1
|
Zirimenya L, Natukunda A, Nassuuna J, Nkurunungi G, Zziwa C, Ninsiima C, Kukundakwe C, Nankabirwa CM, Katushabe C, Namusobya LK, Oduru G, Kabami G, Kabali J, Kayiwa J, Kabagenyi J, van Dam GJ, Corstjens PLAM, Cose S, Wajja A, Staedke SG, Kaleebu P, Elliott AM, Webb EL. The effect of intermittent preventive treatment for malaria with dihydroartemisinin-piperaquine on vaccine-specific responses among schoolchildren in rural Uganda (POPVAC B): a double-blind, randomised controlled trial. Lancet Glob Health 2024; 12:e1838-e1848. [PMID: 39424572 PMCID: PMC11483247 DOI: 10.1016/s2214-109x(24)00281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Several important vaccines differ in immunogenicity and efficacy between populations. We hypothesised that malaria suppresses responses to unrelated vaccines and that this effect can be reversed-at least partially-by monthly malaria intermittent preventive treatment (IPT) in high-transmission settings. METHODS We conducted an individually randomised, double-blind, placebo-controlled trial of the effect of malaria IPT with dihydroartemisinin-piperaquine on vaccine responses among schoolchildren aged 9-17 years in Jinja district, Uganda. Participants were recruited from two schools and did not have exposure to vaccines of interest after the age of 5 years, with the exception of human papillomavirus (HPV). Computer-generated 1:1 randomisation was implemented in REDCap. 3-day courses of dihydroartemisinin-piperaquine (dosage by weight) or placebo were administered monthly, including twice before the first vaccination. Trial participants were vaccinated with the live parenteral BCG vaccine (Serum Institute of India, Pune, India) at week 0; yellow fever vaccine (YF-17D; Sanofi Pasteur, Lyon, France); live oral typhoid vaccine (Ty21a; PaxVax, London, UK), and quadrivalent virus-like particle HPV vaccine (Merck, Rahway, NJ, USA) at week 4; and toxoid vaccines (tetanus-diphtheria; Serum Institute of India) and an HPV booster at week 28. An additional HPV vaccination at week 8 was provided to female participants older than 14 years who had not previously been vaccinated, and a tetanus-diphtheria booster was given after completion of the trial at week 52. Primary outcomes were vaccine responses at week 8 and, for tetanus-diphtheria, at week 52, and analysis was done in the intention-to-treat population. Malaria parasite prevalence at enrolment and during follow-up was determined retrospectively by PCR. The safety population comprised all randomly allocated participants. The trial was registered at the ISRCTN Registry (ISRCTN62041885) and is complete. FINDINGS Between May 25 and July 14, 2021, we assessed 388 potential participants for eligibility. We enrolled and randomly allocated 341 participants to the two groups (170 [50%] to dihydroartemisinin-piperaquine and 171 [50%] to placebo); 192 (56%) were female and 149 (44%) participants were male. 145 (85%) participants in the dihydroartemisinin-piperaquine group and 140 participants (82%) in the placebo group were followed up until the week 52 endpoint. At enrolment, 109 (64%) of all participants in the dihydroartemisinin-piperaquine group and 99 (58%) of 170 participants in the placebo group had malaria; this reduced to 6% or lower at all follow-up visits in the dihydroartemisinin-piperaquine group. There was no effect of dihydroartemisinin-piperaquine versus placebo on primary outcomes: BCG-specific IFNγ ELISpot response had a geometric mean ratio (GMR) of 1·09 (95% CI 0·93-1·29), p=0·28; yellow fever neutralising antibody was 1·19 (0·91-1·54), p=0·20 for plaque reduction neutralising reference tests (PRNT50) titres (the reciprocal of the last plasma dilution that reduced by 50%) and 1·24 (0·97-1·58), p=0·09 for PRNT90 titres (reciprocal of the last plasma dilution that reduced by 90%); and IgG to Salmonella enterica serovar Typhi O-lipopolysaccharide was 1·09 (0·81-1·46), p=0·58, HPV-16 was 0·72 (0·44-1·77), p=0·19, HPV-18 was 0·71 (0·47-1·09), p=0·11; tetanus toxoid was 1·22 (0·91-1·62), p=0·18, and diphtheria toxoid was 0·97 (0·83-1·13), p=0·72. There was some evidence that dihydroartemisinin-piperaquine reduced waning of the yellow fever response. INTERPRETATION IPT for malaria with dihydroartemisinin-piperaquine did not improve peak vaccine responses, despite reducing malaria prevalence. Possible longer-term effects on response waning should be further explored. FUNDING UK Medical Research Council. TRANSLATION For the Luganda translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Ludoviko Zirimenya
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Agnes Natukunda
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Christopher Zziwa
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Caroline Ninsiima
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Christine Kukundakwe
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Christine M Nankabirwa
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Charity Katushabe
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Loyce K Namusobya
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Gloria Oduru
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Grace Kabami
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Joel Kabali
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - John Kayiwa
- Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Joyce Kabagenyi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Stephen Cose
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Anne Wajja
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Sarah G Staedke
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Pontiano Kaleebu
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Alison M Elliott
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Emily L Webb
- International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
2
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Immune gene expression changes more during a malaria transmission season than between consecutive seasons. Microbiol Spectr 2024; 12:e0096024. [PMID: 39162546 PMCID: PMC11448414 DOI: 10.1128/spectrum.00960-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Plasmodium parasites, the causative organism of malaria, caused over 600,000 deaths in 2022. In Mali, Plasmodium falciparum causes the majority of malaria cases and deaths and is transmitted seasonally. Anti-malarial immunity develops slowly over repeated exposures to P. falciparum and some aspects of this immunity (e.g., antibody titers) wane during the non-transmission, dry season. Here, we sequenced RNA from 33 pediatric blood samples collected during P. falciparum infections at the beginning or end of a transmission season, and characterized the host and parasite gene expression profiles for paired, consecutive infections. We found that human gene expression changes more over the course of one transmission season than between seasons, with signatures of partial development of an adaptive immune response during one transmission season and stability in gene expression during the dry season. Additionally, we found that P. falciparum gene expression did not vary with timing during the season and remained stable both across and between seasons, despite varying human immune pressures. Our results provide insights into the dynamics of anti-malarial immune response development over short time frames that could be exploited by future vaccine and prevention efforts. IMPORTANCE Our work seeks to understand how the immune response to Plasmodium falciparum malaria changes between infections that occur during low and high malaria transmission seasons, and highlights that immune gene expression changes more during the high transmission season. This provides important insight into the dynamics of the anti-malarial immune response that are important to characterize over these short time frames to better understand how to exploit this immune response with future vaccine efforts.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bourèma Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Reyes RA, Turner L, Ssewanyana I, Jagannathan P, Feeney ME, Lavstsen T, Greenhouse B, Bol S, Bunnik EM. Differences in phenotype between long-lived memory B cells against Plasmodium falciparum merozoite antigens and variant surface antigens. PLoS Pathog 2024; 20:e1012661. [PMID: 39466842 PMCID: PMC11542837 DOI: 10.1371/journal.ppat.1012661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/07/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Plasmodium falciparum infections elicit strong humoral immune responses to two main groups of antigens expressed by blood-stage parasites: merozoite antigens that are involved in the erythrocyte invasion process and variant surface antigens that mediate endothelial sequestration of infected erythrocytes. Long-lived B cells against both antigen classes can be detected in the circulation for years after exposure, but have not been directly compared. Here, we studied the phenotype of long-lived memory and atypical B cells to merozoite antigens (MSP1 and AMA1) and variant surface antigens (the CIDRα1 domain of PfEMP1) in ten Ugandan adults before and after local reduction of P. falciparum transmission. After a median of 1.7 years without P. falciparum infections, the percentage of antigen-specific activated B cells declined, but long-lived antigen-specific B cells were still detectable in all individuals. The majority of MSP1/AMA1-specific B cells were CD95+CD11c+ memory B cells, which are primed for rapid differentiation into antibody-secreting cells, and FcRL5-T-bet- atypical B cells. On the other hand, most CIDRα1-specific B cells were CD95-CD11c- memory B cells. CIDRα1-specific B cells were also enriched among a subset of atypical B cells that seem poised for antigen presentation. These results point to differences in how these antigens are recognized or processed by the immune system and how P. falciparum-specific B cells will respond upon re-infection.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, California, United States of America
- Department of Microbiology & Immunology, Stanford University, Stanford, California, United States of America
| | - Margaret E. Feeney
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sebastiaan Bol
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
4
|
Thawornpan P, Kochayoo P, Salsabila ZZ, Chootong P. Development and longevity of naturally acquired antibody and memory B cell responses against Plasmodium vivax infection. PLoS Negl Trop Dis 2024; 18:e0012600. [PMID: 39446698 PMCID: PMC11500939 DOI: 10.1371/journal.pntd.0012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Plasmodium vivax malaria causes significant public health problems in endemic regions. Considering the rapid spread of drug-resistant parasite strains and the development of hypnozoites in the liver with potential for relapse, development of a safe and effective vaccine for preventing, controlling, and eliminating the infection is critical. Immunity to malaria is mediated by antibodies that inhibit sporozoite or merozoite invasion into host cells and protect against clinical disease. Epidemiologic data from malaria endemic regions show the presence of naturally acquired antibodies to P. vivax antigens during and following infection. But data on the persistence of these antibodies, development of P. vivax-specific memory B cells (MBCs), and their relation to reduction of malaria severity and risk is limited. This review provides an overview of the acquisition and persistence of naturally acquired humoral immunity to P. vivax infection. Also, we summarize and discuss current progress in assessment of immune responses to candidate vaccine antigens in P. vivax patients from different transmission settings. Longitudinal studies of MBC and antibody responses to these antigens will open new avenues for developing vaccines against malaria infection and its transmission.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Zulfa Zahra Salsabila
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Kleberg L, Courey-Ghaouzi AD, Lautenbach MJ, Färnert A, Sundling C. Regulation of B-cell function and expression of CD11c, T-bet, and FcRL5 in response to different activation signals. Eur J Immunol 2024; 54:e2350736. [PMID: 38700378 DOI: 10.1002/eji.202350736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
CD11c, FcRL5, or T-bet are commonly expressed by B cells expanding during inflammation, where they can make up >30% of mature B cells. However, the association between the proteins and differentiation and function in the host response remains largely unclear. We have assessed the co-expression of CD11c, T-bet, and FcRL5 in an in vitro B-cell culture system to determine how stimulation via the BCR, toll-like receptor 9 (TLR9), and different cytokines influence CD11c, T-bet, and FcRL5 expression. We observed different expression dynamics for all markers, but a largely overlapping regulation of CD11c and FcRL5 in response to BCR and TLR9 activation, while T-bet was strongly dependent on IFN-γ signaling. Investigating plasma cell differentiation and APC functions, there was no association between marker expression and antibody secretion or T-cell help. Rather the functions were associated with TLR9-signalling and B-cell-derived IL-6 production, respectively. These results suggest that the expression of CD11c, FcRL5, and T-bet and plasma cell differentiation and improved APC functions occur in parallel and are regulated by similar activation signals, but they are not interdependent.
