1
|
Kosyakovsky LB, de Boer RA, Ho JE. Screening for Heart Failure: Biomarkers to Detect Heightened Risk in the General Population. Curr Heart Fail Rep 2024; 21:591-603. [PMID: 39287754 DOI: 10.1007/s11897-024-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE OF REVIEW Heart failure (HF) represents a growing global burden of morbidity and mortality. Identifying individuals at risk for HF development is increasingly important, particularly given the advent of disease-modifying therapies for HF as well as its major risk factors such as obesity actalnd diabetes. We aim to review the key circulating biomarkers associated with future HF which may contribute to HF risk prediction. RECENT FINDINGS While current guidelines recommend the use of natriuretic peptides and cardiac troponins in HF risk stratification, there are a diverse array of other emerging protein, metabolic, transcriptomic, and genomic biomarkers of future HF development. These biomarkers not only lend insight into the underlying pathophysiology of HF, which spans inflammation to cardiac fibrosis, but also offer an opportunity to further refine HF risk in addition to established biomarkers. As evolving techniques in molecular biology enable an increased understanding of the complex biologic contributions to HF pathophysiology, there is an important opportunity to construct integrated clinical and multi-omic models to best capture HF risk. Moving forward, future studies should seek to understand the contributions of sex differences, underlying comorbidity burden, and HF subtypes to an individual's HF risk. Further studies are necessary to fully define the clinical utility of biomarker screening approaches to refine HF risk assessment, as well as to link risk assessment directly to preventive strategies for HF.
Collapse
Affiliation(s)
- Leah B Kosyakovsky
- Division of Cardiology, E/CLS 945, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215-5491, USA
| | - Rudolf A de Boer
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, the Netherlands
| | - Jennifer E Ho
- Division of Cardiology, E/CLS 945, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215-5491, USA.
| |
Collapse
|
2
|
Tromp J, Lam CSP, Alemayehu W, de Filippi CR, Melenovský V, Sliwa K, Lopatin Y, Arango JL, Bahit MC, Roessig L, O'Connor CM, Shah P, Westerhout CM, Voors AA, Pieske B, Armstrong PW. Biomarker profiles associated with reverse ventricular remodelling in patients with heart failure and a reduced ejection fraction: Insights from the echocardiographic substudy of the VICTORIA trial. Eur J Heart Fail 2024; 26:2231-2239. [PMID: 39078607 DOI: 10.1002/ejhf.3397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS Reverse ventricular remodelling, defined as a decrease in left ventricular end-systolic volume indexed to body surface area (LVESVI) or an increase in left ventricular ejection fraction (LVEF), is associated with improved clinical outcomes in patients with heart failure with reduced ejection fraction (HFrEF). However, the underlying pathophysiological mechanisms remain unclear. METHODS AND RESULTS We evaluated paired core-lab assessed echocardiograms and measurements of 92 biomarkers at baseline and 8 months thereafter in 419 participants with HFrEF. Reverse ventricular remodelling was defined as a >5% LVEF increase or >15% LVESVI relative decrease between baseline and 8 months. We evaluated the association between baseline biomarkers and their changes with reverse ventricular remodelling in the prospectively randomized controlled VICTORIA (Vericiguat Global Study in Subjects With Heart Failure With Reduced Ejection Fraction) trial. Of 419 patients (median age 66 [interquartile range 57-74] years, 27.4% women), 206 (49.2%) had reverse ventricular remodelling (either a 5% LVEF increase or a 15% LVESVI decrease). There were no differences in baseline biomarker concentrations between patients with versus those without reverse ventricular remodelling on follow-up. However, in patients with reverse ventricular remodelling there were significant decreases in biomarkers relating to inflammation and cardiac metabolism; particularly the tumour necrosis factor superfamily member 13B (ratio 0.82, 95% confidence interval [CI] 0.77-0.88), growth differentiation factor-15 (ratio 0.74, 95% CI 0.66-0.84), and insulin-like growth factor binding protein 7 (ratio 0.80, 95% CI 0.73-0.88). CONCLUSIONS Reverse ventricular remodelling in patients with HFrEF is associated with a decrease of biomarkers related to inflammation and cardiac metabolism.
Collapse
Affiliation(s)
- Jasper Tromp
- Saw Swee Hock School of Public Health National University of Singapore and National University of Singapore and National University Health System, Singapore, Singapore
- National Heart Centre Singapore, Duke-National University of Singapore, Singapore, Singapore
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-National University of Singapore, Singapore, Singapore
| | | | - Christopher R de Filippi
- The Inova Center of Outcomes Research, Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, Department of Medicine and Cardiology, University of Cape Town, Cape Town, South Africa
| | - Yuri Lopatin
- Volgograd State Medical University, Regional Cardiology Centre Volgograd, Volgograd, Russian Federation
| | - Juan Luis Arango
- Unidad de Cirugía Cardiovascular de Guatemala, Guatemala City, Guatemala
| | - M Cecilia Bahit
- INECO Neurociencias Oroño, Fundación INECO, Rosario, Argentina
| | | | - Christopher M O'Connor
- The Inova Center of Outcomes Research, Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Palak Shah
- The Inova Center of Outcomes Research, Inova Heart and Vascular Institute, Falls Church, VA, USA
| | | | - Adriaan A Voors
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
- University of Groningen, Groningen, The Netherlands
| | - Burkert Pieske
- Charité University Medicine, German Heart Center, Berlin, Germany
| | - Paul W Armstrong
- University of Alberta, Canadian VIGOUR Centre, Edmonton, AB, Canada
| |
Collapse
|
3
|
Kumric M, Kurir TT, Bozic J, Slujo AB, Glavas D, Miric D, Lozo M, Zanchi J, Borovac JA. Pathophysiology of Congestion in Heart Failure: A Contemporary Review. Card Fail Rev 2024; 10:e13. [PMID: 39450149 PMCID: PMC11499970 DOI: 10.15420/cfr.2024.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/07/2024] [Indexed: 10/26/2024] Open
Abstract
Acutely decompensated heart failure is one of the leading causes of hospitalisation worldwide, with a significant majority of these cases attributed to congestion. Although congestion is commonly mistaken for volume overload, evidence suggests that decompensation can occur without significant water accumulation, being attributed to volume redistribution. Yet, the distinction between intravascular and extravascular congestion in heart failure often blurs, as patients frequently exhibit overlapping features of both, and as patients may transition between phenotypes over time. Considering that differentiation between intravascular and extravascular congestion can lead to different management strategies, the aim of this review was to delineate the pathophysiological nuances between the two, as well as their correlation with clinical, biochemical and imaging indices.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of MedicineSplit, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of MedicineSplit, Croatia
- Department of Endocrinology and Diabetology, University Hospital of SplitSplit, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of MedicineSplit, Croatia
| | - Anteo Bradaric Slujo
- Department of Pathophysiology, University of Split School of MedicineSplit, Croatia
- Cardiovascular Diseases Department, University Hospital of SplitSplit, Croatia
| | - Duska Glavas
- Cardiovascular Diseases Department, University Hospital of SplitSplit, Croatia
| | - Dino Miric
- Cardiovascular Diseases Department, University Hospital of SplitSplit, Croatia
| | - Mislav Lozo
- Cardiovascular Diseases Department, University Hospital of SplitSplit, Croatia
| | - Jaksa Zanchi
- Cardiovascular Diseases Department, University Hospital of SplitSplit, Croatia
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of MedicineSplit, Croatia
- Cardiovascular Diseases Department, University Hospital of SplitSplit, Croatia
| |
Collapse
|
4
|
Xia W, Zhang M, Liu C, Wang S, Xu A, Xia Z, Pang L, Cai Y. Exploring the therapeutic potential of tetrahydrobiopterin for heart failure with preserved ejection fraction: A path forward. Life Sci 2024; 345:122594. [PMID: 38537900 DOI: 10.1016/j.lfs.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
A large number of patients are affected by classical heart failure (HF) symptomatology with preserved ejection fraction (HFpEF) and multiorgan syndrome. Due to high morbidity and mortality rate, hospitalization and mortality remain serious socioeconomic problems, while the lack of effective pharmacological or device treatment means that HFpEF presents a major unmet medical need. Evidence from clinical and basic studies demonstrates that systemic inflammation, increased oxidative stress, and impaired mitochondrial function are the common pathological mechanisms in HFpEF. Tetrahydrobiopterin (BH4), beyond being an endogenous co-factor for catalyzing the conversion of some essential biomolecules, has the capacity to prevent systemic inflammation, enhance antioxidant resistance, and modulate mitochondrial energy production. Therefore, BH4 has emerged in the last decade as a promising agent to prevent or reverse the progression of disorders such as cardiovascular disease. In this review, we cover the clinical progress and limitations of using downstream targets of nitric oxide (NO) through NO donors, soluble guanylate cyclase activators, phosphodiesterase inhibitors, and sodium-glucose co-transporter 2 inhibitors in treating cardiovascular diseases, including HFpEF. We discuss the use of BH4 in association with HFpEF, providing new evidence for its potential use as a pharmacological option for treating HFpEF.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Miao Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Guangdong, China
| | - Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
5
|
Jacobsen JCB, Schubert IH, Larsen K, Terzic D, Thisted L, Thomsen MB. Preload dependence in an animal model of mild heart failure with preserved ejection fraction (HFpEF). Acta Physiol (Oxf) 2024; 240:e14099. [PMID: 38230889 DOI: 10.1111/apha.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
AIM Heart Failure with preserved Ejection Fraction (HFpEF) is characterized by diastolic dysfunction and reduced cardiac output, but its pathophysiology remains poorly understood. Animal models of HFpEF are challenging due to difficulties in assessing the degree of heart failure in small animals. This study aimed at inducing HFpEF in a mouse model to probe preload-dependency. METHODS Increased body mass and arterial hypertension were induced in mice using a Western diet and NO synthase inhibition. Preload dependence was tested ex vivo. RESULTS Mice with obesity and hypertension exhibited reduced cardiac output, indicating a failing heart. Increased left ventricular filling pressure during diastole suggested reduced compliance. Notably, the ejection fraction was preserved, suggesting the development of HFpEF. Spontaneous physical activity at night was reduced in HFpEF mice, indicating exercise intolerance; however, the cardiac connective tissue content was comparable between HFpEF and control mice. The HFpEF mice showed increased vulnerability to reduced preload ex vivo, indicating that elevated left ventricular filling pressure compensated for the rigid left ventricle, preventing a critical decrease in cardiac output. CONCLUSION This animal model successfully developed mild HFpEF with a reduced pump function that was dependent on a high preload. A model of mild HFpEF may serve as a valuable tool for studying disease progression and interventions aimed at delaying or reversing symptom advancement, considering the slow development of HFpEF in patients.
Collapse
Affiliation(s)
- Jens C B Jacobsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene H Schubert
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin Larsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dijana Terzic
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Louise Thisted
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Stege NM, Eijgenraam TR, Oliveira Nunes Teixeira V, Feringa AM, Schouten EM, Kuster DW, van der Velden J, Wolters AH, Giepmans BN, Makarewich CA, Bassel-Duby R, Olson EN, de Boer RA, Silljé HH. DWORF Extends Life Span in a PLN-R14del Cardiomyopathy Mouse Model by Reducing Abnormal Sarcoplasmic Reticulum Clusters. Circ Res 2023; 133:1006-1021. [PMID: 37955153 PMCID: PMC10699510 DOI: 10.1161/circresaha.123.323304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The p.Arg14del variant of the PLN (phospholamban) gene causes cardiomyopathy, leading to severe heart failure. Calcium handling defects and perinuclear PLN aggregation have both been suggested as pathological drivers of this disease. Dwarf open reading frame (DWORF) has been shown to counteract PLN regulatory calcium handling function in the sarco/endoplasmic reticulum (S/ER). Here, we investigated the potential disease-modulating action of DWORF in this cardiomyopathy and its effects on calcium handling and PLN aggregation. METHODS We studied a PLN-R14del mouse model, which develops cardiomyopathy with similar characteristics as human patients, and explored whether cardiac DWORF overexpression could delay cardiac deterioration. To this end, R14Δ/Δ (homozygous PLN-R14del) mice carrying the DWORF transgene (R14Δ/ΔDWORFTg [R14Δ/Δ mice carrying the DWORF transgene]) were used. RESULTS DWORF expression was suppressed in hearts of R14Δ/Δ mice with severe heart failure. Restoration of DWORF expression in R14Δ/Δ mice delayed cardiac fibrosis and heart failure and increased life span >2-fold (from 8 to 18 weeks). DWORF accelerated sarcoplasmic reticulum calcium reuptake and relaxation in isolated cardiomyocytes with wild-type PLN, but in R14Δ/Δ cardiomyocytes, sarcoplasmic reticulum calcium reuptake and relaxation were already enhanced, and no differences were detected between R14Δ/Δ and R14Δ/ΔDWORFTg. Rather, DWORF overexpression delayed the appearance and formation of large pathogenic perinuclear PLN clusters. Careful examination revealed colocalization of sarcoplasmic reticulum markers with these PLN clusters in both R14Δ/Δ mice and human p.Arg14del PLN heart tissue, and hence these previously termed aggregates are comprised of abnormal organized S/ER. This abnormal S/ER organization in PLN-R14del cardiomyopathy contributes to cardiomyocyte cell loss and replacement fibrosis, consequently resulting in cardiac dysfunction. CONCLUSIONS Disorganized S/ER is a major characteristic of PLN-R14del cardiomyopathy in humans and mice and results in cardiomyocyte death. DWORF overexpression delayed PLN-R14del cardiomyopathy progression and extended life span in R14Δ/Δ mice, by reducing abnormal S/ER clusters.
