1
|
Compton ZT, Mellon W, Harris VK, Rupp S, Mallo D, Kapsetaki SE, Wilmot M, Kennington R, Noble K, Baciu C, Ramirez LN, Peraza A, Martins B, Sudhakar S, Aksoy S, Furukawa G, Vincze O, Giraudeau M, Duke EG, Spiro S, Flach E, Davidson H, Li CI, Zehnder A, Graham TA, Troan BV, Harrison TM, Tollis M, Schiffman JD, Aktipis CA, Abegglen LM, Maley CC, Boddy AM. Cancer Prevalence across Vertebrates. Cancer Discov 2025; 15:227-244. [PMID: 39445720 PMCID: PMC11726020 DOI: 10.1158/2159-8290.cd-24-0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Cancer is pervasive across multicellular species, but what explains the differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades of tetrapods (amphibians, sauropsids, and mammals), we found that neoplasia and malignancy prevalence increases with adult mass (contrary to Peto's paradox) and somatic mutation rate but decreases with gestation time. The relationship between adult mass and malignancy prevalence was only apparent when we controlled for gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%), the black-footed penguin (<0.4%), ferrets (63%), and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer. Significance: Evolution has discovered mechanisms for suppressing cancer in a wide variety of species. By analyzing veterinary necropsy records, we can identify species with exceptionally high or low cancer prevalence. Discovering the mechanisms of cancer susceptibility and resistance may help improve cancer prevention and explain cancer syndromes. See related commentary by Metzger, p. 14.
Collapse
Affiliation(s)
- Zachary T. Compton
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, Tucson, Arizona
- University of Arizona College of Medicine, Tucson, Arizona
| | - Walker Mellon
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shawn Rupp
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Diego Mallo
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Mallory Wilmot
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Kennington
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Kathleen Noble
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Cristina Baciu
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Psychology, Arizona State University, Tempe, Arizona
| | - Lucia N. Ramirez
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina
| | - Ashley Peraza
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Brian Martins
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Sushil Sudhakar
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Selin Aksoy
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Gabriela Furukawa
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Orsolya Vincze
- Institute of Aquatic Ecology, Centre for Ecological Research, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Elizabeth G. Duke
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, London, United Kingdom
| | - Edmund Flach
- Wildlife Health Services, Zoological Society of London, London, United Kingdom
| | - Hannah Davidson
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Christopher I. Li
- Translational Research Program and Epidemiology Program, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Ashley Zehnder
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Trevor A. Graham
- Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom
| | - Brigid V. Troan
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- The North Carolina Zoo, Asheboro, North Carolina
| | - Tara M. Harrison
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Marc Tollis
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, Arizona
| | - Joshua D. Schiffman
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Peel Therapeutics, Inc., Salt Lake City, Utah
| | - C. Athena Aktipis
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Lisa M. Abegglen
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Peel Therapeutics, Inc., Salt Lake City, Utah
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, Arizona
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
2
|
Fadel YM, Khaled M, Emam M, Marzouk NH, Sobih SED, Abd-Elaty H, Elrashedy WM, Mostafa G, Eldeen SA, Bador M, Antunes A, Hadidi ME. Positive Selection Shapes Breast Cancer Tumor Suppressor Genes: Unveiling Insights into BRCA1, BRCA2, and MDC1 Stability. J Mol Evol 2024:10.1007/s00239-024-10222-8. [PMID: 39681652 DOI: 10.1007/s00239-024-10222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Worldwide, breast cancer is the leading cause of death in women with cancers. Given this situation, new approaches to treatment are urgently needed. Tumor Suppressor Genes (TSGs) defects play a crucial role in tumor development, and recent studies propose their reactivation as a promising way for clinical intervention in breast cancer. Here, we performed detailed evolutionary analyses of 241 breast cancer TSGs across 25 mammalian genomes, revealing 28 genes under strong positive selection. These genes exhibit elevated molecular pressure in codons corresponding to amino acids located in crucial protein domains and motifs. Notably, one positively selected site in the BRCA1 C-terminal domain is known for its role in DNA damage response, suggesting potential interference with DNA repair mechanisms. Moreover, the substitution of some other sites found in important key motifs, namely two codons in BRCA2 (752 and 939) localized within the phosphoinositide-3-OH-kinase-related and playing a crucial role in the DNA repair and the DNA damage checkpoints. Our findings could be inspirational to foster future recommendations for drug-targeting sites and further illuminate the function of these proteins. Finally, the code developed in our study is delivered in the Automated tool for positive selection (ATPs) ( https://github.com/APS-P/Automated-Tool-for-Positive-Selection-ATPS-/wiki ) to assist the easy reproducibility and support future evolutionary genomics analyses.
