1
|
Yin B, Chen J, Xiang G, Xu Z, Yang M, Wong SHD. Multiscale and stimuli-responsive biosensing in biomedical applications: Emerging biomaterials based on aggregation-induced emission luminogens. Biosens Bioelectron 2025; 271:117066. [PMID: 39689580 DOI: 10.1016/j.bios.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Biosensors play a critical role in the diagnosis, treatment, and prognosis of diseases, with diverse applications ranging from molecular diagnostics to in vivo imaging. Conventional fluorescence-based biosensors, however, often suffer from aggregation-caused emission quenching (ACQ), limiting their effectiveness in high concentrations and complex environments. In contrast, the phenomenon of aggregation-induced emission (AIE) has emerged as a promising alternative, where luminescent materials exhibit strong emission in the aggregated state with good photostability, biocompatibility, large Stokes shift, high quantum yield, and tunable emission. This review article discusses the development of AIEgen-based biosensors for multiscale biosensing in biomedical applications. The integration of AIEgens with nanomaterials, such as graphene oxide and stimuli-responsive nanomaterials, can further improve the selectivity and multifunctionality of biomolecule detection. By careful molecular design, the affinity between AIEgens and specific biomolecules can be tuned, enabling the selective detection of targets like DNA, RNA, and proteins ex vivo, in vitro and in vivo, which can be applied across multiple scales, from detecting biomolecules and cellular structures to analyzing tissues and organs, underscoring their growing importance in disease diagnosis. Furthermore, we explore the potential integration of AIEgen-based biosensors with artificial intelligence (AI) technologies, offering promising avenues for future advancements in this field.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Guangli Xiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zehui Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China.
| | - Siu Hong Dexter Wong
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Carraro F, Aghito M, Dal Zilio S, Wolinski H, Doonan CJ, Nidetzky B, Falcaro P. Magnetically Responsive Enzyme and Hydrogen-Bonded Organic Framework Biocomposites for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407487. [PMID: 39580681 DOI: 10.1002/smll.202407487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Indexed: 11/26/2024]
Abstract
The one-pot synthesis of multicomponent hydrogen-bonded organic framework (HOF) biocomposites is reported. The co-immoblization of enzymes and magnetic nanoparticles (MNPs) into the HOF crystals yielded biocatalysts (MNPs-enzyme@BioHOF-1) with dynamic localization properties. Using a permanent magnet, it is possible to separate the MNPs-enzyme@BioHOF-1 particles from a solution. Catalase (CAT) and glucose oxidase (GOx) show increased retention of their activity when coimmobilized with MNPs. MNPs-GOx@BioHOF-1 biocomposites are used to prepare a proof-of-concept glucose microfluidic biosensor, where a magnet allow to position and keep in place the biocomposite inside a microfluidic chip. The magnetic response of these biocatalysts can pave the way for new applications for the emerging HOF biocomposites.
Collapse
Affiliation(s)
- Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Margherita Aghito
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, Graz, 8010, Austria
| | - Simone Dal Zilio
- Instituto Officina dei Materiali, CNR, Basovizza, Edificio MM-SS, Trieste, 34149, Italy
| | - Heimo Wolinski
- Institute of Molecular Biosciences, Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| | - Christian J Doonan
- Department of Chemistry and Centre for Advanced Nanosmaterials, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, Graz, 8010, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| |
Collapse
|
3
|
Wang Z, Zhang Z, Xu C. All-Printed Microfluidic-Electrochemical Devices for Glucose Detection. BIOSENSORS 2024; 14:569. [PMID: 39727833 DOI: 10.3390/bios14120569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Free-standing capillary microfluidic channels were directly printed over printed electrodes using a particle/polymer mixture to fabricate microfluidic-electrochemical devices on polyethylene terephthalate (PET) films. Printed devices with no electrode modification were demonstrated to have the lowest limit of detection (LOD) of 7 μM for sensing glucose. The study shows that both a low polymer concentration in the mixture for printing the microfluidic channels and surface modification of the printed microfluidic channels using 3-aminopropyltrimethoxysilane can substantially boost the device's performance. It also shows that both device structure and enzyme doping level of the devices play an important role in ensuring the best performance of the devices under various testing conditions.
Collapse
Affiliation(s)
- Zexi Wang
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zhiyi Zhang
- Quantum and Nanotechnologies Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Changqing Xu
- Engineering Physics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
4
|
Yang S, Wang Y, Gao S, Zhuang Y, Wang L, Yi Z, Zhang W. A Compact Wideband Vivaldi Antenna for Non-Invasive Glucose Monitoring. MICROMACHINES 2024; 15:1389. [PMID: 39597201 PMCID: PMC11596067 DOI: 10.3390/mi15111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Due to the high gain, wide bandwidth, and directional radiation characteristics of Vivaldi antennas, this paper conducted relevant research on the feasibility of non-destructive blood glucose detection based on Vivaldi antennas. The research included finite element method (FEM) simulation and glucose concentration monitoring. In the simulation stage, the power transmission and reflection characteristics, radiation characteristics, and electric field distribution characteristics of the antenna were described in detail. In the test stage, the S11 response of the antenna to variation in glucose concentration in the range of 0-6.11 mg/mL was measured, including the S11 amplitude and phase. The experimental results show that there is a high linear correlation between the S11 response and glucose concentration, and the sensitivity of the S11 amplitude response to the variation in glucose concentration is close to 0.3445 (dB/(mg/mL)) at 14.2556 GHz, and the sensitivity of the S11 phase response to the variation in glucose concentration is about 0.5652 (degree/(mg/mL)) at 14.37 GHz. In addition, the predicted results of the glucose concentration based on linear regression are discussed.
Collapse
Affiliation(s)
- Shasha Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China; (S.Y.); (Y.W.); (S.G.); (Y.Z.); (Z.Y.)
| | - Yu Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China; (S.Y.); (Y.W.); (S.G.); (Y.Z.); (Z.Y.)
| | - Shiwen Gao
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China; (S.Y.); (Y.W.); (S.G.); (Y.Z.); (Z.Y.)
| | - Yi Zhuang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China; (S.Y.); (Y.W.); (S.G.); (Y.Z.); (Z.Y.)
| | - Lifeng Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China; (S.Y.); (Y.W.); (S.G.); (Y.Z.); (Z.Y.)
| | - Zhenxiang Yi
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China; (S.Y.); (Y.W.); (S.G.); (Y.Z.); (Z.Y.)
| | - Weixun Zhang
- China Southern Power Grid Company Limited, Guangzhou 510000, China;
| |
Collapse
|
5
|
Yuan CY, Halim B, Kong YW, Lu J, Dutt-Ballerstadt R, Eckenberg P, Hillen K, Koski A, Milenkowic V, Netzer E, Obeyesekere V, Reid S, Sims C, Vogrin S, Wu HP, Seidl T, O’Neal DN. Combining an Electrochemical Continuous Glucose Sensor With an Insulin Delivery Cannula: A Feasibility Study. J Diabetes Sci Technol 2024; 18:1273-1280. [PMID: 38491800 PMCID: PMC11535351 DOI: 10.1177/19322968241236771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
BACKGROUND Combining a continuous glucose monitor with an insulin delivery cannula (CGM-IS) could benefit clinical outcomes. We evaluated the feasibility of a single-needle insertion electrochemical investigational CGM-IS (Pacific Diabetes Technologies, Portland, Oregon) in type 1 diabetes adults. METHODS Following 48 hours run-in using a Medtronic 780G in manual mode with a commercial insulin set, 12 participants commenced insulin delivery using the CGM-IS. A standardized test meal was eaten on the mornings of days 1 and 4. Venous samples were collected every 10 minutes one hour prior to and 15 minutes post-meal for four hours. CGM-IS glucose measurements were post-processed with a single capillary blood calibration during warm-up and benchmarked against YSI. A Dexcom G6 sensor was worn post-consent to study end. RESULTS Mean absolute relative difference (MARD) for the CGM-IS glucose measurements was 9.2% (484 paired data points). Consensus error grid revealed 88.6% within zone A and 100% in A + B. Mean (SD) % bias was -3.5 (11.7) %. There were 35 paired YSI readings <100 mg/dL cutoff and 449 ≥100 mg/dL with 81.4% within ±15 mg/dL or ±15%, and 89.9% within ±20 mg/dL or ±20%. Two cannula occlusions required discontinuation of insulin delivery: one at 70 hours post insertion and another during the day 4 meal test. Mean (SD) Dexcom glucose measurements during run-in and between meal tests was respectively 161.3 ± 27.3 mg/dL versus 158.0 ± 25.6 mg/dL; P = .39 and corresponding mean total daily insulin delivered by the pump was 58.0 ± 25.4 Units versus 57.1 ± 28.8 Units; P = .47. CONCLUSIONS Insulin delivery and glucose sensing with the investigational CGM-IS was feasible. Longer duration studies are needed.
