARS (P = 0.07) compared to pigs fed L-MTX diets. There was no interaction between MTX and BPL, or an effect of MTX or BPL on plasma lactulose and mannitol ratio as a measure of intestinal permeability (P > 0.10). In conclusion, feeding H-MTX decreased ADG and GF, decreased plasma TBARS, but did not affect plasma 8-hydroxy-2ʹdexoxyguanosine or plasma LM ratio. The inclusion of a mitigation strategy improved ADFI when pigs were fed H-MTX diets and improved GF regardless of MTX level. Addition of a mitigation strategy also reduced plasma protein damage but did not affect indicators of DNA or lipid damage or affect gastrointestinal integrity.
Collapse
Affiliation(s)
- Victoria C Wilson
- Department of Animal Science, Iowa State University , Ames, IA 50011 , USA
| | | | | | | | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment , Ames, IA 50011 , USA
| |
Collapse
|
21
|
Citrullus colocynthis Seed Ameliorates Layer Performance and Immune Response under Acute Oxidative Stress Induced by Paraquat Injection. Animals (Basel) 2022; 12:ani12080945. [PMID: 35454193 PMCID: PMC9032143 DOI: 10.3390/ani12080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In recent years, natural, plant-based antioxidants have been increasingly popular among poultry producers to boost production and welfare. Colocynth, i.e., Citrullus colocynthis, is an herbaceous plant known to have antioxidant properties. Employing laying hens, this study investigated the potency of dietary colocynth seed supplementation to reduce the deleterious effects of acute oxidative stress induced by paraquat injection. The results demonstrated that supplementing layers’ diets with colocynth seed at 0.1% alleviated oxidative stress responses and significantly improved egg production performance. Furthermore, the immunological responses of the acute-oxidative-stressed layers were enhanced with colocynth seed supplementation. Thus, the inclusion of colocynth seed in layer chickens’ diets can improve egg production performance, restore the redox balance, and enhance immunological responses when they are reared under acute oxidative stress conditions. Abstract Oxidative stress is a detrimental physiological state that threatens birds’ productivity and general health. Colocynth is an herbal plant known for its bioactive properties, and it is mainly known for its antioxidant effects. This study’s purpose was to investigate how effective colocynth seed is at lowering the detrimental impact of acute oxidative stress caused by paraquat (PQ) injection in laying hens. A total of 360 Hy-Line Brown chickens, aged 39 weeks, were gathered and divided into four equal groups (10 hens × 9 replicates) in a 2 × 2 factorial design. The experimental groups were given either a basal diet or the basal diet supplemented with colocynth seed (1% of diet). Starting from week 40 of age and for 7 successive days, the experimental groups were either injected daily with paraquat (5 mg/kg body weight) or with saline (0.5 mL, 0.9% NaCl). Egg production performance with selected stress biomarkers and immunological response parameters were investigated at the end of week 40 of age. Our data revealed a significant reduction in egg production with an increase in blood stress biomarkers (i.e., HSP-70, corticosterone, and H/L ratio) in PQ-injected groups compared with non-stressed groups. Furthermore, an unbalanced redox state was detected in acute oxidative stress groups, with a significant rise in lipid peroxidation level, a reduction in total antioxidant capacity (TAC), and a drop in superoxide dismutase (SOD) and catalase enzyme activity. Supplementing PQ-injected hens with colocynth seed reduced the deleterious effects of acute oxidative stress. There was a significant drop in stress biomarkers with a significant rise in antioxidant enzyme activity and TAC observed in the PQ-injected group provided with colocynth seed supplementation. Remarkably, supplementation of colocynth in the non-stressed group resulted in a significant 27% increase in TAC concentration and 17% higher SOD activity when compared with the non-stressed control group. Colocynth supplementation in the PQ-injected group elevated the total white blood cell count by 25% and improved the B-lymphocyte proliferation index (a 1.3-fold increase) compared with the PQ-injected group that did not receive supplementation. Moreover, the non-stressed colocynth-supplemented group had significantly higher cell-mediated and humoral immune responses than the non-stressed control group. This study demonstrated that colocynth seed supplementation in birds exposed to acute oxidative stress may effectively alleviate its negative impacts on production performance, immunological responses, and redox status. We also inferred that, under normal conditions, colocynth seed can be added to laying hens’ diets to stimulate production and ameliorate immune responses.
Collapse
|
22
|
Paradowska M, Dunislawska A, Siwek M, Slawinska A. Avian Cell Culture Models to Study Immunomodulatory Properties of Bioactive Products. Animals (Basel) 2022; 12:670. [PMID: 35268238 PMCID: PMC8909239 DOI: 10.3390/ani12050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance is becoming a greater danger to both human and animal health, reducing the capacity to treat bacterial infections and increasing the risk of morbidity and mortality from resistant bacteria. Antimicrobial efficacy in the treatment of bacterial infections is still a major concern in both veterinary and human medicine. Antimicrobials can be replaced with bioactive products. Only a small number of plant species have been studied in respect to their bioactive compounds. More research is needed to characterize and evaluate the therapeutic properties of the plant extracts. Due to the more and more common phenomenon of antimicrobial resistance, poultry farming requires the use of natural alternatives to veterinary antibiotics that have an immunomodulatory effect. These include a variety of bioactive products, such as plant extracts, essential oils, probiotics, prebiotics, and synbiotics. This article presents several studies on bioactive products and their immunomodulatory effects tested in vitro and ex vivo using various avian cell culture models. Primary cell cultures that have been established to study the immune response in chickens include peripheral blood mononuclear cells (PBMCs), intestinal epithelial cells (IEC), and bone marrow-derived dendritic cells (BMDCs). Chicken lymphatic lines that can be used to study immune responses are mainly: chicken B cells infected with avian leukemia RAV-1 virus (DT40), macrophage-like cell line (HD11), and a spleen-derived macrophage cell line (MQ-NCSU). Ex vivo organ cultures combine in vitro and in vivo studies, as this model is based on fragments of organs or tissues grown in vitro. As such, it mimics the natural reactions of organisms, but under controlled conditions. Most ex vivo organ cultures of chickens are derived from the ileum and are used to model the interaction between the gastrointestinal tract and the microbiota. In conclusion, the use of in vitro and ex vivo models allows for numerous experimental replications in a short period, with little or no ethical constraints and limited confounding factors.
Collapse
Affiliation(s)
- Michelle Paradowska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Anna Slawinska
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| |
Collapse
|
23
|
Ali U, Naveed S, Qaisrani SN, Mahmud A, Hayat Z, Abdullah M, Kikusato M, Toyomizu M. Characteristics of Essential Oils of Apiaceae Family: Their Chemical Compositions, in vitro Properties and Effects on Broiler Production. J Poult Sci 2022; 59:16-37. [PMID: 35125910 PMCID: PMC8791775 DOI: 10.2141/jpsa.0210042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
There has been an upsurge of interest in the phytobiotics coincident with the onset of the potential ban on the use of antibiotic growth promoters (AGPs) in the broiler industry and because many kinds of nutraceuticals play an important role in improving growth performance, feed efficiency, and gut health of broilers. In the previous years, significant biological activities of essential oils (EOs) belonging to phytobiotics were observed, including anti-bacterial, antifungal, antiviral, and antioxidant properties. We found new perspectives on the roles of EOs, particularly extracts from the Apiaceae family, which is one of the largest plant families, in potential replacement of AGPs, and on the chemical composition involved in regulating microorganism activity and oxidative damage. Furthermore, the positive effects of EOs on broiler production and the possible mechanisms inducing the involvement of gut health and growth performance have been studied.
