1
|
Yamaga S, Murao A, Zhou M, Aziz M, Brenner M, Wang P. Radiation-induced eCIRP impairs macrophage bacterial phagocytosis. J Leukoc Biol 2024; 116:1072-1079. [PMID: 38920274 PMCID: PMC11531804 DOI: 10.1093/jleuko/qiae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Macrophages are essential immune cells for host defense against bacterial pathogens after radiation injury. However, the role of macrophage phagocytosis in infection following radiation injury remains poorly examined. Extracellular cold-inducible RNA-binding protein is a damage-associated molecular pattern that dysregulates host immune system responses such as phagocytosis. We hypothesized that radiation-induced extracellular cold-inducible RNA-binding protein release impairs macrophage phagocytosis of bacteria. Adult healthy mice were exposed to 6.5 Gy total body irradiation. Primary peritoneal macrophages isolated from adult healthy mice were exposed to 6.5 Gy radiation. Extracellular cold-inducible RNA-binding protein-neutralizing monoclonal antibody was added to the cell culture prior to irradiation. Bacterial phagocytosis by peritoneal macrophages was assessed using pHrodo Green-labeled Escherichia coli 7 d after irradiation ex vivo and in vitro. Bacterial phagocytosis was also assessed after treatment with recombinant murine cold-inducible RNA-binding protein. Rac1 and ARP2 protein expression in cell lysates and extracellular cold-inducible RNA-binding protein levels in the peritoneal lavage were assessed by western blotting. Bacterial phagocytosis by peritoneal macrophages was significantly decreased after irradiation compared with controls ex vivo and in vitro. Rac1 and ARP2 expression in the peritoneal macrophages were downregulated after total body irradiation. Total body irradiation significantly increased extracellular cold-inducible RNA-binding protein levels in the peritoneal cavity. Recombinant murine cold-inducible RNA-binding protein significantly decreased bacterial phagocytosis in a dose-dependent manner. Extracellular cold-inducible RNA-binding protein monoclonal antibody restored bacterial phagocytosis by peritoneal macrophages after irradiation. Ionizing radiation exposure impairs bacterial phagocytosis by macrophages after irradiation. Neutralization of extracellular cold-inducible RNA-binding protein restores the phagocytic ability of macrophages after irradiation. Our findings elucidate a novel mechanism of immune dysfunction and provide a potential new therapeutic approach for limiting infection after radiation injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
| | - Mian Zhou
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 350 Community Dr., Manhasset, NY 11030, United States
| |
Collapse
|
2
|
Carpenter AD, Empfield KM, Petrus SA, Fatanmi OO, Wise SY, Tyburski JB, Cheema AK, Singh VK. Metabolomic changes in preterminal serum samples of rhesus macaques exposed to two different lethal doses of total-body gamma-radiation. Sci Rep 2024; 14:23930. [PMID: 39397118 PMCID: PMC11471850 DOI: 10.1038/s41598-024-75225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
Exposure to ionizing radiation induces cellular and molecular damage leading to a cascade of events resulting in tissue and organ injury. Our study strives to characterize and validate metabolomic changes in preterminal stage (immediately prior to death) samples collected from rhesus macaques lethally irradiated with one of two different doses of radiation. Peripheral blood samples were collected pre-exposure, post-exposure, and at the preterminal stage of nonhuman primates (NHPs that did not survive exposure with 7.2 Gy or 7.6 Gy total-body radiation (LD60-80/60)). We analyzed global metabolomic alterations using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in serum samples collected at various timepoints in relation to radiation exposure. The goal of this study was to validate the metabolic shifts present in samples collected just prior to death, which were reported earlier in a preliminary study with a limited number of samples and a single dose of radiation. Here, we demonstrate that radiation exposure induced significant time-dependent metabolic alterations compared with pre-exposure samples. We observed significant metabolite dysregulation in animals exposed to 7.6 Gy compared to 7.2 Gy. Greater metabolic disruption was observed in the preterminal groups than all of the other post-irradiation timepoints in both cohorts. Metabolomic shifts in these preterminal groups also revealed consistent disturbances in sphingolipid metabolism, steroid hormone biosynthesis, and glycerophospholipid metabolism pathways. Overall, the sphingolipid metabolism pathway appears to be representative of the preterminal phenotype, confirming the results of our preliminary study. These results offer important and novel insights for identification and validation of biomarkers for lethality, and such observations would be valuable for triage during a radiological/nuclear mass casualty scenario.
Collapse
Affiliation(s)
- Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Keirstyn M Empfield
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Sarah A Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
3
|
Lin C, Xiang Y, Zhang Y, Yang Z, Chen N, Zhang W, Hu L, Chen J, Luo Y, Wang X, Xiao Y, Zhang Q, Ran X, Chen L, Dai J, Li Z, Ran Q. Interleukin-12 sustained release system promotes hematopoietic recovery after radiation injury. MedComm (Beijing) 2024; 5:e704. [PMID: 39268354 PMCID: PMC11391269 DOI: 10.1002/mco2.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 09/15/2024] Open
Abstract
The continuous production of mature blood cell lineages is maintained by hematopoietic stem cells but they are highly susceptible to damage by ionizing radiation (IR) that induces death. Thus, devising therapeutic strategies that can mitigate hematopoietic toxicity caused by IR would benefit acute radiation syndrome (ARS) victims and patients receiving radiotherapy. Herein, we describe the preparation of an injectable hydrogel formulation based on Arg-Gly-Asp-alginate (RGD-Alg) and Laponite using a simple mixing method that ensured a slow and sustained release of interleukin-12 (IL-12) (RGD-Alg/Laponite@IL-12). The local administration of RGD-Alg/Laponite@IL-12 increased survival rates and promoted the hematopoietic recovery of mice who had received sublethal-dose irradiation. Local intra-bone marrow (intra-BM) injection of RGD-Alg/Laponite@IL-12 hydrogel effectively stimulated IL12 receptor-phosphoinositide 3-kinase/protein kinase B (IL-12R-PI3K/AKT) signaling axis, which promoted proliferation and hematopoietic growth factors secretion of BM mesenchymal stem/stromal cells. This signaling axis facilitates the repair of the hematopoietic microenvironment and plays a pivotal role in hematopoietic reconstitution. In conclusion, we describe a biomaterial-sustained release of IL-12 for the treatment of irradiated hematopoietic injury and provide a new therapeutic strategy for hematopoietic ARS.
Collapse
Affiliation(s)
- Chuanchuan Lin
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yang Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yangyang Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Zhenxing Yang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Nanxi Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Jianxin Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Ya Luo
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Xueying Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering Chongqing University Chongqing China
| | - Qing Zhang
- Institute of Respiratory Diseases The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Xi Ran
- Department of Clinical Laboratory The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Jigang Dai
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
- Department of Thoracic Surgery The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| |
Collapse
|
4
|
Royba E, Shuryak I, Ponnaiya B, Repin M, Pampou S, Karan C, Turner H, Garty G, Brenner DJ. Multiwell-based G0-PCC assay for radiation biodosimetry. Sci Rep 2024; 14:19789. [PMID: 39187542 PMCID: PMC11347619 DOI: 10.1038/s41598-024-69243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
In major radiological events, rapid assays to detect ionizing radiation exposure are crucial for effective medical interventions. The purpose of these assays is twofold: to categorize affected individuals into groups for initial treatments, and to provide definitive dose estimates for continued care and epidemiology. However, existing high-throughput cytogenetic biodosimetry assays take about 3 days to yield results, which delays critical interventions. We have developed a multiwell-based variant of the chemical-induced G0-phase Premature Chromosome Condensation Assay that delivers same-day results. Our findings revealed that using a concentration of phosphatase inhibitor lower than recommended significantly increases the yield of cells with highly condensed chromosomes. These chromosomes exhibited increased fragmentation in a dose-dependent manner, enabling to quantify radiation damage using a custom Deep Learning algorithm. This algorithm demonstrated reasonable performance in categorizing doses into distinct treatment groups (84% and 80% accuracy for three and four iso-treatment dose bins, respectively) and showed reliability in determining the actual doses received (correlation coefficient of 0.879). This method is amendable to full automation and has the potential to address the need for same-day, high-throughput cytogenetic test for both dose categorization and dose reconstruction in large-scale radiation emergencies.
Collapse
Affiliation(s)
- Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sergey Pampou
- Columbia Genome Center High-Throughput Screening Facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Charles Karan
- Columbia Genome Center High-Throughput Screening Facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
5
|
Gueguen J, Ancel L, Thoer G, Benadjaoud MA, Flamant S, Souidi M. [Micro-RNAs as biomarkers of radiation-induced injuries]. Med Sci (Paris) 2024; 40:634-642. [PMID: 39303115 DOI: 10.1051/medsci/2024096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
In the event of a radiological or nuclear emergency following an accident or malicious act, potentially involving many victims, medical care requires the identification and diagnosis of individuals exposed to high doses of ionizing radiation as quickly as possible. While an initial screening can be carried out directly in the field, additional biological in-lab analyses are required to refine the diagnosis and optimize the therapeutic management of victims. The fast and simultaneous management of many patients is limited by currently established techniques. To overcome these constraints, the use of new biomarkers to predict the risk and severity of radiation-induced injuries is under investigation. This synthesis summarizes the latest scientific advances demonstrating the potential of microRNAs as biomarkers of radiationinduced injuries, highlighting their relevance for human health care and radioprotection.
Collapse
Affiliation(s)
- Jules Gueguen
- Institut de Radioprotection et de Sûreté Nucléaire - IRSN, PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| | - Lucie Ancel
- Institut de Radioprotection et de Sûreté Nucléaire - IRSN, PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| | - Guillaume Thoer
- Institut de Radioprotection et de Sûreté Nucléaire - IRSN, PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire - IRSN, PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| | - Stéphane Flamant
- Institut de Radioprotection et de Sûreté Nucléaire - IRSN, PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire - IRSN, PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Cyran M, Stawarz K, Chambily L, Kusza K, Siemionow M. Assessment of Hematopoietic Response to Total Body Irradiation in a Rat Experimental Model. Ann Plast Surg 2024; 93:100-106. [PMID: 38785378 DOI: 10.1097/sap.0000000000003962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
BACKGROUND Exposure to high doses of total body irradiation (TBI) may lead to the development of acute radiation syndrome (ARS). This study was conducted to establish an experimental rat model of TBI to assess the impact of different doses of TBI on survival and the kinetics of changes within the hematopoietic system in ARS. MATERIALS AND METHODS In this study, 132 Lewis rats irradiated with a 5Gy or 7Gy dose served as experimental models to induce ARS and to evaluate the hematopoietic response of the bone marrow (BM) compartment. Animals were divided into 22 experimental groups (n = 6/group): groups 1-11 irradiated with 5Gy dose and groups 12-22 irradiated with 7Gy dose. The effects of TBI on the hematopoietic response were assessed at 2, 4, 6, 8 hours and 5, 10, 20, 30, 40, 60 and 90 days following TBI. Signs of ARS were evaluated by analyzing blood samples through complete blood count in addition to the clinical assessment. RESULTS Groups irradiated with 5Gy TBI showed 100% survival, whereas after 7Gy dose, 1.6% mortality rate was observed. Assessment of the complete blood count revealed that lymphocytes were the first to be affected, regardless of the dose used, whereas an "abortive rise" of granulocytes was noted for both TBI doses. None of the animals exhibited signs of severe anemia or thrombocytopenia. All animals irradiated with 5Gy dose regained initial values for all blood cell subpopulations by the end of observation period. Body weight loss was reported to be dose-dependent and was more pronounced in the 7Gy groups. However, at the study end point at 90 days, all animals regained or exceeded the initial weight values. CONCLUSIONS We have successfully established a rat experimental model of TBI. This study revealed a comparable hematopoietic response to the sublethal or potentially lethal doses of ionizing radiation. The experimental rat model of TBI may be used to assess different therapeutic approaches including BM-based cell therapies for long-term reconstitution of the hematopoietic and BM compartments allowing for comprehensive analysis of both the hematological and clinical symptoms associated with ARS.