Collapse
Affiliation(s)
- Nienke M. Stege
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Tim R. Eijgenraam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Vivian Oliveira Nunes Teixeira
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Anna M. Feringa
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Elisabeth M. Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Diederik W.D. Kuster
- Department of Physiology (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Anouk H.G. Wolters
- Biomedical Sciences of Cells and Systems, UMC Groningen, University of Groningen, the Netherlands (A.H.G.W., B.N.G.G.)
| | - Ben N.G. Giepmans
- Biomedical Sciences of Cells and Systems, UMC Groningen, University of Groningen, the Netherlands (A.H.G.W., B.N.G.G.)
| | - Catherine A. Makarewich
- Division of Molecular Cardiovascular Biology of the Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (C.A.M.)
- Department of Pediatrics, University of Cincinnati College of Medicine, OH (C.A.M.)
| | - Rhonda Bassel-Duby
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (R.B.-D., E.N.O.)
| | - Eric N. Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (R.B.-D., E.N.O.)
| | - Rudolf A. de Boer
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands (R.A.d.B.)
| | - Herman H.W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| |
Collapse
|
7
|
Nasab Mehrabi E, Toupchi‐Khosroshahi V, Athari SS. Relationship of atrial fibrillation and N terminal pro brain natriuretic peptide in heart failure patients. ESC Heart Fail 2023; 10:3250-3257. [PMID: 37776150 PMCID: PMC10682909 DOI: 10.1002/ehf2.14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
N terminal pro brain natriuretic peptide (NT-proBNP) plays an important role in the diagnosis and prognosis of heart failure (HF). The plasma level of NT-proBNP in atrial fibrillation (AF) patients was higher than of sinus rhythm patients. In HF, NT-proBNP levels are affected by the concomitant presence of AF, making it difficult to distinguish between HF and AF in patients with elevated NT-proBNP. Several other diseases, such as renal failure and pulmonary embolism, are known to further increase NT-proBNP levels in patients with concomitant HF. Therefore, NT-proBNP is a sensitive but non-specific marker for the detection of HF. AF is very important in this regard because among patients with HF regardless of ejection fraction, symptoms such as shortness of breath and atrial enlargement develop and can mimic HF. In the present study, we investigated whether the prognostic value of natriuretic peptides in HF holds true for patients with concomitant AF.
Collapse
Affiliation(s)
- Entezar Nasab Mehrabi
- Department of Cardiology, School of Medicine, Tehran Heart CenterTehran University of Medical SciencesTehranIran
- Department of Cardiology, School of MedicineValiasr Hospital, Zanjan University of Medical SciencesZanjanIran
| | - Vahid Toupchi‐Khosroshahi
- Department of Cardiology, School of MedicineValiasr Hospital, Zanjan University of Medical SciencesZanjanIran
- Department of Cardiology, School of MedicineAyatollah Mousavi Hospital, Zanjan University of Medical SciencesZanjanIran
| | | |
Collapse
|
8
|
Luo S, Zuo Y, Cui X, Zhang M, Jin H, Hong L. Effects of liraglutide on ANP secretion and cardiac dynamics. Endocr Connect 2023; 12:e230176. [PMID: 37681442 PMCID: PMC10563649 DOI: 10.1530/ec-23-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
To observe the effects of liraglutide (analog of glucagon-like peptide 1 (GLP-1)) on atrial natriuretic peptide (ANP) secretion and atrial dynamics, an ex vivo isolated rat atrial perfusion model was used to determine atrial ANP secretion and pulse pressure. DPP-4-/- mice were also established in vivo. ANP levels were determined by radioimmunoassay; GLP-1 content was determined by Elisa. The expression levels of GLP-1 receptor (GLP-1R), PI3K/AKT/mTOR, piezo 1, and cathepsin K were analyzed by Western blot. In the clinical study, patients with acute coronary syndrome (ACS) had low levels of plasma GLP-1 but relatively high levels of plasma ANP. In ex vivo (3.2 nmol/L) and in vivo (30 μg/kg) models, liraglutide significantly decreased ANP levels and atrial pulse pressure. Exendin9-39 alone (GLP-1R antagonist) reversibly significantly increased ANP secretion, and the reduction effect of liraglutide on the secretion of ANP was significantly alleviated by Exendin9-39. Exendin9-39 demonstrated slightly decreased atrial pulse pressure; however, combined liraglutide and Exendin9-39 significantly decreased atrial pulse pressure. Ly294002 (PI3K/AKT inhibitor) inhibited the increase of ANP secretion by liraglutide for a short time, while Ly294002 didn't counteract the decrease in pulse pressure by liraglutide in atrial dynamics studies. Liraglutide increased the expression of GLP-1R and PI3K/AKT/mTOR in isolated rat atria and the hearts of mice in vivo, whereas Exendin9-39 reversibly reduced the expression of GLP-1R and PI3K/AKT/mTOR. Piezo 1 was significantly decreased in wild type and DPP-4-/- mouse heart or isolated rat atria after being treated with liraglutide. Cathepsin K expression was only decreased in in vivo model hearts. Liraglutide can inhibit ANP secretion while decreasing atrial pulse pressure mediated by GLP-1R. Liraglutide probably plays a role in the reduction of ANP secretion via the PI3K/AKT/mTOR signaling pathway. Piezo 1 and cathepsin K may be involved in the liraglutide mechanism of reduction.
Collapse
Affiliation(s)
- Shenghe Luo
- College of Pharmacy, Yanbian University, Yanji, China
| | - Yunhui Zuo
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Xiaotian Cui
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Meiping Zhang
- Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Honghua Jin
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
9
|
Clemente G, Soldano JS, Tuttolomondo A. Heart Failure: Is There an Ideal Biomarker? Rev Cardiovasc Med 2023; 24:310. [PMID: 39076445 PMCID: PMC11272844 DOI: 10.31083/j.rcm2411310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2024] Open
Abstract
An always-rising prevalence of heart failure (HF), formerly classified as an emerging epidemic in 1997 and still representing a serious problem of public health, imposes on us to examine more in-depth the pathophysiological mechanisms it is based on. Over the last few years, several biomarkers have been chosen and used in the management of patients affected by HF. The research about biomarkers has broadened our knowledge by identifying some underlying pathophysiological mechanisms occurring in patients with both acute and chronic HF. This review aims to provide an overview of the role of biomarkers previously identified as responsible for the pathophysiological mechanisms subtending the disease and other emerging ones to conduct the treatment and identify possible prognostic implications that may allow the optimization of the therapy and/or influence a closer follow-up. Taking the high prevalence of HF-associated comorbidities into account, an integrated approach using various biomarkers has shown promising results in predicting mortality, a preferable risk stratification, and the decrease of rehospitalizations, reducing health care costs as well.
Collapse
Affiliation(s)
- Giuseppe Clemente
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico P.
Giaccone, 90127 Palermo, Italy
| | - John Sebastian Soldano
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico P.
Giaccone, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico P.
Giaccone, 90127 Palermo, Italy
| |
Collapse
|
10
|
Ma H, Zhou J, Zhang M, Shen C, Jiang Z, Zhang T, Gao F. The Diagnostic Accuracy of N-Terminal Pro-B-Type Natriuretic Peptide and Soluble ST2 for Heart Failure in Chronic Kidney Disease Patients: A Comparative Analysis. Med Sci Monit 2023; 29:e940641. [PMID: 37667469 PMCID: PMC10492504 DOI: 10.12659/msm.940641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND N-terminal proatrial natriuretic peptide (NT-proBNP) levels are often markedly elevated in patients with chronic kidney disease (CKD). Identifying novel biomarkers is an important step toward effective diagnosis. Interleukin-1 receptor-like 1 (IL1RL1) protein and human/Soluble suppression of tumorigenesis-2 (sST2) are promising biomarkers for heart failure (HF). This study aimed to assess the trend of NT-proBNP and sST2 in chronic kidney disease and their diagnostic value for HF. MATERIAL AND METHODS This study was carried out on 420 patients who were divided into a no heart failure group (N=182) and a heart failure group (N=238). Spearman correlation analysis was used to test the association of sST2 and NT-proBNP with renal function. The diagnostic value of each biomarker was assessed using receiver operating characteristic (ROC) curves according to 3 different forms: Total group (n=420), non-CKD group (n=217), and CKD group (n=203). RESULTS A striking correlation between eGFR and NT-proBNP (r=-0.525; P<0.001) seemed to be far stronger than that with sST2 (r=-0.147; P<0.05). The optimum cutoff points for sST2 and NT-proBNP to detect HF were 28.960 ng/mL and 1280 pg/mL, respectively, in total, 28.71 ng/mL and 481 pg/mL, respectively, in non-CKD patients, and 30.55 ng/mL and 3314 pg/mL, respectively, in CKD patients. The combined model of sST2 and NT-proBNP was superior to the model of sST2 or NT-proBNP alone, and the difference was statistically significant (P<0.05). CONCLUSIONS The diagnostic value of sST2 is less affected by decreased renal function. sST2 combined with NT-proBNP may improve the diagnostic accuracy of HF.
Collapse
Affiliation(s)
- Hongzhen Ma
- Department of Geriatric Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jun Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Meng Zhang
- Department of Geriatric Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chun Shen
- Department of Geriatric Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zhifan Jiang
- Department of Geriatric Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Tao Zhang
- Department of Geriatric Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Fei Gao
- Department of Geriatric Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
11
|
van den Berg PF, Aboumsallem JP, Screever EM, Shi C, de Wit S, Bracun V, Yousif LI, Geerlings L, Wang D, Ho JE, Bakker SJ, van der Vegt B, Silljé HH, de Boer RA, Meijers WC. Fibrotic Marker Galectin-3 Identifies Males at Risk of Developing Cancer and Heart Failure. JACC CardioOncol 2023; 5:445-453. [PMID: 37614579 PMCID: PMC10443113 DOI: 10.1016/j.jaccao.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 08/25/2023] Open
Abstract
Background Cancer and heart failure (HF) are the leading causes of death in the Western world. Shared mechanisms such as fibrosis may underlie either disease entity, furthermore it is unknown whether this relationship is sex-specific. Objectives We sought to investigate how fibrosis-related biomarker galectin-3 (gal-3) aids in identifying individuals at risk for new-onset cancer and HF, and how this differs between sexes. Methods Gal-3 was measured at baseline and at 4-year follow-up in 5,786 patients of the PREVEND (Prevention of Renal and Vascular Endstage Disease) study. The total follow-up period was 11.5 years. An increase of ≥50% in gal-3 levels between measurements was considered relevant. We performed sex-stratified log-rank tests and Cox regression analyses overall and by sex to evaluate the association of gal-3 over time with both new-onset cancer and new-onset HF. Results Of the 5,786 healthy participants (50% males), 399 (59% males) developed new-onset cancer, and 192 (65% males) developed new-onset HF. In males, an increase in gal-3 was significantly associated with new-onset cancer (both combined and certain cancer-specific subtypes), after adjusting for age, body mass index, hypertension, smoking status, estimated glomerular filtration rate, diabetes mellitus, triglycerides, coronary artery disease, and C-reactive protein (HR: 1.89; 95% CI: 1.32-2.71; P < 0.001). Similar analyses demonstrated an association with new-onset HF in males (HR: 1.77; 95% CI: 1.07-2.95; P = 0.028). In females, changes in gal-3 over time were neither associated with new-onset cancer nor new-onset HF. Conclusions Gal-3, a marker of fibrosis, is associated with new-onset cancer and new-onset HF in males, but not in females.
Collapse
Affiliation(s)
- Pieter F. van den Berg
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elles M. Screever
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Canxia Shi
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sanne de Wit
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Valentina Bracun
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Laura I. Yousif
- Department of Cardiology, Thorax Center, Erasmus Medical center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Lotte Geerlings
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dongyu Wang
- Cardiovascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jennifer E. Ho
- Cardiovascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Stephan J.L. Bakker
- Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Herman H.W. Silljé
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudolf A. de Boer
- Department of Cardiology, Thorax Center, Erasmus Medical center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wouter C. Meijers
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Cardiology, Thorax Center, Erasmus Medical center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Otaki Y, Shimizu M, Watanabe T, Tachibana S, Sato J, Kobayashi Y, Aono T, Kato S, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Watanabe M. Growth Differentiation Factor 15 and Clinical Outcomes in Japanese Patients With Heart Failure. Circ J 2023; 87:1120-1129. [PMID: 36948614 DOI: 10.1253/circj.cj-23-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
BACKGROUND Heart failure (HF) is an increasing health problem associated with a high mortality rate. Growth differentiation factor (GDF) 15, a stress response cytokine belonging to the transforming growth factor-β superfamily, is associated with poor clinical outcomes in a broad spectrum of cardiovascular diseases. However, the prognostic usefulness of GDF15 in Japanese patients with HF remains unclear. METHODS AND RESULTS We measured serum concentrations of GDF15 and B-type natriuretic peptide (BNP) in 1,201 patients with HF. All patients were prospectively followed for a median period of 1,309 days. In all, 319 HF-related events and 187 all-cause deaths occurred during the follow-up period. Kaplan-Meier analysis demonstrated that, among GDF15 tertiles, the highest tertile group had the greatest risk of HF-related events and all-cause mortality. Multivariate Cox proportional hazard regression analysis demonstrated that the serum GDF15 concentration was an independent predictor of HF-related events and all-cause deaths after adjusting for confounding risk factors. Serum GDF15 improved the prediction capacity for all-cause deaths and HF-related events with a significant net reclassification index and integrated discrimination improvement. Subgroup analysis in patients with HF with preserved ejection fraction also showed the prognostic usefulness of GDF15. CONCLUSIONS Serum GDF15 concentrations were associated with HF severity and clinical outcomes, indicating that GDF15 could provide additional clinical information to track the health status of patients with HF.