Collapse
Affiliation(s)
- Usman Ali
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Saima Naveed
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Shafqat Nawaz Qaisrani
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Athar Mahmud
- Department of Poultry Production, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Zafar Hayat
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Jhang Campus, Jhang 35200, Pakistan
| | - Muhammad Abdullah
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572Japan
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Masaaki Toyomizu
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572Japan
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Chitwan 13712, Nepal
| |
Collapse
|
24
|
The modulatory effect of carvacrol on viral shedding titer and acute phase response in broiler chickens experimentally infected with infectious bronchitis virus. Microb Pathog 2022; 163:105410. [PMID: 35041974 DOI: 10.1016/j.micpath.2022.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022]
Abstract
Infectious bronchitis virus (IBV) is one of the major respiratory diseases of broiler causing huge economic losses. The inability to control IBV using different vaccination programs owing to the high mutation rate and recombination ability of the RNA genome generates IBV variants. This study was designed to give a specific perspective of carvacrol effect on early immune response, viral shedding titer, oxidative stress, serum biochemical parameters and clinical consequences in broilers experimentally infected by IBV. One hundred and twenty-one-day old commercial broiler chicks were equally divided into 4 groups. First group was considered as control. Second group was given carvacrol, third group was infected with IBV and fourth group was given carvacrol and infected with IBV. Infection with variant IBV induced significant upregulation of chicken interferon-inducible transmembrane protein 3 (chIFITM3) gene in trachea, elevations in serum levels of Alpha-1 acid glycoprotein (α1-AGP) and Interleukin 6 (IL-6), total leucocytic count (TLC), heterophil/lymphocyte (H/L) ratio and oxidative stress in lung and kidney tissues. Beside, histopathological changes in trachea, lung and kidney induced by IBV, elevation of kidney function tests was detected. The pretreatment with carvacrol significantly reduced viral shedding titer, chIFITM3 gene expression, IL-6 and α1-AGP levels, leucocytic response and H/L ratio with minimization of clinical signs intensity. Also, carvacrol relieved oxidative stress, ameliorated the increased uric acid level and histopathological alterations in kidney and lung caused by viral infection.
Collapse
|
25
|
Abo-Donia FM, Elaref MY, Mahgoub AEMAS, Deraz TAEA, Nayel UA. Influence of diets supplemented with naturally protected or unprotected eucalyptus oil on methane production and lactating buffalo productivity. Trop Anim Health Prod 2021; 54:11. [PMID: 34893926 DOI: 10.1007/s11250-021-03008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022]
Abstract
This study was designed to investigate the influence of naturally protected eucalyptus oil supplementation in a form of leaves (EUL) or mature seed capsules (EUS) compared to crude eucalyptus oil (EUO). The control group (G1) received a diet containing concentrate feed mixture, fresh berseem, rice straw, and corn silage, whereas the G2, G3, and G4 animals have a diet supplemented with 200 g/head/day of EUL or EUS or 4 mL/head/day EUO, respectively. Supplementation of EUL or EUS increased NH3-N, short-chain fatty acids, and concentrations of acetic acid in vitro. Bacterial total count, protozoa, and cellulolytic bacteria increased (P < 0.05) with EUL and EUS supplementation. Methane production dropped (P < 0.05) with EUS, EUL, and EUO supplementation. Milk fat decreased (P < 0.05) with EUO supplementation, while an adverse trend was shown for lactose. No differences in feed conversion were found among EUS, EUL, and EUO. Blood total protein, albumin, and urea increased (P < 0.05) with supplementation of EUL or EUS compared to EUO. EUO supplementation yielded increased (P < 0.05) AST, ALT, glucose, and creatinine. Supplementation with EUL, EUS, or EUO decreased (P < 0.05) DM, OM, and CP digestibility, while digestibility of EE with supplementation by EUL, EUS, or EUO was higher (P < 0.05). The digestion coefficient of NDF and ADF decreased (P < 0.05) with supplemental EUL, EUS, or EUO compared to the G1 diet. Feeding EUS increased the values of TDN and DCP compared to EUL, which increased than EUO. Our results confirm that the naturally protected form of leaves or seeds mitigates the undesirable effects of directly supplementing crude eucalyptus oil.
Collapse
Affiliation(s)
- Fawzy Mohamed Abo-Donia
- Agriculture By-Product Utilization Research Department, Animal Production Research Institute (APRI), zip code, Giza, 12611, Egypt.
| | | | - Abd El-Moniem Ali Sayed Mahgoub
- Agriculture By-Product Utilization Research Department, Animal Production Research Institute (APRI), zip code, Giza, 12611, Egypt
| | - Tarek Abd-Elwahab Ahmed Deraz
- Agriculture By-Product Utilization Research Department, Animal Production Research Institute (APRI), zip code, Giza, 12611, Egypt
| | - Usama Aboelez Nayel
- Faculty of Agriculture, Menoufia University, zip code 32511, Shebin El Kom, Menoufia, Egypt
| |
Collapse
|
26
|
The Influence of a Diet Supplemented with 20% Rye and Xylanase in Different Housing Systems on the Occurrence of Pathogenic Bacteria in Broiler Chickens. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Sanitary conditions and diet are important elements determining the occurrence of pathogens in animals. The aim of the research was to assess the effect of an experimental diet with rye and xylanase for broiler chickens in cages and in a free-range system on the intestinal microbiome. The study was carried out in two experimental stages, the first on 224 1-d-old male Ross 308 chickens with an initial weight of 41 g, and the second on 2000 1-d-old male chickens with an initial weight of 42 g. All birds were reared to 42 d of age and fed crumbled starter (1 to 21 d) and pelleted grower–finisher (22 to 42 d) isonitrogenous and isoenergetic diets, supplemented with 20% rye and/or 200 mg/kg xylanase. Directly after slaughter, bacteria were isolated from the cloaca of birds and identified using classical microbiological methods and MALDI-TOF mass spectrometry. The antibiotic susceptibility of the bacteria was assessed by the disc diffusion method. The study showed the presence of abundant bacteria in the gut microbiome of chickens kept in both housing systems. The most frequently isolated bacteria were Escherichia coli, Enterococcus spp., Proteus spp., Campylobacter spp., and Staphylococcus spp. Antibiotic resistance was significantly higher in E. coli, Proteus spp., and Campylobacter spp. obtained from chickens from the free-range farm, but in the case of Enterococcus and Staphylococcus, resistance was higher in bacteria from caged birds. The high antibiotic resistance among pathogens of the gastrointestinal tract necessitates the search for means to control the microbiome in favour of beneficial bacteria. The significant influence of rye and xylanase on the bacterial content may be the basis for the introduction of this method to support the control of pathogens.
Collapse
|
27
|
Intestinal Microbiota, Anti-Inflammatory, and Anti-Oxidative Status of Broiler Chickens Fed Diets Containing Mushroom Waste Compost By-Products. Animals (Basel) 2021; 11:ani11092550. [PMID: 34573516 PMCID: PMC8464814 DOI: 10.3390/ani11092550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary This study investigated the effects of Pennisetum purpureum waste mushroom compost (PWMC) supplementation on microbiota, as well as its effects on the antioxidant capacities and inflammatory response characteristics of broiler chickens. Results showed that a 5% replacement of a soybean meal via PWMC feeds could enhance the health of chickens by maintaining intestinal microbiota balance, improving antioxidant capacities, and decreasing inflammatory response. Supplementation also further increased the appetite of broilers, thereby improving their growth performances. Furthermore, the number of Lactobacillus also increased in the intestinal tracts. High-fiber mushroom waste compost effectively increased the mRNA expression of appetite-related genes in broilers. The broilers’ gut barrier function also increased, while the number of Turicibacter in the cecum decreased. It was concluded that a 5% replacement of a soybean meal via PWMC could enhance intestinal health; therefore, it is recommended for the broiler chickens’ diet. Abstract This study investigated the effects of using mushroom waste compost as the residue medium for Pleurotus eryngii planting, which was used as a feed replacement; its consequent influence on broiler chickens’ intestinal microbiota, anti-inflammatory responses, and anti-oxidative status was likewise studied. A total of 240 male broilers were used and allocated to four treatment groups: the basal diet—control group (corn–soybean); 5% replacement of a soybean meal via PWMC (Pennisetum purpureum Schum No. 2 waste mushroom compost); 5% replacement of a soybean meal via FPW (Saccharomyces cerevisiae fermented PWMC); 5% replacement of a soybean meal via PP (Pennisetum purpureum Schum No. 2). Each treatment had three replicates and 20 birds per pen. The levels of glutathione peroxidase and superoxide dismutase mRNA as well as protein increased in the liver and serum in chickens, respectively; mRNA levels of inflammation-related genes were also suppressed 2 to 10 times in all treatments as compared to those in the control group. The tight junction and mucin were enhanced 2 to 10 times in all treatment groups as compared to those in the control, especially in the PWMC group. Nevertheless, the appetite-related mRNA levels were increased in the PWMC and FPW groups by at least two times. In ileum and cecum, the Firmicutes/Bacteroidetes ratios in broilers were decreased in the PWMC, FPW, and PP groups. The Lactobacillaceae in the ileum were increased mainly in the PWMC and control groups. Overall, high-fiber feeds (PWMC, FPW, and PP) could enhance the broilers’ health by improving their antioxidant capacities and decreasing their inflammatory response as compared to the control. Based on the results, a 5% replacement of the soybean meal via PWMC is recommended in the broiler chickens’ diet.