Collapse
Affiliation(s)
- Cheng Yi Yuan
- Department of Medicine, St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, USA
| | - Bella Halim
- Department of Medicine, St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, USA
| | - Yee W. Kong
- Department of Medicine, St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, USA
| | - Jean Lu
- Department of Medicine, St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, USA
| | | | | | - Ken Hillen
- Pacific Diabetes Technologies, Portland, OR, USA
| | - Anh Koski
- Pacific Diabetes Technologies, Portland, OR, USA
| | | | - Emma Netzer
- Department of Medicine, St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, USA
| | - Varuni Obeyesekere
- Department of Medicine, St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, USA
| | - Solomon Reid
- Pacific Diabetes Technologies, Portland, OR, USA
| | - Catriona Sims
- Department of Medicine, St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, USA
| | - Sara Vogrin
- Department of Medicine, St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, USA
| | - Huan-Ping Wu
- Pacific Diabetes Technologies, Portland, OR, USA
| | - Thomas Seidl
- Pacific Diabetes Technologies, Portland, OR, USA
| | - David N. O’Neal
- Department of Medicine, St Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, USA
| |
Collapse
|
6
|
Gao K, Sun B, Zhou G, Cao Z, Xiang L, Yu J, Wang R, Yao Y, Lin F, Li Z, Ren F, Lv Y, Lu Q. Blood-based biomemristor for hyperglycemia and hyperlipidemia monitoring. Mater Today Bio 2024; 28:101169. [PMID: 39183770 PMCID: PMC11342282 DOI: 10.1016/j.mtbio.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/27/2024] Open
Abstract
Thanks to its structural characteristics and signal patterns similar to those of human brain synapses, memristors are widely believed to be applicable for neuromorphic computing. However, to our knowledge, memristors have not been effectively applied in the biomedical field, especially in disease diagnosis and health monitoring. In this work, a blood-based biomemristor was prepared for in vitro detection of hyperglycemia and hyperlipidemia. It was found that the device exhibits excellent resistance switching (RS) behavior at lower voltage biases. Through mechanism analysis, it has been confirmed that the RS behavior is driven by Ohmic conduction and ion rearrangement. Furthermore, the hyperglycemia and hyperlipidemia detection devices were constructed for the first time based on memristor logic circuits, and circuit simulations were conducted. These results confirm the feasibility of blood-based biomemristors in detecting hyperglycemia and hyperlipidemia, providing new prospects for the important application of memristors in the biomedical field.
Collapse
Affiliation(s)
- Kaikai Gao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Bai Sun
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing, 400715, China
| | - Zelin Cao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Linbiao Xiang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jiawei Yu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruixin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yingmin Yao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fulai Lin
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhuoqun Li
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fenggang Ren
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yi Lv
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Qiang Lu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
7
|
Jamshidnejad-Tosaramandani T, Kashanian S, Omidfar K, Schiöth H. Recent advances in gold nanostructure-based biosensors in detecting diabetes biomarkers. Front Bioeng Biotechnol 2024; 12:1446355. [PMID: 39355278 PMCID: PMC11442290 DOI: 10.3389/fbioe.2024.1446355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/08/2024] [Indexed: 10/03/2024] Open
Abstract
Diabetes mellitus (DM) is a prevalent disorder with an urgent need for continuous, precise, and on-site biomarker monitoring devices. The continuous monitoring of DM biomarkers from different biological matrices will become routine in the future, thanks to the promising biosensor design. Lately, employing different nanomaterials in biosensor receptor parts has had a great impact on smart DM monitoring. Among them, gold nanostructures (AuNSs) have arisen as highly potential materials in fabricating precise DM biosensors due to their unique properties. The present study provides an update on the applications of AuNSs in biosensors for detecting glucose as well as other DM biomarkers, such as glycated hemoglobin (HbA1c), glycated albumin (GA), insulin, insulin antibodies, uric acid, lactate, and glutamic acid decarboxylase antibodies (GADA), with a focus on the most important factors in biosensor performance such as sensitivity, selectivity, response time, and stability. Specified values of limit of detection (LOD), linear concentrations, reproducibility%, recovery%, and assay time were used to compare studies. In conclusion, AuNSs, owing to the wide electrochemical potential window and low electrical resistivity, are valuable tools in biosensor design, alongside other biological reagents and/or nanomaterials.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Sensor and Biosensor Research Center (SBRC), Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Helgi Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Balkrishna A, Singh S, Mishra S, Rana M, Mishra RK, Rajput SK, Arya V. Impact of Biosensors and Biomarkers in Diabetes Care: A Review. BIOMEDICAL MATERIALS & DEVICES 2024. [DOI: 10.1007/s44174-024-00230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 01/04/2025]
|
9
|
Hemdan M, Ali MA, Doghish AS, Mageed SSA, Elazab IM, Khalil MM, Mabrouk M, Das DB, Amin AS. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. SENSORS (BASEL, SWITZERLAND) 2024; 24:5143. [PMID: 39204840 PMCID: PMC11360123 DOI: 10.3390/s24165143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review delves into the forefront of biosensor technologies and their critical roles in disease biomarker detection and therapeutic drug monitoring. It provides an in-depth analysis of various biosensor types and applications, including enzymatic sensors, immunosensors, and DNA sensors, elucidating their mechanisms and specific healthcare applications. The review highlights recent innovations such as integrating nanotechnology, developing wearable devices, and trends in miniaturisation, showcasing their transformative potential in healthcare. In addition, it addresses significant sensitivity, specificity, reproducibility, and data security challenges, proposing strategic solutions to overcome these obstacles. It is envisaged that it will inform strategic decision-making, drive technological innovation, and enhance global healthcare outcomes by synthesising multidisciplinary insights.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Ibrahim M. Elazab
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Magdy M. Khalil
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt;
- School of Applied Health Sciences, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Giza 12622, Egypt;
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Alaa S. Amin
- Chemistry Department, Faculty of Science, Benha University, Benha 13511, Egypt;
| |
Collapse
|
10
|
Panditharatne SP, Imali DY, Perera ECJ, Perera LHR, Hettiarachchi GHCM, Kaumal MN. Anodized CuO-based reusable non-enzymatic glucose sensor as an alternative method for the analysis of pharmaceutical glucose infusions: a cyclic voltammetric approach. ANAL SCI 2024; 40:1475-1487. [PMID: 38727930 DOI: 10.1007/s44211-024-00585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/22/2024] [Indexed: 07/26/2024]
Abstract
Analyzing pharmaceutical products is a quality control requirement in a production facility. This study presents a CuO electrode-based reusable non-enzymatic sensor as an alternative method for rapid analysis of glucose levels in glucose infusions. CuO is extensively employed as an electrode material in non-enzymatic glucose sensors. Conventionally, these electrodes are fabricated using chemical synthesis of CuO followed by immobilization to the electrode substrate. In contrast, here, Cu metal was mechanically modified to create a grooved surface, followed by electrochemical anodization and subsequent annealing process to grow a seamless CuO layer in situ with enhanced catalytic activity. The morphology of the electrodes was characterized using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The direct electrocatalytic activity of the developed CuO-modified electrode towards glucose oxidation in alkaline media was investigated by cyclic voltammetry in detail. The CuO-modified electrode commenced the oxidation process around 0.10 V vs. Ag pseudo-reference electrode, demonstrating a significant reduction in the overvoltage for glucose oxidation compared to the bare Cu electrode. The sensor is capable of detecting glucose at low oxidation potentials such as 0.2 V with a sensitivity value of 0.37 µA ppm-1, a wide linear range (80-2300 ppm), limit of quantification (LOQ) of 1 ppm, greater repeatability, 1% precision, 3% bias, a short response time (80 s), good reproducibility and excellent reusability (196 consecutive attempts). The enhanced performance and cost-effectiveness make this sensor a promising alternative method for product analysis in glucose injection solutions.
Collapse
Affiliation(s)
| | - D Yureka Imali
- Department of Chemistry, University of Colombo, Colombo 03, Sri Lanka
| | - E Chavin J Perera
- Department of Chemistry, University of Colombo, Colombo 03, Sri Lanka
| | - L Hasini R Perera
- Department of Chemistry, University of Colombo, Colombo 03, Sri Lanka.
| | | | - M N Kaumal
- Department of Chemistry, University of Colombo, Colombo 03, Sri Lanka
| |
Collapse
|
11
|
Joorabloo A, Liu T. Smart theranostics for wound monitoring and therapy. Adv Colloid Interface Sci 2024; 330:103207. [PMID: 38843699 DOI: 10.1016/j.cis.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
To overcome the challenges of poor wound diagnosis and limited clinical efficacy of current wound management, wound dressing materials with the aim of monitoring various biomarkers vital to the wound healing process such as temperature, pH, glucose concentration, and reactive oxygen species (ROS) and improving the therapeutic outcomes have been developed. These innovative theranostic dressings are smartly engineered using stimuli-responsive biomaterials to monitor and regulate local microenvironments and deliver cargos to the wound sites in a timely and effective manner. This review provides an overview of recent advances in novel theranostics for wound monitoring and therapy as well as giving insights into the future treatment of wounds via smart design of theranostic materials.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| |
Collapse
|
12
|
Efremenko Y, Mirsky VM. Chemosensitive Properties of Electrochemically Synthesized Poly-3-Thienylboronic Acid: Conductometric Detection of Glucose and Other Diol-Containing Compounds under Electrical Affinity Control. Polymers (Basel) 2024; 16:1938. [PMID: 39000794 PMCID: PMC11244235 DOI: 10.3390/polym16131938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/15/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Due to the presence of the boronic acid moieties, poly-3-thienylboronic acid has an affinity for saccharides and other diol-containing compounds. Thin films of this novel chemosensitive polymer were synthesized electrochemically on the gold surface. The adhesion of the polymer was enhanced by the deposition of a monomolecular layer of thiophenol. The technology was used to fabricate conductometric sensors for glucose and other diol-containing compounds. Simultaneous two- and four-electrode conductivity measurements were performed. The chemical sensitivity to sorbitol, fructose, glucose, and ethylene glycol was studied at different pH and electrode potentials, and the corresponding binding constants were obtained. Depending on the electrode potential, the reciprocal values of the binding constants of glucose to poly-3-thienylboronic acid at neutral pH are in the range of 0.2 mM-1.0 mM. The affinity for glucose has been studied in buffer solutions and in solutions containing the major components of human blood. It was shown that the presence of human serum albumin increases the affinity of poly-3-thienylboronic acid for diol-containing compounds.