Collapse
Affiliation(s)
- Linn Kleberg
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Alan-Dine Courey-Ghaouzi
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Nellore A, Zumaquero E, Seifert M. T-bet + B Cells in Humans: Protective and Pathologic Functions. Transplantation 2024; 108:1709-1714. [PMID: 38051131 PMCID: PMC11150333 DOI: 10.1097/tp.0000000000004889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
The humoral immune system comprises B cells and plasma cells, which play important roles in organ transplantation, ranging from the production of both protective and injurious antibodies as well as cytokines that can promote operational tolerance. Recent data from conditions outside of transplantation have identified a novel human B-cell subset that expresses the transcription factor T-bet and exerts pleiotropic functions by disease state. Here, we review the generation, activation, and functions of the T-bet + B-cell subset outside of allotransplantation, and consider the relevance of this subset as mediators of allograft injury.
Collapse
Affiliation(s)
- Anoma Nellore
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL
| | - Esther Zumaquero
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Michael Seifert
- Division of Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
8
|
García-Vega M, Llamas-Covarrubias MA, Loza M, Reséndiz-Sandoval M, Hinojosa-Trujillo D, Melgoza-González E, Valenzuela O, Mata-Haro V, Hernández-Oñate M, Soto-Gaxiola A, Chávez-Rueda K, Nakai K, Hernández J. Single-cell transcriptomic analysis of B cells reveals new insights into atypical memory B cells in COVID-19. J Med Virol 2024; 96:e29851. [PMID: 39132689 DOI: 10.1002/jmv.29851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Here, we performed single-cell RNA sequencing of S1 and receptor binding domain protein-specific B cells from convalescent COVID-19 patients with different clinical manifestations. This study aimed to evaluate the role and developmental pathway of atypical memory B cells (MBCs) in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The results revealed a proinflammatory signature across B cell subsets associated with disease severity, as evidenced by the upregulation of genes such as GADD45B, MAP3K8, and NFKBIA in critical and severe individuals. Furthermore, the analysis of atypical MBCs suggested a developmental pathway similar to that of conventional MBCs through germinal centers, as indicated by the expression of several genes involved in germinal center processes, including CXCR4, CXCR5, BCL2, and MYC. Additionally, the upregulation of genes characteristic of the immune response in COVID-19, such as ZFP36 and DUSP1, suggested that the differentiation and activation of atypical MBCs may be influenced by exposure to SARS-CoV-2 and that these genes may contribute to the immune response for COVID-19 recovery. Our study contributes to a better understanding of atypical MBCs in COVID-19 and the role of other B cell subsets across different clinical manifestations.
Collapse
Affiliation(s)
- Melissa García-Vega
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | | | - Martin Loza
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Edgar Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Miguel Hernández-Oñate
- CONAHCYT-Laboratorio de Fisiología y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Alan Soto-Gaxiola
- Hospital General del Estado de Sonora "Dr. Ernesto Ramos Bours", Secretaria de Salud del Estado de Sonora, Hermosillo, Sonora, Mexico
| | - Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, UMAE, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| |
Collapse
|
9
|
Araujo S, Mabille D, Garcia AB, Caljon G. A breath of fresh air: impact of insect-borne protozoan parasites on the respiratory system. Trends Parasitol 2024; 40:717-730. [PMID: 39013660 DOI: 10.1016/j.pt.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
The protozoan parasites Plasmodium, Leishmania, and Trypanosoma are transmitted by hematophagous insects and cause severe diseases in humans. These infections pose a global threat, particularly in low-resource settings, and are increasingly extending beyond the current endemic regions. Tropism of parasites is crucial for their development, and recent studies have revealed colonization of noncanonical tissues, aiding their survival and immune evasion. Despite receiving limited attention, cumulative evidence discloses the respiratory system as a significant interface for host-pathogen interactions, influencing the course of (co)infection and disease onset. Due to its pathophysiological and clinical implications, we emphasize that further research is needed to better understand the involvement of the respiratory system and its potential to improve prevention, diagnosis, treatment, and interruption of the chain of transmission.
Collapse
Affiliation(s)
- Sergio Araujo
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Alvaro Baeza Garcia
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
10
|
Reyes RA, Turner L, Ssewanyana I, Jagannathan P, Feeney ME, Lavstsen T, Greenhouse B, Bol S, Bunnik EM. Differences in phenotype between long-lived memory B cells against Plasmodium falciparum merozoite antigens and variant surface antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596978. [PMID: 38895251 PMCID: PMC11185507 DOI: 10.1101/2024.06.01.596978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Plasmodium falciparum infections elicit strong humoral immune responses to two main groups of antigens expressed by blood-stage parasites: merozoite antigens that are involved in the erythrocyte invasion process and variant surface antigens that mediate endothelial sequestration of infected erythrocytes. Long-lived B cells against both antigen classes can be detected in the circulation for years after exposure, but have not been directly compared. Here, we studied the phenotype of long-lived memory and atypical B cells to merozoite antigens (MSP1 and AMA1) and variant surface antigens (the CIDRα1 domain of PfEMP1) in Ugandan adults before and after local reduction of P. falciparum transmission. After a median of 1.7 years without P. falciparum infections, the percentage of antigen-specific activated B cells declined, but long-lived antigen-specific B cells were still detectable in all individuals. The majority of MSP1/AMA1-specific B cells were CD95+CD11c+ memory B cells, which are primed for rapid differentiation into antibody-secreting cells, and FcRL5-T-bet- atypical B cells. On the other hand, most CIDRα1-specific B cells were CD95-CD11c- memory B cells. CIDRα1-specific B cells were also enriched among a subset of atypical B cells that seem poised for antigen presentation. These results point to differences in how these antigens are recognized or processed by the immune system and how P. falciparum-specific B cells will respond upon re-infection.
Collapse
Affiliation(s)
- Raphael A Reyes
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Margaret E. Feeney
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Evelien M Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
11
|
Gehring AJ, Salimzadeh L. Current and future use of antibody-based passive immunity to prevent or control HBV/HDV infections. Antiviral Res 2024; 226:105893. [PMID: 38679166 DOI: 10.1016/j.antiviral.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
With the increasing momentum and success of monoclonal antibody therapy in conventional medical practices, there is a revived emphasis on the development of monoclonal antibodies targeting the hepatitis B surface antigen (anti-HBs) for the treatment of chronic hepatitis B (HBV) and hepatitis D (HDV). Combination therapies of anti-HBs monoclonal antibodies, and novel anti-HBV compounds and immunomodulatory drugs presenting a promising avenue to enhanced therapeutic outcomes in HBV/HDV cure regimens. In this review, we will cover the role of antibodies in the protection and clearance of HBV infection, the association of anti-HBV surface antigen antibodies (anti-HBs) in protection against HBV and how antibody effector functions, beyond neutralization, are likely necessary. Lastly, we will review clinical data from previous and ongoing clinical trials of passive antibody therapy to provide a state-of-the-are perspective on passive antibody therapies in combinations with additional novel agents.
Collapse
Affiliation(s)
- Adam J Gehring
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Loghman Salimzadeh
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
12
|
Mitul MT, Kastenschmidt JM, Sureshchandra S, Wagoner ZW, Sorn AM, Mcllwain DR, Hernandez-Davies JE, Jain A, de Assis R, Trask D, Davies DH, Wagar LE. Tissue-specific sex differences in pediatric and adult immune cell composition and function. Front Immunol 2024; 15:1373537. [PMID: 38812520 PMCID: PMC11133680 DOI: 10.3389/fimmu.2024.1373537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Sex-based differences in immune cell composition and function can contribute to distinct adaptive immune responses. Prior work has quantified these differences in peripheral blood, but little is known about sex differences within human lymphoid tissues. Here, we characterized the composition and phenotypes of adaptive immune cells from male and female ex vivo tonsils and evaluated their responses to influenza antigens using an immune organoid approach. In a pediatric cohort, female tonsils had more memory B cells compared to male tonsils direct ex vivo and after stimulation with live-attenuated but not inactivated vaccine, produced higher influenza-specific antibody responses. Sex biases were also observed in adult tonsils but were different from those measured in children. Analysis of peripheral blood immune cells from in vivo vaccinated adults also showed higher frequencies of tissue homing CD4 T cells in female participants. Together, our data demonstrate that distinct memory B and T cell profiles are present in male vs. female lymphoid tissues and peripheral blood respectively and suggest that these differences may in part explain sex biases in response to vaccines and viruses.
Collapse
Affiliation(s)
- Mahina Tabassum Mitul
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Jenna M. Kastenschmidt
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Suhas Sureshchandra
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Zachary W. Wagoner
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Andrew M. Sorn
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - David R. Mcllwain
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Jenny E. Hernandez-Davies
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Aarti Jain
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Rafael de Assis
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Douglas Trask
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, United States
| | - D. Huw Davies
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Lisa E. Wagar
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
13
|
Surendar J, Hackenberg RK, Schmitt-Sánchez F, Ossendorff R, Welle K, Stoffel-Wagner B, Sage PT, Burger C, Wirtz DC, Strauss AC, Schildberg FA. Osteomyelitis is associated with increased anti-inflammatory response and immune exhaustion. Front Immunol 2024; 15:1396592. [PMID: 38736874 PMCID: PMC11082283 DOI: 10.3389/fimmu.2024.1396592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Osteomyelitis (OMS) is a bone infection causing bone pain and severe complications. A balanced immune response is critical to eradicate infection without harming the host, yet pathogens manipulate immunity to establish a chronic infection. Understanding OMS-driven inflammation is essential for disease management, but comprehensive data on immune profiles and immune cell activation during OMS are lacking. Methods Using high-dimensional flow cytometry, we investigated the detailed innate and adaptive systemic immune cell populations in OMS and age- and sex-matched controls. Results Our study revealed that OMS is associated with increased levels of immune regulatory cells, namely T regulatory cells, B regulatory cells, and T follicular regulatory cells. In addition, the expression of immune activation markers HLA-DR and CD86 was decreased in OMS, while the expression of immune exhaustion markers TIM-3, PD-1, PD-L1, and VISTA was increased. Members of the T follicular helper (Tfh) cell family as well as classical and typical memory B cells were significantly increased in OMS individuals. We also found a strong correlation between memory B cells and Tfh cells. Discussion We conclude that OMS skews the host immune system towards the immunomodulatory arm and that the Tfh memory B cell axis is evident in OMS. Therefore, immune-directed therapies may be a promising alternative for eradication and recurrence of infection in OMS, particularly in individuals and areas where antibiotic resistance is a major concern.