Collapse
Affiliation(s)
| | - Katarzyna Stawarz
- From the Department of Orthopaedics, University of Illinois Chicago, Chicago, IL
| | - Lucile Chambily
- From the Department of Orthopaedics, University of Illinois Chicago, Chicago, IL
| | - Krzysztof Kusza
- Departments of Anesthesiology, Intensive Therapy and Pain Management
| | | |
Collapse
|
7
|
Carpenter AD, Li Y, Wise SY, Fatanmi OO, Petrus SA, Fam CM, Carlson SJ, Cox GN, Cheema AK, Singh VK. Pharmacokinetic and Metabolomic Studies with a Promising Radiation Countermeasure, BBT-059 (PEGylated interleukin-11), in Rhesus Nonhuman Primates. Radiat Res 2024; 202:26-37. [PMID: 38714310 PMCID: PMC11295257 DOI: 10.1667/rade-23-00194.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
BBT-059, a long-acting PEGylated interleukin-11 (IL-11) analog that is believed to have hematopoietic promoting and anti-apoptotic properties, is being developed as a potential radiation medical countermeasure (MCM) for hematopoietic acute radiation syndrome (H-ARS). This agent has been shown to improve survival in lethally irradiated mice. To further evaluate the drug's toxicity and safety profile, 12 naïve nonhuman primates (NHPs, rhesus macaques) were administered one of three doses of BBT-059 subcutaneously and were monitored for the next 21 days. Blood samples were collected throughout the study to assess the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug as well as its effects on complete blood counts, cytokines, vital signs, and to conduct metabolomic studies. No adverse effects were detected in any treatment group during the study. Short-term changes in metabolomic profiles were present in all groups treated with BBT-059 beginning immediately after drug administration and reverting to near normal levels by the end of the study period. Several pathways and metabolites, particularly those related to inflammation and steroid hormone biosynthesis, were activated by BBT-059 administration. Taken together, these observations suggest that BBT-059 has a good safety profile for further development as a radiation MCM for regulatory approval for human use.
Collapse
Affiliation(s)
- Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Sarah A. Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | | | | | | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
8
|
Winters TA, Marzella L, Molinar-Inglis O, Price PW, Han NC, Cohen JE, Wang SJ, Fotenos AF, Sullivan JM, Esker JI, Lapinskas PJ, DiCarlo AL. Gastrointestinal Acute Radiation Syndrome: Mechanisms, Models, Markers, and Medical Countermeasures. Radiat Res 2024; 201:628-646. [PMID: 38616048 DOI: 10.1667/rade-23-00196.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
There have been a number of reported human exposures to high dose radiation, resulting from accidents at nuclear power plants (e.g., Chernobyl), atomic bombings (Hiroshima and Nagasaki), and mishaps in industrial and medical settings. If absorbed radiation doses are high enough, evolution of acute radiation syndromes (ARS) will likely impact both the bone marrow as well as the gastrointestinal (GI) tract. Damage incurred in the latter can lead to nutrient malabsorption, dehydration, electrolyte imbalance, altered microbiome and metabolites, and impaired barrier function, which can lead to septicemia and death. To prepare for a medical response should such an incident arise, the National Institute of Allergy and Infectious Diseases (NIAID) funds basic and translational research to address radiation-induced GI-ARS, which remains a critical and prioritized unmet need. Areas of interest include identification of targets for damage and mitigation, animal model development, and testing of medical countermeasures (MCMs) to address GI complications resulting from radiation exposure. To appropriately model expected human responses, it is helpful to study analogous disease states in the clinic that resemble GI-ARS, to inform on best practices for diagnosis and treatment, and translate them back to inform nonclinical drug efficacy models. For these reasons, the NIAID partnered with two other U.S. government agencies (the Biomedical Advanced Research and Development Authority, and the Food and Drug Administration), to explore models, biomarkers, and diagnostics to improve understanding of the complexities of GI-ARS and investigate promising treatment approaches. A two-day workshop was convened in August 2022 that comprised presentations from academia, industry, healthcare, and government, and highlighted talks from 26 subject matter experts across five scientific sessions. This report provides an overview of information that was presented during the conference, and important discussions surrounding a broad range of topics that are critical for the research, development, licensure, and use of MCMs for GI-ARS.
Collapse
Affiliation(s)
- Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Libero Marzella
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Paul W Price
- Office of Regulatory Affairs, DAIT, NIAID, NIH, Rockville, Maryland
| | - Nyun Calvin Han
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Jonathan E Cohen
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Sue-Jane Wang
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Anthony F Fotenos
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Julie M Sullivan
- Center for Devices for Radiological Health (CDRH), FDA, Silver Spring, Maryland
| | - John I Esker
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Paula J Lapinskas
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
9
|
Li S, zhang W, zhang H, Fan Y, Jia M, Qi Z, Shen L, He S, Wang Z, Wang Q, Li Y. Serum sSelectin-L is an early specific indicator of radiation injury. Heliyon 2024; 10:e30527. [PMID: 38778981 PMCID: PMC11109730 DOI: 10.1016/j.heliyon.2024.e30527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Objective It's crucial to identify an easily detectable biomarker that is specific to radiation injury in order to effectively classify injured individuals in the early stage in large-scale nuclear accidents. Methods C57BL/6J mice were subjected to whole-body and partial-body γ irradiation, as well as whole-body X-ray irradiation to explore the response of serum sSelectin-L to radiation injury. Then, it was compared with its response to lipopolysaccharide-induced acute infection and doxorubicin-induced DNA damage to study the specificity of sSelectin-L response to radiation. Furthermore, it was further evaluated in serum samples from nasopharyngeal carcinoma patients before and after radiotherapy. Simulated rescue experiments using Amifostine or bone marrow transplantation were conducted in mice with acute radiation syndrome to determine the potential for establishing sSelectin-L as a prognostic marker. The levels of sSelectin-L were dynamically measured using the ELISA method. Results Selectin-L is mainly expressed in hematopoietic tissues and lymphatic tissues. Mouse sSelectin-L showed a dose-dependent decrease from 1 day after irradiation and exhibited a positive correlation with lymphocyte counts. Furthermore, the level of sSelectin-L reflected the degree of radiation injury in partial-body irradiation mice and in nasopharyngeal carcinoma patients. sSelectin-L was closely related to the total dose of γ or X ray. There was no significant change in the sSelectin-L levels in mice intraperitoneal injected with lipopolysaccharide or doxorubicin. The sSelectin-L was decreased slower and recovered faster than lymphocyte count in acute radiation syndrome mice treated with Amifostine or bone marrow transplantation. Conclusions Our study shows that sSelectin-L has the potential to be an early biomarker to classify injured individuals after radiation accidents, and to be a prognostic indicator of successful rescue of radiation victims.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wencheng zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hong zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Fan
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Meng Jia
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Liping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yaqiong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
10
|
Panda DK, Das DP, Behera SK, Dhal NK. Review on the impact of cell phone radiation effects on green plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:565. [PMID: 38773047 DOI: 10.1007/s10661-024-12623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
The aim of this review is to assess the impact of cell phone radiation effects on green plants. Rapid progress in networking and communication systems has introduced frequency- and amplitude-modulated technologies to the world with higher allowed bands and greater speed by using high-powered radio generators, which facilitate high definition connectivity, rapid transfer of larger data files, and quick multiple accesses. These cause frequent exposure of cellular radiation to the biological world from a number of sources. Key factors like a range of frequencies, time durations, power densities, and electric fields were found to have differential impacts on the growth and development of green plants. As far as the effects on green plants are concerned in this review, alterations in their morphological characteristics like overall growth, canopy density, and pigmentation to physiological variations like chlorophyll fluorescence and change in membrane potential etc. have been found to be affected by cellular radiation. On the other hand, elevated oxidative status of the cell, macromolecular damage, and lipid peroxidation have been found frequently. On the chromosomal level, micronuclei formation, spindle detachments, and increased mitotic indexes etc. have been noticed. Transcription factors were found to be overexpressed in many cases due to the cellular radiation impact, which shows effects at the molecular level.
Collapse
Affiliation(s)
- Dinesh Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, RRL Campus, Sachivalaya MargAcharya Vihar, Bhubaneswar, 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debi Prasad Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Project Engineering and Instrumentation Department, CSIR-Institutes of Minerals and Materials Technology, Sachivalaya Marg , RRL Campus, Acharya Vihar, Bhubaneswar, 751013, Odisha, India
| | - Santosh Kumar Behera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Project Engineering and Instrumentation Department, CSIR-Institutes of Minerals and Materials Technology, Sachivalaya Marg , RRL Campus, Acharya Vihar, Bhubaneswar, 751013, Odisha, India
| | - Nabin Kumar Dhal
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, RRL Campus, Sachivalaya MargAcharya Vihar, Bhubaneswar, 751013, Odisha, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Pannkuk EL, Shuryak I, Kot A, Yun-Tien Lin L, Li HH, Fornace AJ. Host microbiome depletion attenuates biofluid metabolite responses following radiation exposure. PLoS One 2024; 19:e0300883. [PMID: 38758927 PMCID: PMC11101107 DOI: 10.1371/journal.pone.0300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 03/06/2024] [Indexed: 05/19/2024] Open
Abstract
Development of novel biodosimetry assays and medical countermeasures is needed to obtain a level of radiation preparedness in the event of malicious or accidental mass exposures to ionizing radiation (IR). For biodosimetry, metabolic profiling with mass spectrometry (MS) platforms has identified several small molecules in easily accessible biofluids that are promising for dose reconstruction. As our microbiome has profound effects on biofluid metabolite composition, it is of interest how variation in the host microbiome may affect metabolomics based biodosimetry. Here, we 'knocked out' the microbiome of male and female C57BL/6 mice (Abx mice) using antibiotics and then irradiated (0, 3, or 8 Gy) them to determine the role of the host microbiome on biofluid radiation signatures (1 and 3 d urine, 3 d serum). Biofluid metabolite levels were compared to a sham and irradiated group of mice with a normal microbiome (Abx-con mice). To compare post-irradiation effects in urine, we calculated the Spearman's correlation coefficients of metabolite levels with radiation dose. For selected metabolites of interest, we performed more detailed analyses using linear mixed effect models to determine the effects of radiation dose, time, and microbiome depletion. Serum metabolite levels were compared using an ANOVA. Several metabolites were affected after antibiotic administration in the tryptophan and amino acid pathways, sterol hormone, xenobiotic and bile acid pathways (urine) and lipid metabolism (serum), with a post-irradiation attenuative effect observed for Abx mice. In urine, dose×time interactions were supported for a defined radiation metabolite panel (carnitine, hexosamine-valine-isoleucine [Hex-V-I], creatine, citric acid, and Nε,Nε,Nε-trimethyllysine [TML]) and dose for N1-acetylspermidine, which also provided excellent (AUROC ≥ 0.90) to good (AUROC ≥ 0.80) sensitivity and specificity according to the area under the receiver operator characteristic curve (AUROC) analysis. In serum, a panel consisting of carnitine, citric acid, lysophosphatidylcholine (LysoPC) (14:0), LysoPC (20:3), and LysoPC (22:5) also gave excellent to good sensitivity and specificity for identifying post-irradiated individuals at 3 d. Although the microbiome affected the basal levels and/or post-irradiation levels of these metabolites, their utility in dose reconstruction irrespective of microbiome status is encouraging for the use of metabolomics as a novel biodosimetry assay.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Metabolomics Studies, Georgetown University, Washington, DC, United States of America
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Anika Kot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Lorreta Yun-Tien Lin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Metabolomics Studies, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
12
|
Chen K, Li Y, Wu X, Tang X, Zhang B, Fan T, He L, Pei X, Li Y. Establishment of human hematopoietic organoids for evaluation of hematopoietic injury and regeneration effect. Stem Cell Res Ther 2024; 15:133. [PMID: 38704588 PMCID: PMC11070084 DOI: 10.1186/s13287-024-03743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Human hematopoietic organoids have a wide application value for modeling human bone marrow diseases, such as acute hematopoietic radiation injury. However, the manufacturing of human hematopoietic organoids is an unaddressed challenge because of the complexity of hematopoietic tissues. METHODS To manufacture hematopoietic organoids, we obtained CD34+ hematopoietic stem and progenitor cells (HSPCs) from human embryonic stem cells (hESCs) using stepwise induction and immunomagnetic bead-sorting. We then mixed these CD34+ HSPCs with niche-related cells in Gelatin-methacryloyl (GelMA) to form a three-dimensional (3D) hematopoietic organoid. Additionally, we investigated the effects of radiation damage and response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic organoids. RESULTS The GelMA hydrogel maintained the undifferentiated state of hESCs-derived HSPCs by reducing intracellular reactive oxygen species (ROS) levels. The established hematopoietic organoids in GelMA with niche-related cells were composed of HSPCs and multilineage blood cells and demonstrated the adherence of hematopoietic cells to niche cells. Notably, these hematopoietic organoids exhibited radiation-induced hematopoietic cell injury effect, including increased intracellular ROS levels, γ-H2AX positive cell percentages, and hematopoietic cell apoptosis percentages. Moreover, G-CSF supplementation in the culture medium significantly improved the survival of HSPCs and enhanced myeloid cell regeneration in these hematopoietic organoids after radiation. CONCLUSIONS These findings substantiate the successful manufacture of a preliminary 3D hematopoietic organoid from hESCs-derived HSPCs, which was utilized for modeling hematopoietic radiation injury and assessing the radiation-mitigating effects of G-CSF in vitro. Our study provides opportunities to further aid in the standard and scalable production of hematopoietic organoids for disease modeling and drug testing.