Collapse
Affiliation(s)
| | - Vladimir M. Mirsky
- Nanobiotechnology Department, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| |
Collapse
|
13
|
Oñate W, Ramos-Zurita E, Pallo JP, Manzano S, Ayala P, Garcia MV. NIR-Based Electronic Platform for Glucose Monitoring for the Prevention and Control of Diabetes Mellitus. SENSORS (BASEL, SWITZERLAND) 2024; 24:4190. [PMID: 39000969 PMCID: PMC11243983 DOI: 10.3390/s24134190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
The glucose level in the blood is measured through invasive methods, causing discomfort in the patient, loss of sensitivity in the area where the sample is obtained, and healing problems. This article deals with the design, implementation, and evaluation of a device with an ESP-WROOM-32D microcontroller with the application of near-infrared photospectroscopy technology that uses a diode array that transmits between 830 nm and 940 nm to measure glucose levels in the blood. In addition, the system provides a webpage for the monitoring and control of diabetes mellitus for each patient; the webpage is hosted on a local Linux server with a MySQL database. The tests are conducted on 120 people with an age range of 35 to 85 years; each person undergoes two sample collections with the traditional method and two with the non-invasive method. The developed device complies with the ranges established by the American Diabetes Association: presenting a measurement error margin of close to 3% in relation to traditional blood glucose measurement devices. The purpose of the study is to design and evaluate a device that uses non-invasive technology to measure blood glucose levels. This involves constructing a non-invasive glucometer prototype that is then evaluated in a group of participants with diabetes.
Collapse
Affiliation(s)
- William Oñate
- Carrera de Electrónica y Automatización, Universidad Politecnica Salesiana (UPS), Quito 170146, Ecuador
| | - Edwin Ramos-Zurita
- Faculty of Systems, Electronics and Industrial Engineering, Universidad Tecnica de Ambato (UTA), Ambato 180206, Ecuador
| | - Juan-Pablo Pallo
- Faculty of Systems, Electronics and Industrial Engineering, Universidad Tecnica de Ambato (UTA), Ambato 180206, Ecuador
| | - Santiago Manzano
- Faculty of Systems, Electronics and Industrial Engineering, Universidad Tecnica de Ambato (UTA), Ambato 180206, Ecuador
| | - Paulina Ayala
- Faculty of Systems, Electronics and Industrial Engineering, Universidad Tecnica de Ambato (UTA), Ambato 180206, Ecuador
| | - Marcelo V Garcia
- Faculty of Systems, Electronics and Industrial Engineering, Universidad Tecnica de Ambato (UTA), Ambato 180206, Ecuador
- Departamento de Ingeniería de Sistemas y Automática, University of the Basque Country, Euskal Herriko Unibertsitatea/Universidad del País Vasco, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Hasan H, Kumar V, Ge X, Sundberg C, Slaughter C, Rao G. An automatic glucose monitoring system based on periplasmic binding proteins for online bioprocess monitoring. Biosens Bioelectron 2024; 253:116138. [PMID: 38428070 DOI: 10.1016/j.bios.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
Glucose is one of the most vital nutrients in all living organisms, so its monitoring is critical in healthcare and bioprocessing. Enzymatic sensors are more popular as a technology solution to meet the requirement. However, periplasmic binding proteins have been investigated extensively for their high sensitivity, enabling microdialysis sampling to replace existing complex and expensive glucose monitoring solutions based on enzymatic sensors. The binding proteins are used as optical biosensors by introducing an environment-sensitive fluorophore to the protein. The biosensor's construction, characterization, and potential application are well studied, but a complete glucose monitoring system based on it is yet to be reported. This work documents the development of the first glucose sensor prototype based on glucose binding protein (GBP) for automatic and continuous glucose measurements. The development includes immobilizing the protein into reusable chips and a low-cost solution for non-invasive glucose sampling in bioprocesses using microdialysis sampling technique. A program was written in LabVIEW to accompany the prototype for the complete automation of measurement. The sampling technique allowed glucose measurements of a few micromolar to 260 mM glucose levels. A thorough analysis of the sampling mode and the device's performance was conducted. The reported measurement accuracy was 81.78%, with an RSD of 1.83%. The prototype was also used in online glucose monitoring of E. coli cell culture. The mode of glucose sensing can be expanded to the measurement of other analytes by switching the binding proteins.
Collapse
Affiliation(s)
- Hasibul Hasan
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Vikash Kumar
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Chad Sundberg
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Christopher Slaughter
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Govind Rao
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
15
|
Almohammed S, Finlay A, Duleba D, Cosgrave S, Johnson R, Rodriguez BJ, Rice JH. Piezoelectric Peptide Nanotube Substrate Sensors Activated through Sound Wave Energy. ACS MATERIALS LETTERS 2024; 6:1863-1869. [PMID: 38726043 PMCID: PMC11077579 DOI: 10.1021/acsmaterialslett.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
The use of sustainable and safe materials is increasingly in demand for the creation of photonic-based technology. Piezoelectric peptide nanotubes make up a class of safe and sustainable materials. We show that these materials can generate piezoelectric charge through the deformation of oriented molecular dipoles when the tube length is flexed through the application of sound energy. Through the combination of peptide nanotubes with plasmon active nanomaterials, harvesting of low-frequency acoustic sound waves was achieved. This effect was applied to boost surface-enhanced Raman scattering signal detection of analytes, including glucose. This work demonstrates the potential of utilizing sound to boost sensing by using piezoelectric materials.
Collapse
Affiliation(s)
- Sawsan Almohammed
- School
of Physics, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Allan Finlay
- School
of Physics, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Dominik Duleba
- School
of Chemistry, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Shane Cosgrave
- School
of Physics, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Robert Johnson
- School
of Chemistry, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Brian J. Rodriguez
- School
of Physics, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - James H. Rice
- School
of Physics, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| |
Collapse
|
16
|
Janfaza S, Radha Shanmugam N, Jolly P, Kovur P, Singh U, Mackay S, Wishart D, Ingber DE. Redox-Modified Nanostructured Electrochemical Surfaces for Continuous Glucose Monitoring in Complex Biological Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:796. [PMID: 38727390 PMCID: PMC11085330 DOI: 10.3390/nano14090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Continuous glucose monitoring is valuable for people with diabetes but faces limitations due to enzyme-electrode interactions and biofouling from biological samples that reduce sensor sensitivity and the monitoring performance. We created an enzyme-based electrochemical system with a unique nanocomposite coating that incorporates the redox molecule, aminoferrocene (NH2-Fc). This coating enhances stability via electroactivity and reduces nonspecific binding, as demonstrated through cyclic voltammetry. Our approach enables real-time glucose detection via chronoamperometry with a calculated linear range of 0.5 to 20 mM and a 1 mM detection limit. Validated with plasma and saliva, this platform shows promise for robust metabolite detection in clinical and research contexts. This versatile platform can be applied to accurately monitor a wide range of metabolites in various biological matrices, improving patient outcomes.
Collapse
Affiliation(s)
- Sajjad Janfaza
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA (N.R.S.); (P.J.)
| | - Nandhinee Radha Shanmugam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA (N.R.S.); (P.J.)
| | - Pawan Jolly
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA (N.R.S.); (P.J.)
| | - Prashanthi Kovur
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (P.K.); (U.S.); (S.M.); (D.W.)
| | - Upasana Singh
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (P.K.); (U.S.); (S.M.); (D.W.)
| | - Scott Mackay
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (P.K.); (U.S.); (S.M.); (D.W.)
| | - David Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (P.K.); (U.S.); (S.M.); (D.W.)
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA (N.R.S.); (P.J.)