Collapse
Affiliation(s)
- Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Mari Shimizu
- Faculty of Medicine, Yamagata University School of Medicine
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Shingo Tachibana
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Junya Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Yuta Kobayashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Tomonori Aono
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Shigehiko Kato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Harutoshi Tamura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine
| |
Collapse
|
13
|
de Bakker M, Petersen TB, Akkerhuis KM, Harakalova M, Umans VA, Germans T, Caliskan K, Katsikis PD, van der Spek PJ, Suthahar N, de Boer RA, Rizopoulos D, Asselbergs FW, Boersma E, Kardys I. Sex-based differences in cardiovascular proteomic profiles and their associations with adverse outcomes in patients with chronic heart failure. Biol Sex Differ 2023; 14:29. [PMID: 37198662 DOI: 10.1186/s13293-023-00516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Studies focusing on sex differences in circulating proteins in patients with heart failure with reduced ejection fraction (HFrEF) are scarce. Insight into sex-specific cardiovascular protein profiles and their associations with the risk of adverse outcomes may contribute to a better understanding of the pathophysiological processes involved in HFrEF. Moreover, it could provide a basis for the use of circulating protein measurements for prognostication in women and men, wherein the most relevant protein measurements are applied in each of the sexes. METHODS In 382 patients with HFrEF, we performed tri-monthly blood sampling (median follow-up: 25 [13-31] months). We selected all baseline samples and two samples closest to the primary endpoint (PEP: composite of cardiovascular death, heart transplantation, left ventricular assist device implantation, and HF hospitalization) or censoring. We then applied an aptamer-based multiplex proteomic assay identifying 1105 proteins previously associated with cardiovascular disease. We used linear regression models and gene-enrichment analysis to study sex-based differences in baseline levels. We used time-dependent Cox models to study differences in the prognostic value of serially measured proteins. All models were adjusted for the MAGGIC HF mortality risk score and p-values for multiple testing. RESULTS In 104 women and 278 men (mean age 62 and 64 years, respectively) cumulative PEP incidence at 30 months was 25% and 35%, respectively. At baseline, 55 (5%) out of the 1105 proteins were significantly different between women and men. The female protein profile was most strongly associated with extracellular matrix organization, while the male profile was dominated by regulation of cell death. The association of endothelin-1 (Pinteraction < 0.001) and somatostatin (Pinteraction = 0.040) with the PEP was modified by sex, independent of clinical characteristics. Endothelin-1 was more strongly associated with the PEP in men (HR 2.62 [95%CI, 1.98, 3.46], p < 0.001) compared to women (1.14 [1.01, 1.29], p = 0.036). Somatostatin was positively associated with the PEP in men (1.23 [1.10, 1.38], p < 0.001), but inversely associated in women (0.33 [0.12, 0.93], p = 0.036). CONCLUSION Baseline cardiovascular protein levels differ between women and men. However, the predictive value of repeatedly measured circulating proteins does not seem to differ except for endothelin-1 and somatostatin.
Collapse
Affiliation(s)
- Marie de Bakker
- Department of Cardiology, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Room Na-316, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Teun B Petersen
- Department of Cardiology, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Room Na-316, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Room Na-316, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart and Lungs, Circulatory Health Research Center, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Victor A Umans
- Department of Cardiology, Northwest Clinics, Alkmaar, The Netherlands
| | - Tjeerd Germans
- Department of Cardiology, Northwest Clinics, Alkmaar, The Netherlands
| | - Kadir Caliskan
- Department of Cardiology, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Room Na-316, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Navin Suthahar
- Department of Cardiology, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Room Na-316, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Room Na-316, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Folkert W Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Eric Boersma
- Department of Cardiology, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Room Na-316, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Room Na-316, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
de Boer RA. Myeloperoxidase in Heart Failure With Preserved Ejection Fraction: A Target Against Inflammation? JACC. HEART FAILURE 2023:S2213-1779(23)00195-6. [PMID: 37178083 DOI: 10.1016/j.jchf.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Affiliation(s)
- Rudolf A de Boer
- Erasmus Medical Center, Department of Cardiology, Rotterdam, the Netherlands.
| |
Collapse
|
15
|
Effect of Selenium Nanoparticles and/or Bee Venom against STZ-Induced Diabetic Cardiomyopathy and Nephropathy. Metabolites 2023; 13:metabo13030400. [PMID: 36984840 PMCID: PMC10057804 DOI: 10.3390/metabo13030400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
The main purpose of our study was to examine the role of selenium nanoparticles (SeNPs) and/or bee venom (BV) in ameliorating diabetic cardiomyopathy (DCM) and nephropathy (DN) at the biochemical, histopathological and molecular levels. Fifty male albino rats were used in this experiment, divided into five groups: control, Streptozocin (STZ) diabetic, STZ-diabetic treated with SeNPs, STZ-diabetic treated with BV, and STZ-diabetic treated with SeNPs and BV. Biochemically, STZ injection resulted in a significant increase in serum glucose, BUN, creatinine, CRP, CK-MB, AST, LDH and cardiac troponins with a significant decrease in the serum insulin and albumin concentrations. Histopathologically, STZ injection resulted in diabetes, as revealed by glomerulonephritis, perivascular hemorrhage, inflammatory cell infiltrations and fibrosis, with widening of interstitial spaces of cardiomyocytes, loss of muscle cells continuity and some hyaline degeneration. At the molecular levels, the expression levels of miRNA 328, miRNA-21, TGFβ1, TGFβ1R, JAK1, STST-3, SMAD-1 and NFκβ genes were significantly up-regulated, whereas the expression levels of SMAD-7 were significantly down-regulated. It is concluded that SeNPs and/or BV administration ameliorates the deleterious effects resulting from STZ administration through improving the biochemical, histopathological and molecular effects, suggesting their protective role against the long-term diabetic complications of DCM and DN.
Collapse
|
16
|
Untargeted Metabolomics Identifies Potential Hypertrophic Cardiomyopathy Biomarkers in Carriers of MYBPC3 Founder Variants. Int J Mol Sci 2023; 24:ijms24044031. [PMID: 36835444 PMCID: PMC9961357 DOI: 10.3390/ijms24044031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by pathogenic MYBPC3 variants, and a significant cause of sudden cardiac death. Severity is highly variable, with incomplete penetrance among genotype-positive family members. Previous studies demonstrated metabolic changes in HCM. We aimed to identify metabolite profiles associated with disease severity in carriers of MYBPC3 founder variants using direct-infusion high-resolution mass spectrometry in plasma of 30 carriers with a severe phenotype (maximum wall thickness ≥20 mm, septal reduction therapy, congestive heart failure, left ventricular ejection fraction <50%, or malignant ventricular arrhythmia) and 30 age- and sex-matched carriers with no or a mild phenotype. Of the top 25 mass spectrometry peaks selected by sparse partial least squares discriminant analysis, XGBoost gradient boosted trees, and Lasso logistic regression (42 total), 36 associated with severe HCM at a p < 0.05, 20 at p < 0.01, and 3 at p < 0.001. These peaks could be clustered to several metabolic pathways, including acylcarnitine, histidine, lysine, purine and steroid hormone metabolism, and proteolysis. In conclusion, this exploratory case-control study identified metabolites associated with severe phenotypes in MYBPC3 founder variant carriers. Future studies should assess whether these biomarkers contribute to HCM pathogenesis and evaluate their contribution to risk stratification.
Collapse
|
17
|
Aboumsallem JP, Shi C, De Wit S, Markousis-Mavrogenis G, Bracun V, Eijgenraam TR, Hoes MF, Meijers WC, Screever EM, Schouten ME, Voors AA, Silljé HHW, De Boer RA. Multi-omics analyses identify molecular signatures with prognostic values in different heart failure aetiologies. J Mol Cell Cardiol 2023; 175:13-28. [PMID: 36493852 DOI: 10.1016/j.yjmcc.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heart failure (HF) is the leading cause of morbidity and mortality worldwide, and there is an urgent need for more global studies and data mining approaches to uncover its underlying mechanisms. Multiple omics techniques provide a more holistic molecular perspective to study pathophysiological events involved in the development of HF. METHODS In this study, we used a label-free whole myocardium multi-omics characterization from three commonly used mouse HF models: transverse aortic constriction (TAC), myocardial infarction (MI), and homozygous Phospholamban-R14del (PLN-R14Δ/Δ). Genes, proteins, and metabolites were analysed for differential expression between each group and a corresponding control group. The core transcriptome and proteome datasets were used for enrichment analysis. For genes that were upregulated at both the RNA and protein levels in all models, clinical validation was performed by means of plasma level determination in patients with HF from the BIOSTAT-CHF cohort. RESULTS Cell death and tissue repair-related pathways were upregulated in all preclinical models. Fatty acid oxidation, ATP metabolism, and Energy derivation processes were downregulated in all investigated HF aetiologies. Putrescine, a metabolite known for its role in cell survival and apoptosis, demonstrated a 4.9-fold (p < 0.02) increase in PLN-R14Δ/Δ, 2.7-fold (p < 0.005) increase in TAC mice, and 2.2-fold (p < 0.02) increase in MI mice. Four Biomarkers were associated with all-cause mortality (PRELP: Hazard ratio (95% confidence interval) 1.79(1.35, 2.39), p < 0.001; CKAP4: 1.38(1.21, 1.57), p < 0.001; S100A11: 1.37(1.13, 1.65), p = 0.001; Annexin A1 (ANXA1): 1.16(1.04, 1.29) p = 0.01), and three biomarkers were associated with HF-Related Rehospitalization, (PRELP: 1.88(1.4, 2.53), p < 0.001; CSTB: 1.15(1.05, 1.27), p = 0.003; CKAP4: 1.18(1.02, 1.35), P = 0.023). CONCLUSIONS Cell death and tissue repair pathways were significantly upregulated, and ATP and energy derivation processes were significantly downregulated in all models. Common pathways and biomarkers with potential clinical and prognostic associations merit further investigation to develop optimal management and therapeutic strategies for all HF aetiologies.
Collapse
Affiliation(s)
- Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Canxia Shi
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sanne De Wit
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valentina Bracun
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim R Eijgenraam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wouter C Meijers
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elles M Screever
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marloes E Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A De Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Chalise U, Becirovic-Agic M, Rodriguez-Paar JR, Konfrst SR, de Morais SDB, Johnson CS, Flynn ER, Hall ME, Anderson DR, Cook LM, DeLeon-Pennell KY, Lindsey ML. Harnessing the Plasma Proteome to Mirror Current and Predict Future Cardiac Remodeling After Myocardial Infarction. J Cardiovasc Transl Res 2023; 16:3-16. [PMID: 36197585 PMCID: PMC9944212 DOI: 10.1007/s12265-022-10326-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022]
Abstract
To identify plasma proteins that mirror current and predict future remodeling after myocardial infarction (MI), we retrospectively interrogated plasma proteomes of day (D)0 control (n = 16) and D3 MI (n = 15) from C57BL/6 J mice (20 ± 1 months). A total of 165 unique proteins were correlated with cardiac physiology variables. We prospectively tested the hypothesis that candidates identified retrospectively would predict cardiac physiology at an extended timepoint (D7 MI) in a second cohort of mice (n = 4 ± 1 months). We also examined human plasma from healthy controls (n = 18) and patients 48 h after presentation for MI (n = 41). Retrospectively, we identified 5 strong reflectors of remodeling (all r ≥ 0.60 and p < 0.05). Prospectively, ApoA1, IgA, IL-17E, and TIMP-1 mirrored current and predicted future remodeling. In humans, cytokine-cytokine receptor signaling was the top enriched KEGG pathway for all candidates. In summary, we identified plasma proteins that serve as useful prognostic indicators of adverse remodeling and progression to heart failure.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68198, USA
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68198, USA
| | - Jocelyn R Rodriguez-Paar
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68198, USA
| | - Shelby R Konfrst
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68198, USA
| | - Sharon D B de Morais
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68198, USA
| | - Catherine S Johnson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Daniel R Anderson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kristine Y DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, 29401, USA
| | - Merry L Lindsey
- School of Graduate Studies and Research, Meharry Medical College, 1005 Dr DB Todd Jr Blvd, Nashville, TN, 37208, USA.