Collapse
Affiliation(s)
- Jayagopi Surendar
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Roslind K. Hackenberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Fabio Schmitt-Sánchez
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Robert Ossendorff
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kristian Welle
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christof Burger
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C. Wirtz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C. Strauss
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
14
|
Mitchell RA, Ubillos I, Requena P, Campo JJ, Ome-Kaius M, Hanieh S, Umbers A, Samol P, Barrios D, Jiménez A, Bardají A, Mueller I, Menéndez C, Rogerson S, Dobaño C, Moncunill G. Chronic malaria exposure is associated with inhibitory markers on T cells that correlate with atypical memory and marginal zone-like B cells. Clin Exp Immunol 2024; 216:172-191. [PMID: 38387476 PMCID: PMC11036110 DOI: 10.1093/cei/uxae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024] Open
Abstract
Chronic immune activation from persistent malaria infections can induce immunophenotypic changes associated with T-cell exhaustion. However, associations between T and B cells during chronic exposure remain undefined. We analyzed peripheral blood mononuclear cells from malaria-exposed pregnant women from Papua New Guinea and Spanish malaria-naïve individuals using flow cytometry to profile T-cell exhaustion markers phenotypically. T-cell lineage (CD3, CD4, and CD8), inhibitory (PD1, TIM3, LAG3, CTLA4, and 2B4), and senescence (CD28-) markers were assessed. Dimensionality reduction methods revealed increased PD1, TIM3, and LAG3 expression in malaria-exposed individuals. Manual gating confirmed significantly higher frequencies of PD1+CD4+ and CD4+, CD8+, and double-negative (DN) T cells expressing TIM3 in malaria-exposed individuals. Increased frequencies of T cells co-expressing multiple markers were also found in malaria-exposed individuals. T-cell data were analyzed with B-cell populations from a previous study where we reported an alteration of B-cell subsets, including increased frequencies of atypical memory B cells (aMBC) and reduction in marginal zone (MZ-like) B cells during malaria exposure. Frequencies of aMBC subsets and MZ-like B cells expressing CD95+ had significant positive correlations with CD28+PD1+TIM3+CD4+ and DN T cells and CD28+TIM3+2B4+CD8+ T cells. Frequencies of aMBC, known to associate with malaria anemia, were inversely correlated with hemoglobin levels in malaria-exposed women. Similarly, inverse correlations with hemoglobin levels were found for TIM3+CD8+ and CD28+PD1+TIM3+CD4+ T cells. Our findings provide further insights into the effects of chronic malaria exposure on circulating B- and T-cell populations, which could impact immunity and responses to vaccination.
Collapse
Affiliation(s)
- Robert A Mitchell
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Pilar Requena
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Joseph J Campo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Antigen Discovery Inc., Irvine, CA, USA
| | - Maria Ome-Kaius
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Sarah Hanieh
- University of Melbourne, Melbourne, VIC, Australia
| | - Alexandra Umbers
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Paula Samol
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Diana Barrios
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Azucena Bardají
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ivo Mueller
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Clara Menéndez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
15
|
Gao X, Shen Q, Roco JA, Dalton B, Frith K, Munier CML, Ballard FD, Wang K, Kelly HG, Nekrasov M, He JS, Jaeger R, Carreira P, Ellyard JI, Beattie L, Enders A, Cook MC, Zaunders JJ, Cockburn IA. Zeb2 drives the formation of CD11c + atypical B cells to sustain germinal centers that control persistent infection. Sci Immunol 2024; 9:eadj4748. [PMID: 38330097 DOI: 10.1126/sciimmunol.adj4748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
CD11c+ atypical B cells (ABCs) are an alternative memory B cell lineage associated with immunization, infection, and autoimmunity. However, the factors that drive the transcriptional program of ABCs have not been identified, and the function of this population remains incompletely understood. Here, we identified candidate transcription factors associated with the ABC population based on a human tonsillar B cell single-cell dataset. We identified CD11c+ B cells in mice with a similar transcriptomic signature to human ABCs, and using an optimized CRISPR-Cas9 knockdown screen, we observed that loss of zinc finger E-box binding homeobox 2 (Zeb2) impaired ABC formation. Furthermore, ZEB2 haplo-insufficient Mowat-Wilson syndrome (MWS) patients have decreased circulating ABCs in the blood. In Cd23Cre/+Zeb2fl/fl mice with impaired ABC formation, ABCs were dispensable for efficient humoral responses after Plasmodium sporozoite immunization but were required to control recrudescent blood-stage malaria. Immune phenotyping revealed that ABCs drive optimal T follicular helper (TFH) cell formation and germinal center (GC) responses and they reside at the red/white pulp border, likely permitting better access to pathogen antigens for presentation. Collectively, our study shows that ABC formation is dependent on Zeb2, and these cells can limit recrudescent infection by sustaining GC reactions.
Collapse
Affiliation(s)
- Xin Gao
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Qian Shen
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Francis Crick Institute, London, UK
| | - Jonathan A Roco
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Becan Dalton
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Katie Frith
- Sydney Children's Hospital, Randwick, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | | | - Fiona D Ballard
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ke Wang
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Hannah G Kelly
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Maxim Nekrasov
- Australian Cancer Research Foundation Biomolecular Resource Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jin-Shu He
- ANU Centre for Therapeutic Discovery, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Rebecca Jaeger
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Patricia Carreira
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Julia I Ellyard
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Anselm Enders
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Matthew C Cook
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Ian A Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
16
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. Nat Commun 2024; 15:2021. [PMID: 38448421 PMCID: PMC10918175 DOI: 10.1038/s41467-024-46416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Sengupta S, Goswami D, Chakraborty B, Chaudhuri SJ, Ghosh MK, Chatterjee M. Status of B-Lymphocyte Subsets and Their Homing Markers in Patients With Post-Kala-Azar Dermal Leishmaniasis. Parasite Immunol 2024; 46:e13031. [PMID: 38527908 DOI: 10.1111/pim.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
In visceral leishmaniasis, the Type II helper T cell predominance results in B cell modulation and enhancement of anti-leishmanial IgG. However, information regarding its dermal sequel, post-kala-azar dermal leishmaniasis (PKDL), remains limited. Accordingly, this study aimed to elucidate the B cell-mediated antibody-dependent/independent immune profiles of PKDL patients. In the peripheral blood of PKDL patients, immunophenotyping of B cell subsets was performed by flow cytometry and by immunohistochemistry at lesional sites. The functionality of B cells was assessed in terms of skin IgG by immunofluorescence, while the circulating levels of B cell chemoattractants (CCL20, CXCL13, CCL17, CCL22, CCL19, CCL27, CXCL9, CXCL10 and CXCL11) were evaluated by a multiplex assay. In patients with PKDL as compared with healthy controls, there was a significant decrease in pan CD19+ B cells. However, within the CD19+ B cell population, there was a significantly raised proportion of switched memory B cells (CD19+IgD-CD27+) and plasma cells (CD19+IgD-CD38+CD27+). This was corroborated at lesional sites where a higher expression of CD20+ B cells and CD138+ plasma cells was evident; they were Ki67 negative and demonstrated a raised IgG. The circulating levels of B cell chemoattractants were raised and correlated positively with lesional CD20+ B cells. The increased levels of B cell homing markers possibly accounted for their enhanced presence at the lesional sites. There was a high proportion of plasma cells, which accounted for the increased presence of IgG that possibly facilitated parasite persistence and disease progression.
Collapse
Affiliation(s)
- Shilpa Sengupta
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Deep Goswami
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Bidhan Chakraborty
- Multidisciplinary Research Unit (MRU), Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Surya Jyati Chaudhuri
- Department of Microbiology, Sarat Chandra Chattopadhyay Govt. Medical College and Hospital, Uluberia, Howrah, India
| | - Manab K Ghosh
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| |
Collapse
|
18
|
Partey FD, Dowuona JNN, Pobee ANA, Walker MR, Aculley B, Prah DA, Ofori MF, Barfod LK. Atypical memory B cell frequency correlates with antibody breadth and function in malaria immune adults. Sci Rep 2024; 14:4888. [PMID: 38418831 PMCID: PMC10902325 DOI: 10.1038/s41598-024-55206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Clinical immunity to malaria develops slowly after repeated episodes of infection and antibodies are essential in naturally acquired immunity against malaria. However, chronic exposure to malaria has been linked to perturbation in B-cell homeostasis with the accumulation of atypical memory B cells. It is unclear how perturbations in B cell subsets influence antibody breadth, avidity, and function in individuals naturally exposed to malaria. We show that individuals living in high malaria transmission regions in Ghana have higher Plasmodium falciparum merozoite antigen-specific antibodies and an increased antibody breadth score but lower antibody avidities relative to low transmission regions. The frequency of circulating atypical memory B cells is positively associated with an individual's antibody breadth. In vitro growth inhibition is independent of the ability to bind to free merozoites but associated with the breadth of antibody reactivity in an individual. Taken together, our data shows that repeated malaria episodes hamper the development of high avid antibodies which is compensated for by an increase in antibody breadth. Our results provide evidence to reinforce the idea that in regions with high malaria prevalence, repeated malaria infections lead to the broadening of antibody diversity and the continued presence of atypical memory B cell populations.
Collapse
Affiliation(s)
| | | | | | - Melanie Rose Walker
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Belinda Aculley
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Michael Fokuo Ofori
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lea Klingenberg Barfod
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Rathay V, Fürle K, Kiehl V, Ulmer A, Lanzer M, Thomson-Luque R. IgG Subclass Switch in Volunteers Repeatedly Immunized with the Full-Length Plasmodium falciparum Merozoite Surface Protein 1 (MSP1). Vaccines (Basel) 2024; 12:208. [PMID: 38400191 PMCID: PMC10893298 DOI: 10.3390/vaccines12020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are highly effective tools against infectious diseases and are also considered necessary in the fight against malaria. Vaccine-induced immunity is frequently mediated by antibodies. We have recently conducted a first-in-human clinical trial featuring SumayaVac-1, a malaria vaccine based on the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as an adjuvant. Vaccination with MSP1FL was safe and elicited sustainable IgG antibody titers that exceeded those observed in semi-immune populations from Africa. Moreover, IgG antibodies stimulated various Fc-mediated effector mechanisms associated with protection against malaria. However, these functionalities gradually waned. Here, we show that the initial two doses of SumayaVac-1 primarily induced the cytophilic subclasses IgG1 and IgG3. Unexpectedly, a shift in the IgG subclass composition occurred following the third and fourth vaccinations. Specifically, there was a progressive transition to IgG4 antibodies, which displayed a reduced capacity to engage in Fc-mediated effector functions and also exhibited increased avidity. In summary, our analysis of antibody responses to MSP1FL vaccination unveils a temporal shift towards noninflammatory IgG4 antibodies. These findings underscore the importance of considering the impact of IgG subclass composition on vaccine-induced immunity, particularly concerning Fc-mediated effector functions. This knowledge is pivotal in guiding the design of optimal vaccination strategies against malaria, informing decision making for future endeavors in this critical field.