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
17
|
Xu X, Shen Y, Xing R, Kong J, Su R, Huang R, Qi W. Galvanic Replacement Synthesis of VO x@EGaIn-PEG Core-Shell Nanohybrids for Peroxidase Mimics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21975-21986. [PMID: 38626357 DOI: 10.1021/acsami.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The development of high-performance biosensors is a key focus in the nanozyme field, but the current limitations in biocompatibility and recyclability hinder their broader applications. Herein, we address these challenges by constructing core-shell nanohybrids with biocompatible poly(ethylene glycol) (PEG) modification using a galvanic replacement reaction between orthovanadate ions and liquid metal (LM) (VOx@EGaIn-PEG). By leveraging the excellent charge transfer properties and the low band gap of the LM surface oxide, the VOx@EGaIn-PEG heterojunction can effectively convert hydrogen peroxide into hydroxyl radicals, demonstrating excellent peroxidase-like activity and stability (Km = 490 μM, vmax = 1.206 μM/s). The unique self-healing characteristics of LM further enable the recovery and regeneration of VOx@EGaIn-PEG nanozymes, thereby significantly reducing the cost of biological detection. Building upon this, we developed a nanozyme colorimetric sensor suitable for biological systems and integrated it with a smartphone to create an efficient quantitative detection platform. This platform allows for the convenient and sensitive detection of glucose in serum samples, exhibiting a good linear relationship in the range of 10-500 μM and a detection limit of 2.35 μM. The remarkable catalytic potential of LM, combined with its biocompatibility and regenerative properties, offers valuable insights for applications in catalysis and biomedical fields.
Collapse
Affiliation(s)
- Xiaojian Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ruizhe Xing
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jie Kong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
18
|
Bercea M, Lupu A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024; 10:260. [PMID: 38667679 PMCID: PMC11048858 DOI: 10.3390/gels10040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or shrink as a function of the environmental free glucose content are suitable systems for monitoring blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the development of sensors based on reversible binding to glucose molecules represents a continuous challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically binding glucose and mannose makes Con A as a suitable natural receptor for the development of smart glucose-responsive materials. During the last few years, Con A was used to develop smart materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
19
|
Kuo PY, Liao CH, Wang TH, Hsu MT. Design and Fabrication of Enzymatic Potentiometric Biosensor Based on Flexible Printed Circuit Board for Glucose Detection. IEEE Trans Nanobioscience 2024; 23:283-290. [PMID: 38015675 DOI: 10.1109/tnb.2023.3337381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
This study investigated the development and optimization of a flexible printed circuit board-based glucose biosensor with an emphasis on high sensitivity, selectivity, and overall performance. Advances in glucose biosensing have highlighted its importance in medical diagnostics, especially diabetes management. The fabrication process involves depositing a RuO2 sensing film on a flexible printed circuit board (FPCB) by radio frequency sputtering. Enzyme-based modification using glucose oxidase (GOx), (3-aminopropyl) triethoxysilane (APTES), and glutaraldehyde (GA) to enhance selectivity and catalytic reactions. And through Scanning Electron Microscopy and electrochemical impedance spectroscopy, the sensing film, and the effect of modification on the charge transfer rate and performance improvement were analyzed. This glucose biosensor has excellent linearity, sensitivity, and reproducibility. The study also assessed response time and selectivity. The response time efficiency of the biosensor solidified its utility in point-of-care monitoring, while selectivity experiments validated its ability to distinguish glucose from interfering substances, ensuring accuracy in practical applications. According to the experimental results, the enzymatic glucose biosensor has the best average sensitivity and linearity of 44.42 mV/mM and 0.999 with a response time of 6 seconds.
Collapse
|
20
|
Antonova IV, Ivanov AI, Shavelkina MB, Poteryayev DA, Buzmakova AA, Soots RA. Engineering of graphene-based composites with hexagonal boron nitride and PEDOT:PSS for sensing applications. Phys Chem Chem Phys 2024; 26:7844-7854. [PMID: 38376373 DOI: 10.1039/d3cp05953g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A unique nanomaterial has been developed for sweat analysis, including glucose level monitoring. Simple resusable low-cost sensors from composite materials based on graphene, hexagonal boron nitride, and conductive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)polystyrene sulfonate) polymer have been developed and fabricated via 2D printing on flexible substrates. The sensors were tested as biosensors using different water-based solutions. A strong increase in the current response (several orders of magnitude) was observed for aqua vapors or glucose solution vapors. This property is associated with the sorption capacity of graphene synthesized in a volume of plasma jets and thus having many active centers on the surface. The structure and properties of graphene synthesized in a plasma are different from those of graphene created by other methods. As a result, the current response for a wearable sensor is 3-5 orders of magnitude higher for the reference blood glucose concentration range of 4-14 mM. It has been found that the most promising sensor with the highest response was fabricated based on the graphene:PEDOT:PSS composite. The graphene:h-BN:PEDOT:PSS (h-BN is hexagonal boron nitride) sensors demonstrated a longer response and the highest response after the functionalization of the sensors with a glucose oxidase enzyme. The reusable wearable graphene:PEDOT:PSS glucose sensors on a paper substrate demonstrated a current response of 10-10 to 10-5 A for an operating voltage of 0.5 V and glucose range of 4-10 mM.
Collapse
Affiliation(s)
- Irina V Antonova
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Artem I Ivanov
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
| | - Marina B Shavelkina
- Joint Institute for High Temperatures RAS, Izhorskaya Str. 13 Bd.2, Moscow 125412, Russia
| | - Dmitriy A Poteryayev
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Anna A Buzmakova
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Regina A Soots
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
| |
Collapse
|
21
|
Campesi I, Franconi F, Serra PA. The Appropriateness of Medical Devices Is Strongly Influenced by Sex and Gender. Life (Basel) 2024; 14:234. [PMID: 38398743 PMCID: PMC10890141 DOI: 10.3390/life14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Until now, research has been performed mainly in men, with a low recruitment of women; consequentially, biological, physiological, and physio-pathological mechanisms are less understood in women. Obviously, without data obtained on women, it is impossible to apply the results of research appropriately to women. This issue also applies to medical devices (MDs), and numerous problems linked to scarce pre-market research and clinical trials on MDs were evidenced after their introduction to the market. Globally, some MDs are less efficient in women than in men and sometimes MDs are less safe for women than men, although recently there has been a small but significant decrease in the sex and gender gap. As an example, cardiac resynchronization defibrillators seem to produce more beneficial effects in women than in men. It is also important to remember that MDs can impact the health of healthcare providers and this could occur in a sex- and gender-dependent manner. Recently, MDs' complexity is rising, and to ensure their appropriate use they must have a sex-gender-sensitive approach. Unfortunately, the majority of physicians, healthcare providers, and developers of MDs still believe that the human population is only constituted by men. Therefore, to overcome the gender gap, a real collaboration between the inventors of MDs, health researchers, and health providers should be established to test MDs in female and male tissues, animals, and women.
Collapse
Affiliation(s)
- Ilaria Campesi
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy;
| | - Flavia Franconi
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy;
| | - Pier Andrea Serra
- Dipartimento di Medicina, Chirurgia e Farmacia, Università degli Studi di Sassari, 07100 Sassari, Italy;
| |
Collapse
|
22
|
Damala P, Tiuftiakov NY, Bakker E. Avoiding Potential Pitfalls in Designing Wired Glucose Biosensors. ACS Sens 2024; 9:2-8. [PMID: 38146872 DOI: 10.1021/acssensors.3c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Glucose sensing has been studied for more than half a century, leading many to believe that further progress comes mainly from engineering efforts. Our society requires robust, reliable, compact, and easy-to-use sensing solutions for decentralized applications such as wearables, and engineering solutions are essential. However, true progress is only possible by understanding and improving the underlying working principles and fundamental limitations. This Perspective discusses the delicate relationship between the observed current and glucose concentration when using wired enzyme biosensors. Some of the potential pitfalls often encountered in the recent literature are discussed. These include the need to suppress the influence of enzyme turnover kinetics on the sensor signal and the undesired faradaic charging of the electron transfer mediator that gives a continuously decaying baseline signal. These fundamental issues must be carefully evaluated and resolved for the realization of continuously operating enzyme biosensor systems.