Collapse
|
28
|
Chuang WY, Lin LJ, Shih HD, Shy YM, Chang SC, Lee TT. The Potential Utilization of High-Fiber Agricultural By-Products as Monogastric Animal Feed and Feed Additives: A Review. Animals (Basel) 2021; 11:ani11072098. [PMID: 34359226 PMCID: PMC8300421 DOI: 10.3390/ani11072098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
With the increase in world food demand, the output of agricultural by-products has also increased. Agricultural by-products not only contain more than 50% dietary fiber but are also rich in functional metabolites such as polyphenol (including flavonoids), that can promote animal health. The utilization of dietary fibers is closely related to their types and characteristics. Contrary to the traditional cognition that dietary fiber reduces animal growth, it can promote animal growth and maintain intestinal health, and even improve meat quality when added in moderate amounts. In addition, pre-fermenting fiber with probiotics or enzymes in a controlled environment can increase dietary fiber availability. Although the use of fiber has a positive effect on animal health, it is still necessary to pay attention to mycotoxin contamination. In summary, this report collates the fiber characteristics of agricultural by-products and their effects on animal health and evaluates the utilization value of agricultural by-products.
Collapse
Affiliation(s)
- Wen-Yang Chuang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan;
| | - Li-Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Hsin-Der Shih
- Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung 413, Taiwan;
| | - Yih-Min Shy
- Hsinchu Branch, Livestock Research Institute, Council of Agriculture, Miaoli, Hsinchu 368, Taiwan;
| | - Shang-Chang Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Pîntong 912, Taiwan;
| | - Tzu-Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan;
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22840366; Fax: +886-4-22860265
| |
Collapse
|
29
|
Tao L, Pang Y, Wang A, Li L, Shen Y, Xu X, Li J. Functional miR-142a-3p Induces Apoptosis and Macrophage Polarization by Targeting tnfaip2 and glut3 in Grass Carp ( Ctenopharyngodon idella). Front Immunol 2021; 12:633324. [PMID: 34262558 PMCID: PMC8273434 DOI: 10.3389/fimmu.2021.633324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
In the process of microbial invasion, the inflammation reaction is induced to eliminate the pathogen. However, un-controlled or un-resolved inflammation can lead to tissue damage and death of the host. MicroRNAs (miRNAs) are the signaling regulators that prevent the uncontrolled progress of an inflammatory response. Our previous work strongly indicated that miR-142a-3p is related to the immune regulation in grass carp. In the present study, we found that the expression of miR-142a-3p was down-regulated after infection by Aeromonas hydrophila. tnfaip2 and glut3 were confirmed as be the target genes of miR-142a-3p, which were confirmed by expression correlation analysis, gene overexpression, and dual luciferase reporter assay. The miR-142a-3p can reduce cell viability and stimulate cell apoptosis by targeting tnfaip2 and glut3. In addition, miR-142a-3p also regulates macrophage polarization induced by A. hydrophila. Our results suggest that miR-142a-3p has multiple functions in host antibacterial immune response. Our research provides further understanding of the molecular mechanisms between miRNAs and their target genes, and provides a new insights for the development of pro-resolution strategies for the treatment of complex inflammatory diseases in fish.
Collapse
Affiliation(s)
- Lizhu Tao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,Institute of Fisheries of Chengdu Agriculture and Forestry Academy, Chengdu, China
| | - Yifan Pang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Anqi Wang
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lisen Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Faro, Portugal
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
30
|
Das Q, Shay J, Gauthier M, Yin X, Hasted TL, Ross K, Julien C, Yacini H, Kennes YM, Warriner K, Marcone MF, Diarra MS. Effects of Vaccination Against Coccidiosis on Gut Microbiota and Immunity in Broiler Fed Bacitracin and Berry Pomace. Front Immunol 2021; 12:621803. [PMID: 34149685 PMCID: PMC8213364 DOI: 10.3389/fimmu.2021.621803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Julie Shay
- Ottawa Laboratory (Carling) - Research and Development, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Martin Gauthier
- Biological Informatics Centre of Excellence, AAFC, Saint-Hyacinthe, QC, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Teri-Lyn Hasted
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, BC, Canada
| | - Carl Julien
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Hassina Yacini
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Yan Martel Kennes
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| |
Collapse
|
31
|
Molina-Barrios RM, Avilés-Trejo CR, Puentes-Mercado ME, Cedillo-Cobián JR, Hernández-Chavez JF. Effect of dietary stevia-based sweetener on body weight and humoral immune response of broiler chickens. Vet World 2021; 14:913-917. [PMID: 34083940 PMCID: PMC8167524 DOI: 10.14202/vetworld.2021.913-917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background and Aim: Steviol glycosides extracted from the leaves of Stevia rebaudiana Bertoni have been of much consideration recently because of their beneficial effects on health, raising the possibilities for improving farm animals’ health. Although some studies on stevia’s dietary effect on body weight gain are available, few studies have been conducted to evaluate stevioside supplementation on immune response in broilers. This experiment aimed to analyze how a stevia-based sweetener can affect broiler chickens’ growth performance and humoral response. Materials and Methods: In this experiment, one hundred and twenty 1-day-old Cobb-line broiler chicks fed with commercial starter/grower diets were included in three groups and supplemented with stevia-based sweetener at levels 0, 80, and 160 ppm, respectively. Chickens were weighed on day 0 and every 7 days for the next 6 weeks. Chicks were then immunized on days 10 and 24 with a Newcastle and infectious bronchitis vaccine and blood sampled on days 7, 24, and 35. Serologic assays were performed to detect specific antibody levels. Results: The body weight means and body weight gain on day 42 were found to be significantly higher in birds from the group fed with 80 ppm of stevia-based sweetener than those in the control group and slightly higher than those in the group supplemented with 160 ppm of stevia-based sweetener. Likewise, on day 35, antibodies against the Newcastle disease virus were higher in the treatment groups. Immune response to infectious bronchitis virus vaccination was not statistically different among the three groups through the experiment. Conclusion: Stevia-based sweetener at 80 ppm in commercial-based diets improved body weight gain and immune response in broiler chickens at the market age.