- Nashville VA Medical Center, Nashville, TN, 37212, USA.
| |
Collapse
|
19
|
Mueller C, Muench-Gerber TS, de Boer RA. Growth differentiation factor 15: a biomarker searching for an indication. Eur Heart J 2023; 44:301-303. [PMID: 36459111 DOI: 10.1093/eurheartj/ehac681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Christian Mueller
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland.,GREAT network, Rome, Italy
| | - Tamar S Muench-Gerber
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland.,GREAT network, Rome, Italy
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Rotterdam, the Netherlands
| |
Collapse
|
20
|
Li C, Qin D, Hu J, Yang Y, Hu D, Yu B. Inflamed adipose tissue: A culprit underlying obesity and heart failure with preserved ejection fraction. Front Immunol 2022; 13:947147. [PMID: 36483560 PMCID: PMC9723346 DOI: 10.3389/fimmu.2022.947147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
The incidence of heart failure with preserved ejection fraction is increasing in patients with obesity, diabetes, hypertension, and in the aging population. However, there is a lack of adequate clinical treatment. Patients with obesity-related heart failure with preserved ejection fraction display unique pathophysiological and phenotypic characteristics, suggesting that obesity could be one of its specific phenotypes. There has been an increasing recognition that overnutrition in obesity causes adipose tissue expansion and local and systemic inflammation, which consequently exacerbates cardiac remodeling and leads to the development of obese heart failure with preserved ejection fraction. Furthermore, overnutrition leads to cellular metabolic reprogramming and activates inflammatory signaling cascades in various cardiac cells, thereby promoting maladaptive cardiac remodeling. Growing evidence indicates that the innate immune response pathway from the NLRP3 inflammasome, to interleukin-1 to interleukin-6, is involved in the generation of obesity-related systemic inflammation and heart failure with preserved ejection fraction. This review established the existence of obese heart failure with preserved ejection fraction based on structural and functional changes, elaborated the inflammation mechanisms of obese heart failure with preserved ejection fraction, proposed that NLRP3 inflammasome activation may play an important role in adiposity-induced inflammation, and summarized the potential therapeutic approaches.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Donglu Qin
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Jiarui Hu
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China,*Correspondence: Bilian Yu,
| |
Collapse
|
21
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 2022; 43:4229-4361. [PMID: 36017568 DOI: 10.1093/eurheartj/ehac244] [Citation(s) in RCA: 897] [Impact Index Per Article: 448.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
22
|
Bayes-Genis A, Aimo A, Jhund P, Richards M, de Boer RA, Arfsten H, Fabiani I, Lupón J, Anker SD, González A, Castiglione V, Metra M, Mueller C, Núñez J, Rossignol P, Barison A, Butler J, Teerlink J, Filippatos G, Ponikowski P, Vergaro G, Zannad F, Seferovic P, Rosano G, Coats AJS, Emdin M, Januzzi JL. Biomarkers in heart failure clinical trials. A review from the Biomarkers Working Group of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:1767-1777. [PMID: 36073112 DOI: 10.1002/ejhf.2675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The approval of new heart failure (HF) therapies has slowed over the past two decades in part due to the high costs of conducting large randomized clinical trials that are needed to adequately power major clinical endpoint studies. Several biomarkers have been identified reflecting different elements of HF pathophysiology, with possible applications in diagnosis, risk stratification, treatment monitoring, and even in the design of clinical trials. Biomarkers could potentially be used to refine study inclusion criteria to enable enrolment of patients who are more likely to respond to a therapeutic intervention, despite being at sufficient risk to meet pre-determined study endpoint rates. When there is a close relationship between biomarker levels and clinical endpoints, changes in biomarker levels after a given treatment can act as a surrogate endpoint, potentially reducing the duration and cost of a clinical trial. Natriuretic peptides have been widely used in clinical trials with a variable amount of added value, which such variation being probably due to the absence of a close pathophysiological connection to the study drug. Notable exceptions to this include sacubitril/valsartan and vericiguat. Future studies should seek to adopt unbiased approaches for discovery of true companion diagnostics; with -omics-based tools, biomarkers might be more precisely selected for use in clinical trials to identify responses that closely reflect the biological effects of the drug under investigation. Finally, biomarkers associated with cardiac damage and remodelling, such as cardiac troponin, could be employed as safety endpoints provided that standardization between different assays is achieved.
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Alberto Aimo
- Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Pardeep Jhund
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Josep Lupón
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapy (BCRT), German Center for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Arantxa González
- CIBERCV, Carlos III Institute of Health, Madrid, Spain.,Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Marco Metra
- Cardiology Department, ASST Spedali Civili; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Julio Núñez
- CIBERCV, Carlos III Institute of Health, Madrid, Spain.,Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
| | | | - Andrea Barison
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - John Teerlink
- Heart Failure and of the Echocardiography Laboratory, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | | | - Giuseppe Vergaro
- Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Faiez Zannad
- Université de Lorraine, Centre d'Investigations Cliniques-Plurithématique 1433, and Inserm U1116 CHRU Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Petar Seferovic
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | | | | | - Michele Emdin
- Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| |
Collapse
|
23
|
Núñez J, de la Espriella R, Rossignol P, Voors AA, Mullens W, Metra M, Chioncel O, Januzzi JL, Mueller C, Richards AM, de Boer RA, Thum T, Arfsten H, González A, Abdelhamid M, Adamopoulos S, Anker SD, Gal TB, Biegus J, Cohen-Solal A, Böhm M, Emdin M, Jankowska EA, Gustafsson F, Hill L, Jaarsma T, Jhund PS, Lopatin Y, Lund LH, Milicic D, Moura B, Piepoli MF, Ponikowski P, Rakisheva A, Ristic A, Savarese G, Tocchetti CG, Van Linthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Bayes-Genis A. Congestion in heart failure: a circulating biomarker-based perspective. A review from the Biomarkers Working Group of the Heart Failure Association, European Society of Cardiology. Eur J Heart Fail 2022; 24:1751-1766. [PMID: 36039656 DOI: 10.1002/ejhf.2664] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Congestion is a cardinal sign of heart failure (HF). In the past, it was seen as a homogeneous epiphenomenon that identified patients with advanced HF. However, current evidence shows that congestion in HF varies in quantity and distribution. This updated view advocates for a congestive-driven classification of HF according to onset (acute vs. chronic), regional distribution (systemic vs. pulmonary), compartment of distribution (intravascular vs. extravascular), and clinical vs. subclinical. Thus, this review will focus on the utility of circulating biomarkers for assessing and managing the different fluid overload phenotypes. This discussion focused on the clinical utility of the natriuretic peptides, carbohydrate antigen 125 (also called mucin 16), bio-adrenomedullin and mid-regional pro-adrenomedullin, ST2 (also known as interleukin-1 receptor-like 1), cluster of differentiation 146, troponin, C-terminal pro-endothelin-1, and parameters of haemoconcentration. The utility of circulation biomarkers on top of clinical evaluation, haemodynamics, and imaging needs to be better determined by dedicated studies. Some multiparametric frameworks in which these tools contribute to management are proposed.
Collapse
Affiliation(s)
- Julio Núñez
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
- CIBER Cardiovascular, Madrid, Spain
| | - Rafael de la Espriella
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
- CIBER Cardiovascular, Madrid, Spain
| | - Patrick Rossignol
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques-Plurithématique 14-33, INSERM U1116, CHRU Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Adriaan A Voors
- Department of Cardiology University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Cardiology. ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu', University of Medicine Carol Davila, Bucharest, Romania
| | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | | | - A Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Rudolf A de Boer
- Department of Cardiology University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) and Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Arantxa González
- CIBER Cardiovascular, Madrid, Spain
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Stamatis Adamopoulos
- 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece
| | - Stefan D Anker
- Department of Cardiology (CVK); and Berlin Institute of Health Center for Regenerative Therapies (BCRT); German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tuvia Ben Gal
- Cardiology Department, Rabin Medical Center, Petah Tikva, Israel
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Alain Cohen-Solal
- Inserm 942 MASCOT, Université de Paris, AP-HP, Hopital Lariboisière, Paris, France
| | - Michael Böhm
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin Homburg/Saar, Saarland University, Saarbrücken, Germany
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Finn Gustafsson
- Rigshospitalet-Copenhagen University Hospital, Heart Centre, Department of Cardiology, Copenhagen, Denmark
| | | | | | - Pardeep S Jhund
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Yuri Lopatin
- Volgograd State Medical University, Volgograd, Russia
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Davor Milicic
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal
| | - Massimo F Piepoli
- Cardiology Division, Castel San Giovanni Hospital, Castel San Giovanni, Italy
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Amina Rakisheva
- Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Arsen Ristic
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Sophie Van Linthout
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Giuseppe Rosano
- St. George's Hospitals NHS Trust University of London, London, UK
| | | | - Antoni Bayes-Genis
- CIBER Cardiovascular, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J Cardiovasc Imaging 2022; 23:e333-e465. [PMID: 36017575 DOI: 10.1093/ehjci/jeac106] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Leerink JM, Feijen EAM, Moerland PD, de Baat EC, Merkx R, van der Pal HJH, Tissing WJE, Louwerens M, van den Heuvel‐Eibrink MM, Versluys AB, Asselbergs FW, Sammani A, Teske AJ, van Dalen EC, van der Heiden‐van der Loo M, van Dulmen‐den Broeder E, de Vries ACH, Kapusta L, Loonen J, Pinto YM, Kremer LCM, Mavinkurve‐Groothuis AMC, Kok WEM. Candidate Plasma Biomarkers to Detect Anthracycline‐Related Cardiomyopathy in Childhood Cancer Survivors: A Case Control Study in the Dutch Childhood Cancer Survivor Study. J Am Heart Assoc 2022; 11:e025935. [PMID: 35861824 PMCID: PMC9707839 DOI: 10.1161/jaha.121.025935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Plasma biomarkers may aid in the detection of anthracycline‐related cardiomyopathy (ACMP). However, the currently available biomarkers have limited diagnostic value in long‐term childhood cancer survivors. This study sought to identify diagnostic plasma biomarkers for ACMP in childhood cancer survivors.
Methods and Results
We measured 275 plasma proteins in 28 ACMP cases with left ventricular ejection fraction <45%, 29 anthracycline‐treated controls with left ventricular ejection fraction ≥53% matched on sex, time after cancer, and anthracycline dose, and 29 patients with genetically determined dilated cardiomyopathy with left ventricular ejection fraction <45%. Multivariable linear regression was used to identify differentially expressed proteins. Elastic net model, including clinical characteristics, was used to assess discrimination of proteins diagnostic for ACMP. NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide) and the inflammatory markers CCL19 (C‐C motif chemokine ligands 19) and CCL20, PSPD (pulmonary surfactant protein‐D), and PTN (pleiotrophin) were significantly upregulated in ACMP compared with controls. An elastic net model selected 45 proteins, including NT‐proBNP, CCL19, CCL20 and PSPD, but not PTN, that discriminated ACMP cases from controls with an area under the receiver operating characteristic curve (AUC) of 0.78. This model was not superior to a model including NT‐proBNP and clinical characteristics (AUC=0.75;
P
=0.766). However, when excluding 8 ACMP cases with heart failure, the full model was superior to that including only NT‐proBNP and clinical characteristics (AUC=0.75 versus AUC=0.50;
P
=0.022). The same 45 proteins also showed good discrimination between dilated cardiomyopathy and controls (AUC=0.89), underscoring their association with cardiomyopathy.
Conclusions
We identified 3 specific inflammatory proteins as candidate plasma biomarkers for ACMP in long‐term childhood cancer survivors and demonstrated protein overlap with dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jan M. Leerink
- Department of Cardiology, Amsterdam Cardiovascular Sciences Amsterdam University Medical Center, University of Amsterdam, Heart Center Amsterdam The Netherlands
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | | | - Perry D. Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science Amsterdam University Medical Center, University of Amsterdam Amsterdam The Netherlands
| | - Esmee C. de Baat
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Remy Merkx
- Department of Medical Imaging Radboud University Medical Center Nijmegen The Netherlands
| | | | - Wim J. E. Tissing
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
- Beatrix Children’s Hospital, Department of Pediatric Oncology University of Groningen, University Medical Center Groningen Groningen the Netherlands
| | - Marloes Louwerens
- Department of Internal Medicine Leiden University Medical Center Leiden The Netherlands
| | | | | | - Folkert W. Asselbergs
- Division of Heart and Lungs, Department of Cardiology University Medical Center Utrecht Utrecht The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences University College London London UK
- Health Data Research UK and Institute of Health Informatics University College London London UK
| | - Arjan Sammani
- Division of Heart and Lungs, Department of Cardiology University Medical Center Utrecht Utrecht The Netherlands
| | - Arco J. Teske
- Division of Heart and Lungs, Department of Cardiology University Medical Center Utrecht Utrecht The Netherlands
| | | | | | - Eline van Dulmen‐den Broeder
- Department of Pediatric Oncology Amsterdam University Medical Center, Vrije Universiteit Amsterdam The Netherlands
| | - Andrica C. H. de Vries
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
- Department of Pediatric Oncology Erasmus Medical Center Rotterdam The Netherlands
| | - Livia Kapusta
- Department of Pediatric Cardiology Amalia Children’s Hospital, Radboud University Medical Center Nijmegen The Netherlands
- Sackler School of Medicine, Department of Pediatrics, Pediatric Cardiology Unit Tel Aviv Sourasky Medical Center, Tel Aviv University Tel Aviv Israel
| | - Jacqueline Loonen
- Department of Hematology Radboud University Medical Center Nijmegen The Netherlands
| | - Yigal M. Pinto
- Department of Cardiology, Amsterdam Cardiovascular Sciences Amsterdam University Medical Center, University of Amsterdam, Heart Center Amsterdam The Netherlands
| | - Leontien C. M. Kremer
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
- University Medical Center Utrecht Wilhelmina Children’s Hospital Utrecht The Netherlands
- Amsterdam University Medical Center, University of Amsterdam Emma Children’s Hospital Amsterdam The Netherlands
| | | | - Wouter E. M. Kok
- Department of Cardiology, Amsterdam Cardiovascular Sciences Amsterdam University Medical Center, University of Amsterdam, Heart Center Amsterdam The Netherlands
| |
Collapse
|
26
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|
27
|
Huang JP, Chang CC, Kuo CY, Huang KJ, Sokal EM, Chen KH, Hung LM. Exosomal microRNAs miR-30d-5p and miR-126a-5p Are Associated with Heart Failure with Preserved Ejection Fraction in STZ-Induced Type 1 Diabetic Rats. Int J Mol Sci 2022; 23:ijms23147514. [PMID: 35886860 PMCID: PMC9318774 DOI: 10.3390/ijms23147514] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
Exosomal microRNAs (EXO-miRNAs) are promising non-invasive diagnostic biomarkers for cardiovascular disease. Heart failure with preserved ejection fraction (HFpEF) is a poorly understood cardiovascular complication of diabetes mellitus (DM). Little is known about whether EXO-miRNAs can be used as biomarkers for HFpEF in DM. We aimed to investigate the relationship between EXO-miRNAs and HFpEF in STZ-induced diabetic rats. We prepared STZ-induced diabetic rats exhibiting a type 1 DM phenotype with low body weight, hyperglycemia, hyperlipidemia and hypoinsulinemia. Histological sections confirmed atrophy and fibrosis of the heart, with collagen accumulation representing diabetic cardiomyopathy. Significant decreases in end-diastolic volume, stroke volume, stroke work, end-systolic elastance and cardiac output indicated impaired cardiac contractility, as well as mRNA conversion of two isoforms of myosin heavy chain (α-MHC and β-MHC) and increased atrial natriuretic factor (ANF) mRNA indicating heart failure, were consistent with the features of HFpEF. In diabetic HFpEF rats, we examined a selected panel of 12 circulating miRNAs associated with HF (miR-1-3p, miR-21-5p, miR-29a-5p, miR-30d-5p, miR-34a-5p, miR-126a-5p, miR-143-3p, miR-145-5p, miR-195-5p, miR-206-3p, miR-320-3p and miR-378-3p). Although they were all expressed at significantly lower levels in the heart compared to non-diabetic controls, only six miRNAs (miR-21-5p, miR-30d-5p, miR-126a-5p, miR-206-3p, miR-320-3p and miR-378-3p) were also reduced in exosomal content, while one miRNA (miR-34a-5p) was upregulated. Similarly, although all miRNAs were correlated with reduced cardiac output as a measure of cardiovascular performance, only three miRNAs (miR-30d-5p, miR-126a-5p and miR-378-3p) were correlated in exosomal content. We found that miR-30d-5p and miR-126a-5p remained consistently correlated with significant reductions in exosomal expression, cardiac expression and cardiac output. Our findings support their release from the heart and association with diabetic HFpEF. We propose that these two EXO-miRNAs may be important for the development of diagnostic tools for diabetic HFpEF.