Collapse
Affiliation(s)
- Veronika Rathay
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Kristin Fürle
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Viktoria Kiehl
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Anne Ulmer
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Richard Thomson-Luque
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG, 69115 Heidelberg, Germany
| |
Collapse
|
20
|
Lopez-Perez M, Jain A, Davies DH, Vásquez-Jiménez JM, Herrera SM, Oñate J, Felgner PL, Herrera S, Arévalo-Herrera M. Profiling the antibody response of humans protected by immunization with Plasmodium vivax radiation-attenuated sporozoites. Sci Rep 2024; 14:2790. [PMID: 38307966 PMCID: PMC10837454 DOI: 10.1038/s41598-024-53175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Malaria sterile immunity has been reproducibly induced by immunization with Plasmodium radiation-attenuated sporozoites (RAS). Analyses of sera from RAS-immunized individuals allowed the identification of P. falciparum antigens, such as the circumsporozoite protein (CSP), the basis for the RTS, S and R21Matrix-M vaccines. Similar advances in P. vivax (Pv) vaccination have been elusive. We previously reported 42% (5/12) of sterile protection in malaria-unexposed, Duffy-positive (Fy +) volunteers immunized with PvRAS followed by a controlled human malaria infection (CHMI). Using a custom protein microarray displaying 515 Pv antigens, we found a significantly higher reactivity to PvCSP and one hypothetical protein (PVX_089630) in volunteers protected against P. vivax infection. In mock-vaccinated Fy + volunteers, a strong antibody response to CHMI was also observed. Although the Fy- volunteers immunized with non-irradiated Pv-infected mosquitoes (live sporozoites) did not develop malaria after CHMI, they recognized a high number of antigens, indicating the temporary presence of asexual parasites in peripheral blood. Together, our findings contribute to the understanding of the antibody response to P. vivax infection and allow the identification of novel parasite antigens as vaccine candidates.Trial registration: ClinicalTrials.gov number: NCT01082341.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
| | - Aarti Jain
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | - D Huw Davies
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | | | | | | | - Philip L Felgner
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
| | - Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia.
- Caucaseco Scientific Research Center, Cali, Colombia.
| |
Collapse
|
21
|
Thorarinsdottir K, McGrath S, Forslind K, Agelii ML, Ekwall AKH, Jacobsson LTH, Rudin A, Mårtensson IL, Gjertsson I. Cartilage destruction in early rheumatoid arthritis patients correlates with CD21 -/low double-negative B cells. Arthritis Res Ther 2024; 26:23. [PMID: 38225658 PMCID: PMC10789032 DOI: 10.1186/s13075-024-03264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Involvement of B cells in the pathogenesis of rheumatoid arthritis (RA) is supported by the presence of disease-specific autoantibodies and the efficacy of treatment directed against B cells. B cells that express low levels of or lack the B cell receptor (BCR) co-receptor CD21, CD21-/low B cells, have been linked to autoimmune diseases, including RA. In this study, we characterized the CD21+ and CD21-/low B cell subsets in newly diagnosed, early RA (eRA) patients and investigated whether any of the B cell subsets were associated with autoantibody status, disease activity and/or joint destruction. METHODS Seventy-six eRA patients and 28 age- and sex-matched healthy donors were recruited. Multiple clinical parameters were assessed, including disease activity and radiographic joint destruction. B cell subsets were analysed in peripheral blood (PB) and synovial fluid (SF) using flow cytometry. RESULTS Compared to healthy donors, the eRA patients displayed an elevated frequency of naïve CD21+ B cells in PB. Amongst memory B cells, eRA patients had lower frequencies of the CD21+CD27+ subsets and CD21-/low CD27+IgD+ subset. The only B cell subset found to associate with clinical factors was the CD21-/low double-negative (DN, CD27-IgD-) cell population, linked with the joint space narrowing score, i.e. cartilage destruction. Moreover, in SF from patients with established RA, the CD21-/low DN B cells were expanded and these cells expressed receptor activator of the nuclear factor κB ligand (RANKL). CONCLUSIONS Cartilage destruction in eRA patients was associated with an expanded proportion of CD21-/low DN B cells in PB. The subset was also expanded in SF from established RA patients and expressed RANKL. Taken together, our results suggest a role for CD21-/low DN in RA pathogenesis.
Collapse
Affiliation(s)
- Katrin Thorarinsdottir
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Center for Rheumatology Research, University Hospital of Iceland, Reykjavík, Iceland
- Department of Immunology, University Hospital of Iceland, Reykjavík, Iceland
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Kristina Forslind
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University, Lund, Sweden
- Spenshult Research and Development Centre, Halmstad, Sweden
| | - Monica Leu Agelii
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lennart T H Jacobsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
22
|
Olivieri G, Cotugno N, Palma P. Emerging insights into atypical B cells in pediatric chronic infectious diseases and immune system disorders: T(o)-bet on control of B-cell immune activation. J Allergy Clin Immunol 2024; 153:12-27. [PMID: 37890706 PMCID: PMC10842362 DOI: 10.1016/j.jaci.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Repetitive or persistent cellular stimulation in vivo has been associated with the development of a heterogeneous B-cell population that exhibits a distinctive phenotype and, in addition to classical B-cell markers, often expresses the transcription factor T-bet and myeloid marker CD11c. Research suggests that this atypical population consists of B cells with distinct B-cell receptor specificities capable of binding the antigens responsible for their development. The expansion of this population occurs in the presence of chronic inflammatory conditions and autoimmune diseases where different nomenclatures have been used to describe them. However, as a result of the diverse contexts in which they have been investigated, these cells have remained largely enigmatic, with much ambiguity remaining regarding their phenotype and function in humoral immune response as well as their role in autoimmunity. Atypical B cells have garnered considerable interest because of their ability to produce specific antibodies and/or autoantibodies and because of their association with key disease manifestations. Although they have been widely described in the context of adults, little information is present for children. Therefore, the aim of this narrative review is to describe the characteristics of this population, suggest their function in pediatric immune-related diseases and chronic infections, and explore their potential therapeutic avenues.
Collapse
Affiliation(s)
- Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
23
|
Reyes RA, Batugedara G, Dutta P, Reers AB, Garza R, Ssewanyana I, Jagannathan P, Feeney ME, Greenhouse B, Bol S, Ay F, Bunnik EM. Atypical B cells consist of subsets with distinct functional profiles. iScience 2023; 26:108496. [PMID: 38098745 PMCID: PMC10720271 DOI: 10.1016/j.isci.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Atypical B cells are a population of activated B cells that are commonly enriched in individuals with chronic immune activation but are also part of a normal immune response to infection or vaccination. To better define the role of atypical B cells in the human adaptive immune response, we performed single-cell sequencing of transcriptomes, cell surface markers, and B cell receptors in individuals with chronic exposure to the malaria parasite Plasmodium falciparum, a condition known to lead to accumulation of circulating atypical B cells. We identified three previously uncharacterized populations of atypical B cells with distinct transcriptional and functional profiles and observed marked differences among these three subsets in their ability to produce immunoglobulin G upon T-cell-dependent activation. Our findings help explain the conflicting observations in prior studies regarding the function of atypical B cells and highlight their different roles in the adaptive immune response in chronic inflammatory conditions.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gayani Batugedara
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Paramita Dutta
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ashley B. Reers
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rolando Garza
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Isaac Ssewanyana
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Margaret E. Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ferhat Ay
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
24
|
Yin S, Wan Y, Issa R, Zhu Y, Xu X, Liu J, Mao M, Li M, Tong X, Tian C, Wang J, Huang R, Zhang Q, Wu C, Chen Y, Li J. The presence of baseline HBsAb-Specific B cells can predict HBsAg or HBeAg seroconversion of chronic hepatitis B on treatment. Emerg Microbes Infect 2023; 12:2259003. [PMID: 37702202 PMCID: PMC10569346 DOI: 10.1080/22221751.2023.2259003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Indices for predicting HBsAg or HBeAg seroconversion in patients with chronic hepatitis B virus (HBV) infection during antiviral therapy remain elusive. We aimed to investigate if the presence of HBsAb-specific B cells at baseline can predict HBsAg or HBeAg seroconversion. In this study, 134 treatment-naive patients with chronic HBV were enrolled. A baseline HBsAb-specific B cell ELISpot assay was performed for all the patients that enrolled. Serum samples were collected at 12, 24, and 48 weeks for patients treated with Peg-IFN-α, or at 1 year, 3 years, and 5 years for patients treated with NAs. Laboratory testing of HBsAg, HBsAb, HBeAg, HBeAb, HBcAb, HBV DNA, ALT, and AST was done. We observed a significantly lower frequency of HBsAb-specific B cells in patients with chronic HBV than in healthy individuals . In the Peg-IFN-α-treated group, 41.2% of patients with baseline HBsAb-specific B cells achieved HBsAg seroconversion, while only 13.6% of patients without baseline HBsAb-specific B cells achieved HBsAg seroconversion (p = 0.006). By logistic regression analysis, patients with baseline HBsAb-specific B cells and HBsAg ≤ 1500 had higher HBsAg clearance at the end of treatment (p < 0.05). In the NA-treated group, 58.3% of patients with baseline HBsAb-specific B cells achieved HBeAg seroconversion, whereas only 30.0% of patients without baseline HBsAb-specific B cells achieved HBeAg seroconversion (p = 0.114). Our result revealed that baseline HBsAb-specific B cells by ELISpot assay might be a valuable predictive biomarker of HBsAg or HBeAg seroconversion in patients with chronic HBV on treatment.