Collapse
Affiliation(s)
- Ramón Miguel Molina-Barrios
- Department of Agronomic and Veterinary Sciences, Technological Institute of Sonora, Ciudad Obregon, Sonora, Mexico
| | - Cielo Rubí Avilés-Trejo
- Department of Agronomic and Veterinary Sciences, Technological Institute of Sonora, Ciudad Obregon, Sonora, Mexico
| | | | | | | |
Collapse
|
32
|
Aitfella Lahlou R, Bounechada M, Mohammedi A, Silva LR, Alves G. Dietary use of Rosmarinus officinalis and Thymus vulgaris as anticoccidial alternatives in poultry. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Kikusato M. Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity. Anim Biosci 2021; 34:345-353. [PMID: 33705621 PMCID: PMC7961201 DOI: 10.5713/ab.20.0842] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Phytobiotics, also known as phytochemicals or phytogenics, have a wide variety of biological activities and have recently emerged as alternatives to synthetic antibiotic growth promoters. Numerous studies have reported the growth-promoting effects of phytobiotics in chickens, but their precise mechanism of action is yet to be elucidated. Phytobiotics are traditionally known for their antioxidant activity. However, extensive investigations have shown that these compounds also have anti-inflammatory, antimicrobial, and transcription-modulating effects. Phytobiotics are non-nutritive constituents, and their bioavailability is low. Nonetheless, their beneficial effects have been observed in several tissues or organs. The health benefits of the ingestion of phytobiotics are attributed to their antioxidant activity. However, several studies have revealed that not all these benefits could be explained by the antioxidant effects alone. In this review, I focused on the bioavailability of phytobiotics and the possible mechanisms underlying their overall effects on intestinal barrier functions, inflammatory status, gut microbiota, systemic inflammation, and metabolism, rather than the specific effects of each compound. I also discuss the possible mechanisms by which phytobiotics contribute to growth promotion in chickens.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
34
|
Amber K, Nofel R, Ghanem R, Sayed S, Farag SA, Shukry M, Dawood MAO. Enhancing the Growth Rate, Biochemical Blood Indices, and Antioxidative Capacity of Broilers by Including Aloe vera Gel in Drinking Water. Front Vet Sci 2021; 7:632666. [PMID: 33553292 PMCID: PMC7859484 DOI: 10.3389/fvets.2020.632666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
Phytogenic herbal extracts received considerable attention in the broilers industry as friendly alternative substitutes to antibiotics. These additives can be included in the food or drinking water to enhance birds' growth rate and well-being. Hence, the current investigation examined the effect of including Aloe vera gel in drinking water on the growth rate, biochemical blood indices, and broilers' antioxidative capacity. Cobb 500 broiler chicks (n = 120), 1 day old of initial weight = 48.6 ± 1.65 g, were divided into three treatments where the control group was fed the basal diet without including Aloe vera gel in drinking water. The second and third groups were fed the basal diet, and Aloe vera gel was included in drinking water at 1 and 1.5%, respectively. The final body weight, weight gain, daily weight gain, and feed conversion ratio were significantly improved in birds that received drinking water with Aloe vera gel at 1.5% compared to the control and 1% groups (P ≤ 0.05). The kidney (creatinine and urea) and liver (ALT and AST) function indices of broilers that received drinking water with or without Aloe vera gel showed no significant differences with the control group (P ≥ 0.05). The blood total protein and albumin had higher values in birds that received drinking water with 1.5% Aloe vera gel than the control (P ≤ 0.05). The total blood cholesterol, triglycerides, and LDL levels were significantly decreased in the group of birds that received 1.5% Aloe vera gel in drinking water (P ≤ 0.05). The HDL level was higher in birds that received drinking water with 1.5% Aloe vera gel than the control (P ≤ 0.05). The total antioxidative capacity (TAC) and glutathione peroxidase (GPX) showed higher activity in the group of birds that received 1.5% Aloe vera gel while the level of malondialdehyde (MDA) was lower in birds that received drinking water with 1.5% Aloe vera gel than the control (P ≤ 0.05). In summary, including Aloe vera gel in drinking water enhanced the growth rate, biochemical blood indices, and broilers' antioxidative capacity.
Collapse
Affiliation(s)
- Khairy Amber
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Reayd Nofel
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Reda Ghanem
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia.,Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Soha A Farag
- Animal Production Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
35
|
Kikusato M, Xue G, Pastor A, Niewold TA, Toyomizu M. Effects of plant-derived isoquinoline alkaloids on growth performance and intestinal function of broiler chickens under heat stress. Poult Sci 2020; 100:957-963. [PMID: 33518149 PMCID: PMC7858171 DOI: 10.1016/j.psj.2020.11.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Broiler chickens reared under heat stress (HS) conditions have decreased growth performance and show metabolic and immunologic alterations. This study aimed to evaluate the effect of supplementation with a standardized blend of plant-derived isoquinoline alkaloids (IQ) on the growth performance, protein catabolism, intestinal barrier function, and inflammatory status of HS-treated chickens. Three hundred sixty 0-day-old Ross 308 male broiler chickens were randomly distributed into 2 treatment groups: control diet (no additives) or diet supplemented with 100 ppm IQ. At day 14, the chicks in each diet group were further divided into 2 groups, each of which was reared under thermoneutral (TN) (22.4°C) or constant HS (33.0°C) conditions until day 42. Each group consisted of 6 replicates with 15 birds per replicate, and chickens were provided ad libitum access to water and feed. During days 15–21, the body weight gain (BWG) and feed intake (FI) were significantly lower in the HS treatment group than in the TN group, and feed conversion ratio was higher (P < 0.05); these factors were not alleviated by IQ supplementation. During days 22–42, the final BW, BWG, and FI of the HS birds were better among those administered IQ than those that were not (P < 0.05). HS treatment increased plasma lipid peroxide, corticosterone, and uric acid concentrations as well as serum fluorescein isothiocyanate–dextran, a marker of intestinal barrier function, and decreased plasma total protein content (P < 0.05). These changes were not observed in the IQ group, suggesting that IQ supplementation improved oxidative damage, protein catabolism, and intestinal barrier function of chickens under HS. Isoquinoline alkaloid supplementation inhibited the expression of intestinal inflammatory factors, IL-6, tumor necrosis factor–like factor 1A, and inducible nitric oxide synthase under HS treatment (P < 0.05). These results suggest that IQ supplementation can improve the growth performance of broiler chickens under HS conditions, which may be associated with amelioration of oxidative damage, protein catabolism, intestinal barrier function, and inflammation.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
| | - Guangda Xue
- Phytobiotics Futterzusatzstoffe GmbH, 65343 Eltville, Germany
| | - Anja Pastor
- Phytobiotics Futterzusatzstoffe GmbH, 65343 Eltville, Germany
| | | | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
36
|
Sureshkumar S, Jung SK, Kim D, Oh KB, Yang H, Lee HC, Jo YJ, Lee HS, Lee S, Byun SJ. Administration of L. salivarius expressing 3D8 scFv as a feed additive improved the growth performance, immune homeostasis, and gut microbiota of chickens. Anim Sci J 2020; 91:e13399. [PMID: 32512648 DOI: 10.1111/asj.13399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Probiotics have been defined as live microorganisms that are administered in an appropriate amount to provide health benefits to the host animal. In this study, we investigated the effect of L. salivarius DJ-sa-01 secreting the 3D8 single-chain variable fragment (3D8 scFv) on the growth performance, cytokine secretion, and intestinal microbial flora of chickens. The experiment was divided into the control group and L. salivarius expressing 3D8 scFv experimental group. Chicken was fed 109 colony-forming units (CFUs) of wild-type (WT) L. salivarius or 3D8 scFv-secreting L. salivarius daily for 35 days. The administration of L. salivarius expressing 3D8 scFv significantly improved the body weight of chickens compared with the administration of WT L. salivarius. A 16S ribosomal RNA metagenomic analysis showed that Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla in both experimental groups. At the genus level, Lactobacillus was more abundant (22.82%) in the L. salivarius/3D8 group compared with the WT L. salivarius group. The serum levels of cytokines, such as IL-8, TNF-α, IL-1β, IFN-γ, IL-4, and IGF1, were significantly reduced in the L. salivarius/3D8-treated chickens. In summary, our results suggest that L. salivarius expressing 3D8 scFv could be considered a feed additive for improving the growth performance, immune function, and disease resistance of poultry.