Collapse
Affiliation(s)
- Jiung-Pang Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (J.-P.H.); (C.-Y.K.)
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Chun Chang
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan;
- Graduate Institute of Clinical Medicine Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, Yilan 266, Taiwan
| | - Chao-Yu Kuo
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (J.-P.H.); (C.-Y.K.)
| | - Kuang-Jing Huang
- Microscopy Center, Chang Gung University, Taoyuan 333, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
| | - Li-Man Hung
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (J.-P.H.); (C.-Y.K.)
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 3338)
| |
Collapse
|
28
|
González A, Richards AM, de Boer RA, Thum T, Arfsten H, Hülsmann M, Falcao-Pires I, Díez J, Foo RSY, Chan MY, Aimo A, Anene-Nzelu CG, Abdelhamid M, Adamopoulos S, Anker SD, Belenkov Y, Ben Gal T, Cohen-Solal A, Böhm M, Chioncel O, Delgado V, Emdin M, Jankowska EA, Gustafsson F, Hill L, Jaarsma T, Januzzi JL, Jhund PS, Lopatin Y, Lund LH, Metra M, Milicic D, Moura B, Mueller C, Mullens W, Núñez J, Piepoli MF, Rakisheva A, Ristić AD, Rossignol P, Savarese G, Tocchetti CG, Van Linthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Bayés-Genís A. Cardiac remodelling - Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:927-943. [PMID: 35334137 DOI: 10.1002/ejhf.2493] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiac remodelling refers to changes in left ventricular structure and function over time, with a progressive deterioration that may lead to heart failure (HF) development (adverse remodelling) or vice versa a recovery (reverse remodelling) in response to HF treatment. Adverse remodelling predicts a worse outcome, whilst reverse remodelling predicts a better prognosis. The geometry, systolic and diastolic function and electric activity of the left ventricle are affected, as well as the left atrium and on the long term even right heart chambers. At a cellular and molecular level, remodelling involves all components of cardiac tissue: cardiomyocytes, fibroblasts, endothelial cells and leucocytes. The molecular, cellular and histological signatures of remodelling may differ according to the cause and severity of cardiac damage, and clearly to the global trend toward worsening or recovery. These processes cannot be routinely evaluated through endomyocardial biopsies, but may be reflected by circulating levels of several biomarkers. Different classes of biomarkers (e.g. proteins, non-coding RNAs, metabolites and/or epigenetic modifications) and several biomarkers of each class might inform on some aspects on HF development, progression and long-term outcomes, but most have failed to enter clinical practice. This may be due to the biological complexity of remodelling, so that no single biomarker could provide great insight on remodelling when assessed alone. Another possible reason is a still incomplete understanding of the role of biomarkers in the pathophysiology of cardiac remodelling. Such role will be investigated in the first part of this review paper on biomarkers of cardiac remodelling.
Collapse
Affiliation(s)
- Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - A Mark Richards
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) and Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Inês Falcao-Pires
- Department od Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Departments of Cardiology and Cardiac Surgery, and Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Roger S Y Foo
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Mark Y Chan
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Chukwuemeka G Anene-Nzelu
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Montreal Heart Institute, Montreal, Canada
| | | | - Stamatis Adamopoulos
- 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | | | - Tuvia Ben Gal
- Cardiology Department, Rabin Medical Center, Beilinson, Israel
| | | | - Michael Böhm
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Saarland University, Homburg/Saar, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu' Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Finn Gustafsson
- Rigshospitalet-Copenhagen University Hospital, Heart Centre, Department of Cardiology, Copenhagen, Denmark
| | | | | | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | - Pardeep S Jhund
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Yuri Lopatin
- Volgograd State Medical University, Volgograd, Russia
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Metra
- Cardiology, ASST Spedali Civili; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Davor Milicic
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Portugal
| | | | | | - Julio Núñez
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Massimo F Piepoli
- Cardiology Division, Castelsangiovanni Hospital, Castelsangiovanni, Italy
| | - Amina Rakisheva
- Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Arsen D Ristić
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patrick Rossignol
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 1433, and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Sophie Van Linthout
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Giuseppe Rosano
- St. George's Hospitals, NHS Trust, University of London, London, UK
| | | | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Vasileiou PVS, Siasos G, Gorgoulis VG. Molecular biomarkers in cardio-oncology: Where we stand and where we are heading. Bioessays 2022; 44:e2100234. [PMID: 35352831 DOI: 10.1002/bies.202100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Until recently, cardiotoxicity in the setting of a malignant disease was attributed solely to the detrimental effects of chemo- and/or radio-therapy to the heart. On this account, the focus was on the evaluation of well-established cardiac biomarkers for the early detection of myocardial damage. Currently, this view has been revised. Cardiotoxicity is not restricted to a single organ but instead affects the endothelium as a whole. Indeed, it has come into light that not only cancer therapy but also malignant cells per se can impair the cardiovascular system, through a paracrine and endocrine mode of action. Even more intriguingly, a clear interplay between molecular pathways involved in cancer and cardiovascular disease has become prevalent, suggesting a common nominator that governs the pathophysiology of these two entities. Taken together, our strategy in the quest of novel biomarkers in the emerging field of cardio-oncology should be critically reshaped.
Collapse
Affiliation(s)
- Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| |
Collapse
|
30
|
Tan Q, Hu C, Chen Z, Jin T, Li L, Zhu P, Ma Y, Lin Z, Chen W, Shi N, Zhang X, Jiang K, Liu T, Yang X, Guo J, Huang W, Pandol SJ, Deng L, Xia Q. Growth differentiation factor 15 is an early predictor for persistent organ failure and mortality in acute pancreatitis. Pancreatology 2022; 22:200-209. [PMID: 34952762 DOI: 10.1016/j.pan.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Early prediction of persistent organ failure (POF) is crucial for patients with acute pancreatitis (AP). Growth differentiation factor 15 (GDF15), also known as macrophage inhibitory cytokine 1 (MIC-1), is associated with inflammatory responses. We investigated changes in plasma GDF15 and assessed its predictive value in AP. METHODS The study included 290 consecutive patients with AP admitted within 36 h after symptoms onset. Clinical data obtained during hospitalization were collected. Plasma GDF15 levels were determined using enzyme-linked immunosorbent assays. The predictive value of GDF15 for POF was analyzed. RESULTS There were 105 mild, 111 moderately severe, and 74 severe AP patients. Plasma GDF15 peak level were measured on admission, and significantly declined on the 3rd and 7th day. Admission GDF15 predicted POF and mortality with areas under the curve (AUC) of 0.847 (95% confidence interval [CI] 0.798-0.895) and 0.934 (95% CI 0.887-0.980), respectively. Admission GDF15, Bedside Index of Severity in Acute Pancreatitis, and hematocrit were independent factors for POF by univariate and multivariate logistic regression, and the nomogram built on these variables showed good performance (optimism-corrected c-statistic = 0.921). The combined predictive model increased the POF accuracy with an AUC 0.925 (95% CI 0.894-0.956), a net reclassification improvement of 0.3024 (95% CI: 0.1482-0.4565, P < 0.001), and an integrated discrimination index of 0.11 (95% CI 0.0497-0.1703; P < 0.001). CONCLUSIONS Plasma GDF15 measured within 48 h of symptom onset could help predict POF and mortality in AP patients.
Collapse
Affiliation(s)
- Qingyuan Tan
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Hu
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyao Chen
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Jin
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhu
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Ma
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqi Lin
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Weiwei Chen
- Department of Gastroenterology, Subei People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Na Shi
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxin Zhang
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Jiang
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Liu
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Yang
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Guo
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Stephen J Pandol
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lihui Deng
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China.
| | - Qing Xia
- From Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Antisense Therapy Attenuates Phospholamban p.(Arg14del) Cardiomyopathy in Mice and Reverses Protein Aggregation. Int J Mol Sci 2022; 23:ijms23052427. [PMID: 35269571 PMCID: PMC8909937 DOI: 10.3390/ijms23052427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Inherited cardiomyopathy caused by the p.(Arg14del) pathogenic variant of the phospholamban (PLN) gene is characterized by intracardiomyocyte PLN aggregation and can lead to severe dilated cardiomyopathy. We recently reported that pre-emptive depletion of PLN attenuated heart failure (HF) in several cardiomyopathy models. Here, we investigated if administration of a Pln-targeting antisense oligonucleotide (ASO) could halt or reverse disease progression in mice with advanced PLN-R14del cardiomyopathy. To this aim, homozygous PLN-R14del (PLN-R14 Δ/Δ) mice received PLN-ASO injections starting at 5 or 6 weeks of age, in the presence of moderate or severe HF, respectively. Mice were monitored for another 4 months with echocardiographic analyses at several timepoints, after which cardiac tissues were examined for pathological remodeling. We found that vehicle-treated PLN-R14 Δ/Δ mice continued to develop severe HF, and reached a humane endpoint at 8.1 ± 0.5 weeks of age. Both early and late PLN-ASO administration halted further cardiac remodeling and dysfunction shortly after treatment start, resulting in a life span extension to at least 22 weeks of age. Earlier treatment initiation halted disease development sooner, resulting in better heart function and less remodeling at the study endpoint. PLN-ASO treatment almost completely eliminated PLN aggregates, and normalized levels of autophagic proteins. In conclusion, these findings indicate that PLN-ASO therapy may have beneficial outcomes in PLN-R14del cardiomyopathy when administered after disease onset. Although existing tissue damage was not reversed, further cardiomyopathy progression was stopped, and PLN aggregates were resolved.
Collapse
|
32
|
Lu Q, Zhang RC, Chen SP, Li T, Wang Y, Xue YB, Liu J, Han X, Su YD, Bai L, Du XJ, Ma AQ. The Diagnostic and Prognostic Value of Plasma Galectin 3 in HFrEF Related to the Etiology of Heart Failure. Front Cardiovasc Med 2022; 8:748875. [PMID: 35004876 PMCID: PMC8727364 DOI: 10.3389/fcvm.2021.748875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Aim: The aim of present study is to evaluate the diagnostic and prognostic value of plasma galectin 3 (Gal-3) for HF originating from different causes. Methods: We investigated the plasma levels and expression of Gal-3 in cardiac tissues in two transgenic (TG) strains of mice with cardiomyocyte-restricted overexpression of either β2- adrenergic receptor (β2- AR TG) or Mammalian sterile 20-like kinase 1 (Mst1-TG) in the present study. Additionally, 166 patients suffering from heart failure with reduced ejection fraction (HFrEF) in two hospitals within the Shaanxi province were examined in this study. All these patients were treated according to the Chinese HF guidelines of 2014; subsequently, they were followed up for 50 months, and we analyzed the prediction value of baseline Gal-3 to endpoints in these patients. Results: Gal-3 was localized in the cytoplasm and nucleus of cardiomyocytes, often formed aggregates in Mst1-TG mice. Extracellular Gal-3 staining was uncommon in Mst1-TG hearts. However, in β2-AR TG mice, although Gal-3 was also expressed in myocardial cells, it was more highly expressed in interstitial cells (e.g., fibroblasts and macrophages). Plasma Gal-3 was comparable between nTG and Mst1-TG mice. However, plasma Gal-3 was higher in β2-AR TG mice than in nTG mice. In the cohort of HFrEF patients, the median plasma Gal-3 concentration was 158.42 pg/mL. All participants were divided into two groups according to Gal-3 levels. Patients with Gal-3 concentrations above the median were older, and had lower plasma hemoglobin, but higher plasma creatinine, tissue inhibitor of metalloproteinases 1 (TIMP-1), left ventricular end systolic diameter (LVESD), left ventricular end-systolic volumes (LVESV) and end-diastolic, as well as left ventricular end-diastolic volumes (LVEDV). Spearman correlation analysis revealed that Gal-3 was positively correlated with TIMP-1 (r = 0.396, P < 0.001), LVESV (r = 0.181, P = 0.020) and LVEDV (r = 0.190, P = 0.015). The 50-month clinical follow-up revealed 43 deaths, 97 unplanned re-hospitalizations, and 111 composite endpoint events. Cox analysis demonstrated that although Gal-3 did not provide any prognostic value in either total-HF subjects or coronary-heart-disease (CHD) patients, it did provide prognostic value in non-CHD patients. Conclusion: Although plasma Gal-3 is associated with TIMP-1 and echocardiographic parameters, the diagnostic and prognostic value of Gal-3 in HFrEF is determined by the etiology of HF.