Collapse
Affiliation(s)
- Keyi Chen
- College of Chemistry & Materials Science, Hebei University, Hebei, Baoding, 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Hebei University, Hebei, Baoding, 071002, China
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yunqiao Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xumin Wu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xuan Tang
- College of Chemistry & Materials Science, Hebei University, Hebei, Baoding, 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Hebei University, Hebei, Baoding, 071002, China
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Bowen Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Tao Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lijuan He
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yanhua Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
13
|
Cassatt DR, DiCarlo AL, Molinar-Inglis O. Product Development within the National Institutes of Health Radiation and Nuclear Countermeasures Program. Radiat Res 2024; 201:471-478. [PMID: 38407357 PMCID: PMC11529828 DOI: 10.1667/rade-23-00144.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/21/2023] [Indexed: 02/27/2024]
Abstract
The Radiation and Nuclear Countermeasures Program (RNCP) at the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) was established to facilitate the development of medical countermeasures (MCMs) and diagnostic approaches for use in a radiation public health emergency. Approvals for MCMs can be very challenging but are made possible under the United States Food and Drug Administration (FDA) Animal Rule, which is designed to enable licensure of drugs or biologics when clinical efficacy studies are unethical or unfeasible. The NIAID portfolio includes grants, contracts, and inter-agency agreements designed to span all aspects of drug development and encompasses basic research through FDA approval. In addition, NIAID manages an active portfolio of biodosimetry approaches to assess injuries and absorbed radiation levels to guide triage and treatment decisions. NIAID, together with grantees, contractors, and other stakeholders with promising products, works to advance candidate MCMs and biodosimetry tools through an established product development pipeline. In addition to managing grants and contracts, NIAID tests promising candidates in our established preclinical animal models, and the NIAID Program Officers work closely with sponsors as product managers to guide them through the process. In addition, a valuable benefit for stakeholders is working with the NIAID Office of Regulatory Affairs, where NIAID coordinates with the FDA to facilitate interactions between sponsors and the agency. Activities funded by NIAID include basic research (e.g., library screens to discover new products, determine early efficacy, and delineate mechanism of action) and the development of small and large animal models of radiation-induced hematopoietic, gastrointestinal, lung, kidney, and skin injury, radiation combined injury, and radionuclide decorporation. NIAID also sponsors Good Laboratory Practice product safety, pharmacokinetic, pharmacodynamic, and toxicology studies, as well as efficacy and dose-ranging studies to optimize product regimens. For later-stage candidates, NIAID funds large-scale manufacturing and formulation development of products. The program also supports Phase 1 human clinical studies to ensure human safety and to bridge pharmacokinetic, pharmacodynamic, and efficacy data from animals to humans. To date, NIAID has supported >900 animal studies and one clinical study, evaluating >500 new/repurposed radiation MCMs and biodosimetric approaches. NIAID sponsorship led to the approval of three of the six drugs for acute radiation syndrome under the FDA Animal Rule, five Investigational New Drug applications, and 18 additional submissions for Investigational Device Exemptions, while advancing 38 projects to the Biomedical Advanced Research and Development Authority for follow-on research and development.
Collapse
Affiliation(s)
- David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
14
|
Morral C, Ayyaz A, Kuo HC, Fink M, Verginadis II, Daniel AR, Burner DN, Driver LM, Satow S, Hasapis S, Ghinnagow R, Luo L, Ma Y, Attardi LD, Koumenis C, Minn AJ, Wrana JL, Lee CL, Kirsch DG. p53 promotes revival stem cells in the regenerating intestine after severe radiation injury. Nat Commun 2024; 15:3018. [PMID: 38589357 PMCID: PMC11001929 DOI: 10.1038/s41467-024-47124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced acute GI syndrome. Through single-cell RNA-sequencing of the irradiated mouse small intestine, we find that p53 target genes are specifically enriched in regenerating epithelial cells that undergo fetal-like reversion, including revival stem cells (revSCs) that promote animal survival after severe damage of the GI tract. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce fetal-like revSCs. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells and is controlled by an Mdm2-mediated negative feedback loop. Together, our findings reveal that p53 suppresses severe radiation-induced GI injury by promoting fetal-like reprogramming of irradiated intestinal epithelial cells.
Collapse
Affiliation(s)
- Clara Morral
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arshad Ayyaz
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Hsuan-Cheng Kuo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea R Daniel
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | - Danielle N Burner
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lucy M Driver
- Department of Radiation Oncology, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | - Sloane Satow
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | | | - Reem Ghinnagow
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | - Laura D Attardi
- Departments of Radiation Oncology and Genetics, Stanford University, Palo Alto, CA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University, Durham, NC, USA.
- Department of Pathology, Duke University, Durham, NC, USA.
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
- Department of Radiation Oncology, Duke University, Durham, NC, USA.
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Wei Y, Dewji S. A comprehensive review of dose limits, triage systems and measurement tools for consequence management of nuclear and radiological emergencies. Radiat Phys Chem Oxf Engl 1993 2024; 217:111533. [PMID: 38882716 PMCID: PMC11170981 DOI: 10.1016/j.radphyschem.2024.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
During a radiological or nuclear emergency, occupational workers, members of the public, and emergency responders may be exposed to radionuclides, whether external or internal, through inhalation, ingestion, or wounds. In the case of internalized radiation exposure, prompt assessment of contamination is necessary to inform subsequent medical interventions. This review assembles the constituent considerations for managing nuclear and radiological incidents, focused on a parallel analysis of the evolution of radiation dose limits - notably in the emergency preparedness and response realm - alongside a discussion of triage systems and in vivo radionuclide detection tools. The review maps the development of international and national standards and regulations concerning radiation dose limits, illuminating how past incidents and accumulated knowledge have informed present emergency preparedness and response practices, specifically for internalized radiation. Additionally, the objectives and levels of radiation triage systems are explored in-depth, along with a global survey of practices and protocols. Finally, this review also focuses on in vivo detection systems and their capacities for radionuclide identification, prioritizing internalized gamma-emitting isotopes due to their broader relevance. Collectively, this study comprehensively addresses the intricacies of triage management following radiation emergencies, emphasizing the imperative for enhanced standardization and continued research in this critical domain.
Collapse
Affiliation(s)
- Y. Wei
- Nuclear and Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, 770 State Street NW, Atlanta, GA, 30332-0405, USA
| | - S.A. Dewji
- Nuclear and Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, 770 State Street NW, Atlanta, GA, 30332-0405, USA
| |
Collapse
|
16
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Singh VK, Seed TM. The potential value of 5-androstenediol in countering acute radiation syndrome. Drug Discov Today 2024; 29:103856. [PMID: 38097137 DOI: 10.1016/j.drudis.2023.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Moderate-to-high doses of ionizing irradiation can lead to potentially life-threatening morbidities and increase mortality risk. In preclinical testing, 5-androstenediol has been shown to be effective in protecting against hematopoietic acute radiation syndrome. This agent is important for innate immunity, serves to modulate cell cycle progression, reduces radiation-induced apoptosis, and regulates DNA repair. The drug has been evaluated clinically for its pharmacokinetics and safety. The United States Food and Drug Administration granted investigational new drug status to its injectable depot formulation (NEUMUNE). Its safety and efficacy profiles make it an attractive candidate for further development as a radiation countermeasure.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
18
|
Yamaga S, Aziz M, Murao A, Brenner M, Wang P. DAMPs and radiation injury. Front Immunol 2024; 15:1353990. [PMID: 38333215 PMCID: PMC10850293 DOI: 10.3389/fimmu.2024.1353990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
19
|
Silverman TA, Shadiack AM, Hofmeyer KA, Cecere AE, Eisnor DL, Hoffman CM, Loelius SG, Patel A, Homer MJ. Blood product use for radiological/nuclear trauma: product development and US regulatory considerations. Trauma Surg Acute Care Open 2024; 9:e001123. [PMID: 38196926 PMCID: PMC10773416 DOI: 10.1136/tsaco-2023-001123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/03/2023] [Indexed: 01/11/2024] Open
Abstract
Blood products are likely to be critical components of the medical response to nuclear detonation, as the hematopoietic subsyndrome of acute radiation syndrome (H-ARS) includes depletion of platelets and red blood cells that can lead to lethal hemorrhage and anemia. There is, however, only limited clinical information on the use of blood products to treat H-ARS. As currently configured, the US blood supply cannot meet the predicted surge in blood product demand that is likely to occur short-term and possibly long-term in the event of a large nuclear detonation. As part of the Administration for Strategic Preparedness and Response within the US Department of Health and Human Services, the Biomedical Advanced Research and Development Authority (BARDA) is addressing this preparedness gap by supporting the development of novel blood products and devices with characteristics that improve blood product storage and use in austere operational environments. The US Food and Drug Administration's Center for Drug Evaluation and Research (CDER) recently issued draft guidance on the development of drugs and biologics regulated by CDER to prevent or treat Acute Radiation Syndrome under the provisions of the "Animal Rule." The commentary provided here discusses the unique regulatory scheme for transfusion components and blood products regulated as biological drugs by Center for Biologics Evaluation and Research, including the ambiguity surrounding the evidentiary requirements for their approval for H-ARS, and whether, under certain circumstances, a specific H-ARS indication is necessary if relevant commercial indications are approved.
Collapse
Affiliation(s)
- Toby A Silverman
- Tunnell Government Services, Bethesda, Maryland, USA
- Division of Chemical, Biological, Radiological, and Nuclear Medical Countermeasure, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| | - Annette M Shadiack
- Tunnell Government Services, Bethesda, Maryland, USA
- Division of Chemical, Biological, Radiological, and Nuclear Medical Countermeasure, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| | - Kimberly A Hofmeyer
- Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| | - Ashley E Cecere
- Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| | - Derek L Eisnor
- Division of Clinical Development, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| | - Corey M Hoffman
- Division of Chemical, Biological, Radiological, and Nuclear Medical Countermeasure, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| | - Shannon G Loelius
- Division of Chemical, Biological, Radiological, and Nuclear Medical Countermeasure, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| | - Aditiben Patel
- Division of Regulatory and Quality Affairs, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| | - Mary J Homer
- Division of Chemical, Biological, Radiological, and Nuclear Medical Countermeasure, Biomedical Advanced Research and Development Authority, Washington, District of Columbia, USA
| |
Collapse
|
20
|
Molinar-Inglis O, DiCarlo AL, Lapinskas PJ, Rios CI, Satyamitra MM, Silverman TA, Winters TA, Cassatt DR. Radiation-induced multi-organ injury. Int J Radiat Biol 2024; 100:486-504. [PMID: 38166195 DOI: 10.1080/09553002.2023.2295298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE Natural history studies have been informative in dissecting radiation injury, isolating its effects, and compartmentalizing injury based on the extent of exposure and the elapsed time post-irradiation. Although radiation injury models are useful for investigating the mechanism of action in isolated subsyndromes and development of medical countermeasures (MCMs), it is clear that ionizing radiation exposure leads to multi-organ injury (MOI). METHODS The Radiation and Nuclear Countermeasures Program within the National Institute of Allergy and Infectious Diseases partnered with the Biomedical Advanced Research and Development Authority to convene a virtual two-day meeting titled 'Radiation-Induced Multi-Organ Injury' on June 7-8, 2022. Invited subject matter experts presented their research findings in MOI, including study of mechanisms and possible MCMs to address complex radiation-induced injuries. RESULTS This workshop report summarizes key information from each presentation and discussion by the speakers and audience participants. CONCLUSIONS Understanding the mechanisms that lead to radiation-induced MOI is critical to advancing candidate MCMs that could mitigate the injury and reduce associated morbidity and mortality. The observation that some of these mechanisms associated with MOI include systemic injuries, such as inflammation and vascular damage, suggests that MCMs that address systemic pathways could be effective against multiple organ systems.