Collapse
Affiliation(s)
- Shanmugam Sureshkumar
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea.,Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Sun Keun Jung
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Dongjun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Gyeonggi-do, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Hwi Cheul Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Yong Jin Jo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Hae Sun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Gyeonggi-do, Republic of Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| |
Collapse
|
37
|
Das Q, Tang J, Yin X, Ross K, Warriner K, Marcone MF, Diarra MS. Organic cranberry pomace and its ethanolic extractives as feed supplement in broiler: impacts on serum Ig titers, liver and bursal immunity. Poult Sci 2020; 100:517-526. [PMID: 33518104 PMCID: PMC7858021 DOI: 10.1016/j.psj.2020.09.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
With the pressure to reduce antibiotics use in poultry production, cost-effective alternative products need to be developed to enhance the bird's immunity. The present study evaluated the efficacy of cranberry fruit by-products to modulate immunity in broiler chickens. Broiler Cobb 500 chicks were fed a control basal diet, basal diet supplemented with bacitracin (BACI, 55 ppm), cranberry pomace at 1% and 2% (CP2), or cranberry pomace ethanolic extract at 150 and 300 ppm (COH300) for 30 d. Blood sera were analyzed at days 21 and 28 of age for Ig levels by ELISA. The innate and adaptive immune-related gene expression levels in the liver and bursa of Fabricius were investigated at 21 d of age by quantitative polymerase chain reaction arrays. At day 21, the highest IgY level was found in the blood serum of the CP2-fed birds. In the liver, 13 of the 22 differentially expressed genes were downregulated across all treatments compared with the control. Expression of genes belonging to innate immunity such as caspase 1 apoptosis–related cysteine peptidase, chemokine receptor 5, interferon gamma, myeloid differentiation primary response gene 88, and Toll-like receptor 3 were significantly downregulated mainly in BACI- and COH300-fed birds. In the bursa, 5 of 9 genes associated with the innate immunity were differentially expressed. The expression of anti-inflammatory IL-10 gene was upregulated in all treatment groups in bursa compared with the control. The expression of transferrin gene was significantly upregulated in livers of birds fed COH300 and in bursa of birds fed BACI, indicating feeding practices and organ-dependant modulation of this gene in broiler. Overall results of this study showed that cranberry product feed supplementation modulated the innate immune and suppressed proinflammatory cytokines in broilers, providing a platform for future investigations to develop berry products in poultry feeding.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Guelph, Ontario Canada N1G 2W1; Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Joshua Tang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, British Columbia, Canada V0H 1Z0
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9.
| |
Collapse
|
38
|
Kumosani T, Yaghmoor S, Abdulaal WH, Barbour E. Evaluation in broilers of aerosolized nanoparticles vaccine encapsulating imuno-stimulant and antigens of avian influenza virus/Mycoplasma gallisepticum. BMC Vet Res 2020; 16:319. [PMID: 32867774 PMCID: PMC7457747 DOI: 10.1186/s12917-020-02539-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background The global prevalence of economic primary infection of poultry by H9N2 virus, including the Lineage A, panzootic group ME1, and associated with secondary infection by Mycoplasma gallisepticum (MG), is alarming to the sustainability of the poultry sector. This research evaluated in broilers the immunity and protection induced by aerosolization of liposomal nanoparticles vaccine, encapsulating antigens of H9N2 virus and MG, with or without the incorporation of Echinacea extract (EE) immuno-stimulant. Six different treatments (TRTs) of broilers were included in the experimental design, with three replicate pens/TRT and stocking of 20 day-old birds/replicate. Results The tracheobronchial washings of birds subjected to aerosolization of liposomal nanoparticles, encapsulating antigens of H9N2 and MG and EE had the highest significant mean levels of each of IgA and IgG specific to H9N2 and MG, associated with lowest tracheal MG colonization, tracheal H9N2 recovery, tracheal histopathologic lesions, mortality, and best performance in body weight and feed conversion compared to all other challenged birds allocated to different treatments (P < 0.05). However, the control broilers, free from challenge with MG and H9N2, had the lowest mortality and tracheal lesions, and the highest production performance. Conclusion The aerosolization of liposomal nanoparticles, encapsulating antigens of H9N2 and MG and EE resulted in enough local immunity for protection of broilers against infection, and in attaining the highest production performance in challenged birds. The potential implication of vaccinating with safe killed nanoparticle vaccines is of utmost importance to the global poultry sector.
Collapse
Affiliation(s)
- Taha Kumosani
- Department of Biochemistry, Faculty of Science, Experimental Biochemistry Unit, King Fahd Medical Research Center and Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University (KAU), Jeddah, Kingdom of Saudi Arabia.
| | - Soonham Yaghmoor
- Experimental Biochemistry Unit, King Fahd Medical Research Center and Production of Bioproducts for Industrial Applications Research Group, KAU, Jeddah, Kingdom of Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Elie Barbour
- Adjunct to Department of Biochemistry, Faculty of Science, KAU, Jeddah, Kingdom of Saudi Arabia.,Director of R and D Department, Opticon Hygiene Consulting, Oechsli 7, 8807, Freienbach, Switzerland
| |
Collapse
|
39
|
Chen LW, Chuang WY, Hsieh YC, Lin HH, Lin WC, Lin LJ, Chang SC, Lee TT. Effects of dietary supplementation with Taiwanese tea byproducts and probiotics on growth performance, lipid metabolism, and the immune response in red feather native chickens. Anim Biosci 2020; 34:393-404. [PMID: 32882776 PMCID: PMC7961192 DOI: 10.5713/ajas.20.0223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Objective This study compared the catechin composition of different tea byproducts and investigated the effects of dietary supplementation with green tea byproducts on the accumulation of abdominal fat, the modulation of lipid metabolism, and the inflammatory response in red feather native chickens. Methods Bioactive compounds were detected, and in vitro anti-obesity capacity analyzed via 3T3-L1 preadipocytes. In animal experiments, 320 one-day-old red feather native chickens were divided into 4 treatment groups: control, basal diet supplemented with 0.5% Jinxuan byproduct (JBP), basal diet supplemented with 1% JBP, or basal diet supplemented with 5×106 colony-forming unit (CFU)/kg Bacillus amyloliquefaciens+5×106 CFU/kg Saccharomyces cerevisiae (BA+SC). Growth performance, serum characteristics, carcass characteristics, and the mRNA expression of selected genes were measured. Results This study compared several cultivars of tea, but Jinxuan showed the highest levels of the anti-obesity compound epigallocatechin gallate. 3T3-L1 preadipocytes treated with Jinxuan extract significantly reduced lipid accumulation. There were no significant differences in growth performance, serum characteristics, or carcass characteristics among the groups. However, in the 0.5% JBP group, mRNA expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were significantly decreased. In the 1% JBP group, FAS, ACC and peroxisome proliferator-activated receptor γ levels were significantly decreased. Moreover, inflammation-related mRNA expression levels were decreased by the addition of JBP. Conclusion JBP contained abundant catechins and related bioactive compounds, which reduced lipid accumulation in 3T3-L1 preadipocytes, however there was no significant reduction in abdominal fat. This may be due to a lack of active anti-obesity compounds or because the major changes in fat metabolism were not in the abdomen. Nonetheless, lipogenesis-related and inflammation-related mRNA expression were reduced in the 1% JBP group. In addition, dietary supplementation with tea byproducts could reduce the massive amount of byproducts created during tea production and modulate lipid metabolism and the inflammatory response in chickens.