Collapse
Affiliation(s)
- Polyxeni Damala
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Nikolai Yu Tiuftiakov
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
23
|
Antezana PE, Municoy S, Ostapchuk G, Catalano PN, Hardy JG, Evelson PA, Orive G, Desimone MF. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023; 15:2743. [PMID: 38140084 PMCID: PMC10747900 DOI: 10.3390/pharmaceutics15122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| | - Gabriel Ostapchuk
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
| | - Paolo Nicolás Catalano
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Junín 954, Buenos Aires 1113, Argentina
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK;
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
| | - Pablo Andrés Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| |
Collapse
|
24
|
Sharma KP, Shin M, Kim K, Woo K, Awasthi GP, Yu C. Copper nanoparticles/polyaniline/molybdenum disulfide composite as a nonenzymatic electrochemical glucose sensor. Heliyon 2023; 9:e21272. [PMID: 38076125 PMCID: PMC10709213 DOI: 10.1016/j.heliyon.2023.e21272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/16/2024] Open
Abstract
A Cu@Pani/MoS2 nanocomposite was successfully synthesized via combined in-situ oxidative polymerization and hydrothermal reaction and applied to an electrochemical nonenzymatic glucose sensor. The morphology of the prepared Cu@Pani/MoS2 nanocomposite was characterized using FE-SEM and Cs-STEM, and electrochemical analysis was performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry techniques. Electrostatic interaction between Cu@Pani and MoS2 greatly enhanced the charge dispersion, electrical conductivity, and stability, resulting in excellent electrochemical performance. The Cu@Pani/MoS2 was used as an electrocatalyst to detect glucose in an alkaline medium. The proposed glucose sensor exhibited a sensitivity, detection limit, and wide linear range of 69.82 μAmM-1cm-2, 1.78 μM, and 0.1-11 mM, respectively. The stability and selectivity of the Cu@Pani/MoS2 composite for glucose compared to that of the potential interfering species, as well as its ability to determine the glucose concentration in diluted human serum samples at a high recovery percentage, demonstrated its viability as a nonenzymatic glucose sensor.
Collapse
Affiliation(s)
- Krishna Prasad Sharma
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Kyong Kim
- Department of Rehabilitation Engineering, Daegu Hanny University, Gyeongsan, Gyeongsangbuk-do, 38609, Republic of Korea
| | - Kyungmin Woo
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Changho Yu
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
25
|
Sun C, Zhang X, Huang H, Liu Y, Mo X, Feng Y, Wang J, Zhou W, Chu PK, Yu XF, Liu W. Selective oxidation of p-phenylenediamine for blood glucose detection enabled by Se-vacancy-rich TiSe 2-x@Au nanozyme. Biosens Bioelectron 2023; 241:115665. [PMID: 37716159 DOI: 10.1016/j.bios.2023.115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
Nanozymes with enzyme-like characteristics have drawn wide interest but the catalytic activity and substrate selectivity of nanozymes still need improvement. Herein, Se-vacancy-rich TiSe2-x@Au nanocomposites are designed and demonstrated as nanozymes. The TiSe2-x@Au nanocomposites show excellent peroxidase-like activity and the chromogenic substrate p-phenylenediamine (PPD) can be selectively oxidized to compounds that exhibit an absorption peak at 413 nm that differs from that of self-oxidation or generally oxidized species, suggesting high catalytic activity and strong substrate selectivity. Theoretical calculations reveal that the PPD adsorption geometry at Se vacancies with an adsorption energy of -3.00 eV shows a unique spatial configuration and charge distribution, thereby inhibiting the free reaction and promoting both the activity and selectivity in PPD oxidation. The TiSe2-x@Au colorimetric system exhibits a wide linear range of 0.015 mM-0.6 mM and a low detection limit of 0.0037 mM in the detection of glucose. The blood glucose detection performance for human serum samples is comparable to that of a commercial glucose meter in the hospital (relative standard deviation < 6%). Our findings demonstrate a new strategy for rapid and accurate detection of blood glucose and our results provide insights into the future design of nanozymes.
Collapse
Affiliation(s)
- Caixia Sun
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China; Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China; The First Clinical Medical School, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Xue Zhang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Hao Huang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| | - Ya Liu
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Xianwei Mo
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Yufei Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Jiahong Wang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Wenhua Zhou
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Xue-Feng Yu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Wenxin Liu
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China.
| |
Collapse
|
26
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
27
|
Sly B, Taylor J. Blood glucose monitoring devices: current considerations. Aust Prescr 2023; 46:54-59. [PMID: 38053807 PMCID: PMC10665089 DOI: 10.18773/austprescr.2023.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Measuring blood glucose concentrations via capillary (fingerprick) blood glucose monitoring or continuous (interstitial) glucose monitoring is an important aspect of management for many people with diabetes. Blood glucose monitoring informs patient self-management strategies, which can improve the patient's engagement in their own care and reduce barriers to achieving recommended blood glucose targets. Blood glucose monitoring also informs clinician-guided management plans. Compared to capillary blood glucose monitoring, continuous glucose monitoring in people using insulin significantly improves glycaemic metrics and is associated with improved patient-reported outcomes. Even with good glycaemic metrics, patients using continuous glucose monitoring should still have access to capillary blood glucose monitoring for correlation of hypoglycaemic readings when accuracy may be compromised or if there is a malfunction with the continuous blood glucose monitor.
Collapse
|
28
|
Wu CY, Su YT, Su CK. 4D-printed needle panel meters coupled with enzymatic derivatization for reading urea and glucose concentrations in biological samples. Biosens Bioelectron 2023; 237:115500. [PMID: 37390641 DOI: 10.1016/j.bios.2023.115500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
On-site analytical techniques continue being developed with advances in modern technology. To demonstrate the applicability of four-dimensional printing (4DP) technologies in the direct fabrication of stimuli-responsive analytical devices for on-site determination of urea and glucose, we used digital light processing three-dimensional printing (3DP) and 2-carboxyethyl acrylate (CEA)-incorporated photocurable resins to fabricate all-in-one needle panel meters. When adding a sample having a value of pH above the pKa of CEA (ca. 4.6-5.0) into the fabricated needle panel meter, the [H+]-responsive layer of the needle, printed using the CEA-incorporated photocurable resins, swelled as a result of electrostatic repulsion among the dissociated carboxyl groups of the copolymer, leading to [H+]-dependent bending of the needle. When coupled with a derivatization reaction (urease-mediated hydrolysis of urea to decrease [H+]; glucose oxidase-mediated oxidization of glucose to increase [H+]), the bending of the needle allowed reliable quantification of urea or glucose when referencing pre-calibrated concentration scales. After method optimization, the method's detection limits for urea and glucose were 4.9 and 7.0 μM, respectively, within a working concentration range from 0.1 to 10 mM. We verified the reliability of this analytical method by determining the concentrations of urea and glucose in samples of human urine, fetal bovine serum, and rat plasma with spike analyses and comparing the results with those obtained using commercial assay kits. Our results confirm that 4DP technologies can allow the direct fabrication of stimuli-responsive devices for quantitative chemical analysis, and that they can advance the development and applicability of 3DP-enabling analytical methods.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Yi-Ting Su
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC.
| |
Collapse
|
29
|
Lin LP, Tan MTT. Biosensors for the detection of lung cancer biomarkers: A review on biomarkers, transducing techniques and recent graphene-based implementations. Biosens Bioelectron 2023; 237:115492. [PMID: 37421797 DOI: 10.1016/j.bios.2023.115492] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death. In addition to chest X-rays and computerised tomography, the detection of cancer biomarkers serves as an emerging diagnostic tool for lung cancer. This review explores biomarkers including the rat sarcoma gene, the tumour protein 53 gene, the epidermal growth factor receptor, the neuron-specific enolase, the cytokeratin-19 fragment 21-1 and carcinoembryonic antigen as potential indicators of lung cancer. Biosensors, which utilise various transduction techniques, present a promising solution for the detection of lung cancer biomarkers. Therefore, this review also explores the working principles and recent implementations of transducers in the detection of lung cancer biomarkers. The transducing techniques explored include optical techniques, electrochemical techniques and mass-based techniques for detecting biomarkers and cancer-related volatile organic compounds. Graphene has outstanding properties in terms of charge transfer, surface area, thermal conductivity and optical characteristics, on top of allowing easy incorporation of other nanomaterials. Exploiting the collective merits of both graphene and biosensor is an emerging trend, as evidenced by the growing number of studies on graphene-based biosensors for the detection of lung cancer biomarkers. This work provides a comprehensive review of these studies, including information on modification schemes, nanomaterials, amplification strategies, real sample applications, and sensor performance. The paper concludes with a discussion of the challenges and future outlook of lung cancer biosensors, including scalable graphene synthesis, multi-biomarker detection, portability, miniaturisation, financial support, and commercialisation.
Collapse
Affiliation(s)
- Lih Poh Lin
- Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia; Centre for Multimodal Signal Processing, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia
| | - Michelle Tien Tien Tan
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| |
Collapse
|
30
|
Navarro-Nateras L, Diaz-Gonzalez J, Aguas-Chantes D, Coria-Oriundo LL, Battaglini F, Ventura-Gallegos JL, Zentella-Dehesa A, Oza G, Arriaga LG, Casanova-Moreno JR. Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems. BIOSENSORS 2023; 13:582. [PMID: 37366947 DOI: 10.3390/bios13060582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
The inclusion of online, in situ biosensors in microfluidic cell cultures is important to monitor and characterize a physiologically mimicking environment. This work presents the performance of second-generation electrochemical enzymatic biosensors to detect glucose in cell culture media. Glutaraldehyde and ethylene glycol diglycidyl ether (EGDGE) were tested as cross-linkers to immobilize glucose oxidase and an osmium-modified redox polymer on the surface of carbon electrodes. Tests employing screen printed electrodes showed adequate performance in a Roswell Park Memorial Institute (RPMI-1640) media spiked with fetal bovine serum (FBS). Comparable first-generation sensors were shown to be heavily affected by complex biological media. This difference is explained in terms of the respective charge transfer mechanisms. Under the tested conditions, electron hopping between Os redox centers was less vulnerable than H2O2 diffusion to biofouling by the substances present in the cell culture matrix. By employing pencil leads as electrodes, the incorporation of these electrodes in a polydimethylsiloxane (PDMS) microfluidic channel was achieved simply and at a low cost. Under flow conditions, electrodes fabricated using EGDGE presented the best performance with a limit of detection of 0.5 mM, a linear range up to 10 mM, and a sensitivity of 4.69 μA mM-1 cm-2.