Collapse
Affiliation(s)
- Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Paula J Lapinskas
- Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC, USA
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Toby A Silverman
- Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC, USA
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
21
|
Kumar VP, Wuddie K, Tsioplaya A, Weaver A, Holmes-Hampton GP, Ghosh SP. Development of a Multi-Organ Radiation Injury Model with Precise Dosimetry with Focus on GI-ARS. Radiat Res 2024; 201:19-34. [PMID: 38014611 DOI: 10.1667/rade-23-00068.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
The goal of this study was to establish a model of partial-body irradiation (PBI) sparing 2.5% of the bone marrow (BM2.5-PBI) that accurately recapitulates radiological/nuclear exposure scenarios. Here we have reported a model which produces gastrointestinal (GI) damage utilizing a clinical linear accelerator (LINAC) with precise dosimetry, which can be used to develop medical countermeasures (MCM) for GI acute radiation syndrome (ARS) under the FDA animal rule. The PBI model (1 hind leg spared) was developed in male and female C57BL/6 mice that received radiation doses ranging from 12-17 Gy with no supportive care. GI pathophysiology was assessed by crypt cell loss and correlated with peak lethality between days 4 and 10 after PBI. The radiation dose resulting in 50% mortality in 30 days (LD50/30) was determined by probit analysis. Differential blood cell counts in peripheral blood, colony forming units (CFU) in bone marrow, and sternal megakaryocytes were analyzed between days 1-30, to assess the extent of hematopoietic ARS (H-ARS) injury. Radiation-induced GI damage was also assessed by measuring: 1. bacterial load (16S rRNA) by RT-PCR on days 4 and 7 after PBI in liver, spleen and jejunum, 2. liposaccharide binding protein (LBP) levels in liver, and 3. fluorescein isothiocyanate (FITC)-dextran, E-selectin, sP-selectin, VEGF, FGF-2, MMP-9, citrulline, and serum amyloid A (SAA) levels in serum. The LD50/30 of male mice was 14.3 Gy (95% confidence interval 14.1-14.7 Gy) and of female mice was 14.5 Gy (95% confidence interval 14.3-14.7 Gy). Secondary endpoints included loss of viable crypts, higher bacterial loads in spleen and liver, higher LBP in liver, increased FITC-dextran and SAA levels, and decreased levels of citrulline and endothelial biomarkers in serum. The BM2.5-PBI model, developed for the first time with precise dosimetry, showed acute radiation-induced GI damage that is correlated with lethality, as well as a response to various markers of inflammation and vascular damage. Sex-specific differences were observed with respect to radiation dose response. Currently, no MCM is available as a mitigator for GI-ARS. This BM2.5-PBI mouse model can be regarded as the first high-throughput PBI model with precise dosimetry for developing MCMs for GI-ARS under the FDA animal rule.
Collapse
Affiliation(s)
- Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Kefale Wuddie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Alena Tsioplaya
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Alia Weaver
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| |
Collapse
|
22
|
Carpenter AD, Fatanmi OO, Wise SY, Petrus SA, Tyburski JB, Cheema AK, Singh VK. Metabolomic Changes in Plasma of Preterminal Stage of Rhesus Nonhuman Primates Exposed to Lethal Dose of Radiation. Metabolites 2023; 14:18. [PMID: 38248821 PMCID: PMC10819041 DOI: 10.3390/metabo14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Ionizing radiation exposure is known to induce molecular and cellular injury, inflicting a cascade of potentially catastrophic events leading to tissue and organ damage. Metabolomic analysis allows for the identification and quantification of small molecules downstream of genomic changes induced by radiation exposure. We aimed to characterize metabolomic changes that underscore the prefinal stage of lethally irradiated rhesus nonhuman primates (NHPs). Peripheral blood was drawn at baseline, post-exposure, as well as at the preterminal stage in NHPs (immediately prior to death in moribund NHPs) that did not survive exposure with 7.2 Gy total-body radiation (LD70/60). Herein, we analyzed global metabolomic changes using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in plasma samples of NHPs collected at various timepoints in relation to irradiation. The overall goal was to identify metabolic shifts present immediately prior to death. Our findings showed radiation induced significant time-dependent metabolic perturbations when compared to pre-irradiation profiles, particularly in glycerophospholipid metabolism and steroid hormone biosynthesis and metabolism pathways. These findings provide valuable insights for identifying biomarkers for lethality, which may be helpful for triage during a mass casualty scenario.
Collapse
Affiliation(s)
- Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (A.D.C.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (A.D.C.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (A.D.C.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sarah A. Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (A.D.C.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (A.D.C.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
23
|
Chaung W, Ma G, Jacob A, Brenner M, Wang P. Human cell-expressed tag-free rhMFG-E8 as an effective radiation mitigator. Sci Rep 2023; 13:22186. [PMID: 38092894 PMCID: PMC10719321 DOI: 10.1038/s41598-023-49499-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Human milk fat globule epidermal growth factor-factor VIII (MFG-E8) functions as a bridging molecule to promote the removal of dying cells by professional phagocytes. E. coli-expressed histidine-tagged recombinant human MFG-E8 (rhMFG-E8) is protective in various disease conditions. However, due to improper recombinant protein glycosylation, misfolding and the possibility of antigenicity, E. coli-expressed histidine-tagged rhMFG-E8 is unsuitable for human therapy. Therefore, we hypothesize that human cell-expressed, tag-free rhMFG-E8 will have suitable structural and functional properties to be developed as a safe and effective novel biologic to treat inflammatory diseases including radiation injury. We produced a new tag-free rhMFG-E8 protein by cloning the human MFG-E8 full-length coding sequence without any fusion tag into a mammalian vector and expressed it in HEK293-derived cells. The construct includes the leader sequence of cystatin S to maximize secretion of rhMFG-E8 into the culture medium. After purification and confirmation of the protein identity, we first evaluated its biological activity in vitro. We then determined its efficacy in vivo utilizing an experimental rodent model of radiation injury, i.e., partial body irradiation (PBI). HEK293 cell supernatant containing tag-free rhMFG-E8 protein was concentrated, purified, and rhMFG-E8 was verified by SDS-PAGE with the standard human MFG-E8 loaded as control and, mass spectrometry followed by analysis using MASCOT for peptide mass fingerprint. The biological activity of human cell-expressed tag-free rhMFG-E8 was superior to that of E. coli-expressed His-tagged rhMFG-E8. Toxicity, stability, and pharmacokinetic studies indicate that tag-free rhMFG-E8 is safe, highly stable after lyophilization and long-term storage, and with a terminal elimination half-life in circulation of at least 1.45 h. In the 15 Gy PBI model, a dose-dependent improvement of the 30-day survival rate was observed after tag-free rhMFG-E8 treatment with a 30-day survival of 89%, which was significantly higher than the 25% survival in the vehicle group. The dose modification factor (DMF) of tag-free rhMFG-E8 calculated using probit analysis was 1.058. Tag-free rhMFG-E8 also attenuated gastrointestinal damage after PBI suggesting it as a potential therapeutic candidate for a medical countermeasure for radiation injury. Our new human cell-expressed tag-free rhMFG-E8 has proper structural and functional properties to be further developed as a safe and effective therapy to treat victims of severe acute radiation injury.
Collapse
Affiliation(s)
- Wayne Chaung
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Gaifeng Ma
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA
| | - Max Brenner
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA.
| |
Collapse
|
24
|
Schaaf GW, Justice JN, Quillen EE, Cline JM. Resilience, aging, and response to radiation exposure (RARRE) in nonhuman primates: a resource review. GeroScience 2023; 45:3371-3379. [PMID: 37188889 PMCID: PMC10643677 DOI: 10.1007/s11357-023-00812-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The Wake Forest nonhuman primate (NHP) Radiation Late Effects Cohort (RLEC) is a unique and irreplaceable population of aging NHP radiation survivors which serves the nation's need to understand the late effects of radiation exposure. Over the past 16 years, Wake Forest has evaluated > 250 previously irradiated rhesus macaques (Macaca mulatta) that were exposed to single total body irradiation (IR) doses of 1.14-8.5 Gy or to partial body exposures of up to 10 Gy (5% bone marrow sparing) or 10.75 Gy (whole thorax). Though primarily used to examine IR effects on disease-specific processes or to develop radiation countermeasures, this resource provides insights on resilience across physiologic systems and its relationship with biological aging. Exposure to IR has well documented deleterious effects on health, but the late effects of IR are highly variable. Some animals exhibit multimorbidity and accumulated health deficits, whereas others remain relatively resilient years after exposure to total body IR. This provides an opportunity to evaluate biological aging at the nexus of resilient/vulnerable responses to a stressor. Consideration of inter-individual differences in response to this stressor can inform individualized strategies to manage late effects of radiation exposure, and provide insight into mechanisms underlying systemic resilience and aging. The utility of this cohort for age-related research questions was summarized at the 2022 Trans-NIH Geroscience Interest Group's Workshop on Animal Models for Geroscience. We present a brief review of radiation injury and its relationship to aging and resilience in NHPs with a focus on the RLEC.
Collapse
Affiliation(s)
- George W Schaaf
- Department of Pathology, Section On Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Jamie N Justice
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, and Stich Center for Health Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ellen E Quillen
- Department of Internal Medicine, Section On Molecular Medicine, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - J Mark Cline
- Department of Pathology, Section On Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
25
|
Riser A, Perez M, Snead MC, Galang RR, Simeone RM, Salame-Alfie A, Rice ME, Sayyad A, Strid P, Yocca J, Meeker JR, Waits G, Hansen S, Hall R, Anstey E, Duane House L, Okoroh E, Zotti M, Ellington SR. CDC Division of Reproductive Health's Emergency Preparedness Resources and Activities for Radiation Emergencies: Public Health Considerations for Women's Reproductive Health. J Womens Health (Larchmt) 2023; 32:1271-1280. [PMID: 38051520 PMCID: PMC10980281 DOI: 10.1089/jwh.2023.0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Pregnant, postpartum, and lactating people, and infants have unique needs during public health emergencies, including nuclear and radiological incidents. This report provides information on the CDC Division of Reproductive Health's emergency preparedness and response activities to address the needs of women of reproductive age (aged 15-49 years), people who are pregnant, postpartum, or lactating, and infants during a radiation emergency. Highlighted preparedness activities include: (1) development of a quick reference guide to inform key questions about pregnant, postpartum, and lactating people, and infants during radiation emergencies; and (2) exercising the role of reproductive health experts during nuclear and radiological incident preparedness activities.
Collapse
Affiliation(s)
- Aspen Riser
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| | - Mirna Perez
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| | - Margaret Christine Snead
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| | - Romeo R. Galang
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| | - Regina M. Simeone
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| | - Adela Salame-Alfie
- National Center for Environmental Health, Division of Environmental Health Science and Practice, Atlanta, Georgia, USA
| | - Marion E. Rice
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Parasitic Diseases and Malaria, Atlanta, Georgia, USA
| | - Ayeesha Sayyad
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Penelope Strid
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| | - Jessica Yocca
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| | - Jessica R. Meeker
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| | - Grayson Waits
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Sabrina Hansen
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| | - Rebecca Hall
- Office of Readiness and Response, Office of Science and Public Health Practice, Atlanta, Georgia, USA
| | - Erica Anstey
- National Center for Chronic Disease Prevention and Health Promotion, Division of Nutrition, Physical Activity, and Obesity, and Population Health, Atlanta, Georgia, USA
| | - L. Duane House
- Center for Chronic Disease Prevention and Health Promotion, Division of Population Health, Atlanta, GA, USA
| | - Ekwutosi Okoroh
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| | - Marianne Zotti
- Association of Maternal and Child Health Programs (AMCHP) and Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sascha R. Ellington
- National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Hurley K, Clow R, Jadhav A, Azzam EI, Wang Y. Mitigation of acute radiation syndrome (ARS) with human umbilical cord blood. Int J Radiat Biol 2023; 100:317-334. [PMID: 37967239 DOI: 10.1080/09553002.2023.2277372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/27/2023] [Indexed: 11/17/2023]
Abstract
PURPOSE The growing concern over potential unintended nuclear accidents or malicious activities involving nuclear/radiological devices cannot be overstated. Exposure to whole-body doses of radiation can result in acute radiation syndrome (ARS), colloquially known as "radiation sickness," which can severely damage various organ systems. Long-term health consequences, such as cancer and cardiovascular disease, can develop many years post-exposure. Identifying effective medical countermeasures and devising a strategic medical plan represents an urgent, unmet need. Various clinical studies have investigated the therapeutic use of umbilical cord blood (UCB) for a range of illnesses, including ARS. The objective of this review is to thoroughly discuss ARS and its sub-syndromes, and to highlight recent findings regarding the use of UCB for radiation injury. UCB, a rich source of stem cells, boasts numerous advantages over other stem cell sources, like bone marrow, owing to its ease of collection and relatively low risk of severe graft-versus-host disease. Preclinical studies suggest that treatment with UCB, and often UCB-derived mesenchymal stromal cells (MSCs), results in improved survival, accelerated hematopoietic recovery, reduced gastrointestinal tract damage, and mitigation of radiation-induced pneumonitis and pulmonary fibrosis. Interestingly, recent evidence suggests that UCB-derived exosomes and their microRNAs (miRNAs) might assist in treating radiation-induced damage, largely by inhibiting fibrotic pathways. CONCLUSION UCB holds substantial potential as a radiation countermeasure, and future research should focus on establishing treatment parameters for ARS victims.