Collapse
Affiliation(s)
- Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yawen Wan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Rahma Issa
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yijia Zhu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaoming Xu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jiacheng Liu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Minxin Mao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ming Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chen Tian
- Department of Infectious Diseases, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
| | - Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qun Zhang
- Department of Infectious Diseases, Affiliated Zhongda Hospital of Southeast University, Nanjing, People’s Republic of China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
25
|
Furtado R, Paul M, Zhang J, Sung J, Karell P, Kim RS, Caillat-Zucman S, Liang L, Felgner P, Bauleni A, Gama S, Buchwald A, Taylor T, Seydel K, Laufer M, Delahaye F, Daily JP, Lauvau G. Cytolytic circumsporozoite-specific memory CD4 + T cell clones are expanded during Plasmodium falciparum infection. Nat Commun 2023; 14:7726. [PMID: 38001069 PMCID: PMC10673885 DOI: 10.1038/s41467-023-43376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Clinical immunity against Plasmodium falciparum infection develops in residents of malaria endemic regions, manifesting in reduced clinical symptoms during infection and in protection against severe disease but the mechanisms are not fully understood. Here, we compare the cellular and humoral immune response of clinically immune (0-1 episode over 18 months) and susceptible (at least 3 episodes) during a mild episode of Pf malaria infection in a malaria endemic region of Malawi, by analysing peripheral blood samples using high dimensional mass cytometry (CyTOF), spectral flow cytometry and single-cell transcriptomic analyses. In the clinically immune, we find increased proportions of circulating follicular helper T cells and classical monocytes, while the humoral immune response shows characteristic age-related differences in the protected. Presence of memory CD4+ T cell clones with a strong cytolytic ZEB2+ T helper 1 effector signature, sharing identical T cell receptor clonotypes and recognizing the Pf-derived circumsporozoite protein (CSP) antigen are found in the blood of the Pf-infected participants gaining protection. Moreover, in clinically protected participants, ZEB2+ memory CD4+ T cells express lower level of inhibitory and chemotactic receptors. We thus propose that clonally expanded ZEB2+ CSP-specific cytolytic memory CD4+ Th1 cells may contribute to clinical immunity against the sporozoite and liver-stage Pf malaria.
Collapse
Affiliation(s)
- Raquel Furtado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- RF: BioNTech US, 40 Erie Street, Cambridge, MA, 02139, USA
| | - Mahinder Paul
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Joowhan Sung
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Paul Karell
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Sophie Caillat-Zucman
- Université de Paris, AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatiblité, INSERM UMR976, 75010, Paris, France
| | - Li Liang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Philip Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Andy Bauleni
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Syze Gama
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Andrea Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Terrie Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| | - Karl Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- FD: Precision Oncology, Sanofi, Vitry sur Seine, France
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| | - Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| |
Collapse
|
26
|
Al-Aubodah TA, Aoudjit L, Pascale G, Perinpanayagam MA, Langlais D, Bitzan M, Samuel SM, Piccirillo CA, Takano T. The extrafollicular B cell response is a hallmark of childhood idiopathic nephrotic syndrome. Nat Commun 2023; 14:7682. [PMID: 37996443 PMCID: PMC10667257 DOI: 10.1038/s41467-023-43504-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The efficacy of the B cell-targeting drug rituximab (RTX) in childhood idiopathic nephrotic syndrome (INS) suggests that B cells may be implicated in disease pathogenesis. However, B cell characterization in children with INS remains limited. Here, using single-cell RNA sequencing, we demonstrate that a B cell transcriptional program poised for effector functions represents the major immune perturbation in blood samples from children with active INS. This transcriptional profile was associated with an extrafollicular B cell response marked by the expansion of atypical B cells (atBCs), marginal zone-like B cells, and antibody-secreting cells (ASCs). Flow cytometry of blood from 13 children with active INS and 24 healthy donors confirmed the presence of an extrafollicular B cell response denoted by the expansion of proliferating RTX-sensitive extrafollicular (CXCR5-) CD21low T-bet+ CD11c+ atBCs and short-lived T-bet+ ASCs in INS. Together, our study provides evidence for an extrafollicular origin for humoral immunity in active INS.
Collapse
Affiliation(s)
- Tho-Alfakar Al-Aubodah
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Lamine Aoudjit
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Giuseppe Pascale
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Maneka A Perinpanayagam
- Section of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David Langlais
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University Genome Centre, Montréal, Québec, Canada
| | - Martin Bitzan
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Kidney Centre of Excellence, Al Jalila Children's Hospital, and Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Susan M Samuel
- Section of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Tomoko Takano
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
27
|
Dooley NL, Chabikwa TG, Pava Z, Loughland JR, Hamelink J, Berry K, Andrew D, Soon MSF, SheelaNair A, Piera KA, William T, Barber BE, Grigg MJ, Engwerda CR, Lopez JA, Anstey NM, Boyle MJ. Single cell transcriptomics shows that malaria promotes unique regulatory responses across multiple immune cell subsets. Nat Commun 2023; 14:7387. [PMID: 37968278 PMCID: PMC10651914 DOI: 10.1038/s41467-023-43181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Plasmodium falciparum malaria drives immunoregulatory responses across multiple cell subsets, which protects from immunopathogenesis, but also hampers the development of effective anti-parasitic immunity. Understanding malaria induced tolerogenic responses in specific cell subsets may inform development of strategies to boost protective immunity during drug treatment and vaccination. Here, we analyse the immune landscape with single cell RNA sequencing during P. falciparum malaria. We identify cell type specific responses in sub-clustered major immune cell types. Malaria is associated with an increase in immunosuppressive monocytes, alongside NK and γδ T cells which up-regulate tolerogenic markers. IL-10-producing Tr1 CD4 T cells and IL-10-producing regulatory B cells are also induced. Type I interferon responses are identified across all cell types, suggesting Type I interferon signalling may be linked to induction of immunoregulatory networks during malaria. These findings provide insights into cell-specific and shared immunoregulatory changes during malaria and provide a data resource for further analysis.
Collapse
Affiliation(s)
- Nicholas L Dooley
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | | | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Julianne Hamelink
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - Kiana Berry
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kim A Piera
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
- Subang Jaya Medical Centre, Selangor, Malaysia
| | - Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | | | - J Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | - Michelle J Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia.
- University of Queensland, Brisbane, QLD, Australia.
- Queensland University of Technology, Brisbane, QLD, Australia.
- Burnet Institute, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Kim IS, Kang CK, Lee SJ, Lee CH, Kim M, Seo C, Kim G, Lee S, Park KS, Chang E, Jung J, Song KH, Choe PG, Park WB, Kim ES, Bin Kim H, Kim NJ, Oh MD, Lee JE, Shin HM, Kim HR. Tracking antigen-specific TCR clonotypes in SARS-CoV-2 infection reveals distinct severity trajectories. J Med Virol 2023; 95:e29199. [PMID: 37916645 DOI: 10.1002/jmv.29199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Despite the importance of antigen-specific T cells in infectious disease, characterizing and tracking clonally amplified T cells during the progression of a patient's symptoms remain unclear. Here, we performed a longitudinal, in-depth single-cell multiomics analysis of samples from asymptomatic, mild, usual severe, and delayed severe patients of SARS-CoV-2 infection. Our in-depth analysis revealed that hyperactive or improper T-cell responses were more aggressive in delayed severe patients. Interestingly, tracking of antigen-specific T-cell receptor (TCR) clonotypes along the developmental trajectory indicated an attenuation in functional T cells upon severity. In addition, increased glycolysis and interleukin-6 signaling in the cytotoxic T cells were markedly distinct in delayed severe patients compared to usual severe patients, particularly in the middle and late stages of infection. Tracking B-cell receptor clonotypes also revealed distinct transitions and somatic hypermutations within B cells across different levels of disease severity. Our results suggest that single-cell TCR clonotype tracking can distinguish the severity of patients through immunological hallmarks, leading to a better understanding of the severity differences in and improving the management of infectious diseases by analyzing the dynamics of immune responses over time.
Collapse
Affiliation(s)
- Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon, South Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Soojin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyoung Sun Park
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jongtak Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Tebben K, Yirampo S, Coulibaly D, Koné A, Laurens M, Stucke E, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry A, Kouriba B, Plowe C, Doumbo O, Lyke K, Takala-Harrison S, Thera M, Travassos M, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. RESEARCH SQUARE 2023:rs.3.rs-3487114. [PMID: 37961587 PMCID: PMC10635353 DOI: 10.21203/rs.3.rs-3487114/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
| | - Salif Yirampo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Drissa Coulibaly
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Abdoulaye Koné
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | | | - Ahmadou Dembélé
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Youssouf Tolo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Karim Traoré
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Ahmadou Niangaly
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | - Bourema Kouriba
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | - Ogobara Doumbo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | | | - Mahamadou Thera
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER)
| | | | | |
Collapse
|
30
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563751. [PMID: 37961701 PMCID: PMC10634788 DOI: 10.1101/2023.10.24.563751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| |
Collapse
|
31
|
Kwak K, Sohn H, George R, Torgbor C, Manzella-Lapeira J, Brzostowski J, Pierce SK. B cell responses to membrane-presented antigens require the function of the mechanosensitive cation channel Piezo1. Sci Signal 2023; 16:eabq5096. [PMID: 37751477 PMCID: PMC10691204 DOI: 10.1126/scisignal.abq5096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
The demand for a vaccine for coronavirus disease 2019 (COVID-19) highlighted gaps in our understanding of the requirements for B cell responses to antigens, particularly to membrane-presented antigens, as occurs in vivo. We found that human B cell responses to membrane-presented antigens required the function of Piezo1, a plasma membrane mechanosensitive cation channel. Simply making contact with a glass probe induced calcium (Ca2+) fluxes in B cells that were blocked by the Piezo1 inhibitor GsMTx4. When placed on glass surfaces, the plasma membrane tension of B cells increased, which stimulated Ca2+ influx and spreading of B cells over the glass surface, which was blocked by the Piezo1 inhibitor OB-1. B cell responses to membrane-presented antigens but not to soluble antigens were inhibited both by Piezo1 inhibitors and by siRNA-mediated knockdown of Piezo1. Thus, the activation of Piezo1 defines an essential event in B cell activation to membrane-presented antigens that may be exploited to improve the efficacy of vaccines.
Collapse
Affiliation(s)
- Kihyuck Kwak
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Rachel George
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Charles Torgbor
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Javier Manzella-Lapeira
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
32
|
Chung MKY, Gong L, Kwong DL, Lee VH, Lee AW, Guan X, Kam N, Dai W. Functions of double-negative B cells in autoimmune diseases, infections, and cancers. EMBO Mol Med 2023; 15:e17341. [PMID: 37272217 PMCID: PMC10493577 DOI: 10.15252/emmm.202217341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/06/2023] Open
Abstract
Most mature B cells can be divided into four subtypes based on the expression of the surface markers IgD and CD27: IgD+ CD27- naïve B cells, IgD+ CD27+ unswitched memory B cells, IgD- CD27+ switched memory B cells, and IgD- CD27- double-negative (DN) B cells. Despite their small population size in normal peripheral blood, DN B cells play integral roles in various diseases. For example, they generate autoimmunity in autoimmune conditions, while these cells may generate both autoimmune and antipathogenic responses in COVID-19, or act in a purely antipathogenic capacity in malaria. Recently, DN B cells have been identified in nasopharyngeal carcinoma and non-small-cell lung cancers, where they may play an immunosuppressive role. The distinct functions that DN B cells play in different diseases suggest that they are a heterogeneous B-cell population. Therefore, further study of the mechanisms underlying the involvement of DN B cells in these diseases is essential for understanding their pathogenesis and the development of therapeutic strategies. Further research is thus warranted to characterize the DN B-cell population in detail.