Collapse
Affiliation(s)
- Youssef M Fadel
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Marwan Khaled
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Mohamed Emam
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Nour H Marzouk
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Sief El-Din Sobih
- Department of Biology, Faculty of Sciences, Utah State University, Logan, UT, 84321, USA
| | - Habiba Abd-Elaty
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Wafaa M Elrashedy
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Gehad Mostafa
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Salma Alm Eldeen
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Mohaned Bador
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Mohamed El Hadidi
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| |
Collapse
|
3
|
Zhang BK, Gines L. Analysis of Cancer-Resisting Evolutionary Adaptations in Wild Animals and Applications for Human Oncology. J Mol Evol 2024; 92:685-694. [PMID: 39256250 DOI: 10.1007/s00239-024-10204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
This literature review is to present a new direction in developing better treatment or preventive measures. The larger the body of an organism, the more numerous the cells, which theoretically lead to a higher risk of cancer. However, observational studies suggest the lack of correlation between body size and cancer risk, which is known as Peto's paradox. The corollary of Peto's paradox is that large organisms must be cancer-resistant. Further investigation of the anti-cancer mechanisms in each species could be potentially rewarding, and how the anti-cancer mechanisms found in wild animals can help influence and develop more effective cancer treatment in humans is the main focus of this literature review. Due to a lack of research and understanding of the exact molecular mechanisms of the researched species, only a few (Elephants and rodents) that have been extensively researched have made substantive contributions to human oncology. A new research direction is to investigate the positively selective genes that are related to cancer resistance and see if homologous genes are presented in humans. Despite the great obstacle of applying anti-cancer mechanisms to the human body from phylogenetically distant species, this research direction of gaining insights through investigating cancer-resisting evolutionary adaptations in wild animals has great potential in human oncology research.
Collapse
Affiliation(s)
- Bokai K Zhang
- Brigham Young University, Brigham Young University, Provo, UT, 84602, USA.
| | - Leoned Gines
- Shoreline Community College, 16101 Greenwood Avenue North, Shoreline, WA, 98133-5696, USA
| |
Collapse
|
4
|
Firsanov D, Zacher M, Tian X, Sformo TL, Zhao Y, Tombline G, Lu JY, Zheng Z, Perelli L, Gurreri E, Zhang L, Guo J, Korotkov A, Volobaev V, Biashad SA, Zhang Z, Heid J, Maslov A, Sun S, Wu Z, Gigas J, Hillpot E, Martinez J, Lee M, Williams A, Gilman A, Hamilton N, Haseljic E, Patel A, Straight M, Miller N, Ablaeva J, Tam LM, Couderc C, Hoopman M, Moritz R, Fujii S, Hayman DJ, Liu H, Cai Y, Leung AKL, Simons MJP, Zhang Z, Nelson CB, Abegglen LM, Schiffman JD, Gladyshev VN, Modesti M, Genovese G, Vijg J, Seluanov A, Gorbunova V. DNA repair and anti-cancer mechanisms in the long-lived bowhead whale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.07.539748. [PMID: 39574710 PMCID: PMC11580846 DOI: 10.1101/2023.05.07.539748] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
At over 200 years, the maximum lifespan of the bowhead whale exceeds that of all other mammals. The bowhead is also the second-largest animal on Earth, reaching over 80,000 kg1. Despite its very large number of cells and long lifespan, the bowhead is not highly cancer-prone, an incongruity termed Peto's Paradox2. This phenomenon has been explained by the evolution of additional tumor suppressor genes in other larger animals, supported by research on elephants demonstrating expansion of the p53 gene3-5. Here we show that bowhead whale fibroblasts undergo oncogenic transformation after disruption of fewer tumor suppressors than required for human fibroblasts. However, analysis of DNA repair revealed that bowhead cells repair double strand breaks (DSBs) and mismatches with uniquely high efficiency and accuracy compared to other mammals. The protein CIRBP, implicated in protection from genotoxic stress, was present in very high abundance in the bowhead whale relative to other mammals. We show that CIRBP and its downstream protein RPA2, also present at high levels in bowhead cells, increase the efficiency and fidelity of DNA repair in human cells. These results indicate that rather than possessing additional tumor suppressor genes as barriers to oncogenesis, the bowhead whale relies on more accurate and efficient DNA repair to preserve genome integrity. This strategy which does not eliminate damaged cells but repairs them may be critical for the long and cancer-free lifespan of the bowhead whale.