Collapse
Affiliation(s)
- Kate Hurley
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Rachel Clow
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ashok Jadhav
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Edouard I Azzam
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
27
|
de Lima MR, Campbell DCDP, da Cunha-Madeira MR, Bomfim BCM, de Paula Ayres-Silva J. Animal Welfare in Radiation Research: The Importance of Animal Monitoring System. Vet Sci 2023; 10:651. [PMID: 37999474 PMCID: PMC10674294 DOI: 10.3390/vetsci10110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023] Open
Abstract
Long-term research into radiation exposure significantly expanded following World War II, driven by the increasing number of individuals falling ill after the detonation of two atomic bombs in Japan. Consequently, researchers intensified their efforts to investigate radiation's effects using animal models and to study disease models that emerged post-catastrophe. As a result, several parameters have been established as essential in these models, encompassing radiation doses, regimens involving single or multiple irradiations, the injection site for transplantation, and the quantity of cells to be injected. Nonetheless, researchers have observed numerous side effects in irradiated animals, prompting the development of scoring systems to monitor these animals' well-being. The aim of this review is to delve into the historical context of using animals in radiation research and explore the ethical considerations related to animal welfare, which has become an increasingly relevant topic in recent years. These concerns have prompted research groups to adopt measures aimed at reducing animal suffering. Consequently, for animal welfare, the implementation of a scoring system for clinical and behavioral monitoring is essential. This represents one of the primary challenges and hurdles in radiation studies. It is concluded that implementing standardized criteria across all institutions is aimed at ensuring result reproducibility and fostering collaboration within the scientific community.
Collapse
Affiliation(s)
- Monique Ribeiro de Lima
- Center for Animal Experimentation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-250, Brazil; (M.R.d.L.)
| | - Daiani Cotrim de Paiva Campbell
- Center for Animal Experimentation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-250, Brazil; (M.R.d.L.)
| | | | - Barbara Cristina Marcollino Bomfim
- Laboratory of Experimental Medicine and Health, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-250, Brazil
| | - Jackline de Paula Ayres-Silva
- Laboratory of Experimental Medicine and Health, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
28
|
Bunin DI, Javitz HS, Gahagen J, Bakke J, Lane JH, Andrews DA, Chang PY. Survival and Hematologic Benefits of Romiplostim After Acute Radiation Exposure Supported FDA Approval Under the Animal Rule. Int J Radiat Oncol Biol Phys 2023; 117:705-717. [PMID: 37224926 DOI: 10.1016/j.ijrobp.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Patients exposed to acute high doses of ionizing radiation are susceptible to dose-dependent bone marrow depression with resultant pancytopenia. Romiplostim (RP; Nplate) is a recombinant thrombopoietin receptor agonist protein that promotes progenitor megakaryocyte proliferation and platelet production and is an approved treatment for patients with chronic immune thrombocytopenia. The goal of our study was to evaluate the postirradiation survival and hematologic benefits of a single dose of RP with or without pegfilgrastim (PF; Neulasta, granulocyte colony stimulating factor) by conducting a well-controlled, treatment-concealed, good laboratory practice-compliant study in rhesus macaques that was compliant with the United States Food and Drug Administration Animal Rule regulatory approval pathway. METHODS AND MATERIALS Irradiated male and female rhesus macaques (20/sex in each of 3 groups: control, RP, and RP + PF) were subcutaneously administered vehicle or RP (5 mg/kg, 10 mL/kg) on day 1 in the presence or absence of 2 doses of PF (0.3 mg/kg, 0.03 mL/kg, days 1 and 8). Total body radiation (680 cGy, 50 cGy/min from cobalt-60 gamma ray source) occurred 24 ± 2 hours previously at a dose targeting 70% lethality for the control cohort over 60 days. The study examined 60-day survival postirradiation as the primary endpoint. Secondary endpoints included incidence, severity, and duration of thrombocytopenia and neutropenia, other hematology parameters, coagulation parameters, and body weight change to provide insights into potential mechanisms of action. RESULTS Compared with sham-treated controls, treated animals demonstrated a 40% to 55% survival benefit compared with controls, less severe clinical signs, reduced incidence of thrombocytopenia and/or neutropenia, earlier hematologic recovery, and reduced morbidity from bacterial infection. CONCLUSIONS These results were pivotal in obtaining Food and Drug Administration approval in January 2021 for RP's new indication as a single administration therapy to increase survival in adults and pediatric patients acutely exposed to myelosuppressive doses of radiation.
Collapse
Affiliation(s)
| | | | - Janet Gahagen
- SRI Biosciences, SRI International, Menlo Park, California
| | - James Bakke
- SRI Biosciences, SRI International, Menlo Park, California
| | | | | | - Polly Y Chang
- SRI Biosciences, SRI International, Menlo Park, California.
| |
Collapse
|
29
|
Chen H, Zhao X, Yang W, Zhang Q, Hao R, Jiang S, Han H, Yu Z, Xing S, Feng C, Wang Q, Lu H, Li Y, Quan C, Lu Y, Zhou G. RNA N6-methyladenosine modification-based biomarkers for absorbed ionizing radiation dose estimation. Nat Commun 2023; 14:6912. [PMID: 37903783 PMCID: PMC10616291 DOI: 10.1038/s41467-023-42665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Radiation triage and biological dosimetry are critical for the medical management of massive potentially exposed individuals following radiological accidents. Here, we performed a genome-wide screening of radiation-responding mRNAs, whose N6-methyladenosine (m6A) levels showed significant alteration after acute irradiation. The m6A levels of three genes, Ncoa4, Ate1 and Fgf22, in peripheral blood mononuclear cells (PBMCs) of mice showed excellent dose-response relationships and could serve as biomarkers of radiation exposure. Especially, the RNA m6A of Ncoa4 maintained a high level as long as 28 days after irradiation. We demonstrated its responsive specificity to radiation, conservation across the mice, monkeys and humans, and the dose-response relationship in PBMCs from cancer patients receiving radiation therapy. Finally, NOCA4 m6A-based biodosimetric models were constructed for estimating absorbed radiation doses in mice or humans. Collectively, this study demonstrated the potential feasibility of RNA m6A in radiation accidents management and clinical applications.
Collapse
Affiliation(s)
- Hongxia Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xi Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Yang
- Department of Radiation Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- School of Medicine, University of South China, Hengyang City, Hunan Province, China
| | - Rongjiao Hao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- School of Life Science, University of Hebei, Baoding City, Hebei Province, China
| | - Siao Jiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- School of Life Science, University of Hebei, Baoding City, Hebei Province, China
| | - Huihui Han
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zuyin Yu
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Xing
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Changjiang Feng
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qianqian Wang
- Department of Radiation Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hao Lu
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Cheng Quan
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiming Lu
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.
- School of Life Science, University of Hebei, Baoding City, Hebei Province, China.
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.
- School of Medicine, University of South China, Hengyang City, Hunan Province, China.
- School of Life Science, University of Hebei, Baoding City, Hebei Province, China.
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
30
|
Satyamitra MM, Andres DK, Bergmann JN, Hoffman CM, Hogdahl T, Homer MJ, Hu TC, Rios CI, Yeung DT, DiCarlo AL. Overlapping Science in Radiation and Sulfur Mustard Exposures of Skin and Lung: Consideration of Models, Mechanisms, Organ Systems, and Medical Countermeasures: Overlapping science in radiation and sulfur mustard injuries to lung and skin. Disaster Med Public Health Prep 2023; 17:e552. [PMID: 37852927 PMCID: PMC10843005 DOI: 10.1017/dmp.2023.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
PURPOSE To summarize presentations and discussions from the 2022 trans-agency workshop titled "Overlapping science in radiation and sulfur mustard (SM) exposures of skin and lung: Consideration of models, mechanisms, organ systems, and medical countermeasures." METHODS Summary on topics includes: (1) an overview of the radiation and chemical countermeasure development programs and missions; (2) regulatory and industry perspectives for drugs and devices; 3) pathophysiology of skin and lung following radiation or SM exposure; 4) mechanisms of action/targets, biomarkers of injury; and 5) animal models that simulate anticipated clinical responses. RESULTS There are striking similarities between injuries caused by radiation and SM exposures. Primary outcomes from both types of exposure include acute injuries, while late complications comprise chronic inflammation, oxidative stress, and vascular dysfunction, which can culminate in fibrosis in both skin and lung organ systems. This workshop brought together academic and industrial researchers, medical practitioners, US Government program officials, and regulators to discuss lung-, and skin- specific animal models and biomarkers, novel pathways of injury and recovery, and paths to licensure for products to address radiation or SM injuries. CONCLUSIONS Regular communications between the radiological and chemical injury research communities can enhance the state-of-the-science, provide a unique perspective on novel therapeutic strategies, and improve overall US Government emergency preparedness.
Collapse
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | | | - Julie N. Bergmann
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | - Corey M. Hoffman
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | | | - Mary J. Homer
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | - Tom C. Hu
- Chemical Medical Countermeasures Program, BARDA
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - David T. Yeung
- Chemical Countermeasures Research Program (CCRP), NIAID, NIH
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| |
Collapse
|
31
|
Satyamitra MM, Cassatt DR, Molinar-Inglis O, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. The NIAID/RNCP Biodosimetry Program: An Overview. Cytogenet Genome Res 2023; 163:89-102. [PMID: 37742625 PMCID: PMC10946631 DOI: 10.1159/000534213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Established in 2004, the Radiation and Nuclear Countermeasures Program (RNCP), within the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health has the central mission to advance medical countermeasure mitigators/therapeutics, and biomarkers and technologies to assess, triage, and inform medical management of patients experiencing acute radiation syndrome and/or the delayed effects of acute radiation exposure. The RNCP biodosimetry mission space encompasses: (1) basic research to elucidate novel approaches for rapid and accurate assessment of radiation exposure, (2) studies to support advanced development for US Food and Drug Administration (FDA) clearance of promising triage or treatment devices/approaches, (3) characterization of biomarkers and/or assays to determine degree of tissue or organ dose that can predict outcome of radiation injuries (i.e., organ failure, morbidity, and/or mortality), and (4) outreach efforts to facilitate interactions with researchers developing cutting edge biodosimetry approaches. Thus far, no biodosimetry device has been FDA cleared for use during a radiological/nuclear incident. At NIAID, advancement of radiation biomarkers and biodosimetry approaches is facilitated by a variety of funding mechanisms (grants, contracts, cooperative and interagency agreements, and Small Business Innovation Research awards), with the objective of advancing devices and assays toward clearance, as outlined in the FDA's Radiation Biodosimetry Medical Countermeasure Devices Guidance. The ultimate goal of the RNCP biodosimetry program is to develop and establish accurate and reliable biodosimetry tools that will improve radiation preparedness and ultimately save lives during a radiological or nuclear incident.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| |
Collapse
|
32
|
Flood AB, Sidabras JW, Swarts SG, Buehler PW, Schreiber W, Grinberg O, Swartz HM. Benefits and challenges of in vivo EPR nail biodosimetry in a second tier of medical triage in response to a large radiation event. RADIATION PROTECTION DOSIMETRY 2023; 199:1539-1550. [PMID: 37721065 PMCID: PMC10505939 DOI: 10.1093/rpd/ncad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 09/19/2023]
Abstract
Following large-scale radiation events, an overwhelming number of people will potentially need mitigators or treatment for radiation-induced injuries. This necessitates having methods to triage people based on their dose and its likely distribution, so life-saving treatment is directed only to people who can benefit from such care. Using estimates of victims following an improvised nuclear device striking a major city, we illustrate a two-tier approach to triage. At the second tier, after first removing most who would not benefit from care, biodosimetry should provide accurate dose estimates and determine whether the dose was heterogeneous. We illustrate the value of using in vivo electron paramagnetic resonance nail biodosimetry to rapidly assess dose and determine its heterogeneity using independent measurements of nails from the hands and feet. Having previously established its feasibility, we review the benefits and challenges of potential improvements of this method that would make it particularly suitable for tier 2 triage. Improvements, guided by a user-centered approach to design and development, include expanding its capability to make simultaneous, independent measurements and improving its precision and universality.