Collapse
Affiliation(s)
- Michael King Yung Chung
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Dora Lai‐Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Victor Ho‐Fun Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ann Wing‐Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Xin‐Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ngar‐Woon Kam
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Laboratory for Synthetic Chemistry and Chemical BiologyHong Kong (SAR)China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
33
|
Steuten J, Bos AV, Kuijper LH, Claireaux M, Olijhoek W, Elias G, Duurland MC, Jorritsma T, Marsman C, Paul AGA, Garcia Vallejo JJ, van Gils MJ, Wieske L, Kuijpers TW, Eftimov F, van Ham SM, Ten Brinke A. Distinct dynamics of antigen-specific induction and differentiation of different CD11c +Tbet + B-cell subsets. J Allergy Clin Immunol 2023; 152:689-699.e6. [PMID: 36858158 DOI: 10.1016/j.jaci.2023.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.
Collapse
Affiliation(s)
- Juulke Steuten
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Amélie V Bos
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter Olijhoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - George Elias
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariel C Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Casper Marsman
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands; Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Ferreira IATM, Lee CYC, Foster WS, Abdullahi A, Dratva LM, Tuong ZK, Stewart BJ, Ferdinand JR, Guillaume SM, Potts MOP, Perera M, Krishna BA, Peñalver A, Cabantous M, Kemp SA, Ceron-Gutierrez L, Ebrahimi S, Lyons P, Smith KGC, Bradley J, Collier DA, McCoy LE, van der Klaauw A, Thaventhiran JED, Farooqi IS, Teichmann SA, MacAry PA, Doffinger R, Wills MR, Linterman MA, Clatworthy MR, Gupta RK. Atypical B cells and impaired SARS-CoV-2 neutralization following heterologous vaccination in the elderly. Cell Rep 2023; 42:112991. [PMID: 37590132 DOI: 10.1016/j.celrep.2023.112991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.
Collapse
Affiliation(s)
- Isabella A T M Ferreira
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - William S Foster
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lisa M Dratva
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Stephane M Guillaume
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Martin O P Potts
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marianne Perera
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Benjamin A Krishna
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Peñalver
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Mia Cabantous
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Steven A Kemp
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Soraya Ebrahimi
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Paul Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - John Bradley
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dami A Collier
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Agatha van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, Cambridge, UK
| | | | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, Cambridge, UK
| | | | - Paul A MacAry
- National University of Singapore, Singapore, Singapore
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michelle A Linterman
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK.
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK; Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK.
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
35
|
Wing E, Sutherland C, Miles K, Gray D, Goodyear CS, Otto TD, Breusch S, Cowan G, Gray M. Double-negative-2 B cells are the major synovial plasma cell precursor in rheumatoid arthritis. Front Immunol 2023; 14:1241474. [PMID: 37638026 PMCID: PMC10450142 DOI: 10.3389/fimmu.2023.1241474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
B cells are key pathogenic drivers of chronic inflammation in rheumatoid arthritis (RA). There is limited understanding of the relationship between synovial B cell subsets and pathogenic antibody secreting cells (ASCs). This knowledge is crucial for the development of more targeted B-cell depleting therapies. While CD11c+ double-negative 2 (DN2) B cells have been suggested as an ASC precursor in lupus, to date there is no proven link between the two subsets in RA. We have used both single-cell gene expression and BCR sequencing to study synovial B cells from patients with established RA, in addition to flow cytometry of circulating B cells. To better understand the differentiation patterns within the diseased tissue, a combination of RNA-based trajectory inference and clonal lineage analysis of BCR relationships were used. Both forms of analysis indicated that DN2 B cells serve as a major precursors to synovial ASCs. This study advances our understanding of B cells in RA and reveals the origin of pathogenic ASCs in the RA synovium. Given the significant role of DN2 B cells as a progenitor to pathogenic B cells in RA, it is important to conduct additional research to investigate the origins of DN2 B cells in RA and explore their potential as therapeutic targets in place of the less specific pan-B cells depletion therapies currently in use.
Collapse
Affiliation(s)
- Elinor Wing
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine Sutherland
- Institute of Immunology and Infection Research, School of Biological Sciences, The King’s Buildings, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katherine Miles
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David Gray
- Institute of Immunology and Infection Research, School of Biological Sciences, The King’s Buildings, The University of Edinburgh, Edinburgh, United Kingdom
| | - Carl S. Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stefan Breusch
- Orthopaedic Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Graeme Cowan
- Institute of Immunology and Infection Research, School of Biological Sciences, The King’s Buildings, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mohini Gray
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Shukla N, Tang WK, Coelho CH, Long CA, Healy SA, Sagara I, Miura K, Duffy PE, Tolia NH. A human antibody epitope map of the malaria vaccine antigen Pfs25. NPJ Vaccines 2023; 8:108. [PMID: 37542029 PMCID: PMC10403551 DOI: 10.1038/s41541-023-00712-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023] Open
Abstract
Pfs25 is a leading antigen for a malaria transmission-blocking vaccine and shows moderate transmission-blocking activity and induction of rapidly decreasing antibody titers in clinical trials. A comprehensive definition of all transmission-reducing epitopes of Pfs25 will inform structure-guided design to enhance Pfs25-based vaccines, leading to potent transmission-blocking activity. Here, we compiled a detailed human antibody epitope map comprising epitope binning data and structures of multiple human monoclonal antibodies, including three new crystal structures of Pfs25 in complex with transmission-reducing antibodies from Malian volunteers immunized with Pfs25 conjugated to EPA and adjuvanted with AS01. These structures revealed additional epitopes in Pfs25 capable of reducing transmission and expanded this characterization to malaria-exposed humans. This work informs immunogen design to focus the antibody response to transmission-reducing epitopes of Pfs25, enabling development of more potent transmission-blocking vaccines for malaria.
Collapse
Affiliation(s)
- Niharika Shukla
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Camila H Coelho
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sara A Healy
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Issaka Sagara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technology, Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Patrick E Duffy
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
37
|
Manno D, Patterson C, Drammeh A, Tetteh K, Kroma MT, Otieno GT, Lawal BJ, Soremekun S, Ayieko P, Gaddah A, Kamara AB, Baiden F, Afolabi MO, Tindanbil D, Owusu-Kyei K, Ishola D, Deen GF, Keshinro B, Njie Y, Samai M, Lowe B, Robinson C, Leigh B, Drakeley C, Greenwood B, Watson-Jones D. The Effect of Previous Exposure to Malaria Infection and Clinical Malaria Episodes on the Immune Response to the Two-Dose Ad26.ZEBOV, MVA-BN-Filo Ebola Vaccine Regimen. Vaccines (Basel) 2023; 11:1317. [PMID: 37631885 PMCID: PMC10459393 DOI: 10.3390/vaccines11081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
We assessed whether the immunogenicity of the two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen with a 56-day interval between doses was affected by exposure to malaria before dose 1 vaccination and by clinical episodes of malaria in the period immediately after dose 1 and after dose 2 vaccinations. Previous malaria exposure in participants in an Ebola vaccine trial in Sierra Leone (ClinicalTrials.gov: NCT02509494) was classified as low, intermediate, and high according to their antibody responses to a panel of Plasmodium falciparum antigens detected using a Luminex MAGPIX platform. Clinical malaria episodes after vaccinations were recorded as part of the trial safety monitoring. Binding antibody responses against the Ebola virus (EBOV) glycoprotein (GP) were measured 57 days post dose 1 and 21 days post dose 2 by ELISA and summarized as Geometric Mean Concentrations (GMCs). Geometric Mean Ratios (GMRs) were used to compare groups with different levels of exposure to malaria. Overall, 587 participants, comprising 188 (32%) adults (aged ≥ 18 years) and 399 (68%) children (aged 1-3, 4-11, and 12-17 years), were included in the analysis. There was no evidence that the anti-EBOV-GP antibody GMCs post dose 1 and post dose 2 differed between categories of previous malaria exposure. There was weak evidence that the GMC at 57 days post dose 1 was lower in participants who had had at least one episode of clinical malaria post dose 1 compared to participants with no diagnosed clinical malaria in the same period (GMR = 0.82, 95% CI: 0.69-0.98, p-value = 0.02). However, GMC post dose 2 was not reduced in participants who experienced clinical malaria post-dose 1 and/or post-dose 2 vaccinations. In conclusion, the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen is immunogenic in individuals with previous exposure to malaria and in those who experience clinical malaria after vaccination. This vaccine regimen is suitable for prophylaxis against Ebola virus disease in malaria-endemic regions.
Collapse
Affiliation(s)
- Daniela Manno
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | - Abdoulie Drammeh
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
| | - Kevin Tetteh
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Mattu Tehtor Kroma
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone, New England Ville, Freetown, Sierra Leone
| | - Godfrey Tuda Otieno
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
| | - Bolarinde Joseph Lawal
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
| | - Seyi Soremekun
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Philip Ayieko
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza P.O. Box 11936, Tanzania
| | | | - Abu Bakarr Kamara
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone, New England Ville, Freetown, Sierra Leone
| | - Frank Baiden
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
| | - Muhammed Olanrewaju Afolabi
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
| | - Daniel Tindanbil
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
| | - Kwabena Owusu-Kyei
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
| | - David Ishola
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
| | - Gibrilla Fadlu Deen
- College of Medicine and Allied Health Sciences, University of Sierra Leone, New England Ville, Freetown, Sierra Leone
| | | | - Yusupha Njie
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- EBOVAC Project Office, Kukuna Road, Kambia, Sierra Leone
| | - Mohamed Samai
- College of Medicine and Allied Health Sciences, University of Sierra Leone, New England Ville, Freetown, Sierra Leone
| | - Brett Lowe
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- KEMRI-Wellcome Trust Research Programme, Kilifi P.O. Box 230, Kenya
| | - Cynthia Robinson
- Janssen Vaccines and Prevention, 2333 CB Leiden, The Netherlands
| | - Bailah Leigh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, New England Ville, Freetown, Sierra Leone
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Brian Greenwood
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Deborah Watson-Jones
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza P.O. Box 11936, Tanzania
| |
Collapse
|
38
|
Cesar G, Natale MA, Albareda MC, Alvarez MG, Lococo B, De Rissio AM, Fernandez M, Castro Eiro MD, Bertocchi G, White BE, Zabaleta F, Viotti R, Tarleton RL, Laucella SA. B-Cell Responses in Chronic Chagas Disease: Waning of Trypanosoma cruzi-Specific Antibody-Secreting Cells Following Successful Etiological Treatment. J Infect Dis 2023; 227:1322-1332. [PMID: 36571148 PMCID: PMC10226662 DOI: 10.1093/infdis/jiac495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND A drawback in the treatment of chronic Chagas disease (American trypanosomiasis) is the long time required to achieve complete loss of serological reactivity, the standard for determining treatment efficacy. METHODS Antibody-secreting cells and memory B cells specific for Trypanosoma cruzi and their degree of differentiation were evaluated in adult and pediatric study participants with chronic Chagas disease before and after etiological treatment. RESULTS T. cruzi-specific antibody-secreting cells disappeared from the circulation in benznidazole or nifurtimox-treated participants with declining parasite-specific antibody levels after treatment, whereas B cells in most participants with unaltered antibody levels were low before treatment and did not change after treatment. The timing of the decay in parasite-specific antibody-secreting B cells was similar to that in parasite-specific antibodies, as measured by a Luminex-based assay, but preceded the decay in antibody levels detected by conventional serology. The phenotype of total B cells returned to a noninfection profile after successful treatment. CONCLUSIONS T. cruzi-specific antibodies in the circulation of chronically T. cruzi-infected study participants likely derive from both antigen-driven plasmablasts, which disappear after successful treatment, and long-lived plasma cells, which persist and account for the low frequency and long course to complete seronegative conversion in successfully treated participants.