Collapse
Affiliation(s)
- Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Max Zacher
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Xiao Tian
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Todd L. Sformo
- Department of Wildlife Management, North Slope Borough, Utqiaġvik (Barrow), AK 99723, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Greg Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J. Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enrico Gurreri
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Guo
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Anatoly Korotkov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Johanna Heid
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zhuoer Wu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jonathan Gigas
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - John Martinez
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Minseon Lee
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Alyssa Williams
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Abbey Gilman
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Ena Haseljic
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Avnee Patel
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Maggie Straight
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Nalani Miller
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Lok Ming Tam
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Chloé Couderc
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Shingo Fujii
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | | | - Hongrui Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cross-Disciplinary Graduate Program in Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuxuan Cai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - C. Bradley Nelson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lisa M. Abegglen
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Joshua D. Schiffman
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
5
|
Majumder A, Bano S, Nayak KB. The Pivotal Role of One-Carbon Metabolism in Neoplastic Progression During the Aging Process. Biomolecules 2024; 14:1387. [PMID: 39595564 PMCID: PMC11591851 DOI: 10.3390/biom14111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
One-carbon (1C) metabolism is a complex network of metabolic reactions closely related to producing 1C units (as methyl groups) and utilizing them for different anabolic processes, including nucleotide synthesis, methylation, protein synthesis, and reductive metabolism. These pathways support the high proliferative rate of cancer cells. While drugs that target 1C metabolism (like methotrexate) have been used for cancer treatment, they often have significant side effects. Therefore, developing new drugs with minimal side effects is necessary for effective cancer treatment. Methionine, glycine, and serine are the main three precursors of 1C metabolism. One-carbon metabolism is vital not only for proliferative cells but also for non-proliferative cells in regulating energy homeostasis and the aging process. Understanding the potential role of 1C metabolism in aging is crucial for advancing our knowledge of neoplastic progression. This review provides a comprehensive understanding of the molecular complexities of 1C metabolism in the context of cancer and aging, paving the way for researchers to explore new avenues for developing advanced therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Shabana Bano
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Kasturi Bala Nayak
- Quantitative Biosciences Institute, Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Hope SF, Willgohs KR, Dittakul S, Plotnik JM. Do elephants really never forget? What we know about elephant memory and a call for further investigation. Learn Behav 2024:10.3758/s13420-024-00655-y. [PMID: 39438402 DOI: 10.3758/s13420-024-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Despite popular culture's promotion of the elephant's ability to "never forget," there is remarkably limited empirical research on the memory capacities of any living elephant species (Asian, Elephas maximus; African savanna, Loxodonta africana; African forest, Loxodonta cyclotis). A growing body of literature on elephant cognition and behavioral ecology has provided insight into the elephant's ability to behave flexibly in changing physical and social environments, but little direct evidence of how memory might relate to this flexibility exists. In this paper, we review and discuss the potential relationships between what we know about elephant cognition and behavior and the elephants' memory for the world around them as they navigate their physical, social, and spatial environments. We also discuss future directions for investigating elephant memory and implications for such research on elephant conservation and human-elephant conflict mitigation.
Collapse
Affiliation(s)
- Sydney F Hope
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
| | - Kaitlyn R Willgohs
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Sangpa Dittakul
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Golden Triangle Asian Elephant Foundation, Chiang Saen, Chiang Rai, 57150, Thailand
| | - Joshua M Plotnik
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
7
|
Bergman M, Goshtchevsky U, Atlan T, Astre G, Halabi R, El H, Moses E, Lemus AJJ, Benayoun BA, Tzfati Y, Ben-Ami I, Harel I. The cGAS-STING pathway is an in vivo modifier of genomic instability syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618655. [PMID: 39464159 PMCID: PMC11508313 DOI: 10.1101/2024.10.16.618655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mutations in genes involved in DNA damage repair (DDR) often lead to premature aging syndromes. While recent evidence suggests that inflammation, alongside mutation accumulation and cell death, may drive disease phenotypes, its precise contribution to in vivo pathophysiology remains unclear. Here, by modeling Ataxia Telangiectasia (A-T) and Bloom Syndrome in the African turquoise killifish ( N. furzeri ), we replicate key phenotypes of DDR syndromes, including infertility, cytoplasmic DNA fragments, and reduced lifespan. The link between DDR defects and inflammation is attributed to the activation of the cGAS-STING pathway and interferon signaling by cytoplasmic DNA. Accordingly, mutating cGAS partially rescues germline defects and senescence in A-T fish. Double mutants also display reversal of telomere abnormalities and suppression of transposable elements, underscoring cGAS's non-canonical role as a DDR inhibitor. Our findings emphasize the role of interferon signaling in A-T pathology and identify the cGAS-STING pathway as a potential therapeutic target for genomic instability syndromes.