Collapse
Affiliation(s)
- Ann Barry Flood
- Radiology Department, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
- Clin-EPR, LLC, Lyme, NH, USA
| | - Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Steven G Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Paul W Buehler
- Department of Pathology, University of Maryland, Baltimore, MD, USA
| | | | | | - Harold M Swartz
- Radiology Department, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
- Clin-EPR, LLC, Lyme, NH, USA
| |
Collapse
|
33
|
Uk Koo C, In Park J, Oh J, Choi K, Yoon J, Hirata H, Ye SJ. Frequency-fixed motion compensation system for in-vivo electron paramagnetic resonance tooth dosimetry. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107520. [PMID: 37459701 DOI: 10.1016/j.jmr.2023.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
This article describes the design process for a motion compensation system that can suppress the spectral distortion caused by human motion and breathing during in-vivo electron paramagnetic resonance (EPR) spectroscopy on an intact incisor. The developed system consists of two elements: an electronically controlled tunable resonator and an automatic control circuit (ACC). The resonator can modify the resonant frequency and impedance by tuning and matching the voltage, while the ACC can generate a feedback signal using phase-sensitive detection (PSD). The signal is transferred into the resonator to maintain the critical coupling state. The tunable frequency range of the resonator was measured at over 10 MHz, offering approximately eight times the required range. The bandwidth of the resonator fluctuated in a negligible range (0.14% relative standard error) following the resonant frequency. With the feedback signal on, in-vivo EPR measurements were demonstrated to be a stable baseline with 35% higher signal-to-noise ratio (SNR). When one incisor sample was irradiated by an X-ray instrument, the EPR signal responses to the absorbed doses of 0-10 Gy exhibited high linearity (R2 = 0.994). In addition, the standard error of inverse prediction was estimated to be 0.35 Gy. The developed system achieved a discrimination ability of 2 Gy, which is required for triage in large-scale radiation accidents. Moreover, the compensation is fully automated, meaning that the system can be operated with simple training in an emergency.
Collapse
Affiliation(s)
- Chang Uk Koo
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong In Park
- Ionizing Radiation Metrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jeonghun Oh
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwon Choi
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Joanne Yoon
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Sung-Joon Ye
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul Natioanl University, Suwon 16629, Republic of Korea; Biomedical Research Institute, Seoul Natioanl University Hospital, Seoul 03080, Republic of Korea.
| |
Collapse
|
34
|
Shichijo K, Takatsuji T, Uzbekov D, Chaizhunusova N, Shabdarbaeva D, Kurisu M, Takahashi Y, Stepanenko V, Azhimkhanov A, Hoshi M. Radiation makes cells select the form of death dependent on external or internal exposure: apoptosis or pyroptosis. Sci Rep 2023; 13:12002. [PMID: 37491560 PMCID: PMC10368746 DOI: 10.1038/s41598-023-38789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Internal radiation exposure from neutron-induced radioisotopes environmentally activated following atomic bombing or nuclear accidents should be considered for a complete picture of pathologic effects on survivors. Acute and localized high dose radiation exposure from hot particles taken into the body must induce cell death and severe damage to tissues, whether they are proliferating or not. However, very little the cellular and molecular mechanisms underlying this internal radiation pathology has been investigated. Male Wistar rats were internally exposed to 56MnO2 powder by inhalation. Small intestine samples were investigated by histological staining at acute phase (6 h, 3 days and 14 days) and late phase (2, 6 and 8 months) after the exposure. Histological location and chemical properties of the hot particles embedded in small intestinal tissues were analyzed by synchrotron radiation-X-ray fluorescence-X-ray absorption near-edge structure (SR-XRF-XANES). Hot particles located in the intestinal cavity were identified as accumulations of Mn and iron. Pathological changes showed evidence of crypt shortening, massive cell death at the position of stem cell zone, including apoptosis and pyroptosis from 6 h through 8 months in the internal exposed rats.
Collapse
Affiliation(s)
- Kazuko Shichijo
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Toshihiro Takatsuji
- Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
- School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan
| | - Darkhan Uzbekov
- Department of Pathological Anatomy and Forensic Medicine, Semey State Medical University, Abay Str., 103, Semey, 071400, Kazakhstan
| | - Nailya Chaizhunusova
- Department of Pathological Anatomy and Forensic Medicine, Semey State Medical University, Abay Str., 103, Semey, 071400, Kazakhstan
| | - Dariya Shabdarbaeva
- Department of Pathological Anatomy and Forensic Medicine, Semey State Medical University, Abay Str., 103, Semey, 071400, Kazakhstan
| | - Minako Kurisu
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsusima-cho, Yokosuka-shi, Kanagawa, 237-0061, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Valeriy Stepanenko
- A.Tsyb Medical Radiological Research Center-National Medical Research Center of Radiology, Ministry of Health of Russian Federation, 249036, Obninsk, Russia
| | - Almas Azhimkhanov
- National Nuclear Center of the Republic of Kazakhstan, Beibyt atom st., 2B, Kurchatov, 071100, Kazakhstan
| | - Masaharu Hoshi
- The Center for Peace, Hiroshima University, Higashi-senda-machi, Naka-ku, Hiroshima, 730-0053, Japan
| |
Collapse
|
35
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
36
|
Port M, Barquinero JF, Endesfelder D, Moquet J, Oestreicher U, Terzoudi G, Trompier F, Vral A, Abe Y, Ainsbury L, Alkebsi L, Amundson S, Badie C, Baeyens A, Balajee A, Balázs K, Barnard S, Bassinet C, Beaton-Green L, Beinke C, Bobyk L, Brochard P, Brzoska K, Bucher M, Ciesielski B, Cuceu C, Discher M, D,Oca M, Domínguez I, Doucha-Senf S, Dumitrescu A, Duy P, Finot F, Garty G, Ghandhi S, Gregoire E, Goh V, Güçlü I, Hadjiiska L, Hargitai R, Hristova R, Ishii K, Kis E, Juniewicz M, Kriehuber R, Lacombe J, Lee Y, Lopez Riego M, Lumniczky K, Mai T, Maltar-Strmečki N, Marrale M, Martinez J, Marciniak A, Maznyk N, McKeever S, Meher P, Milanova M, Miura T, Gil OM, Montoro A, Domene MM, Mrozik A, Nakayama R, O’Brien G, Oskamp D, Ostheim P, Pajic J, Pastor N, Patrono C, Pujol-Canadell M, Rodriguez MP, Repin M, Romanyukha A, Rößler U, Sabatier L, Sakai A, Scherthan H, Schüle S, Seong K, Sevriukova O, Sholom S, Sommer S, Suto Y, Sypko T, Szatmári T, Takahashi-Sugai M, Takebayashi K, Testa A, Testard I, Tichy A, Triantopoulou S, Tsuyama N, Unverricht-Yeboah M, Valente M, Van Hoey O, Wilkins R, Wojcik A, Wojewodzka M, Younghyun L, Zafiropoulos D, Abend M. RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays. Radiat Res 2023; 199:535-555. [PMID: 37310880 PMCID: PMC10508307 DOI: 10.1667/rade-22-00207.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 06/15/2023]
Abstract
Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.
Collapse
Affiliation(s)
- M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | | | - J. Moquet
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | | | - G. Terzoudi
- National Centre for Scientific Research “Demokritos”, Health Physics, Radiobiology & Cytogenetics Laboratory, Agia Paraskevi, Greece
| | - F. Trompier
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - A. Vral
- Ghent University, Radiobiology Research Unit, Gent, Belgium
| | - Y. Abe
- Department of Radiation Biology and Protection, Nagasaki University, Japan
| | - L. Ainsbury
- UK Health Security Agency and Office for Health Improvement and Disparities, Cytogenetics and Pathology Group, Oxfordshire, England
| | - L Alkebsi
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - S.A. Amundson
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - C. Badie
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - A. Baeyens
- Ghent University, Radiobiology Research Unit, Gent, Belgium
| | - A.S. Balajee
- Cytogenetic Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - K. Balázs
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - S. Barnard
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - C. Bassinet
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | | | - C. Beinke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - L. Bobyk
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny Sur Orge, France
| | | | - K. Brzoska
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - M. Bucher
- Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - B. Ciesielski
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - C. Cuceu
- Genevolution, Porcheville, France
| | - M. Discher
- Paris-Lodron-University of Salzburg, Department of Environment and Biodiversity, 5020 Salzburg, Austria
| | - M.C. D,Oca
- Università Degli Studi di Palermo, Dipartimento di Fisica e Chimica “Emilio Segrè,” Palermo, Italy
| | - I. Domínguez
- Universidad de Sevilla, Departamento de Biología Celular, Sevilla, Spain
| | | | - A. Dumitrescu
- National Institute of Public Health, Radiation Hygiene Laboratory, Bucharest, Romania
| | - P.N. Duy
- Dalat Nuclear Research Institute, Radiation Technlogy & Biotechnology Center, Dalat City, Vietnam
| | - F. Finot
- Genevolution, Porcheville, France
| | - G. Garty
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - S.A. Ghandhi
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - E. Gregoire
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - V.S.T. Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, Singapore
| | - I. Güçlü
- TENMAK, Nuclear Energy Research Institute, Technology Development and Nuclear Research Department, Türkey
| | - L. Hadjiiska
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - R. Hargitai
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - R. Hristova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - K. Ishii
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - E. Kis
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - M. Juniewicz
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - R. Kriehuber
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - J. Lacombe
- University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
| | - Y. Lee
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | | | - K. Lumniczky
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - T.T. Mai
- Dalat Nuclear Research Institute, Radiation Technlogy & Biotechnology Center, Dalat City, Vietnam
| | - N. Maltar-Strmečki
- Ruðer Boškovic Institute, Division of Physical Chemistry, Zagreb, Croatia
| | - M. Marrale
- Università Degli Studi di Palermo, Dipartimento di Fisica e Chimica “Emilio Segrè,” Palermo, Italy
| | - J.S. Martinez
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - A. Marciniak
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - N. Maznyk
- Radiation Cytogenetics Laboratory, S.P. Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science, Kharkiv, Ukraine
| | - S.W.S. McKeever
- Radiation Dosimetry Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | | | - M. Milanova
- University of Defense, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - T. Miura
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - O. Monteiro Gil
- Instituto Superior Técnico/ Campus Tecnológico e Nuclear, Lisbon, Portugal
| | - A. Montoro
- Servicio de Protección Radiológica. Laboratorio de Dosimetría Biológica, Valencia, Spain
| | - M. Moreno Domene
- Hospital General Universitario Gregorio Marañón, Laboratorio de dosimetría biológica, Madrid, Spain
| | - A. Mrozik
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - R. Nakayama
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - G. O’Brien
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - D. Oskamp
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - J. Pajic
- Serbian Institute of Occupational Health, Belgrade, Serbia
| | - N. Pastor
- Universidad de Sevilla, Departamento de Biología Celular, Sevilla, Spain
| | - C. Patrono
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - M.J. Prieto Rodriguez
- Hospital General Universitario Gregorio Marañón, Laboratorio de dosimetría biológica, Madrid, Spain
| | - M. Repin
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | | | - U. Rößler
- Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | | | - A. Sakai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - H. Scherthan
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - K.M. Seong
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | | | - S. Sholom
- Radiation Dosimetry Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - S. Sommer
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Y. Suto
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - T. Sypko
- Radiation Cytogenetics Laboratory, S.P. Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science, Kharkiv, Ukraine
| | - T. Szatmári
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - M. Takahashi-Sugai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - K. Takebayashi
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - A. Testa
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - I. Testard
- CEA-Saclay, Gif-sur-Yvette Cedex, France
| | - A. Tichy
- University of Defense, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - S. Triantopoulou
- National Centre for Scientific Research “Demokritos”, Health Physics, Radiobiology & Cytogenetics Laboratory, Agia Paraskevi, Greece
| | - N. Tsuyama
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - M. Unverricht-Yeboah
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - M. Valente
- CEA-Saclay, Gif-sur-Yvette Cedex, France
| | - O. Van Hoey
- Belgian Nuclear Research Center SCK CEN, Mol, Belgium
| | | | - A. Wojcik
- Stockholm University, Stockholm, Sweden
| | - M. Wojewodzka
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Lee Younghyun
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - D. Zafiropoulos
- Laboratori Nazionali di Legnaro - Istituto Nazionale di Fisica Nucleare, Legnaro, Italy
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
37
|
Kenchegowda D, Bolduc DL, Kurada L, Blakely WF. Severity scoring systems for radiation-induced GI injury - Prioritization for use of GI-ARS medical countermeasures. Int J Radiat Biol 2023:1-9. [PMID: 37172305 DOI: 10.1080/09553002.2023.2210669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE Severity scoring systems for ionizing radiation-induced gastrointestinal injury have been used in animal radiation models, human studies involving the use of radiation therapy, and radiation accidents. Various radiation exposure scenarios (i.e., total body irradiation, total abdominal irradiation, etc.) have been used to investigate ionizing radiation-induced gastrointestinal injury. These radiation-induced GI severity scoring systems are based on clinical signs and symptoms and gastrointestinal-specific biomarkers (i.e., citrulline, etc.). In addition, the time course for radiation-induced changes in blood citrulline levels were compared across various animal (i.e., mice, minipigs, Rhesus Macaque, etc.) and human model systems. CONCLUSIONS A worksheet tool was developed to prioritize individuals with severe life-threatening gastrointestinal acute radiation syndrome, based on the design of the Exposure and Symptom Tool addressing hematopoietic acute radiation syndrome, to rescue individuals from potential gastrointestinal acute radiation syndrome injury. This tool provides a triage diagnostic approach to assist first-responders to assess individuals suspected of showing gastrointestinal acute radiation syndrome severity to guide medical management, hence enhancing medical readiness for managing radiological casualties.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David L Bolduc
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lalitha Kurada
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD USA
| | - William F Blakely
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
38
|
Morral C, Ayyaz A, Kuo HC, Fink M, Verginadis I, Daniel AR, Burner DN, Driver LM, Satow S, Hasapis S, Ghinnagow R, Luo L, Ma Y, Attardi LD, Koumenis C, Minn AJ, Wrana JL, Lee CL, Kirsch DG. p53 promotes revival stem cells in the regenerating intestine after severe radiation injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538576. [PMID: 37162959 PMCID: PMC10168332 DOI: 10.1101/2023.04.27.538576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced GI injury. Through single-cell RNA-sequencing of the irradiated mouse intestine, we find that p53 target genes are specifically enriched in stem cells of the regenerating epithelium, including revival stem cells that promote animal survival after GI damage. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce revival stem cells. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells that is controlled by an Mdm2-mediated negative feedback loop. These results suggest that p53 suppresses severe radiation-indued GI injury by promoting intestinal epithelial cell reprogramming. One-Sentence Summary After severe radiation injury to the intestine, transient p53 activity induces revival stem cells to promote regeneration.