Collapse
Affiliation(s)
- Qun Lu
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, China
| | - Ruo-Chen Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, China
| | - Shu-Ping Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, China
| | - Tao Li
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an, China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, China
| | - Yan-Bo Xue
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, China
| | - Jing Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, China
| | - Xiu Han
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, China
| | - Yi-Dan Su
- Experimental Cardiology Lab, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ling Bai
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Jun Du
- Experimental Cardiology Lab, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology and Pathophysiology, Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Ai-Qun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Xiao QA, He Q, Zeng J, Xia X. GDF-15, a future therapeutic target of glucolipid metabolic disorders and cardiovascular disease. Biomed Pharmacother 2021; 146:112582. [PMID: 34959119 DOI: 10.1016/j.biopha.2021.112582] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Growth and differentiation factor 15 (GDF-15) was discovered as a member of the transforming growth factor β (TGF-β) superfamily and the serum level of GDF-15 was significantly correlated with glucolipid metabolic disorders (GLMD) and cardiovascular diseases. In 2017, a novel identified receptor of GDF-15-glial-derived neurotrophic factor receptor alpha-like (GFRAL) was found to regulate energy homeostasis (such as obesity, diabetes and non-alcoholic fatty liver disease (NAFLD)). The function of GDF-15/GFRAL in suppressing appetite, enhancing glucose/lipid metabolism and vascular remodeling has been gradually revealed. These effects make it a potential therapeutic target for GLMD and vascular diseases. In this narrative review, we included and reviewed 121 articles by screening 524 articles from literature database. We primarily focused on the function of GDF-15 and its role in GLMD/cardiovascular diseases and discuss its potential clinical application.
Collapse
Affiliation(s)
- Qing-Ao Xiao
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang 443000, China; Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Qian He
- Department of Geriatrics, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang 443000, China
| | - Jun Zeng
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang 443000, China.
| | - Xuan Xia
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Department of Physiology and Pathophysiology, Medical College, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
34
|
Coats AJS, Heymans S, Farmakis D, Anker SD, Backs J, Bauersachs J, de Boer RA, Čelutkienė J, Cleland JGF, Dobrev D, van Gelder IC, von Haehling S, Hindricks G, Jankowska E, Kotecha D, van Laake LW, Lainscak M, Lund LH, Lunde IG, Lyon AR, Manouras A, Miličić D, Mueller C, Polovina M, Ponikowski P, Rosano G, Seferović PM, Tschöpe C, Wachter R, Ruschitzka F. Atrial disease and heart failure: the common soil hypothesis proposed by the Heart Failure Association of the European Society of Cardiology. Eur Heart J 2021; 43:ehab834. [PMID: 34875053 DOI: 10.1093/eurheartj/ehab834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Dimitrios Farmakis
- University of Cyprus Medical School, Shakolas Educational Center for Clinical Medicine, Palaios dromos Lefkosias Lemesou No. 215/6, Aglantzia, Nicosia 2029, Cyprus
| | - Stefan D Anker
- Department of Cardiology (CVK), Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
- Charité Universitätsmedizin Berlin, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jelena Čelutkienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre For Innovative Medicine, Vilnius, Lithuania
| | - John G F Cleland
- Robertson Centre for Biostatistics & Clinical Trials, University of Glasgow & National Heart & Lung Institute, Imperial College, London, UK
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Germany
- Montréal Heart Institute and University de Montréal, Medicine and Research Center, Montréal, QC, Canada
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Isabelle C van Gelder
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Ewa Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Centre for Heart Diseases, University Hospital, Wroclaw, Poland
| | - Dipak Kotecha
- University of Birmingham Institute of Cardiovascular Sciences and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Linda W van Laake
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mitja Lainscak
- Division of Cardiology, General Hospital Murska Sobota, Murska Sobota, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Lars H Lund
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ida Gjervold Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexander R Lyon
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Davor Miličić
- Department of Cardiovascular Diseases, University of Zagreb School of Medicine and University Hospital Center Zagreb, Zagreb, Croatia
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Marija Polovina
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Cardiology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Centre for Heart Diseases, University Hospital, Wroclaw, Poland
| | - Giuseppe Rosano
- St. George's Hospital University of London, London,UK
- IRCCS San Raffaele Pisana, Rome, Italy
| | - Petar M Seferović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
- Department of Internal Medicine and Cardiology, Charité-University Medicine, Campus Virchow Clinic, Berlin, Germany
| | - Rolf Wachter
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
- Clinic and Policlinic for Cardiology, University Hospital Leipzig, Leipzig, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen, Göttingen, Germany
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zürich, Rämistrasse 100, CH 8091, Zürich, Switzerland
| |
Collapse
|
35
|
Pozder Geb Gehlken C, Rogier van der Velde A, Meijers WC, Silljé HHW, Muntendam P, Dokter MM, van Gilst WH, Schols HA, de Boer RA. Pectins from various sources inhibit galectin-3-related cardiac fibrosis. Curr Res Transl Med 2021; 70:103321. [PMID: 34826684 DOI: 10.1016/j.retram.2021.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF THE STUDY A major challenge in cardiology remains in finding a therapy for cardiac fibrosis. Inhibition of galectin-3 with pectins attenuates fibrosis in animal models of heart failure. The purpose of this study is to identify pectins with the strongest galectin-3 inhibitory capacity. We evaluated the in vitro inhibitory capacity, identified potent pectins, and tested if this potency could be validated in a mouse model of myocardial fibrosis. METHODS Various pectin fractions were screened in vitro. Modified rhubarb pectin (EMRP) was identified as the most potent inhibitor of galectin-3 and compared to the well-known modified citrus pectin (MCP). Our findings were validated in a mouse model of myocardial fibrosis, which was induced by angiotensin II (Ang II) infusion. RESULTS Ang II infusion was associated with a 4-5-fold increase in fibrosis signal in the tissue of the left ventricle, compared to the control group (0•22±0•10 to 1•08±0•53%; P < 0•001). After treatment with rhubarb pectin, fibrosis was reduced by 57% vs. Ang II alone while this reduction was 30% with the well-known MCP (P = NS, P < 0•05). Treatment was associated with a reduced cardiac inflammatory response and preserved cardiac function. CONCLUSION The galectin-3 inhibitor natural rhubarb pectin has a superior inhibitory capacity over established pectins, substantially attenuates cardiac fibrosis, and preserves cardiac function in vivo. Bioactive pectins are natural sources of galectin-3 inhibitors and may be helpful in the prevention of heart failure or other diseases characterized by fibrosis. FUNDING Dr. Meijers is supported by the Mandema-Stipendium of the Junior Scientific Masterclass 2020-10, University Medical Center Groningen and by the Netherlands Heart Foundation (Dekkerbeurs 2021)Dr. de Boer is supported by the Netherlands Heart Foundation (CVON SHE-PREDICTS-HF, grant 2017-21; CVON RED-CVD, grant 2017-11; CVON PREDICT2, grant 2018-30; and CVON DOUBLE DOSE, grant 2020B005), by a grant from the leDucq Foundation (Cure PhosphoLambaN induced Cardiomyopathy (Cure-PLaN), and by a grant from the European Research Council (ERC CoG 818715, SECRETE-HF).
Collapse
Affiliation(s)
- Carolin Pozder Geb Gehlken
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | - A Rogier van der Velde
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | - Wouter C Meijers
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | | | - Martin M Dokter
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | - Henk A Schols
- Wageningen University, Laboratory of Food Chemistry, 6708 WG, Wageningen, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
36
|
Eijgenraam TR, Boogerd CJ, Stege NM, Oliveira Nunes Teixeira V, Dokter MM, Schmidt LE, Yin X, Theofilatos K, Mayr M, van der Meer P, van Rooij E, van der Velden J, Silljé HHW, de Boer RA. Protein Aggregation Is an Early Manifestation of Phospholamban p.(Arg14del)-Related Cardiomyopathy: Development of PLN-R14del-Related Cardiomyopathy. Circ Heart Fail 2021; 14:e008532. [PMID: 34587756 PMCID: PMC8589082 DOI: 10.1161/circheartfailure.121.008532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The p.(Arg14del) pathogenic variant (R14del) of the PLN (phospholamban) gene is a prevalent cause of cardiomyopathy with heart failure. The exact underlying pathophysiology is unknown, and a suitable therapy is unavailable. We aim to identify molecular perturbations underlying this cardiomyopathy in a clinically relevant PLN-R14del mouse model. METHODS We investigated the progression of cardiomyopathy in PLN-R14Δ/Δ mice using echocardiography, ECG, and histological tissue analysis. RNA sequencing and mass spectrometry were performed on cardiac tissues at 3 (before the onset of disease), 5 (mild cardiomyopathy), and 8 (end stage) weeks of age. Data were compared with cardiac expression levels of mice that underwent myocardial ischemia-reperfusion or myocardial infarction surgery, in an effort to identify alterations that are specific to PLN-R14del-related cardiomyopathy. RESULTS At 3 weeks of age, PLN-R14Δ/Δ mice had normal cardiac function, but from the age of 4 weeks, we observed increased myocardial fibrosis and impaired global longitudinal strain. From 5 weeks onward, ventricular dilatation, decreased contractility, and diminished ECG voltages were observed. PLN protein aggregation was present before onset of functional deficits. Transcriptomics and proteomics revealed differential regulation of processes involved in remodeling, inflammation, and metabolic dysfunction, in part, similar to ischemic heart disease. Altered protein homeostasis pathways were identified exclusively in PLN-R14Δ/Δ mice, even before disease onset, in concert with aggregate formation. CONCLUSIONS We mapped the development of PLN-R14del-related cardiomyopathy and identified alterations in proteostasis and PLN protein aggregation among the first manifestations of this disease, which could possibly be a novel target for therapy.
Collapse
Affiliation(s)
- Tim R Eijgenraam
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht (C.J.B., E.v.R.)
| | - Nienke M Stege
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Vivian Oliveira Nunes Teixeira
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Martin M Dokter
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Lukas E Schmidt
- King's British Heart Foundation Centre, King's College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Konstantinos Theofilatos
- King's British Heart Foundation Centre, King's College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht (C.J.B., E.v.R.)
| | - Jolanda van der Velden
- Department of Physiology, Vrije Universiteit, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, the Netherlands (J.v.d.V.)
| | - Herman H W Silljé
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| |
Collapse
|
37
|
Meijers WC, Bayes-Genis A, Mebazaa A, Bauersachs J, Cleland JGF, Coats AJS, Januzzi JL, Maisel AS, McDonald K, Mueller T, Richards AM, Seferovic P, Mueller C, de Boer RA. Circulating heart failure biomarkers beyond natriuretic peptides: review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). Eur J Heart Fail 2021; 23:1610-1632. [PMID: 34498368 PMCID: PMC9292239 DOI: 10.1002/ejhf.2346] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
New biomarkers are being evaluated for their ability to advance the management of patients with heart failure. Despite a large pool of interesting candidate biomarkers, besides natriuretic peptides virtually none have succeeded in being applied into the clinical setting. In this review, we examine the most promising emerging candidates for clinical assessment and management of patients with heart failure. We discuss high-sensitivity cardiac troponins (Tn), procalcitonin, novel kidney markers, soluble suppression of tumorigenicity 2 (sST2), galectin-3, growth differentiation factor-15 (GDF-15), cluster of differentiation 146 (CD146), neprilysin, adrenomedullin (ADM), and also discuss proteomics and genetic-based risk scores. We focused on guidance and assistance with daily clinical care decision-making. For each biomarker, analytical considerations are discussed, as well as performance regarding diagnosis and prognosis. Furthermore, we discuss potential implementation in clinical algorithms and in ongoing clinical trials.