Collapse
Affiliation(s)
- G Cesar
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - M A Natale
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - M C Albareda
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - M G Alvarez
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - B Lococo
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - A M De Rissio
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - M Fernandez
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - M D Castro Eiro
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - G Bertocchi
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - B E White
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - F Zabaleta
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - R Viotti
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - R L Tarleton
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - S A Laucella
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| |
Collapse
|
39
|
Abstract
Autoreactive B cells and interferons are central players in systemic lupus erythematosus (SLE) pathogenesis. The partial success of drugs targeting these pathways, however, supports heterogeneity in upstream mechanisms contributing to disease pathogenesis. In this review, we focus on recent insights from genetic and immune monitoring studies of patients that are refining our understanding of these basic mechanisms. Among them, novel mutations in genes affecting intrinsic B cell activation or clearance of interferogenic nucleic acids have been described. Mitochondria have emerged as relevant inducers and/or amplifiers of SLE pathogenesis through a variety of mechanisms that include disruption of organelle integrity or compartmentalization, defective metabolism, and failure of quality control measures. These result in extra- or intracellular release of interferogenic nucleic acids as well as in innate and/or adaptive immune cell activation. A variety of classic and novel SLE autoantibody specificities have been found to recapitulate genetic alterations associated with monogenic lupus or to trigger interferogenic amplification loops. Finally, atypical B cells and novel extrafollicular T helper cell subsets have been proposed to contribute to the generation of SLE autoantibodies. Overall, these novel insights provide opportunities to deepen the immunophenotypic surveillance of patients and open the door to patient stratification and personalized, rational approaches to therapy.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Zurong Wan
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| |
Collapse
|
40
|
Ioannidis LJ, Studniberg SI, Eriksson EM, Suwarto S, Denis D, Liao Y, Shi W, Garnham AL, Sasmono RT, Hansen DS. Integrated systems immunology approach identifies impaired effector T cell memory responses as a feature of progression to severe dengue fever. J Biomed Sci 2023; 30:24. [PMID: 37055751 PMCID: PMC10103532 DOI: 10.1186/s12929-023-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Typical symptoms of uncomplicated dengue fever (DF) include headache, muscle pains, rash, cough, and vomiting. A proportion of cases progress to severe dengue hemorrhagic fever (DHF), associated with increased vascular permeability, thrombocytopenia, and hemorrhages. Progression to severe dengue is difficult to diagnose at the onset of fever, which complicates patient triage, posing a socio-economic burden on health systems. METHODS To identify parameters associated with protection and susceptibility to DHF, we pursued a systems immunology approach integrating plasma chemokine profiling, high-dimensional mass cytometry and peripheral blood mononuclear cell (PBMC) transcriptomic analysis at the onset of fever in a prospective study conducted in Indonesia. RESULTS After a secondary infection, progression to uncomplicated dengue featured transcriptional profiles associated with increased cell proliferation and metabolism, and an expansion of ICOS+CD4+ and CD8+ effector memory T cells. These responses were virtually absent in cases progressing to severe DHF, that instead mounted an innate-like response, characterised by inflammatory transcriptional profiles, high circulating levels of inflammatory chemokines and with high frequencies of CD4low non-classical monocytes predicting increased odds of severe disease. CONCLUSIONS Our results suggests that effector memory T cell activation might play an important role ameliorating severe disease symptoms during a secondary dengue infection, and in the absence of that response, a strong innate inflammatory response is required to control viral replication. Our research also identified discrete cell populations predicting increased odds of severe disease, with potential diagnostic value.
Collapse
Affiliation(s)
- Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie I Studniberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Emily M Eriksson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Suhendro Suwarto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Hospital (RSCM), Jakarta, Indonesia
| | - Dionisius Denis
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Diana S Hansen
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
41
|
Oluoch PO, Forconi CS, Oduor CI, Ritacco DA, Akala HM, Bailey JA, Juliano JJ, Ong’echa JM, Münz C, Moormann AM. Distinctive Kaposi Sarcoma-Associated Herpesvirus Serological Profile during Acute Plasmodium falciparum Malaria Episodes. Int J Mol Sci 2023; 24:6711. [PMID: 37047683 PMCID: PMC10095526 DOI: 10.3390/ijms24076711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
The seroprevalence of Kaposi sarcoma-associated herpesvirus (KSHV) and the incidence of endemic Kaposi sarcoma (KS) overlap with regions of malaria endemicity in sub-Saharan Africa. Multiple studies have shown an increased risk of KSHV seroconversion in children from high malaria compared to low malaria regions; however, the impact of acute episodes of Plasmodium falciparum (P. falciparum) malaria on KSHV's biphasic life cycle and lytic reactivation has not been determined. Here, we examined KSHV serological profiles and viral loads in 134 children with acute malaria and 221 healthy children from high malaria regions in Kisumu, as well as 77 healthy children from low malaria regions in Nandi. We assayed KSHV, Epstein-Barr virus (EBV), and P. falciparum malaria antibody responses in these three by multiplexed Luminex assay. We confirmed that KSHV seroprevalence was significantly associated with malaria endemicity (OR = 1.95, 1.18-3.24 95% CI, p = 0.01) with 71-77% seropositivity in high-malaria (Kisumu) compared to 28% in low-malaria (Nandi) regions. Furthermore, KSHV serological profiles during acute malaria episodes were distinct from age-matched non-malaria-infected children from the same region. Paired IgG levels also varied after malaria treatment, with significantly higher anti-ORF59 at day 0 but elevated ORF38, ORF73, and K8.1 at day 3. Acute malaria episodes is characterized by perturbation of KSHV latency in seropositive children, providing further evidence that malaria endemicity contributes to the observed increase in endemic KS incidence in sub-Saharan Africa.
Collapse
Affiliation(s)
- Peter O. Oluoch
- Division of Infectious Diseases and Immunology, Department of Medicine, Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Catherine S. Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Cliff I. Oduor
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Dominic A. Ritacco
- Division of Infectious Diseases and Immunology, Department of Medicine, Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Hoseah M. Akala
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John M. Ong’echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| |
Collapse
|
42
|
Arora G, Chuang YM, Sinnis P, Dimopoulos G, Fikrig E. Malaria: influence of Anopheles mosquito saliva on Plasmodium infection. Trends Immunol 2023; 44:256-265. [PMID: 36964020 PMCID: PMC10074230 DOI: 10.1016/j.it.2023.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/26/2023]
Abstract
Malaria is caused by Plasmodium protozoa that are transmitted by anopheline mosquitoes. Plasmodium sporozoites are released with saliva when an infected female mosquito takes a blood meal on a vertebrate host. Sporozoites deposited into the skin must enter a blood vessel to start their journey towards the liver. After migration out of the mosquito, sporozoites are associated with, or in proximity to, many components of vector saliva in the skin. Recent work has elucidated how Anopheles saliva, and components of saliva, can influence host-pathogen interactions during the early stage of Plasmodium infection in the skin. Here, we discuss how components of Anopheles saliva can modulate local host responses and affect Plasmodium infectivity. We hypothesize that therapeutic strategies targeting mosquito salivary proteins can play a role in controlling malaria and other vector-borne diseases.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
43
|
Vidal‐Pedrola G, Naamane N, Cameron JA, Pratt AG, Mellor AL, Isaacs JD, Scheel‐Toellner D, Anderson AE. Characterization of age-associated B cells in early drug-naïve rheumatoid arthritis patients. Immunology 2023; 168:640-653. [PMID: 36281956 PMCID: PMC11495260 DOI: 10.1111/imm.13598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Age-associated B cells (ABCs) are an immune cell subset linked to autoimmunity, infection and ageing, and whose pathophysiological importance was recently highlighted using single cell synovial tissue profiling. To elucidate their pathophysiological relevance, peripheral blood (PB) ABCs from early rheumatoid arthritis (eRA) patients naïve to disease-modifying anti-rheumatic drugs (DMARDs) were compared with their synovial fluid (SF) counterparts, and to PB ABCs from psoriatic arthritis patients and healthy controls. PB and SF B-cell subsets were phenotyped by multi-parameter flow cytometry, sorted and subjected to gene expression profiling (NanoString nCounter® Immunology V2 Panel) and functional characterization (stimulated cytokine measurements by immunoassay). PB ABCs of eRA patients, which are transcriptionally distinct from those of control cohorts, express chemokine receptors and adhesion molecules, such as CXCR3, that favour homing to inflammatory sites over lymphoid tissue. These cells are an activated, class-switched B-cell subset expressing high levels of HLA-DR, co-stimulatory molecules and T-bet. Their secretion profile includes IL-12p70 and IL-23 but low levels of IL-10. High surface expression of FcRL family members, including FcRL3, furthermore suggests a role for these cells in autoimmunity. Finally, and unlike in the periphery where they are rare, ABCs are the predominant B-cell subsets in SF. These observations indicate the predilection of ABCs for inflammatory tissue in RA, where their propensity for antigen presentation and pro-inflammatory phenotype may support autoimmune pathology. Their potential as a therapeutic target therefore warrants further study.
Collapse
Affiliation(s)
- Gemma Vidal‐Pedrola
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Present address:
Infectious Diseases DepartmentYale School of MedicineNew HavenConnecticutUSA
| | - Najib Naamane
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - James A. Cameron
- Institute for Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Arthur G. Pratt
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Musculoskeletal UnitNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Andrew L. Mellor
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - John D. Isaacs
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Musculoskeletal UnitNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | | | - Amy E. Anderson
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
44
|
T-bet highCD21 low B cells: the need to unify our understanding of a distinct B cell population in health and disease. Curr Opin Immunol 2023; 82:102300. [PMID: 36931129 DOI: 10.1016/j.coi.2023.102300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
After many years of a niche research in a few laboratories of the world, T-bethighCD21low B cells have entered the limelight during the last years after the discovery of T-bet as common transcription factor of this unconventional B cell population and the increasing awareness of the expansion of these cells in autoimmune and infectious diseases. This population consists of different subsets which share large parts of their transcriptome, essential phenotypic markers, and reduced B cell receptor (BCR) signaling capacity. Inborn errors of immunity have helped to delineate essential signals for their differentiation. While our comprehension of their origin has improved, future research will hopefully profit from a common definition of the different T-bethighCD21low subpopulations in order to better define their specific roles during normal and aberrant immune responses.