Collapse
Affiliation(s)
- L W Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - W Y Chuang
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - Y C Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - H H Lin
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - W C Lin
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - L J Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - S C Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, 912, Taiwan
| | - T T Lee
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
40
|
Micro-encapsulated essential oils and organic acids combination improves intestinal barrier function, inflammatory responses and microbiota of weaned piglets challenged with enterotoxigenic Escherichia coli F4 (K88 +). ACTA ACUST UNITED AC 2020; 6:269-277. [PMID: 33005760 PMCID: PMC7503083 DOI: 10.1016/j.aninu.2020.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/01/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
This study evaluated the effects of micro-encapsulated (protected) organic acids (OA) and essential oils (EO) combination, P(OA + EO), and effects of a regular blend of free acids (FA) on the growth, immune responses, intestinal barrier and microbiota of weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC) F4 (K88+). A total of 30 crossbred (Duroc × Landrace × Large White) weaned barrows (7.41 ± 0.06 kg, 28 d old) were assigned randomly to 5 treatments: 1) non-challenged positive control (PC), 2) ETEC F4 (K88+)-challenged negative control (NC), 3) NC + kitasamycin at 50 mg/kg + olaquindox at 100 mg/kg + free acidifier (FA) at 5 g/kg, 4) NC + kitasamycin at 50 mg/kg + olaquindox at 100 mg/kg + P(OA + EO) at 1 g/kg (P1), 5) NC + kitasamycin at 50 mg/kg + olaquindox at 100 mg/kg + P(OA + EO) at 2 g/kg (P2). Each dietary treatment had 6 replicates of one piglet each and the study lasted for 3 wk. On d 7, pigs in NC, FA, P1 and P2 were orally dosed with 10 mL of ETEC F4 (K88+) culture (1 × 109 CFU/mL). From d 7 to 14 after the ETEC F4 (K88+) challenge, P1 increased gain-to-feed ratio (G:F) significantly (P < 0.05) compared with NC and FA groups. From d 14 to 21, P2 increased the average daily gain of pigs (P < 0.05) compared with NC and FA groups. Compared with NC, P2 reduced tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-10 concentrations (P < 0.05) in sera collected at 4 h later after ETEC F4 (K88+) challenge. On d 21, P1 increased occludin and zonula occludens-1 protein expression in ileum compared with NC (P < 0.05). After this 3-wk experiment, alpha diversity of gut microbiota was decreased by P2 compared with PC, and P1 increased the relative abundance of Lactobacillus in ileum, cecum and colon (P < 0.05). In conclusion, dietary P(OA + EO) additive at 2 g/kg combined with antibiotics could improve piglet performance and attenuate inflammation, and P(OA + EO) additive at 1 g/kg combined with antibiotics improved intestinal barrier and increased beneficial microbiota composition after an F4 (K88+) challenge.
Collapse
|
41
|
Shen C, Christensen L, Bak S, Christensen N, Kragh K. Immunomodulatory effects of thymol and cinnamaldehyde in chicken cell lines. JOURNAL OF APPLIED ANIMAL NUTRITION 2020. [DOI: 10.3920/jaan2020.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thymol and cinnamaldehyde are phytogenic feed additives that have been developed to improve gut health, immunity and growth performance in poultry and swine. This study evaluated the immune modulating effects of a thymol and cinnamaldehyde blend (TCB) in the intestinal system of poultry in vitro, using two chicken cell lines, LMH (liver cell line) which has been used to mimic epithelial cell responses, and HD-11 (monocyte/macrophage-like). Cells with high viability (>95%) from established cell lines were cultured in the presence of TCB at concentrations ranging from 1 ng/ml to 100 ng/ml. The viability, transepithelial electrical resistance (TEER) and phagocytic capacity of co-cultured LMH cells, with or without stimulation with lipopolysaccharide (LPS), was subsequently evaluated. The expression of cytokines, chemokines and pattern recognition receptors by HD-11 monocytes/macrophages was measured by RT-PCR and by proteomic analysis. TCB was well tolerated by both cell lines (cell viability >90% after co-culture with TCB at 100 ng/ml for 48 h with or without LPS). Epithelial integrity of LMH cells (as assessed by TEER) was increased by TCB (10 ng/ml) after 4 h incubation, versus untreated controls, and phagocytic capacity of HD-11 cells was increased, in a dose-dependent manner (P<0.05). In HD-11 cells, TCB (10 ng/ml) downregulated the relative expression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, IL-8 and the transcription factor cyclooxygenase-2 and upregulated expression of anti-inflammatory IL-10, versus untreated controls (P<0.05). In summary, under the tested conditions, TCB enhanced the epithelial barrier integrity of poultry hepatocytes, increased phagocytic activity and production of anti-inflammatory cytokines by monocytes and macrophages. These results indicated how supplementing TCB in poultry diets can increase bird performance, by increasing in vivo cell membrane integrity (especially important in the gut) and assisting in immune responses, which can liberate energy for growth.
Collapse
Affiliation(s)
- C. Shen
- Gut Immunology Lab, Technology & Innovation, DuPont Nutrition & Biosciences, Edwin Rahrs Vej 38, Brabrand, 8220, Denmark
| | - L.G. Christensen
- Gut Immunology Lab, Technology & Innovation, DuPont Nutrition & Biosciences, Edwin Rahrs Vej 38, Brabrand, 8220, Denmark
| | - S.Y. Bak
- Advanced Analysis, Technology & Innovation, DuPont Nutrition & Biosciences, Edwin Rahrs Vej 38, Brabrand, 8220, Denmark
| | - N. Christensen
- Technology & Innovation, DuPont Nutrition & Biosciences, Edwin Rahrs Vej 38, Brabrand, 8220, Denmark
| | - K. Kragh
- Gut Immunology Lab, Technology & Innovation, DuPont Nutrition & Biosciences, Edwin Rahrs Vej 38, Brabrand, 8220, Denmark
| |
Collapse
|
42
|
Mountzouris KC, Paraskeuas VV, Fegeros K. Priming of intestinal cytoprotective genes and antioxidant capacity by dietary phytogenic inclusion in broilers. ACTA ACUST UNITED AC 2020; 6:305-312. [PMID: 33005764 PMCID: PMC7503066 DOI: 10.1016/j.aninu.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The potential of a phytogenic premix (PP) based on ginger, lemon balm, oregano and thyme to stimulate the expression of cytoprotective genes at the broiler gut level was evaluated in this study. In particular, the effects of PP inclusion levels on a selection of genes related to host protection against oxidation (catalase [CAT], superoxide dismutase 1 [SOD1], glutathione peroxidase 2 [GPX2], heme oxygenase 1 [HMOX1], NAD(P)H quinone dehydrogenase 1 [NQO1], nuclear factor (erythroid-derived 2)-like 2 [Nrf2] and kelch like ECH associated protein 1 [Keap1]), stress (heat shock 70 kDa protein 2 [HSP70] and heat shock protein 90 alpha family class A member 1 [HSP90]) and inflammation (nuclear factor kappa B subunit 1 [NF-κB1], Toll-like receptor 2 family member B (TLR2B) and Toll-like receptor 4 [TLR4]) were profiled along the broiler intestine. In addition, broiler intestinal segments were assayed for their total antioxidant capacity (TAC). Depending on PP inclusion level (i.e. 0, 750, 1,000 and 2,000 mg/kg diet) in the basal diets, 1-d-old Cobb broiler chickens (n = 500) were assigned into the following 4 treatments: CON, PP-750, PP-1000 and PP-2000. Each treatment had 5 replicates of 25 chickens with ad libitum access to feed and water. Data were analyzed by ANOVA and means compared using Tukey's honest significant difference (HSD) test. Polynomial contrasts tested the linear and quadratic effect of PP inclusion levels. Inclusion of PP increased (P ≤ 0.05) the expression of cytoprotective genes against oxidation, except CAT. In particular, the cytoprotective against oxidation genes were up-regulated primarily in the duodenum and the ceca and secondarily in the jejunum. Most of the genes were up-regulated in a quadratic manner with increasing PP inclusion level with the highest expression levels noted in treatments PP-750 and PP-1000 compared to CON. Similarly, intestinal TAC was higher in PP-1000 in the duodenum (P = 0.011) and the ceca (P = 0.050) compared to CON. Finally, increasing PP inclusion level resulted in linearly reduced (P ≤ 0.05) expression of NF-κB1, TLR4 and HSP70, the former in the duodenum and the latter 2 in the ceca. Overall, PP inclusion consistently up-regulated cytoprotective genes and down-regulated stress and inflammation related ones. The effect is dependent on PP inclusion level and the intestinal site. The potential of PP to beneficially prime bird cytoprotective responses merit further investigation under stress-challenge conditions.