Collapse
Affiliation(s)
- Wouter C Meijers
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Alexandre Mebazaa
- Inserm U942-MASCOT; Université de Paris; Department of Anesthesia and Critical Care, Hôpitaux Saint Louis & Lariboisière; FHU PROMICE, Paris, France.,Université de Paris, Paris, France.,Department of Anesthesia and Critical Care, Hôpitaux Saint Louis & Lariboisière, Paris, France.,FHU PROMICE, Paris, France
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - John G F Cleland
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow; National Heart & Lung Institute, Imperial College London, London, UK
| | - Andrew J S Coats
- Monash University, Melbourne, Australia.,University of Warwick, Coventry, UK
| | | | | | | | - Thomas Mueller
- Department of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy
| | - A Mark Richards
- Christchurch Heart Institute, Christchurch, New Zealand.,Cardiovascular Research Institute, National University of Singapore, Singapore
| | - Petar Seferovic
- Faculty of Medicine, Belgrade University, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgarde, Serbia
| | | | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
di Candia AM, de Avila DX, Moreira GR, Villacorta H, Maisel AS. Growth differentiation factor-15, a novel systemic biomarker of oxidative stress, inflammation, and cellular aging: Potential role in cardiovascular diseases. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2021; 9:100046. [PMID: 38559370 PMCID: PMC10978141 DOI: 10.1016/j.ahjo.2021.100046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 04/04/2024]
Abstract
Growth differentiation factor-15 (GDF-15) is a cytokine upregulated in multiple pathological conditions where oxidative stress, endothelial dysfunction, tissue aging, and chronic inflammation are the hallmarks. GDF-15 has many sources of production, including cardiac and vascular myocytes, endothelial cells, adipocytes and macrophages in response to metabolic stress, oncogenic transformation and the burden of proinflammatory cytokines or reactive oxygen species. Although the main sources of GDF-15 are extracardiac tissues, it has been shown to be elevated in many cardiac disorders. In experimental models of heart disease, GDF-15 release is induced after an ischemic insult and in pressure overload scenarios. Likewise, in recent years, an increasing body of evidence has emerged linking GDF-15 to the risk of mortality in acute coronary syndromes, atrial fibrillation and heart failure. Additionally, GDF-15 has been shown to add prognostic information beyond other conventional biomarkers such as natriuretic peptides and cardiac troponins. Further studies are needed to assess whether the incorporation of GDF-15 into clinical practice can improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Angelo Michele di Candia
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Diane Xavier de Avila
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Gustavo Rodolfo Moreira
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Humberto Villacorta
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Alan S. Maisel
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, United States of America
| |
Collapse
|
39
|
Huo JY, Jiang WY, Yin T, Xu H, Lyu YT, Chen YY, Chen M, Geng J, Jiang ZX, Shan QJ. Intestinal Barrier Dysfunction Exacerbates Neuroinflammation via the TLR4 Pathway in Mice With Heart Failure. Front Physiol 2021; 12:712338. [PMID: 34421655 PMCID: PMC8378453 DOI: 10.3389/fphys.2021.712338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Aims The present study aimed to investigate alterations in neuroinflammation after heart failure (HF) and explore the potential mechanisms. Methods Male wild-type (WT) and Toll-like receptor 4 (TLR4)-knockout (KO) mice were subjected to sham operation or ligation of the left anterior descending coronary artery to induce HF. 8 weeks later, cardiac functions were analyzed by echocardiography, and intestinal barrier functions were examined by measuring tight junction protein expression, intestinal permeability and plasma metabolite levels. Alterations in neuroinflammation in the brain were examined by measuring microglial activation, inflammatory cytokine levels and the proinflammatory signaling pathway. The intestinal barrier protector intestinal alkaline phosphatase (IAP) and intestinal homeostasis inhibitor L-phenylalanine (L-Phe) were used to examine the relationship between intestinal barrier dysfunction and neuroinflammation in mice with HF. Results Eight weeks later, WT mice with HF displayed obvious increases in intestinal permeability and plasma lipopolysaccharide (LPS) levels, which were accompanied by elevated expression of TLR4 in the brain and enhanced neuroinflammation. Treatment with the intestinal barrier protector IAP significantly attenuated neuroinflammation after HF while effectively increasing plasma LPS levels. TLR4-KO mice showed significant improvements in HF-induced neuroinflammation, which was not markedly affected by intestinal barrier inhibitors or protectors. Conclusion HF could induce intestinal barrier dysfunction and increase gut-to-blood translocation of LPS, which could further promote neuroinflammation through the TLR4 pathway.
Collapse
Affiliation(s)
- Jun-Yu Huo
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wan-Ying Jiang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Yin
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Xu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Ting Lyu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Geng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Xin Jiang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi-Jun Shan
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Withaar C, Lam CSP, Schiattarella GG, de Boer RA, Meems LMG. Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models. Eur Heart J 2021; 42:4420-4430. [PMID: 34414416 PMCID: PMC8599003 DOI: 10.1093/eurheartj/ehab389] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF. To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been developed to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans.
Collapse
Affiliation(s)
- Coenraad Withaar
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Carolyn S P Lam
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.,National University Heart Centre, Singapore and Duke-National University of Singapore
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Cardiology, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Laura M G Meems
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
41
|
Withaar C, Meems LMG, Markousis-Mavrogenis G, Boogerd CJ, Silljé HHW, Schouten EM, Dokter MM, Voors AA, Westenbrink BD, Lam CSP, de Boer RA. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc Res 2021; 117:2108-2124. [PMID: 32871009 PMCID: PMC8318109 DOI: 10.1093/cvr/cvaa256] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/03/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is a multifactorial disease that constitutes several distinct phenotypes, including a common cardiometabolic phenotype with obesity and type 2 diabetes mellitus. Treatment options for HFpEF are limited, and development of novel therapeutics is hindered by the paucity of suitable preclinical HFpEF models that recapitulate the complexity of human HFpEF. Metabolic drugs, like glucagon-like peptide receptor agonist (GLP-1 RA) and sodium-glucose co-transporter 2 inhibitors (SGLT2i), have emerged as promising drugs to restore metabolic perturbations and may have value in the treatment of the cardiometabolic HFpEF phenotype. We aimed to develop a multifactorial HFpEF mouse model that closely resembles the cardiometabolic HFpEF phenotype, and evaluated the GLP-1 RA liraglutide (Lira) and the SGLT2i dapagliflozin (Dapa). METHODS AND RESULTS Aged (18-22 months old) female C57BL/6J mice were fed a standardized chow (CTRL) or high-fat diet (HFD) for 12 weeks. After 8 weeks HFD, angiotensin II (ANGII), was administered for 4 weeks via osmotic mini pumps. HFD + ANGII resulted in a cardiometabolic HFpEF phenotype, including obesity, impaired glucose handling, and metabolic dysregulation with inflammation. The multiple hit resulted in typical clinical HFpEF features, including cardiac hypertrophy and fibrosis with preserved fractional shortening but with impaired myocardial deformation, atrial enlargement, lung congestion, and elevated blood pressures. Treatment with Lira attenuated the cardiometabolic dysregulation and improved cardiac function, with reduced cardiac hypertrophy, less myocardial fibrosis, and attenuation of atrial weight, natriuretic peptide levels, and lung congestion. Dapa treatment improved glucose handling, but had mild effects on the HFpEF phenotype. CONCLUSIONS We developed a mouse model that recapitulates the human HFpEF disease, providing a novel opportunity to study disease pathogenesis and the development of enhanced therapeutic approaches. We furthermore show that attenuation of cardiometabolic dysregulation may represent a novel therapeutic target for the treatment of HFpEF.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Benzhydryl Compounds/pharmacology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Female
- Fibrosis
- Gene Expression Regulation
- Glucagon-Like Peptide-1 Receptor/agonists
- Glucagon-Like Peptide-1 Receptor/metabolism
- Glucosides/pharmacology
- Heart Failure, Diastolic/drug therapy
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/pathology
- Heart Failure, Diastolic/physiopathology
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Incretins/pharmacology
- Liraglutide/pharmacology
- Mice, Inbred C57BL
- Myocardium/metabolism
- Myocardium/pathology
- Signal Transduction
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Coenraad Withaar
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Laura M G Meems
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Elisabeth M Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Martin M Dokter
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Carolyn S P Lam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- National University Heart Centre, Singapore, Singapore
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
42
|
Tan ESJ, Chan SP, Liew OW, Chong JPC, Leong GKT, Yeo DPS, Ong HY, Jaufeerally F, Yap J, Sim D, Ng TP, Ling LH, Lam CSP, Richards AM. Atrial Fibrillation and the Prognostic Performance of Biomarkers in Heart Failure. Clin Chem 2021; 67:216-226. [PMID: 33279970 DOI: 10.1093/clinchem/hvaa287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Consideration of circulating biomarkers for risk stratification in heart failure (HF) is recommended, but the influence of atrial fibrillation (AF) on prognostic performance of many markers is unclear. We investigated the influence of AF on the prognostic performance of circulating biomarkers in HF. METHODS N-terminal pro-B-type natriuretic peptide (NT-proBNP), mid-regional-pro-atrial natriuretic peptide, C-type natriuretic peptide (CNP), NT-proCNP, high-sensitivity troponin-T, high-sensitivity troponin-I, mid-regional-propeptide adrenomedullin, co-peptin, growth differentiation factor-15, soluble Suppressor of Tumorigenicitiy (sST2), galectin-3, and procalcitonin plasma concentrations were measured in a prospective, multicenter study of adults with HF. AF was defined as a previous history of AF, and/or presence of AF/flutter on baseline 12-lead electrocardiogram. The primary outcome was the composite of HF-hospitalization or all-cause mortality at 2 years. RESULTS Among 1099 patients (age 62 ± 12years, 28% female), 261(24%) patients had AF. Above-median concentrations of all biomarkers were independently associated with increased risk of the primary outcome. Significant interactions with AF were detected for galectin-3 and sST2. In considering NT-proBNP for additive risk stratification, sST2 (adjusted hazard ratio [AHR]1.85, 95%confidence interval [C.I.] 1.17-2.91) and galectin-3 (AHR1.85, 95%C.I. 1.09-2.45) were independently associated with increased primary outcome only in the presence of AF. The prognostic performance of sST2 was also stronger in AF for all-cause mortality (AF: AHR2.82, 95%C.I. 1.26-6.21; non-AF: AHR1.78, 95% C.I. 1.14-2.76 without AF), while galectin-3 predicted HF-hospitalization only in AF (AHR1.64, 95%C.I. 1.03-2.62). CONCLUSIONS AF modified the prognostic utility of selected guideline-endorsed HF-biomarkers. Application of markers for prognostic purposes in HF requires consideration of the presence or absence of AF. CLINICAL TRIAL REGISTRATION ACTRN12610000374066.
Collapse
Affiliation(s)
- Eugene S J Tan
- National University Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University, Singapore
| | - Siew-Pang Chan
- National University Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University, Singapore
| | - Oi-Wah Liew
- Yong Loo Lin School of Medicine, National University, Singapore
| | - Jenny P C Chong
- Yong Loo Lin School of Medicine, National University, Singapore
| | | | - Daniel P S Yeo
- Department of Cardiology, Tan Tock Seng Hospital, Singapore
| | - Hean-Yee Ong
- Department of Cardiology, Khoo Teck Puat Hospital, Singapore
| | - Fazlur Jaufeerally
- Department of Internal Medicine, Singapore General Hospital.,Duke-NUS Graduate Medical School, Singapore
| | - Jonathan Yap
- Department of Cardiology, National Heart Centre, Singapore
| | - David Sim
- Duke-NUS Graduate Medical School, Singapore.,Department of Cardiology, National Heart Centre, Singapore
| | - Tze-Pin Ng
- Yong Loo Lin School of Medicine, National University, Singapore
| | - Lieng-Hsi Ling
- National University Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University, Singapore
| | - Carolyn S P Lam
- Duke-NUS Graduate Medical School, Singapore.,Department of Cardiology, National Heart Centre, Singapore.,University Medical Centre Groningen, Netherlands
| | - Arthur M Richards
- National University Heart Centre, Singapore.,Christchurch Heart Institute, University of Otago, New Zealand.,Cardiovascular Research Institute, National University Health System, Singapore
| |
Collapse
|
43
|
Yeh KH, Chang YT, Juang JMJ, Chiang FT, Teng MS, Wu S, Lin JF, Ko YL. Combined corrected QT interval and growth differentiation factor-15 level has synergistic predictive value for long-term outcome of angiographically confirmed coronary artery disease. Int J Clin Pract 2021; 75:e14180. [PMID: 33759309 DOI: 10.1111/ijcp.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The corrected QT interval (QTc) predicts prognosis for the general population and patients with coronary artery disease (CAD). Growth differentiation factor-15 (GDF-15) is a biomarker of myocardial fibrosis and left ventricular (LV) remodelling. The interaction between these two parameters is unknown. SUBJECTS AND METHODS This study included 487 patients with angiographically confirmed CAD. QTc was calculated using the Bazett formula. Multiple biochemistries and GDF-15 levels were measured. The primary endpoint was total mortality, and the secondary endpoints comprised the combination of total mortality, myocardial infarction and hospitalisation for heart failure and stroke. RESULTS The mean follow-up period was 1029 ± 343 days (5-1692 days), during which 21 patients died and 47 had secondary endpoints. ROC curve analysis for the optimal cut-off value of primary endpoint is 1.12 ng/mL for GDF-15 (AUC = 0.787, P = 9.0 × 10-6 ) and 438.5 msec for QTc (AUC = 0.698, P = .002). Utilising linear regression, QTc has a positive correlation with Log-GDF-15 (r = .216, P = 1.0 × 10-6 ). Utilising Kaplan-Meier analysis, both QTc interval and GDF-15 level are significant predictors for primary end point (P = .000194, P = 2.0 × 10-6 , respectively) and secondary endpoint (P = .00028, P = 6.15 × 10-8 , respectively). When combined these two parameters together, a significant synergistic predictive power was noted for primary and secondary endpoint (P = 2.31 × 10-7 , P = 1.26 × 10-8 , respectively). This combined strategy also showed significant correlation with the severity of CAD (P < .001). CONCLUSION In Chinese patient with angiographically confirmed CAD, a combined strategy utilising an ECG parameter (QTc) and a circulating biomarker (GDF-15) has good correlation with the severity of CAD, and improves the predictive power for total mortality.