Collapse
|
39
|
Yu Y, Lin X, Feng F, Wei Y, Wei S, Gong Y, Guo C, Wang Q, Shuai P, Wang T, Qin H, Li G, Yi L. Gut microbiota and ionizing radiation-induced damage: Is there a link? ENVIRONMENTAL RESEARCH 2023; 229:115947. [PMID: 37080277 DOI: 10.1016/j.envres.2023.115947] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
According to observational findings, ionizing radiation (IR) triggers dysbiosis of the intestinal microbiota, affecting the structural composition, function, and species of the gut microbiome and its metabolites. These modifications can further exacerbate IR-induced damage and amplify proinflammatory immune responses. Conversely, commensal bacteria and favorable metabolites can remodel the IR-disturbed gut microbial structure, promote a balance between anti-inflammatory and proinflammatory mechanisms in the body, and mitigate IR toxicity. The discovery of effective and safe remedies to prevent and treat radiation-induced injuries is vitally needed because of the proliferation of radiation toxicity threats produced by recent radiological public health disasters and increasing medical exposures. This review examines how the gut microbiota and its metabolites are linked to the processes of IR-induced harm. We highlight protective measures based on interventions with gut microbes to optimize the distress caused by IR damage to human health. We offer prospects for research in emerging and promising areas targeting the prevention and treatment of IR-induced damage.
Collapse
Affiliation(s)
- Yueqiu Yu
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Feiyang Feng
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyun Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuang Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaqi Gong
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Caimao Guo
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingyu Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peimeng Shuai
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tiantian Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hui Qin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guoqing Li
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
40
|
MacVittie TJ. Where are the medical countermeasures against the ARS and DEARE? A current topic relative to an animal model research platform, radiation exposure context, the acute and delayed effects of acute exposure, and the FDA animal rule. Int J Radiat Biol 2023:1-15. [PMID: 36811500 DOI: 10.1080/09553002.2023.2181999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE A question echoed by the National Biodefense Science Board (NBSB) in 2010, remains a reasonable question in 2023; 'Where are the Countermeasures?'. A critical path for development of medical countermeasures (MCM) against acute, radiation-induced organ-specific injury within the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE) requires the recognition of problems and solutions inherent in the path to FDA approval under the Animal Rule. Keep Rule number one in mind, It's not easy. CONSIDERATIONS The current topic herein is focused on defining the nonhuman primate model(s) for efficient MCM development relative to consideration of prompt and delayed exposure in the context of the nuclear scenario. The rhesus macaque is a predictive model for human exposure of partial-body irradiation with marginal bone marrow sparing that allows definition of the multiple organ injury in the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE). The continued definition of natural history is required to delineate an associative or causal interaction within the concurrent multi-organ injury characteristic of the ARS and DEARE. A more efficient development of organ specific MCM for both pre-exposure and post-exposure prophylaxis to include acute radiation-induced combined injury requires closing critical gaps in knowledge and urgent support to rectify the national shortage of nonhuman primates. The rhesus macaque is a validated, predictive model of the human response to prompt and delayed radiation exposure, medical management and MCM treatment. A rational approach to further development of the cynomolgus macaque as a comparable model is urgently required for continued development of MCM for FDA approval. CONCLUSION It is imperative to examine the key variables relative to animal model development and validation, The pharmacokinetics, pharmacodynamics and exposure profiles, of candidate MCM relative to route, administration schedule and optimal efficacy define the fully effective dose. The conduct of adequate and well-controlled pivotal efficacy studies as well as safety and toxicity studies support approval under the FDA Animal Rule and label definition for human use.
Collapse
Affiliation(s)
- Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Hwang YJ, Shin DY, Kim MJ, Jang H, Kim S, Yang H, Jang WI, Park S, Shim S, Lee SB. StemRegenin 1 Mitigates Radiation-Mediated Hematopoietic Injury by Modulating Radioresponse of Hematopoietic Stem/Progenitor Cells. Biomedicines 2023; 11:biomedicines11030824. [PMID: 36979803 PMCID: PMC10045038 DOI: 10.3390/biomedicines11030824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Hematopoietic injury resulting from the damage of hematopoietic stem/progenitor cells (HSPCs) can be induced by either nuclear accident or radiotherapy. Radiomitigation of HSPCs is critical for the development of medical countermeasure agents. StemRegenin 1 (SR1) modulates the maintenance and function of HSPCs under non-stress conditions. However, the impact of SR1 in radiation-induced hematopoietic injury both in vivo and in vitro remains unknown. In this study, we found that treatment with SR1 after irradiation of C57BL/6 mice significantly mitigates TBI-induced death (80% of SR1-treated mice survival vs. 30% of saline-treated mice survival) with enhanced recovery of peripheral blood cell counts, with the density and cell proliferation of bone marrow components as observed by Hematoxylin and Eosin (H&E) and Ki-67 staining. Interestingly, in vitro analysis of human HSPCs showed that SR1 enhanced the population of human HSPCs (CD34+) under both non-irradiating and irradiating conditions, and reduced radiation-induced DNA damage and apoptosis. Furthermore, SR1 attenuated the radiation-induced expression of a member of the pro-apoptotic BCL-2 family and activity of caspase-3. Overall, these results suggested that SR1 modulates the radioresponse of HSPCs and might provide a potential radiomitigator of hematopoietic injury, which contributes to increase the survival of patients upon irradiation.
Collapse
Affiliation(s)
- You Jung Hwang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong-Yeop Shin
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul 01812, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Soyeon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyunwon Yang
- Biohealth Convergence, Seoul Women’s University, Seoul 01812, Republic of Korea
| | - Won Il Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (S.B.L.); Tel.: +82-2-3399-5873 (S.S.); +82-2-3399-5874 (S.B.L.)
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (S.B.L.); Tel.: +82-2-3399-5873 (S.S.); +82-2-3399-5874 (S.B.L.)
| |
Collapse
|
42
|
Total Skin Treatment with Helical Arc Radiotherapy. Int J Mol Sci 2023; 24:ijms24054492. [PMID: 36901922 PMCID: PMC10002962 DOI: 10.3390/ijms24054492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
For widespread cutaneous lymphoma, such as mycosis fungoides or leukemia cutis, in patients with acute myeloid leukemia (AML) and for chronic myeloproliferative diseases, total skin irradiation is an efficient treatment modality for disease control. Total skin irradiation aims to homogeneously irradiate the skin of the entire body. However, the natural geometric shape and skin folding of the human body pose challenges to treatment. This article introduces treatment techniques and the evolution of total skin irradiation. Articles on total skin irradiation by helical tomotherapy and the advantages of total skin irradiation by helical tomotherapy are reviewed. Differences among each treatment technique and treatment advantages are compared. Adverse treatment effects and clinical care during irradiation and possible dose regimens are mentioned for future prospects of total skin irradiation.
Collapse
|
43
|
Host antibacterial defense of 6-10 Gy γ-irradiated mice subjected to lentiviral vector-based Gas5 gene therapy. Gene Ther 2023; 30:172-179. [PMID: 33262512 DOI: 10.1038/s41434-020-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 11/08/2022]
Abstract
Gut bacteria-associated sepsis is a serious concern in patients with gastrointestinal acute radiation syndrome (GIARS). In our previous studies, all mice exposed to 8 Gy of whole body γ-irradiation (8 Gy GIARS-mice) died by sepsis stemming from bacterial translocation. M1Mϕ located in the bacterial translocation site (i.e., the mesenteric lymph nodes, MLNs) have been characterized as major antibacterial effector cells. However, M2bMϕ, inhibitor cells for M1Mϕ polarization, predominated in the MLNs of these mice. The reduced expression of long noncoding RNA Gas5 was associated with M2bMϕ polarization. In this study, we tried to reduce the mortality rate of 8 Gy GIARS-mice through Gas5 gene transduction using lentivirus (Gas5 lentivirus). After Gas5 lentivirus injection, Gas5 RNA was overexpressed in MLN-F4/80+ cells of 8 Gy GIARS-mice, and these cells were identified as non-M2bMϕ. All of the 8 Gy GIARS-mice injected with Gas5 lentivirus survived 30 days or more after irradiation, and bacterial translocation and subsequent sepsis were shown to be minimal in these mice. These results indicate that the antibacterial resistance of 8 Gy GIASR-mice can be restored through the modulation of M2bMϕ located in the bacterial translocation site by Gas5 transduction.