Collapse
Affiliation(s)
| | - Vasileios V Paraskeuas
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Greece
| | - Konstantinos Fegeros
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Greece
| |
Collapse
|
43
|
Dietary Encapsulated Essential Oils Improve Production Performance of Coccidiosis-Vaccine-Challenged Broiler Chickens. Animals (Basel) 2020; 10:ani10030481. [PMID: 32183035 PMCID: PMC7142951 DOI: 10.3390/ani10030481] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The in-feed antibiotics have been banned worldwide, and anticoccidial drugs are also expected to be removed from the formulated, complete feeds. Thus, looking for alternatives to anticoccidials has been on the increase. Essential oils are naturally derived substances containing the aromatic components of herbs and spices and exhibit antibacterial/anticoccidial, antioxidant, and immune modulating-effects, the properties in poultry. These beneficial biological properties of essential oils make them be considered potential anticoccidial agents. Forthermore, encapsulating essential oils is known to be an effective and efficient strategy to slowly release their active components upon passing the gastrointestinal tract. This study was conducted to examine the effects of encapsulated thymol- and carvacrol-based essential oils on productivity and gut health of chickens challenged with high dose of coccidiosis vaccine. Abstract The present study was conducted to evaluate the encapsulated essential oils (EEO) as an alternative to anticoccidials using a coccidiosis vaccine challenged model in broiler chickens. A total of 600 one-day-old male broiler chicks were provided with no added corn/soybean-meal-based control diet or diets that contained either salinomycin (SAL) or thymol- and carvacrol-based EEO at 60 and 120 mg per kg of diet. Before challenge at 21 days, each treatment had 10 replicates except for the no-added control group, which had 20 replicates. On day 21, half of the control groups were orally challenged with a coccidiosis vaccine at 25 times higher than the recommended vaccine dose. During 22 to 28 days (i.e., one-week post coccidiosis vaccine challenge), the challenged chickens had a decrease (P < 0.05) in body weight gain and feed intake but an increase in feed conversion ratio compared with the non-challenged, naïve control chickens. However, dietary EEO significantly counteracted (P < 0.05) coccidiosis-vaccine-induced depression in body weight gain and feed intake. Inclusion of dietary EEO linearly decreased (P < 0.05) the concentrations of the volatile fatty acids. Dietary SAL and EEO affected gut morphology in chickens at 20 days post-hatch. Dietary EEO linearly (P = 0.073) increased serum catalase activity as the inclusion level increased. Collectively, our study shows that dietary EEO increased coccidiosis-vaccine-induced growth depression and altered gut physiology in broiler chickens. Our study adds to the accumulating evidence that dietary EEO is proven to be an effective alternative to anticoccidials for broiler chickens.
Collapse
|
44
|
Bobeck EA. NUTRITION AND HEALTH: COMPANION ANIMAL APPLICATIONS: Functional nutrition in livestock and companion animals to modulate the immune response. J Anim Sci 2020; 98:skaa035. [PMID: 32026938 PMCID: PMC7053864 DOI: 10.1093/jas/skaa035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Advances in the understanding of how the immune system functions in response to diet have altered the way we think about feeding livestock and companion animals on both the short (weeks/months) and long-term (years) timelines; however, depth of research in each of these species varies. Work dedicated to understanding how immune function can be altered with diet has revealed additional functions of required nutrients such as vitamins D and E, omega-3 polyunsaturated fatty acids (PUFA), and minerals such as zinc, while feed additives such as phytogenics and probiotics add an additional layer of immunomodulating potential to modern diets. For certain nutrients such as vitamin D or omega-3 PUFA, inclusion above currently recommended levels may optimize immune function and reduce inflammation, while for others such as zinc, additional pharmacological supplementation above requirements may inhibit immune function. Also to consider is the potential to over-immunomodulate, where important functions such as clearance of microbial infections may be reduced when supplementation reduces the inflammatory action of the immune system. Continued work in the area of nutritional immunology will further enhance our understanding of the power of nutrition and diet to improve health in both livestock and companion animals. This review collects examples from several species to highlight the work completed to understand how nutrition can be used to alter immune function, intended or not.
Collapse
|
45
|
Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutr Res Rev 2020; 33:218-234. [PMID: 32100670 DOI: 10.1017/s0954422420000013] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the current post-antibiotic era, botanicals represent one of the most employed nutritional strategies to sustain antibiotic-free and no-antibiotic-ever production. Botanicals can be classified either as plant extracts, meaning the direct products derived by extraction from the raw plant materials (essential oils (EO) and oleoresins (OR)), or as nature-identical compounds (NIC), such as the chemically synthesised counterparts of the pure bioactive compounds of EO/OR. In the literature, differences between the use of EO/OR or NIC are often unclear, so it is difficult to attribute certain effects to specific bioactive compounds. The aim of the present review was to provide an overview of the effects exerted by botanicals on the health status and growth performance of poultry and pigs, focusing attention on those studies where only NIC were employed or those where the composition of the EO/OR was defined. In particular, phenolic compounds (apigenin, quercetin, curcumin and resveratrol), organosulfur compounds (allicin), terpenes (eugenol, thymol, carvacrol, capsaicin and artemisinin) and aldehydes (cinnamaldehyde and vanillin) were considered. These molecules have different properties such as antimicrobial (including antibacterial, antifungal, antiviral and antiprotozoal), anti-inflammatory, antioxidant, immunomodulatory, as well as the improvement of intestinal morphology and integrity of the intestinal mucosa. The use of NIC allows us to properly combine pure compounds, according to the target to achieve. Thus, they represent a promising non-antibiotic tool to allow better intestinal health and a general health status, thereby leading to improved growth performance.
Collapse
|
46
|
Synergistic Effects of Probiotics and Phytobiotics on the Intestinal Microbiota in Young Broiler Chicken. Microorganisms 2019; 7:microorganisms7120684. [PMID: 31835884 PMCID: PMC6956037 DOI: 10.3390/microorganisms7120684] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
Probiotics and phytobiotics have been studied as in-feed antibiotic alternatives for decades, yet there are no studies on their possible symbiotic effects. In the present study, newly hatched chickens were fed with feeds supplemented either with host-specific Lactobacillus strains (L. agilis and L. salivarius), commercial phytobiotics, or combinations of both. After 13 days of life, crops and caecums were analyzed for bacterial composition (16S rDNA sequencing, qPCR) and activity (bacterial metabolites). Crop and caecum samples were also used to study the ex vivo survival of a broiler-derived extended-spectrum beta-lactamase (ESBL) producing Escherichia coli strain. In the crop, combinations of probiotics and phytobiotics, but not their single application, increased the dominance of lactobacilli. The single application of phytobiotics reduced the metabolite concentrations in the crop, but certain combinations synergistically upregulated the metabolites. Changes in the qualitative and quantitative composition of the caecal microbiota were less pronounced than in the crop. Acetate concentrations were significantly lower for phytobiotics or the L. agilis probiotic strain compared to the control group, but the L. salivarius probiotic showed significantly higher acetate concentrations alone or in combination with one phytobiotic. The synergistic effects on the reduction of the ex vivo survival of an ESBL producing E. coli strain in crop or caecum contents were also observed for most combinations. This study shows the beneficial synergistic effects of probiotics and phytobiotics on the intestinal bacterial composition and their metabolic activity in young broilers. The reduced survival of potentially problematic bacteria, such as ESBL-producing E. coli further indicates that combinations of probiotics and phytobiotics may lead to a more enhanced functionality than their individual supplementation.