Collapse
|
8
|
Giraudeau M, Vincze O, Dupont SM, Sepp T, Baines C, Lemaitre JF, Lemberger K, Gentès S, Boddy A, Dujon AM, Bramwell G, Harris V, Ujvari B, Alix-Panabières C, Lair S, Sayag D, Conde DA, Colchero F, Harrison TM, Pavard S, Padilla-Morales B, Chevallier D, Hamede R, Roche B, Malkocs T, Aktipis AC, Maley C, DeGregori J, Le Loc'h G, Thomas F. Approaches and methods to study wildlife cancer. J Anim Ecol 2024; 93:1410-1428. [PMID: 39189422 DOI: 10.1111/1365-2656.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 08/28/2024]
Abstract
The last few years have seen a surge of interest from field ecologists and evolutionary biologists to study neoplasia and cancer in wildlife. This contributes to the One Health Approach, which investigates health issues at the intersection of people, wild and domestic animals, together with their changing environments. Nonetheless, the emerging field of wildlife cancer is currently constrained by methodological limitations in detecting cancer using non-invasive sampling. In addition, the suspected differential susceptibility and resistance of species to cancer often make the choice of a unique model species difficult for field biologists. Here, we provide an overview of the importance of pursuing the study of cancer in non-model organisms and we review the currently available methods to detect, measure and quantify cancer in the wild, as well as the methodological limitations to be overcome to develop novel approaches inspired by diagnostic techniques used in human medicine. The methodology we propose here will help understand and hopefully fight this major disease by generating general knowledge about cancer, variation in its rates, tumour-suppressor mechanisms across species as well as its link to life history and physiological characters. Moreover, this is expected to provide key information about cancer in wildlife, which is a top priority due to the accelerated anthropogenic change in the past decades that might favour cancer progression in wild populations.
Collapse
Affiliation(s)
- Mathieu Giraudeau
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Orsolya Vincze
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- HUN-REN-DE Conservation Biology Research Group, Debrecen, Hungary
| | - Sophie M Dupont
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), FRE 2030, Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ciara Baines
- Department of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jean-Francois Lemaitre
- Laboratoire de Biométrie et Biologie Évolutive, CNRS, UMR5558, Université Lyon 1, Villeurbanne, France
| | | | - Sophie Gentès
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Amy Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- CREEC/CANECEV, MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS5290-Université de Montpellier, Montpellier, France
| | - Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Valerie Harris
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Stephane Lair
- Faculté de médecine vétérinaire, Canadian Wildlife Health Cooperative/Centre québécois sur la santé des animaux sauvages, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - David Sayag
- ONCOnseil-Unité d'expertise en oncologie vétérinaire, Toulouse, France
| | - Dalia A Conde
- Department of Biology, University of Southern Denmark, Odense M, Denmark
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense M, Denmark
| | - Fernando Colchero
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense M, Denmark
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Mathematics and Computer Sciences, University of Southern Denmark, Odense M, Denmark
| | - Tara M Harrison
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Samuel Pavard
- Unité Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS 7206, Université Paris Cité, Paris, France
| | - Benjamin Padilla-Morales
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Damien Chevallier
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), FRE 2030, Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Rodrigo Hamede
- Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS5290-Université de Montpellier, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Tamas Malkocs
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, IUEM, Plouzane, France
| | - Athena C Aktipis
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Carlo Maley
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS5290-Université de Montpellier, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| |
Collapse
|
9
|
Karakostis K, Padariya M, Thermou A, Fåhraeus R, Kalathiya U, Vollrath F. Thermal stress, p53 structures and learning from elephants. Cell Death Discov 2024; 10:353. [PMID: 39107279 PMCID: PMC11303390 DOI: 10.1038/s41420-024-02109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024] Open
Abstract
As species adapt to climatic changes, temperature-dependent functions of p53 in development, metabolism and cancer will adapt as well. Structural analyses of p53 epitopes interacting in response to environmental stressors, such as heat, may uncover physiologically relevant functions of p53 in cell regulation and genomic adaptations. Here we explore the multiple p53 elephant paradigm with an experimentally validated in silico model showing that under heat stress some p53 copies escape negative regulation by the MDM2 E3 ubiquitin ligase. Multiple p53 isoforms have evolved naturally in the elephant thus presenting a unique experimental system to study the scope of p53 functions and the contribution of environmental stressors to DNA damage. We assert that fundamental insights derived from studies of a historically heat-challenged mammal will provide important insights directly relevant to human biology in the light of climate change when 'heat' may introduce novel challenges to our bodies and health.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France.