Collapse
|
44
|
Johnstone BH, Woods JR, Goebel WS, Gu D, Lin CH, Miller HM, Musall KG, Sherry AM, Bailey BJ, Sims E, Sinn AL, Pollok KE, Spellman S, Auletta JJ, Woods EJ. Characterization and Function of Cryopreserved Bone Marrow from Deceased Organ Donors: A Potential Viable Alternative Graft Source. Transplant Cell Ther 2023; 29:95.e1-95.e10. [PMID: 36402456 PMCID: PMC9918674 DOI: 10.1016/j.jtct.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Despite the readily available graft sources for allogeneic hematopoietic cell transplantation (alloHCT), a significant unmet need remains in the timely provision of suitable unrelated donor grafts. This shortage is related to the rarity of certain HLA alleles in the donor pool, nonclearance of donors owing to infectious disease or general health status, and prolonged graft procurement and processing times. An alternative hematopoietic progenitor cell (HPC) graft source obtained from the vertebral bodies (VBs) of deceased organ donors could alleviate many of the obstacles associated with using grafts from healthy living donors or umbilical cord blood (UCB). Deceased organ donor-derived bone marrow (BM) can be preemptively screened, cryogenically banked for on-demand use, and made available in adequate cell doses for HCT. We have developed a good manufacturing practice (GMP)-compliant process to recover and cryogenically bank VB-derived HPCs from deceased organ donor (OD) BM. Here we present results from an analysis of HPCs from BM obtained from 250 deceased donors to identify any substantial difference in composition or quality compared with HPCs from BM aspirated from the iliac crests of healthy living donors. BM from deceased donor VBs was processed in a central GMP facility and packaged for cryopreservation in 5% DMSO/2.5% human serum albumin. BM aspirated from living donor iliac crests was obtained and used for comparison. A portion of each specimen was analyzed before and after cryopreservation by flow cytometry and colony-forming unit potential. Bone marrow chimerism potential was assessed in irradiated immunocompromised NSG mice. Analysis of variance with Bonferroni correction for multiple comparisons was used to determine how cryopreservation affects BM cells and to evaluate indicators of successful engraftment of BM cells into irradiated murine models. The t test (with 95% confidence intervals [CIs]) was used to compare cells from deceased donors and living donors. A final dataset of complete clinical and matched laboratory data from 226 cryopreserved samples was used in linear regressions to predict outcomes of BM HPC processing. When compared before and after cryopreservation, OD-derived BM HPCs were found to be stable, with CD34+ cells maintaining high viability and function after thawing. The yield from a single donor is sufficient for transplantation of an average of 1.6 patients (range, 1.2 to 7.5). CD34+ cells from OD-derived HPCs from BM productively engrafted sublethally irradiated immunocompromised mouse BM (>44% and >67% chimerism at 8 and 16 weeks, respectively). Flow cytometry and secondary transplantation confirmed that OD HPCs from BM is composed of long-term engrafting CD34+CD38-CD45RA-CD90+CD49f+ HSCs. Linear regression identified no meaningful predictive associations between selected donor-related characteristics and OD BM HPC quality or yield. Collectively, these data demonstrate that cryopreserved BM HPCs from deceased organ donors is potent and functionally equivalent to living donor BM HPCs and is a viable on-demand graft source for clinical HCT. Prospective clinical trials will soon commence in collaboration with the Center for International Blood and Marrow Research to assess the feasibility, safety, and efficacy of Ossium HPCs from BM (ClinicalTrials.gov identifier NCT05068401).
Collapse
Affiliation(s)
- Brian H Johnstone
- Ossium Health, Indianapolis, Indiana; Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana
| | - John R Woods
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana
| | - W Scott Goebel
- Ossium Health, Indianapolis, Indiana; Department of Pediatrics (Hematology/Oncology; Blood and Bone Marrow Stem Cell Transplant and Immune Cell Therapy Program), Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | - Barbara J Bailey
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Emily Sims
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anthony L Sinn
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Karen E Pollok
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephen Spellman
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Jeffery J Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota; Hematology/Oncology and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Erik J Woods
- Ossium Health, Indianapolis, Indiana; Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
45
|
Plett PA, Pelus LM, Orschell CM. Establishing a Murine Model of the Hematopoietic Acute Radiation Syndrome. Methods Mol Biol 2023; 2567:251-262. [PMID: 36255706 PMCID: PMC11192174 DOI: 10.1007/978-1-0716-2679-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The hematopoietic system is one of the most sensitive tissues to ionizing radiation, and radiation doses from 2 to 10 gray can result in death from bleeding and infection if left untreated. Reviewing the range of radiation doses reported in the literature that result in similar lethality highlights the need for a more consistent model that would allow a better comparison of the hematopoietic acute radiation syndrome (H-ARS) studies carried out in different laboratories. Developing a murine model of H-ARS to provide a platform suited for efficacy testing of medical countermeasures (MCM) against radiation should include a review of the Food and Drug Administration requirements outlined in the Animal Rule. The various aspects of a murine H-ARS model found to affect consistent performance will be described in this chapter including strain, sex, radiation type and dose, mouse restraint, and husbandry.
Collapse
Affiliation(s)
- P Artur Plett
- Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Louis M Pelus
- Department of Microbiology & Immunology and Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
46
|
Li Z, Zhou Z, Tian S, Zhang K, An G, Zhang Y, Ma R, Sheng B, Wang T, Yang H, Yang L. RPRM deletion preserves hematopoietic regeneration by promoting EGFR-dependent DNA repair and hematopoietic stem cell proliferation post ionizing radiation. Cell Biol Int 2022; 46:2158-2172. [PMID: 36041213 PMCID: PMC9804513 DOI: 10.1002/cbin.11900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 01/05/2023]
Abstract
Reprimo (RPRM), a target gene of p53, is a known tumor suppressor. DNA damage induces RPRM, which triggers p53-dependent G2 arrest by inhibiting cyclin B1/Cdc2 complex activation and promotes DNA damage-induced apoptosis. RPRM negatively regulates ataxia-telangiectasia mutated by promoting its nuclear-cytoplasmic translocation and degradation, thus inhibiting DNA damage. Therefore, RPRM plays a crucial role in DNA damage response. Moreover, the loss of RPRM confers radioresistance in mice, which enables longer survival and less severe intestinal injury after radiation exposure. However, the role of RPRM in radiation-induced hematopoietic system injury remains unknown. Herein, utilizing a RPRM-knockout mouse model, we found that RPRM deletion did not affect steady-state hematopoiesis in mice. However, RPRM knockout significantly alleviated radiation-induced hematopoietic system injury and preserved mouse hematopoietic regeneration in hematopoietic stem cells (HSCs) against radiation-induced DNA damage. Further mechanistic studies showed that RPRM loss significantly increased EGFR expression and phosphorylation in HSCs to activate STAT3 and DNA-PKcs, thus promoting HSC DNA repair and proliferation. These findings reveal the critical role of RPRM in radiation-induced hematopoietic system injury, confirming our hypothesis that RPRM may serve as a novel target for radiation protection.
Collapse
Affiliation(s)
- Zixuan Li
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Zhou Zhou
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Shuaiyu Tian
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Kailu Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Gangli An
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Yarui Zhang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Renyuxue Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Binjie Sheng
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Tian Wang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Lin Yang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| |
Collapse
|
47
|
Singh VK, Fatanmi OO, Wise SY, Carpenter AD, Olsen CH. Determination of Lethality Curve for Cobalt-60 Gamma-Radiation Source in Rhesus Macaques Using Subject-Based Supportive Care. Radiat Res 2022; 198:599-614. [PMID: 36279323 PMCID: PMC10224762 DOI: 10.1667/rade-22-00101.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022]
Abstract
Well-characterized and validated animal models are required for the development of medical countermeasures (MCMs) for acute radiation syndrome to mitigate injury due to high doses of total- or partial-body irradiation. Animal models used in MCM development must reflect a radiation dose- and time-dependent relationship, clinical presentation, and pathogenesis of organ injuries in humans. The objective of the current study was to develop the lethality curve for the Armed Forces Radiobiology Research Institute high level cobalt-60 gamma-radiation source in nonhuman primates (NHPs) after total-body irradiation. A dose-response relationship was determined using NHPs (rhesus macaques, N = 36, N = 6/radiation dose) irradiated with 6 doses in the range of 6.0 to 8.5 Gy, with 0.5 Gy increments at a dose rate of 0.6 Gy/min. Animals were provided subject-based supportive care including blood transfusions and were monitored for 60 days postirradiation. Survival was the primary endpoint of the study and the secondary endpoint included hematopoietic recovery. The lethality curve suggested LD30/60, LD50/60, and LD70/60 values as 5.71, 6.78, and 7.84 Gy, respectively. The results of this study will be valuable to provide specific doses for various lethalities of 60Co-gamma radiation to test radiation countermeasures in rhesus macaques using subject-based supportive care including blood transfusion.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Cara H. Olsen
- Preventive Medicine and Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
48
|
Lazarus HM, McManus J, Gale RP. Sargramostim in acute radiation syndrome. Expert Opin Biol Ther 2022; 22:1345-1352. [DOI: 10.1080/14712598.2022.2143261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hillard M Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Robert Peter Gale
- Haematology Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
49
|
Pre-Administration of PLX-R18 Cells Protects Mice from Radiation-Induced Hematopoietic Failure and Lethality. Genes (Basel) 2022; 13:genes13101756. [PMID: 36292639 PMCID: PMC9601513 DOI: 10.3390/genes13101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Acute Radiation Syndrome (ARS) is a syndrome involving damage to multiple organs caused by exposure to a high dose of ionizing radiation over a short period of time; even low doses of radiation damage the radiosensitive hematopoietic system and causes H-ARS. PLacenta eXpanded (PLX)-R18 is a 3D-expanded placenta-derived stromal cell product designated for the treatment of hematological disorders. These cells have been shown in vitro to secrete hematopoietic proteins, to stimulate colony formation, and to induce bone marrow migration. Previous studies in mice showed that PLX-R18 cells responded to radiation-induced hematopoietic failure by transiently secreting hematopoiesis related proteins to enhance reconstitution of the hematopoietic system. We assessed the potential effect of prophylactic PLX-R18 treatment on H-ARS. PLX-R18 cells were administered intramuscularly to C57BL/6 mice, −1 and 3 days after (LD70/30) total body irradiation. PLX R18 treatment significantly increased survival after irradiation (p < 0.0005). In addition, peripheral blood and bone marrow (BM) cellularity were monitored at several time points up to 30 days. PLX-R18 treatment significantly increased the number of colony-forming hematopoietic progenitors in the femoral BM and significantly raised peripheral blood cellularity. PLX-R18 administration attenuated biomarkers of bone marrow aplasia (EPO, FLT3L), sepsis (SAA), and systemic inflammation (sP-selectin and E-selectin) and attenuated radiation-induced inflammatory cytokines/chemokines and growth factors, including G-CSF, MIP-1a, MIP-1b, IL-2, IL-6 and MCP-1, In addition, PLX-R18 also ameliorated radiation-induced upregulation of pAKT. Taken together, prophylactic PLX-R18 administration may serve as a protection measure, mitigating bone marrow failure symptoms and systemic inflammation in the H-ARS model.
Collapse
|
50
|
Model for Evaluating Antimicrobial Therapy To Prevent Life-Threatening Bacterial Infections following Exposure to a Medically Significant Radiation Dose. Antimicrob Agents Chemother 2022; 66:e0054622. [PMID: 36154387 DOI: 10.1128/aac.00546-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More evidence is needed to support recommendations for medical management of acute radiation syndrome (ARS) and associated infections resulting from a radiological/nuclear event. While current guidelines recommend the administration of antibiotics to chemotherapy patients with febrile neutropenia, the clinical benefit is unclear for acute radiation injury patients. A well-characterized nonhuman primate (NHP) model of hematopoietic ARS was developed that incorporates supportive care postirradiation. This model evaluated the efficacy of myeloid growth factors within 24 to 48 h after total body irradiation (TBI). However, in this model, NHPs continued to develop life-threatening bacterial infections, even when granulocyte colony-stimulating factor or granulocyte-macrophage colony-stimulating factor was administered in combination with antibiotic monotherapy. In this study, we evaluated the efficacy of combination antibiotic therapies administered to NHPs following 7.4-Gy TBI to understand the occurrence of bacterial infection in NHPs with hematopoietic ARS. We compared enrofloxacin-linezolid, enrofloxacin-cefepime, and enrofloxacin-ertapenem to enrofloxacin monotherapy. The primary endpoint was 60-day postirradiation mortality, with secondary endpoints of overall survival time, incidence of bacterial infection, and bacteriologic culture with antimicrobial susceptibility testing. We observed that enrofloxacin-ertapenem significantly increased survival compared to enrofloxacin monotherapy. Bacteria isolated from nonsurviving macaques with systemic bacterial infections exhibited uniform resistance to enrofloxacin and variable resistance to beta-lactam antibiotics, linezolid, gentamicin, and azithromycin. Multidrug antibiotic resistance was observed in Enterococcus spp. and Escherichia coli. We conclude that antibiotic combination therapies appear to be more effective than monotherapy alone but acknowledge that more work is needed to identify an optimal antimicrobial therapy.
Collapse
|