Collapse
Affiliation(s)
- L Navarro-Nateras
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Jancarlo Diaz-Gonzalez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Diana Aguas-Chantes
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Lucy L Coria-Oriundo
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - José Luis Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - L G Arriaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Jannu R Casanova-Moreno
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| |
Collapse
|
31
|
Arya SS, Dias SB, Jelinek HF, Hadjileontiadis LJ, Pappa AM. The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics? Biosens Bioelectron 2023; 235:115387. [PMID: 37229842 DOI: 10.1016/j.bios.2023.115387] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Advances in consumer electronics, alongside the fields of microfluidics and nanotechnology have brought to the fore low-cost wearable/portable smart devices. Although numerous smart devices that track digital biomarkers have been successfully translated from bench-to-bedside, only a few follow the same fate when it comes to track traditional biomarkers. Current practices still involve laboratory-based tests, followed by blood collection, conducted in a clinical setting as they require trained personnel and specialized equipment. In fact, real-time, passive/active and robust sensing of physiological and behavioural data from patients that can feed artificial intelligence (AI)-based models can significantly improve decision-making, diagnosis and treatment at the point-of-procedure, by circumventing conventional methods of sampling, and in person investigation by expert pathologists, who are scarce in developing countries. This review brings together conventional and digital biomarker sensing through portable and autonomous miniaturized devices. We first summarise the technological advances in each field vs the current clinical practices and we conclude by merging the two worlds of traditional and digital biomarkers through AI/ML technologies to improve patient diagnosis and treatment. The fundamental role, limitations and prospects of AI in realizing this potential and enhancing the existing technologies to facilitate the development and clinical translation of "point-of-care" (POC) diagnostics is finally showcased.
Collapse
Affiliation(s)
- Sagar S Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sofia B Dias
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Interdisciplinary Center for Human Performance, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal.
| | - Herbert F Jelinek
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK.
| |
Collapse
|
32
|
Chmayssem A, Nadolska M, Tubbs E, Sadowska K, Vadgma P, Shitanda I, Tsujimura S, Lattach Y, Peacock M, Tingry S, Marinesco S, Mailley P, Lablanche S, Benhamou PY, Zebda A. Insight into continuous glucose monitoring: from medical basics to commercialized devices. Mikrochim Acta 2023; 190:177. [PMID: 37022500 DOI: 10.1007/s00604-023-05743-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
According to the latest statistics, more than 537 million people around the world struggle with diabetes and its adverse consequences. As well as acute risks of hypo- or hyper- glycemia, long-term vascular complications may occur, including coronary heart disease or stroke, as well as diabetic nephropathy leading to end-stage disease, neuropathy or retinopathy. Therefore, there is an urgent need to improve diabetes management to reduce the risk of complications but also to improve patient's quality life. The impact of continuous glucose monitoring (CGM) is well recognized, in this regard. The current review aims at introducing the basic principles of glucose sensing, including electrochemical and optical detection, summarizing CGM technology, its requirements, advantages, and disadvantages. The role of CGM systems in the clinical diagnostics/personal testing, difficulties in their utilization, and recommendations are also discussed. In the end, challenges and prospects in future CGM systems are discussed and non-invasive, wearable glucose biosensors are introduced. Though the scope of this review is CGMs and provides information about medical issues and analytical principles, consideration of broader use will be critical in future if the right systems are to be selected for effective diabetes management.
Collapse
Affiliation(s)
- Ayman Chmayssem
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France
| | - Małgorzata Nadolska
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233, Gdansk, Poland
| | - Emily Tubbs
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, 38000, Grenoble, Biomics, France
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Pankaj Vadgma
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Seiya Tsujimura
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-5358, Japan
| | | | - Martin Peacock
- Zimmer and Peacock, Nedre Vei 8, Bldg 24, 3187, Horten, Norway
| | - Sophie Tingry
- Institut Européen Des Membranes, UMR 5635, IEM, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Stéphane Marinesco
- Plate-Forme Technologique BELIV, Lyon Neuroscience Research Center, UMR5292, Inserm U1028, CNRS, Univ. Claude-Bernard-Lyon I, 69675, Lyon 08, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, 38000, Grenoble, DTBS, France
| | - Sandrine Lablanche
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Pierre Yves Benhamou
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Abdelkader Zebda
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France.
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan.
| |
Collapse
|
33
|
Jiang H, Xia C, Lin J, Garalleh HA, Alalawi A, Pugazhendhi A. Carbon nanomaterials: A growing tool for the diagnosis and treatment of diabetes mellitus. ENVIRONMENTAL RESEARCH 2023; 221:115250. [PMID: 36646201 DOI: 10.1016/j.envres.2023.115250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Diabetes mellitus is a growing disease that affects people of different ages due to deficiencies in insulin action and secretion. Diabetes causing long-term hyperglycemia damages, destroys, and fails essential organs, including kidneys, eyes, hearts, nerves, and blood vessels. The involvement of pathogenic factors makes diabetes mellitus a severe disease. The autoimmune process results in insulin deficiency by destroying the beta-cells in the pancreas. This leads to insulin resistance. As a result of defects and abnormalities in fat, carbohydrate, and protein synthesis, insulin does not work as it should on the target tissues. As diabetes mellitus becomes, more severe, long-term and effective treatment becomes necessary. A wide range of nanomaterials can be used to treat diabetes mellitus in patients. In addition to being potential imaging, diagnostic, and treatment agents for diabetes mellitus, carbon nanomaterials (CNMs) are another group of nanoparticles that exhibit potential interest. The CNMs acts as implantable nanosensor to track and detect blood glucose level in patients with diabetes. CNMS are possible drug carriers that can treat diabetes mellitus selectively, precisely, and effectively. Diabetes mellitus can be diagnosed and treated with CNMs due to their structural specificity and high drug-loading efficiency. The present review explores CNMs for their types, synthesis, and anti-diabetic properties. This review aims to provide a detailed view of the new technology that can be used to decipher the mechanism of CNMs in diabetes mellitus.
Collapse
Affiliation(s)
- Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Junqing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Amr Alalawi
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
34
|
Lokar N, Pečar B, Možek M, Vrtačnik D. Microfluidic Electrochemical Glucose Biosensor with In Situ Enzyme Immobilization. BIOSENSORS 2023; 13:364. [PMID: 36979576 PMCID: PMC10046266 DOI: 10.3390/bios13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The development and characterization of a microfluidic electrochemical glucose biosensor are presented herein. The transducer part is based on thin-film metal electrodes on a glass substrate. The biological recognition element of the biosensor is the pyrroloquinoline quinone-glucose dehydrogenase (PQQ-GdhB) enzyme, selectively in situ immobilized via microcontact printing of a mixed self-assembling monolayer (SAM) on a gold working electrode, while the microfluidic part of the device comprises microchannel and microfluidic connections formed in a polydimethylsiloxane (PDMS) elastomer. The electrode properties throughout all steps of biosensor construction and the biosensor response to glucose concentration and analyte flow rate were characterized by cyclic voltammetry and chronoamperometry. A measurement range of up to 10 mM in glucose concentration with a linear range up to 200 μM was determined. A detection limit of 30 µM in glucose concentration was obtained. Respective biosensor sensitivities of 0.79 nA/µM/mm2 and 0.61 nA/µM/mm2 were estimated with and without a flow at 20 µL/min. The developed approach of in situ enzyme immobilization can find a wide number of applications in the development of microfluidic biosensors, offering a path towards continuous and time-independent detection.
Collapse
|
35
|
Patra S, Purohit SS, Swain SK. In vivo fluorescence non-enzymatic glucose sensing technique for diabetes management by CQDs incorporated dextran nanocomposites in human blood serums. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
36
|
Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, Tabish M, Khan AU. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:867. [PMID: 36903746 PMCID: PMC10005622 DOI: 10.3390/nano13050867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ali Darraj
- Department of Medicine, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226025, India
| | - Abdulaziz Alalwan
- University Family Medicine Center, Department of Family and Community Medicine, College of Medicine, King Saud University Medical City, Riyadh 2925, Saudi Arabia
| | - Osamah Alamri
- Consultant of Family Medicine, Ministry of Health, Second Health Cluster, Riyadh 2925, Saudi Arabia
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Anwar Ulla Khan
- Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
37
|
Li L, Hai W, Chen Z, Liu Y, Liu Y, Liu Z, Liu J. Phenylboronic acid conjugated poly(3,4-ethylenedioxythiophene) (PEDOT) coated Ag dendrite for electrochemical non-enzymatic glucose sensing. NEW J CHEM 2023. [DOI: 10.1039/d2nj05148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fern leaf-like surface topography of poly(EDOT-PBA)/Ag/Cu/GCE increases the specific surface area of the sensor, thereby enhancing the glucose sensing performance.