Collapse
Affiliation(s)
- Kuan-Hung Yeh
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yao-Ting Chang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Tien Chiang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Cardiovascular Center and Division of Cardiology, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Semon Wu
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| | - Jeng-Feng Lin
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Lin Ko
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
44
|
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2021; 18:400-423. [PMID: 33432192 PMCID: PMC8574228 DOI: 10.1038/s41569-020-00480-6] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) affects half of all patients with heart failure worldwide, is increasing in prevalence, confers substantial morbidity and mortality, and has very few effective treatments. HFpEF is arguably the greatest unmet medical need in cardiovascular disease. Although HFpEF was initially considered to be a haemodynamic disorder characterized by hypertension, cardiac hypertrophy and diastolic dysfunction, the pandemics of obesity and diabetes mellitus have modified the HFpEF syndrome, which is now recognized to be a multisystem disorder involving the heart, lungs, kidneys, skeletal muscle, adipose tissue, vascular system, and immune and inflammatory signalling. This multiorgan involvement makes HFpEF difficult to model in experimental animals because the condition is not simply cardiac hypertrophy and hypertension with abnormal myocardial relaxation. However, new animal models involving both haemodynamic and metabolic disease, and increasing efforts to examine human pathophysiology, are revealing new signalling pathways and potential therapeutic targets. In this Review, we discuss the cellular and molecular pathobiology of HFpEF, with the major focus being on mechanisms relevant to the heart, because most research has focused on this organ. We also highlight the involvement of other important organ systems, including the lungs, kidneys and skeletal muscle, efforts to characterize patients with the use of systemic biomarkers, and ongoing therapeutic efforts. Our objective is to provide a roadmap of the signalling pathways and mechanisms of HFpEF that are being characterized and which might lead to more patient-specific therapies and improved clinical outcomes.
Collapse
Affiliation(s)
- Sumita Mishra
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A. Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,
| |
Collapse
|
45
|
Lack of Relationship between Fibrosis-Related Biomarkers and Cardiac Magnetic Resonance-Assessed Replacement and Interstitial Fibrosis in Dilated Cardiomyopathy. Cells 2021; 10:cells10061295. [PMID: 34071085 PMCID: PMC8224556 DOI: 10.3390/cells10061295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
The relationship between circulating fibrosis-related molecules and magnetic resonance-assessed cardiac fibrosis in dilated cardiomyopathy (DCM) is poorly understood. To compare circulating biomarkers between DCM patients with high and low fibrosis burdens, we performed a prospective, single-center, observational study. The study population was composed of 100 DCM patients (87 male, mean age 45.2 ± 11.8 years, mean ejection fraction 29.7% ± 10.1%). Replacement fibrosis was quantified by means of late gadolinium enhancement (LGE), whereas interstitial fibrosis was assessed via extracellular volume (ECV). Plasma concentrations of cardiotrophin-1, growth differentiation factor-15, platelet-derived growth factor, procollagen I C-terminal propeptide, procollagen III N-terminal propeptide, and C-terminal telopeptide of type I collagen were measured. There were 44% patients with LGE and the median ECV was 27.7%. None of analyzed fibrosis serum biomarkers were associated with the LGE or ECV, whereas NT-proBNP was independently associated with both LGE and ECV, and troponin T was associated with ECV. None of the circulating fibrosis markers differentiated between DCM patients with and without replacement fibrosis, or patients stratified according to median ECV. However, cardiac-specific markers, such as NT-proBNP and hs-TnT, were associated with fibrosis. Levels of circulating markers of fibrosis seem to have no utility in the diagnosis and monitoring of cardiac fibrosis in DCM.
Collapse
|
46
|
Sotomayor CG, te Velde-Keyzer CA, Diepstra A, van Londen M, Pol RA, Post A, Gans RO, Nolte IM, Slart RH, de Borst MH, Berger SP, Rodrigo R, Navis GJ, de Boer RA, Bakker SJ. Galectin-3 and Risk of Late Graft Failure in Kidney Transplant Recipients: A 10-year Prospective Cohort Study. Transplantation 2021; 105:1106-1115. [PMID: 32639409 PMCID: PMC8078111 DOI: 10.1097/tp.0000000000003359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Galectin-3 may play a causal role in kidney inflammation and fibrosis, which may also be involved in the development of kidney graft failure. With novel galectin-3-targeted pharmacological therapies increasingly coming available, we aimed to investigate whether galectin-3 is associated with risk of late graft failure in kidney transplant recipients (KTR). METHODS We studied adult KTR who participated in TransplantLines Insulin Resistance and Inflammation Biobank and Cohort Study, recruited in a university setting (2001-2003). Follow-up was performed for a median of 9.5 (interquartile range, 6.2-10.2) years. Overall and stratified (Pinteraction < 0.05) multivariable-adjusted Cox proportional-hazards regression analyses were performed to study the association of galectin-3 with risk of graft failure (restart of dialysis or retransplantation). RESULTS Among 561 KTR (age 52 ± 12 y; 54% males), baseline median galectin-3 was 21.1 (interquartile range, 17.0-27.2) ng/mL. During follow-up, 72 KTR developed graft failure (13, 18, and 44 events over increasing tertiles of galectin-3). Independent of adjustment for donor, recipient, and transplant characteristics, galectin-3-associated with increased risk of graft failure (hazard ratios [HR] per 1 SD change, 2.12; 95% confidence interval [CI], 1.63-2.75; P < 0.001), particularly among KTR with systolic blood pressure ≥140 mmHg (HR, 2.29; 95% CI, 1.80-2.92; P < 0.001; Pinteraction = 0.01) or smoking history (HR, 2.56; 95% CI, 1.95-3.37; P < 0.001; Pinteraction = 0.03). Similarly, patients in the highest tertile of galectin-3 were consistently at increased risk of graft failure. CONCLUSIONS Serum galectin-3 levels are elevated in KTR, and independently associated with increased risk of late graft failure. Whether galectin-3-targeted therapies may represent novel opportunities to decrease the long-standing high burden of late graft failure in stable KTR warrants further studies.
Collapse
Affiliation(s)
- Camilo G. Sotomayor
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Radiology, Clinical Hospital of the University of Chile, University of Chile, Santiago, Chile
| | - Charlotte A. te Velde-Keyzer
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Division of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco van Londen
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert A. Pol
- Division of Transplantation Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adrian Post
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rijk O.B. Gans
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ilja M. Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H.J.A. Slart
- Department of Nuclear and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin H. de Borst
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan P. Berger
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ramón Rodrigo
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Gerjan J. Navis
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A. de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J.L. Bakker
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
The emerging plasma biomarker Dickkopf-3 (DKK3) and its association with renal and cardiovascular disease in the general population. Sci Rep 2021; 11:8642. [PMID: 33883651 PMCID: PMC8060267 DOI: 10.1038/s41598-021-88107-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
Dickkopf-3 (DKK3) is an emerging biomarker for cardiovascular disease (CVD) and chronic kidney disease (CKD). Herein, baseline DKK3 plasma levels were measured in 8420 subjects from the Prevention of Renal and Vascular ENd-stage Disease (PREVEND) cohort, a large general population cohort, using enzyme-linked immunosorbent assays. Associations with clinical variables and outcomes were analysed. Median DKK3 level was 32.8 ng/ml (28.0–39.0). In multivariable linear regression analysis, the strongest correlates for plasma DKK3 were age, body mass index and estimated glomerular filtration rate (eGFR). At baseline, 564 (6.7%) subjects had CVD (defined as a myocardial infarction and/or cerebrovascular accident) and 1361 (16.2%) subjects had CKD (defined as eGFR < 60 ml/min/1.73m2 and/or urinary albumin excretion (UAE) > 30 mg/24 h). Of subjects with known CVD and CKD follow-up status (respectively 7828 and 5548), 669 (8.5%) developed CVD and 951 (17.1%) developed CKD (median follow-up respectively 12.5 and 10.2 years). Crude logistic regression analysis revealed that DKK3 levels were associated with prevalent CVD (Odds ratio: 2.14 [1.76–2.61] per DKK3 doubling, P < 0.001) and CKD (Odds ratio: 1.84 [1.59–2.13] per DKK3 doubling, P < 0.001). In crude Cox proportional hazard regression analysis, higher DKK3 levels were associated with higher risk for new-onset CVD (Hazard ratio: 1.47 [1.13–1.91] per DKK3 doubling, P = 0.004) and CKD (Hazard ratio: 1.45, [1.25–1.69] per DKK3 doubling, P < 0.001). However, these associations remained no longer significant after correction for common clinical variables and risk factors, though independently predicted for new-onset CKD in a subgroup of subjects with the lowest UAE values. Together, DKK3 plasma levels are associated with cardiovascular risk factors, but are generally not independently associated with prevalent and new-onset CVD and CKD and only predicted for new-onset CKD in those subjects with the lowest UAE values.
Collapse
|
48
|
Stege NM, de Boer RA, van den Berg MP, Silljé HHW. The Time Has Come to Explore Plasma Biomarkers in Genetic Cardiomyopathies. Int J Mol Sci 2021; 22:2955. [PMID: 33799487 PMCID: PMC7998409 DOI: 10.3390/ijms22062955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
For patients with hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (ACM), screening for pathogenic variants has become standard clinical practice. Genetic cascade screening also allows the identification of relatives that carry the same mutation as the proband, but disease onset and severity in mutation carriers often remains uncertain. Early detection of disease onset may allow timely treatment before irreversible changes are present. Although plasma biomarkers may aid in the prediction of disease onset, monitoring relies predominantly on identifying early clinical symptoms, on imaging techniques like echocardiography (Echo) and cardiac magnetic resonance imaging (CMR), and on (ambulatory) electrocardiography (electrocardiograms (ECGs)). In contrast to most other cardiac diseases, which are explained by a combination of risk factors and comorbidities, genetic cardiomyopathies have a clear primary genetically defined cardiac background. Cardiomyopathy cohorts could therefore have excellent value in biomarker studies and in distinguishing biomarkers related to the primary cardiac disease from those related to extracardiac, secondary organ dysfunction. Despite this advantage, biomarker investigations in cardiomyopathies are still limited, most likely due to the limited number of carriers in the past. Here, we discuss not only the potential use of established plasma biomarkers, including natriuretic peptides and troponins, but also the use of novel biomarkers, such as cardiac autoantibodies in genetic cardiomyopathy, and discuss how we can gauge biomarker studies in cardiomyopathy cohorts for heart failure at large.
Collapse
Affiliation(s)
| | | | | | - Herman H. W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, AB43, 9713 GZ Groningen, The Netherlands; (N.M.S.); (R.A.d.B.); (M.P.v.d.B.)
| |
Collapse
|
49
|
Cediel G, Codina P, Spitaleri G, Domingo M, Santiago-Vacas E, Lupón J, Bayes-Genis A. Gender-Related Differences in Heart Failure Biomarkers. Front Cardiovasc Med 2021; 7:617705. [PMID: 33469552 PMCID: PMC7813809 DOI: 10.3389/fcvm.2020.617705] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Important differences in comorbidities and clinical characteristics exist between women and men with heart failure (HF). In particular, differences in the kinetics of biological circulating biomarkers—a critical component of cardiovascular care—are highly relevant. Most circulating HF biomarkers are assessed daily by clinicians without taking sex into account, despite the multiple gender-related differences observed in plasma concentrations. Even in health, compared to men, women tend to exhibit higher levels of natriuretic peptides and galectin-3 and lower levels of cardiac troponins and the cardiac stress marker, soluble ST2. Many biological factors can provide a reliable explanation for these differences, like body composition, fat distribution, or menopausal status. Notwithstanding, these sex-specific differences in biomarker levels do not reflect different pathobiological mechanisms in HF between women and men, and they do not necessarily imply a need to use different diagnostic cut-off levels in clinical practice. To date, the sex-specific prognostic value of HF biomarkers for risk stratification is an unresolved issue that future research must elucidate. This review outlines current evidence regarding gender-related differences in circulating biomarkers widely used in HF, the pathophysiological mechanisms underlying these differences, and their clinical relevance.
Collapse
Affiliation(s)
- Germán Cediel
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Pau Codina
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Giosafat Spitaleri
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Mar Domingo
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Evelyn Santiago-Vacas
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Josep Lupón
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, CIBERCV, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
50
|
Savonnet M, Rolland T, Cubizolles M, Roupioz Y, Buhot A. Recent advances in cardiac biomarkers detection: From commercial devices to emerging technologies. J Pharm Biomed Anal 2020; 194:113777. [PMID: 33293175 DOI: 10.1016/j.jpba.2020.113777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023]
Abstract
Although cardiac pathologies are the major cause of death in the world, it remains difficult to provide a reliable diagnosis to prevent heart attacks. Rapid patient care and management in emergencies are critical to prevent dramatic consequences. Thus, relevant biomarkers such as cardiac troponin and natriuretic peptides are currently targeted by commercialized Point-Of-Care immunoassays. Key points still to be addressed concern cost, lack of standardization, and poor specificity, which could limit the reliability of the assays. Consequently, alternatives are emerging to address these issues. New probe molecules such as aptamers or molecularly imprinted polymers should allow a reduction in cost of the assays and an increase in reproducibility. In addition, the assay specificity and reliability could be improved by enabling multiplexing through the detection of several molecular targets in a single device.
Collapse
Affiliation(s)
- Maud Savonnet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France; Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Tristan Rolland
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Myriam Cubizolles
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France.
| |
Collapse
|