Collapse
|
45
|
Beckers L, Somers V, Fraussen J. IgD -CD27 - double negative (DN) B cells: Origins and functions in health and disease. Immunol Lett 2023; 255:67-76. [PMID: 36906182 DOI: 10.1016/j.imlet.2023.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Human B cells can be divided into four main subsets based on differential expression of immunoglobulin (Ig)D and CD27. IgD-CD27- double negative (DN) B cells make up a heterogeneous group of B cells that have first been described in relation to aging and systemic lupus erythematosus but have been mostly disregarded in B cell research. Over the last few years, DN B cells have gained a lot of interest because of their involvement in autoimmune and infectious diseases. DN B cells can be divided into different subsets that originate via different developmental processes and have different functional properties. Further research into the origin and function of different DN subsets is needed to better understand the role of these B cells in normal immune responses and how they could be targeted in specific pathologies. In this review, we give an overview of both phenotypic and functional properties of DN B cells and provide insight into the currently proposed origins of DN B cells. Moreover, their involvement in normal aging and different pathologies is discussed.
Collapse
Affiliation(s)
- Lien Beckers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Veerle Somers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Judith Fraussen
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
46
|
Touizer E, Alrubayyi A, Ford R, Hussain N, Gerber PP, Shum HL, Rees-Spear C, Muir L, Gea-Mallorquí E, Kopycinski J, Jankovic D, Jeffery-Smith A, Pinder CL, Fox TA, Williams I, Mullender C, Maan I, Waters L, Johnson M, Madge S, Youle M, Barber TJ, Burns F, Kinloch S, Rowland-Jones S, Gilson R, Matheson NJ, Morris E, Peppa D, McCoy LE. Attenuated humoral responses in HIV after SARS-CoV-2 vaccination linked to B cell defects and altered immune profiles. iScience 2023; 26:105862. [PMID: 36590902 PMCID: PMC9788849 DOI: 10.1016/j.isci.2022.105862] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
We assessed a cohort of people living with human immunodeficiency virus (PLWH) (n = 110) and HIV negative controls (n = 64) after 1, 2 or 3 SARS-CoV-2 vaccine doses. At all timepoints, PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs). Improved neutralization breadth was seen against the Omicron variant (BA.1) after the third vaccine dose in PLWH but lower nAb responses persisted and were associated with global MBC dysfunction. In contrast, SARS-CoV-2 vaccination induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, individuals with low or absent neutralization had detectable functional T cell responses. These PLWH had reduced numbers of circulating T follicular helper cells and an enriched population of CXCR3+CD127+CD8+T cells after two doses of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Emma Touizer
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Aljawharah Alrubayyi
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rosemarie Ford
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Noshin Hussain
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hiu-Long Shum
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Chloe Rees-Spear
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Luke Muir
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | | | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dylan Jankovic
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Anna Jeffery-Smith
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Christopher L. Pinder
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Thomas A. Fox
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Ian Williams
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
| | - Claire Mullender
- Institute for Global Health, University College London, London, UK
| | - Irfaan Maan
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- Institute for Global Health, University College London, London, UK
| | - Laura Waters
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
| | - Margaret Johnson
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sara Madge
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Michael Youle
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Tristan J. Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | | | - Richard Gilson
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- Institute for Global Health, University College London, London, UK
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Emma Morris
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Laura E. McCoy
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
47
|
Lasry A, Nadorp B, Fornerod M, Nicolet D, Wu H, Walker CJ, Sun Z, Witkowski MT, Tikhonova AN, Guillamot-Ruano M, Cayanan G, Yeaton A, Robbins G, Obeng EA, Tsirigos A, Stone RM, Byrd JC, Pounds S, Carroll WL, Gruber TA, Eisfeld AK, Aifantis I. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. NATURE CANCER 2023; 4:27-42. [PMID: 36581735 PMCID: PMC9986885 DOI: 10.1038/s43018-022-00480-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/04/2022] [Indexed: 12/31/2022]
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited treatment options. Here we provide a comprehensive census of the bone marrow immune microenvironment in adult and pediatric patients with AML. We characterize unique inflammation signatures in a subset of AML patients, associated with inferior outcomes. We identify atypical B cells, a dysfunctional B-cell subtype enriched in patients with high-inflammation AML, as well as an increase in CD8+GZMK+ and regulatory T cells, accompanied by a reduction in T-cell clonal expansion. We derive an inflammation-associated gene score (iScore) that associates with poor survival outcomes in patients with AML. Addition of the iScore refines current risk stratifications for patients with AML and may enable identification of patients in need of more aggressive treatment. This work provides a framework for classifying patients with AML based on their immune microenvironment and a rationale for consideration of the inflammatory state in clinical settings.
Collapse
Affiliation(s)
- Audrey Lasry
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Bettina Nadorp
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher J Walker
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Zhengxi Sun
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Matthew T Witkowski
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Anastasia N Tikhonova
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Maria Guillamot-Ruano
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Geraldine Cayanan
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Anna Yeaton
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Gabriel Robbins
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William L Carroll
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA.
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Gjertsson I, McGrath S, Grimstad K, Jonsson CA, Camponeschi A, Thorarinsdottir K, Mårtensson IL. A close-up on the expanding landscape of CD21-/low B cells in humans. Clin Exp Immunol 2022; 210:217-229. [PMID: 36380692 PMCID: PMC9985162 DOI: 10.1093/cei/uxac103] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Memory B cells (MBCs) are an essential part of our immunological memory. They respond fast upon re-encountering pathogens and can differentiate into plasma cells that secrete protective antibodies. The focus of this review is on MBCs that lack, or express low levels of, CD21, hereafter referred to as CD21-/low. These cells are expanded in peripheral blood with age and during chronic inflammatory conditions such as viral infections, malaria, common variable immunodeficiency, and autoimmune diseases. CD21-/low MBCs have gained significant attention; they produce disease-specific antibodies/autoantibodies and associate with key disease manifestations in some conditions. These cells can be divided into subsets based on classical B-cell and other markers, e.g. CD11c, FcRL4, and Tbet which, over the years, have become hallmarks to identify these cells. This has resulted in different names including age-associated, autoimmune-associated, atypical, tissue-like, tissue-resident, tissue-restricted, exhausted, or simply CD21-/low B cells. It is however unclear whether the expanded 'CD21-/low' cells in one condition are equivalent to those in another, whether they express an identical gene signature and whether they have a similar function. Here, we will discuss these issues with the goal to understand whether the CD21-/low B cells are comparable in different conditions.
Collapse
Affiliation(s)
- Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kristoffer Grimstad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
- School of Bioscience, University of Skövde, Skövde 54128, Sweden
| | - Charlotte A Jonsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Katrin Thorarinsdottir
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
49
|
Boswell KL, Watkins TA, Cale EM, Samsel J, Andrews SF, Ambrozak DR, Driscoll JI, Messina MA, Narpala S, Hopp CS, Cagigi A, Casazza JP, Yamamoto T, Zhou T, Schief WR, Crompton PD, Ledgerwood JE, Connors M, Gama L, Kwong PD, McDermott A, Mascola JR, Koup RA. Application of B cell immortalization for the isolation of antibodies and B cell clones from vaccine and infection settings. Front Immunol 2022; 13:1087018. [PMID: 36582240 PMCID: PMC9794141 DOI: 10.3389/fimmu.2022.1087018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The isolation and characterization of neutralizing antibodies from infection and vaccine settings informs future vaccine design, and methodologies that streamline the isolation of antibodies and the generation of B cell clones are of great interest. Retroviral transduction to express Bcl-6 and Bcl-xL and transform primary B cells has been shown to promote long-term B cell survival and antibody secretion in vitro, and can be used to isolate antibodies from memory B cells. However, application of this methodology to B cell subsets from different tissues and B cells from chronically infected individuals has not been well characterized. Here, we characterize Bcl-6/Bcl-xL B cell immortalization across multiple tissue types and B cell subsets in healthy and HIV-1 infected individuals, as well as individuals recovering from malaria. In healthy individuals, naïve and memory B cell subsets from PBMCs and tonsil tissue transformed with similar efficiencies, and displayed similar characteristics with respect to their longevity and immunoglobulin secretion. In HIV-1-viremic individuals or in individuals with recent malaria infections, the exhausted CD27-CD21- memory B cells transformed with lower efficiency, but the transformed B cells expanded and secreted IgG with similar efficiency. Importantly, we show that this methodology can be used to isolate broadly neutralizing antibodies from HIV-infected individuals. Overall, we demonstrate that Bcl-6/Bcl-xL B cell immortalization can be used to isolate antibodies and generate B cell clones from different B cell populations, albeit with varying efficiencies.
Collapse
Affiliation(s)
- Kristin L. Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Timothy A. Watkins
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Evan M. Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jakob Samsel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Institute for Biomedical Sciences, George Washington University, Washington, DC, United States
| | - Sarah F. Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David R. Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jefferson I. Driscoll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael A. Messina
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christine S. Hopp
- Malaria Infection Biology and Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joseph P. Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Takuya Yamamoto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - William R. Schief
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lucio Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
50
|
Beeson JG, Kurtovic L, Valim C, Asante KP, Boyle MJ, Mathanga D, Dobano C, Moncunill G. The RTS,S malaria vaccine: Current impact and foundation for the future. Sci Transl Med 2022; 14:eabo6646. [DOI: 10.1126/scitranslmed.abo6646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RTS,S vaccine has recently been recommended for implementation as a childhood vaccine in regions with moderate-to-high malaria transmission. We discuss mechanisms of vaccine protection and longevity, implementation considerations, and future research needed to increase the vaccine’s health impact, including vaccine modifications for higher efficacy and longevity of protection.
Collapse
Affiliation(s)
- James G. Beeson
- Burnet Institute, Melbourne 3004, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne, Victoria, Australia
- Monash University, Central Clinical School and Department of Microbiology, Victoria, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne 3004, Victoria, Australia
- Monash University, Central Clinical School and Department of Microbiology, Victoria, Australia
| | - Clarissa Valim
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Kintampo North Municipality, Bono East Region, Ghana
| | - Michelle J. Boyle
- QIMR Berghofer Institute, Herston, Queensland, Australia
- University of Queensland, School of Biomedical Sciences, St Lucia, Queensland, Australia
- Griffith University, Brisbane, Queensland, Australia
| | - Don Mathanga
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Carlota Dobano
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|