Collapse
|
47
|
Chuang WY, Lin WC, Hsieh YC, Huang CM, Chang SC, Lee TT. Evaluation of the Combined Use of Saccharomyces Cerevisiae and Aspergillus Oryzae with Phytase Fermentation Products on Growth, Inflammatory, and Intestinal Morphology in Broilers. Animals (Basel) 2019; 9:E1051. [PMID: 31805670 PMCID: PMC6940866 DOI: 10.3390/ani9121051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Saccharomyces cerevisiae and Aspergillus oryzae are both ancient probiotic species traditionally used as microbes for brewing beer and soy sauce, respectively. This study investigated the effect of adding these two probiotics with phytase fermentation products to the broilers diet. Fermented products possess protease and cellulase, and the activities were 777.1 and 189.5 U/g dry matter (DM) on S. cerevisiae fermented products (SCFP) and 190 and 213.4 U/g DM on A. oryzae fermented products (AOFP), respectively. Liposaccharides stimulated PBMCs to produce nitric oxide to 120 μmol. Both SCFP and AOFP reduced lipopolysaccharides stimulated peripheral blood mononuclear cells (PBMCs) nitric oxide release to 40 and 60 μmol, respectively. Nevertheless, in an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, SCFP and AOFP also increased the survival rate of lipopolysaccharides stimulated PBMCs by almost two-fold compared to the negative control. A total of 240 broilers were divided into four groups as Control, SCFP 0.1% (SCFP), SCFP 0.05% + AOFP 0.05% (SAFP), and AOFP 0.1% (AOFP) groups, respectively. Each group had 20 broilers, and three replicate pens. The results showed that the addition of SCFP, SAFP, and AOFP groups did not affect the growth performances, but increased the jejunum value of villus height and villus: crypt ratio on SAFP and AOFP groups compared to the control and SCFP groups. Furthermore, adding SCFP, SAFP, and AOFP significantly reduced the number of Clostridium perfringens in ileum chyme. SCFP, SAFP, and AOFP significantly reduced the amount of interleukin-1β, inducible nitric oxide synthases, interferon-γ, and nuclear factor kappa B mRNA expression in PBMCs, especially in the AOFP group. In summary, all the SCFP, SAFP, and AOFP groups can be suggested as a functional feed additive since they enhanced villus: crypt ratio and decreased inflammation-related mRNA expression, especially for AOFP group in broilers.
Collapse
Affiliation(s)
- Wen Yang. Chuang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (W.C.L.); (Y.C.H.); (C.M.H.)
| | - Wei Chih. Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (W.C.L.); (Y.C.H.); (C.M.H.)
| | - Yun Chen. Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (W.C.L.); (Y.C.H.); (C.M.H.)
| | - Chung Ming. Huang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (W.C.L.); (Y.C.H.); (C.M.H.)
| | - Shen Chang. Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Pingtung 912, Taiwan;
| | - Tzu-Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (W.C.L.); (Y.C.H.); (C.M.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
48
|
Chueh CC, Lin LJ, Lin WC, Huang SH, Jan MS, Chang SC, Chung WS, Lee TT. Antioxidant capacity of banana peel and its modulation of Nrf2-ARE associated gene expression in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1667884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Chuang Chi Chueh
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Li Jen Lin
- Department of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei Chih Lin
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | | | - Ming Shiou Jan
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Shen Chang Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Taipei, Taiwan
| | - Wei Sheng Chung
- Ministry of Health and Welfare, Taichung Hospital, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
49
|
Ahn SH, Heo TH, Jun HS, Choi Y. In vitro and in vivo pharmacokinetic characterization of LMT-28 as a novel small molecular interleukin-6 inhibitor. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:670-677. [PMID: 31480155 PMCID: PMC7054612 DOI: 10.5713/ajas.19.0463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
Objective Interleukin-6 (IL-6) is a T cell-derived B cell stimulating factor which plays an important role in inflammatory diseases. In this study, the pharmacokinetic properties of LMT-28 including physicochemical property, in vitro liver microsomal stability and an in vivo pharmacokinetic study using BALB/c mice were characterized. Methods LMT-28 has been synthesized and is being developed as a novel therapeutic IL-6 inhibitor. The physicochemical properties and in vitro pharmacokinetic profiles such as liver microsomal stability and Madin-Darby canine kidney (MDCK) cell permeability assay were examined. For in vivo pharmacokinetic studies, pharmacokinetic parameters using BALB/c mice were calculated. Results The logarithm of the partition coefficient value (LogP; 3.65) and the apparent permeability coefficient values (Papp; 9.7×10−6 cm/s) showed that LMT-28 possesses a moderate-high cell permeability property across MDCK cell monolayers. The plasma protein binding rate of LMT-28 was 92.4% and mostly bound to serum albumin. The metabolic half-life (t1/2) values of LMT-28 were 15.3 min for rat and 21.9 min for human at the concentration 1 μM. The area under the plasma drug concentration-time curve and Cmax after oral administration (5 mg/kg) of LMT-28 were 302±209 h·ng/mL and 137±100 ng/mL, respectively. Conclusion These data suggest that LMT-28 may have good physicochemical and pharmacokinetic properties and may be a novel oral drug candidate as the first synthetic IL-6 inhibitor to ameliorate mammalian inflammation.
Collapse
Affiliation(s)
- Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea.,ILAb Inc., NP513, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Hyun-Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
50
|
Sureshkumar S, Jung SK, Kim D, Oh KB, Yang H, Lee HC, Jin JY, Sun LH, Lee S, Byun SJ. Oral administration of Lactobacillus reuteri expressing a 3D8 single-chain variable fragment (scFv) enhances chicken growth and conserves immune homeostasis. 3 Biotech 2019; 9:282. [PMID: 31245246 DOI: 10.1007/s13205-019-1811-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
The present study was aimed to investigate the effects of 3D8 scFv-secreting Probiotic Lactobacillus reuteri (L. reuteri) on growth performance, inflammatory responses, and intestinal microbial flora in chickens. To this end, a total of 14 healthy wild-type chickens were divided into two experimental groups. Each group was orally administrated with a daily dose of 109 colony-forming units (CFU) of 3D8 scFv-producing L. reuteri or wild-type (WT) for 35 days. Administration of L. reuteri/3D8 scFv significantly improved the body weight of chickens when compared to L. reuteri/WT group. The bacterial taxonomic composition of the fecal microbiota was determined by pyrosequencing of 16S rRNA gene amplicons. Firmicutes, Actinobacteria, and Proteobacteria were dominant phyla in two experimental groups. However, in 3D8 L. reuteri treatment groups at genus level, the Lactobacillus was highly abundant, being represented by 18.12%. In addition, serum levels of primary cytokines such as IL-6, IL-8, TNF-α, IFN-γ, IL-4, and IGF1 were markedly reduced in the probiotic L. reuteri 3D8 group. In summary, our results indicate that the administration of L. reuteri expressing 3D8 scFv has a modulatory effect on inflammatory responses, improves weight gain while not affecting the common microbial composition of the chicken intestine.
Collapse
Affiliation(s)
- Shanmugam Sureshkumar
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Sun Keun Jung
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Dongjun Kim
- 2Department of Integrative Biotechnology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do Republic of Korea
| | - Keon Bong Oh
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Hyeon Yang
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Hwi Cheul Lee
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Jo Yong Jin
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Lee Hae Sun
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Sukchan Lee
- 2Department of Integrative Biotechnology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do Republic of Korea
| | - Sung June Byun
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| |
Collapse
|