Collapse
Affiliation(s)
- Lijuan Li
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhiran Chen
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yushuang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhelin Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
38
|
Wayne Lewis C, Butorin Y, de Koning L, Paul HA, Gifford JL, Venner AA, Seiden-Long I. Low partial pressure of oxygen causes significant and unrecognized under-recovery of glucose on blood gas analyzers. Clin Biochem 2023; 111:60-65. [PMID: 36279904 DOI: 10.1016/j.clinbiochem.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Blood gas analyzers employing glucose-oxidase biosensors under-recover glucose when pO2 is low. The manufacturer of the GEM®Premier™ series of analyzers introduced an algorithm to detect specimens at risk of low pO2 interference. We investigated the reliability of this algorithm. METHODS Whole blood specimens were tested by GEM®Premier™ 4000 (GEM 4000) and 5000 (GEM 5000). Specimens with an incalculable ("incalc") error code for glucose result or that had a glucose ≥ 20 mmol/L were retested on a second analyzer of the same type within 5 min over the course of 30 months in 5 hospitals in Calgary, Alberta. Discordant retests were defined as either: 1) paired numeric results with a difference >10 %, or 2) an "incalc" code that yielded a numeric result upon retesting. Glucose recovery in relation to pO2 level was assessed by comparing specimens experimentally depleted of pO2 between GEM 5000 and a laboratory analyzer (Siemens Vista®). RESULTS Of 1,776 glucose tests repeated on the GEM 5000 or 1,544 on GEM 4000, 10% were discordant. GEM 5000 produced twice as many discordant numeric retests versus the GEM 4000 [5.9% (98/1,651) vs 2.7% (38/1,391)]. The majority of "incalc" error codes repeated with a numeric glucose result on both GEM analyzers [(79.7% (122/153) vs 75.2% (94/125)]. Among specimens experimentally depleted of pO2, the GEM 5000 under-recovered glucose by up to 30% compared to the Siemens Vista and were not flagged by an "incalc" code. CONCLUSIONS The algorithm in the GEM®PremierTM series of analyzers that flags specimens at risk for glucose under-recovery due to low pO2 does not reliably detect specimens at risk for glucose under-recovery.
Collapse
Affiliation(s)
- Cody Wayne Lewis
- Alberta Precision Laboratories, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Yury Butorin
- Alberta Precision Laboratories, Red Deer, Alberta, Canada
| | - Lawrence de Koning
- Alberta Precision Laboratories, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Heather A Paul
- Alberta Precision Laboratories, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Jessica L Gifford
- Alberta Precision Laboratories, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Allison A Venner
- Alberta Precision Laboratories, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Isolde Seiden-Long
- Alberta Precision Laboratories, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.
| |
Collapse
|
39
|
Iuliano S, Greco EA, Mirabelli M, Chiefari E, Caroleo P, Puccio L, Giuliano S, Foti DP, Brunetti A, Aversa A. Predicting the response to SGLT-2 inhibitors as add-on therapy to multiple day injection insulin with glycated albumin: a pilot study. Minerva Endocrinol (Torino) 2022; 47:379-387. [PMID: 35103458 DOI: 10.23736/s2724-6507.22.03691-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Achieving optimal glycemic targets is the main therapeutic goal in patients with type 2 diabetes (T2D) mellitus. HbA1c is the reference biomarker for monitoring glycemic control; however, in specific conditions affecting erythrocyte turnover or in patients on multiple daily injection (MDI) insulin regimens, the determination of glycated albumin (GA) may be preferable. Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a novel class of antidiabetic drugs that lower plasma glucose concentrations quickly, with insulin-independent mechanisms. Herein, we explored the role of GA in predicting the short-term response to SGLT-2 inhibitors as add-on to MDI insulin. METHODS Sixteen patients with long-standing, poorly controlled T2D on MDI insulin starting an SGLT-2 inhibitor were subjected to plasma GA and HbA1c measurements at 30 days intervals for up to 3 months in order to examine the temporal changes of these glycemic biomarkers. RESULTS At the end of the study, grossly coincident with the life span of erythrocytes, a significant decrease in median HbA1c was observed, (from 8.7 [range: 8.2-9.3%] at baseline to 7.2 [range: 7.0-7.9%]), with the advantage of less insulin dose requirements. However, significant, and incremental reductions in median GA determinations could be already evident after 30 days (-3.5 [range: -7.5, -2.5%]) and 60 days (-6.4 [range: -10.5, -4.7%]) from the start of SGLT-2 inhibitor treatment and persisted for up to 3 months (-8.6 [range: -12.1, 6.1%]). The decrements of HbA1c observed at the 3-month visit were highly correlated with the concurrent absolute reductions of plasma GA (ρ=0.550, P=0.027), whereas a borderline significance could be demonstrated with reference to reductions in plasma GA at 30 and 60 days. CONCLUSIONS Although limited by the small number of participants, these preliminary findings suggest that GA, rather than HbA1c, could represent a useful and reliable biomarker in T2D to monitor the early glucose-lowering effects of antidiabetic drugs with rapid onset of action, such as SGLT-2 inhibitors and MDI insulin.
Collapse
Affiliation(s)
- Stefano Iuliano
- Department of Experimental and Clinical Medicine, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Emanuela A Greco
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | | | | | - Stefania Giuliano
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Daniela P Foti
- Department of Experimental and Clinical Medicine, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy -
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
40
|
Mohammadpour-Haratbar A, Mohammadpour-Haratbar S, Zare Y, Rhee KY, Park SJ. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. BIOSENSORS 2022; 12:bios12111004. [PMID: 36421123 PMCID: PMC9688744 DOI: 10.3390/bios12111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus has become a worldwide epidemic, and it is expected to become the seventh leading cause of death by 2030. In response to the increasing number of diabetes patients worldwide, glucose biosensors with high sensitivity and selectivity have been developed for rapid detection. The selectivity, high sensitivity, simplicity, and quick response of electrochemical biosensors have made them a popular choice in recent years. This review summarizes the recent developments in electrodes for non-enzymatic glucose detection using carbon nanofiber (CNF)-based nanocomposites. The electrochemical performance and limitations of enzymatic and non-enzymatic glucose biosensors are reviewed. Then, the recent developments in non-enzymatic glucose biosensors using CNF composites are discussed. The final section of the review provides a summary of the challenges and perspectives, for progress in non-enzymatic glucose biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
| | | | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| |
Collapse
|
41
|
Laha S, Rajput A, Laha SS, Jadhav R. A Concise and Systematic Review on Non-Invasive Glucose Monitoring for Potential Diabetes Management. BIOSENSORS 2022; 12:965. [PMID: 36354474 PMCID: PMC9688383 DOI: 10.3390/bios12110965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The current standard of diabetes management depends upon the invasive blood pricking techniques. In recent times, the availability of minimally invasive continuous glucose monitoring devices have made some improvements in the life of diabetic patients however it has its own limitations which include painful insertion, excessive cost, discomfort and an active risk due to the presence of a foreign body under the skin. Due to all these factors, the non-invasive glucose monitoring has remain a subject of research for the last two decades and multiple techniques of non-invasive glucose monitoring have been proposed. These proposed techniques have the potential to be evolved into a wearable device for non-invasive diabetes management. This paper reviews research advances and major challenges of such techniques or methods in recent years and broadly classifies them into four types based on their detection principles. These four methods are: optical spectroscopy, photoacoustic spectroscopy, electromagnetic sensing and nanomaterial based sensing. The paper primarily focuses on the evolution of non-invasive technology from bench-top equipment to smart wearable devices for personalized non-invasive continuous glucose monitoring in these four methods. With the rapid evolve of wearable technology, all these four methods of non-invasive blood glucose monitoring independently or in combination of two or more have the potential to become a reality in the near future for efficient, affordable, accurate and pain-free diabetes management.
Collapse
Affiliation(s)
- Soumyasanta Laha
- Department of Electrical and Computer Engineering, California State University, Fresno, Fresno, CA 93740, USA
| | - Aditi Rajput
- Department of Electrical and Computer Engineering, California State University, Fresno, Fresno, CA 93740, USA
| | - Suvra S Laha
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore 560012, India
| | - Rohan Jadhav
- Department of Public Health, California State University, Fresno, Fresno, CA 93740, USA
| |
Collapse
|
42
|
Todaro B, Begarani F, Sartori F, Luin S. Is Raman the best strategy towards the development of non-invasive continuous glucose monitoring devices for diabetes management? Front Chem 2022; 10:994272. [PMID: 36226124 PMCID: PMC9548653 DOI: 10.3389/fchem.2022.994272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetes has no well-established cure; thus, its management is critical for avoiding severe health complications involving multiple organs. This requires frequent glycaemia monitoring, and the gold standards for this are fingerstick tests. During the last decades, several blood-withdrawal-free platforms have been being studied to replace this test and to improve significantly the quality of life of people with diabetes (PWD). Devices estimating glycaemia level targeting blood or biofluids such as tears, saliva, breath and sweat, are gaining attention; however, most are not reliable, user-friendly and/or cheap. Given the complexity of the topic and the rise of diabetes, a careful analysis is essential to track scientific and industrial progresses in developing diabetes management systems. Here, we summarize the emerging blood glucose level (BGL) measurement methods and report some examples of devices which have been under development in the last decades, discussing the reasons for them not reaching the market or not being really non-invasive and continuous. After discussing more in depth the history of Raman spectroscopy-based researches and devices for BGL measurements, we will examine if this technique could have the potential for the development of a user-friendly, miniaturized, non-invasive and continuous blood glucose-monitoring device, which can operate reliably, without inter-patient variability, over sustained periods.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale SuperiorePisa, Italy
- Correspondence: Biagio Todaro, ; Stefano Luin,
| | - Filippo Begarani
- P.B.L. SRL, Solignano, PR, Italy
- Omnidermal Biomedics SRL, Solignano, PR, Italy
| | - Federica Sartori
- P.B.L. SRL, Solignano, PR, Italy
- Omnidermal Biomedics SRL, Solignano, PR, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale SuperiorePisa, Italy
- NEST, Istituto Nanoscienze, CNR, Pisa, Italy
- Correspondence: Biagio Todaro, ; Stefano Luin,
| |
Collapse
|
43
|
Jeon HJ, Kim HS, Chung E, Lee DY. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 2022; 12:6308-6338. [PMID: 36168630 PMCID: PMC9475463 DOI: 10.7150/thno.72152] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and proper glycemic management of blood glucose are essential to prevent further progression and complications. Biosensor-based colorimetric detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient operation without sophisticated instrumentation. Colorimetric glucose biosensors commonly use natural enzymes that recognize glucose and chromophores that detect enzymatic reaction products. However, many natural enzymes have inherent defects, limiting their extensive application. Recently, nanozyme-based colorimetric detection has drawn attention due to its merits including high sensitivity, stability under strict reaction conditions, flexible structural design with low-cost materials, and adjustable catalytic activities. This review discusses various nanozyme materials, colorimetric analytic methods and mechanisms, recent machine learning based analytic methods, quantification systems, applications and future directions for monitoring and managing diabetes.
Collapse
Affiliation(s)
- Hee-Jae Jeon
- Weldon School of Biomedical Engineering, Purdue University, Indiana 47906, USA
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- AI Graduate School, GIST, Gwangju 61005, Republic of Korea
- Research Center for Photon Science Technology, GIST, Gwangju 61005, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul 07463, Republic of Korea
| |
Collapse
|
44
|
Morais A, Rijo P, Batanero B, Nicolai M. Low Platinum-Content Electrocatalysts for Highly Sensitive Detection of Endogenously Released H2O2. BIOSENSORS 2022; 12:bios12090672. [PMID: 36140056 PMCID: PMC9496631 DOI: 10.3390/bios12090672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
The commercial viability of electrochemical sensors requires high catalytic efficiency electrode materials. A sluggish reaction of the sensor’s primary target species will require a high overpotential and, consequently, an excessive load of catalyst material to be used. Therefore, it is essential to understand nanocatalysts’ fundamental structures and typical catalytic properties to choose the most efficient material according to the biosensor target species. Catalytic activities of Pt-based catalysts have been significantly improved over the decades. Thus, electrodes using platinum nanocatalysts have demonstrated high power densities, with Pt loading considerably reduced on the electrodes. The high surface-to-volume ratio, higher electron transfer rate, and the simple functionalisation process are the main reasons that transition metal NPs have gained much attention in constructing high-sensitivity sensors. This study has designed to describe and highlight the performances of the different Pt-based bimetallic nanoparticles and alloys as an enzyme-free catalytic material for the sensitive electrochemical detection of H2O2. The current analysis may provide a promising platform for the prospective construction of Pt-based electrodes and their affinity matrix.
Collapse
Affiliation(s)
- Ana Morais
- CBIOS—Universidade Lusófona´s Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal
- Department of Organic Chemistry & Inorganic Chemistry, University of Alcala, 28805 Alcala de Henares, Spain
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona´s Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal
- iMed.Ulisboa—Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Belen Batanero
- Department of Organic Chemistry & Inorganic Chemistry, University of Alcala, 28805 Alcala de Henares, Spain
| | - Marisa Nicolai
- CBIOS—Universidade Lusófona´s Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
45
|
Oliva G, Bianco MG, Fiorillo AS, Pullano SA. Anti-Reflective Zeolite Coating for Implantable Bioelectronic Devices. Bioengineering (Basel) 2022; 9:bioengineering9080404. [PMID: 36004929 PMCID: PMC9405366 DOI: 10.3390/bioengineering9080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Since sunlight is one of the most easily available and clean energy supplies, solar cell development and the improvement of its conversion efficiency represent a highly interesting topic. Superficial light reflection is one of the limiting factors of the photovoltaic cells (PV) efficiency. To this end, interfacial layer with anti-reflective properties reduces this phenomenon, improving the energy potentially available for transduction. Nanoporous materials, because of the correlation between the refractive index and the porosity, allow low reflection, improving light transmission through the coating. In this work, anti-reflective coatings (ARCs) deposited on commercial PV cells, which were fabricated using two different Linde Type A (LTA) zeolites (type 3A and 4A), have been investigated. The proposed technique allows an easier deposition of a zeolite-based mixture, avoiding the use of chemicals and elevated temperature calcination processes. Results using radiation in the range 470–610 nm evidenced substantial enhancement of the fill factor, with maximum achieved values of over 40%. At 590 and 610 nm, which are the most interesting bands for implantable devices, FF is improved, with a maximum of 22% and 10%, respectively. ARCs differences are mostly related to the morphology of the zeolite powder used, which resulted in thicker and rougher coatings using zeolite 3A. The proposed approach allows a simple and reliable deposition technique, which can be of interest for implantable medical devices.
Collapse
Affiliation(s)
- Giuseppe Oliva
- BATS Laboratory, Department of Health Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Maria Giovanna Bianco
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Antonino S. Fiorillo
- BATS Laboratory, Department of Health Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence:
| | - Salvatore A. Pullano
- BATS Laboratory, Department of Health Sciences, Magna Græcia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
46
|
Yang J, Chen H, Zhu C, Huang Z, Ou R, Gao S, Yang Z. A miniature CuO nanoarray sensor for noninvasive detection of trace salivary glucose. Anal Biochem 2022; 656:114857. [DOI: 10.1016/j.ab.2022.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
|
47
|
Ortiz de Zárate D, Serna S, Ponce-Alcántara S, García-Rupérez J. Evaluation of Mesoporous TiO 2 Layers as Glucose Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:5398. [PMID: 35891081 PMCID: PMC9316573 DOI: 10.3390/s22145398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Porous materials are currently the basis of many optical sensors because of their ability to provide a higher interaction between the light and the analyte, directly within the optical structure. In this study, mesoporous TiO2 layers were fabricated using a bottom-up synthesis approach in order to develop optical sensing structures. In comparison with more typical top-down fabrication strategies where the bulk constitutive material is etched in order to obtain the required porous medium, the use of a bottom-up fabrication approach potentially allows increasing the interconnectivity of the pore network, hence improving the surface and depth homogeneity of the fabricated layer and reducing production costs by synthesizing the layers on a larger scale. The sensing performance of the fabricated mesoporous TiO2 layers was assessed by means of the measurement of several glucose dilutions in water, estimating a limit of detection even below 0.15 mg/mL (15 mg/dL). All of these advantages make this platform a very promising candidate for the development of low-cost and high-performance optical sensors.
Collapse
|
48
|
Bauer JA, Zámocká M, Majtán J, Bauerová-Hlinková V. Glucose Oxidase, an Enzyme "Ferrari": Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022; 12:472. [PMID: 35327664 PMCID: PMC8946809 DOI: 10.3390/biom12030472] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Glucose oxidase (GOx) is an important oxidoreductase enzyme with many important roles in biological processes. It is considered an "ideal enzyme" and is often called an oxidase "Ferrari" because of its fast mechanism of action, high stability and specificity. Glucose oxidase catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone and hydrogen peroxide in the presence of molecular oxygen. d-glucono-δ-lactone is sequentially hydrolyzed by lactonase to d-gluconic acid, and the resulting hydrogen peroxide is hydrolyzed by catalase to oxygen and water. GOx is presently known to be produced only by fungi and insects. The current main industrial producers of glucose oxidase are Aspergillus and Penicillium. An important property of GOx is its antimicrobial effect against various pathogens and its use in many industrial and medical areas. The aim of this review is to summarize the structure, function, production strains and biophysical and biochemical properties of GOx in light of its various industrial, biotechnological and medical applications.
Collapse
Affiliation(s)
- Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Monika Zámocká
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| |
Collapse
|