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdansk, Poland.
| | - Aikaterini Thermou
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Robin Fåhraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdansk, Poland
| | - Fritz Vollrath
- Department of Biology, University of Oxford, Oxford, UK.
- Save the Elephants Marula Manor, Karen, P.O. Box 54667, Nairobi, Kenya.
| |
Collapse
|
10
|
Osbourne R, Thayer KM. Structural and mechanistic diversity in p53-mediated regulation of organismal longevity across taxonomical orders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606567. [PMID: 39149312 PMCID: PMC11326148 DOI: 10.1101/2024.08.05.606567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The accumulation of senescent cells induces several aging phenotypes, and the p53 tumor suppressor protein regulates one of the two known cellular senescence pathways. p53's regulation of senescence is however not clear. For example, p53 deficiency in some mice has been shown to rescue premature aging while others display significant aging phenotype when p53-deficient. This study seeks to elucidate, structurally and mechanistically, p53's roles in longevity. Through a relative evolutionary scoring (RES) algorithm, we quantify the level of evolutionary change in the residues of p53 across organisms of varying average lifespans in six taxonomic orders. Secondly, we used PEPPI to assess the likelihood of interaction between p53-or p53-linked proteins-and known senescence-regulating proteins across organisms in the orders Primates and Perciformes. Our RES algorithm found variations in the alignments within and across orders, suggesting that mechanisms of p53-mediated regulation of longevity may vary. PEPPI results suggest that longer-lived species may have evolved to regulate induction and inhibition of cellular senescence better than their shorter-lived counterparts. With experimental verification, these predictions could help elucidate the mechanisms of p53-mediated cellular senescence, ultimately clarifying our understanding of p53's connection to aging in a multiple-species context.
Collapse
Affiliation(s)
- Romani Osbourne
- Department of Molecular Biology & Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America
| | - Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
11
|
Dujon AM, Ujvari B, Tissot S, Meliani J, Rieu O, Stepanskyy N, Hamede R, Tokolyi J, Nedelcu A, Thomas F. The complex effects of modern oncogenic environments on the fitness, evolution and conservation of wildlife species. Evol Appl 2024; 17:e13763. [PMID: 39100750 PMCID: PMC11294924 DOI: 10.1111/eva.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Growing evidence indicates that human activities are causing cancer rates to rise in both human and wildlife populations. This is due to the inability of ancestral anti-cancer defences to cope with modern environmental risks. The evolutionary mismatch between modern oncogenic risks and evolved cancer defences has far-reaching effects on various biological aspects at different timeframes, demanding a comprehensive study of the biology and evolutionary ecology of the affected species. Firstly, the increased activation of anti-cancer defences leads to excessive energy expenditure, affecting other biological functions and potentially causing health issues like autoimmune diseases. Secondly, tumorigenesis itself can impact important fitness-related parameters such as competitiveness, predator evasion, resistance to parasites, and dispersal capacity. Thirdly, rising cancer risks can influence the species' life-history traits, often favoring early reproduction to offset fitness costs associated with cancer. However, this strategy has its limits, and it may not ensure the sustainability of the species if cancer risks continue to rise. Lastly, some species may evolve additional anti-cancer defences, with uncertain consequences for their biology and future evolutionary path. In summary, we argue that the effects of increased exposure to cancer-causing substances on wildlife are complex, ranging from immediate responses to long-term evolutionary changes. Understanding these processes, especially in the context of conservation biology, is urgently needed.
Collapse
Affiliation(s)
- Antoine M. Dujon
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Océane Rieu
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Nikita Stepanskyy
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jácint Tokolyi
- Department of Evolutionary Zoology, MTA‐DE “Momentum” Ecology, Evolution and Developmental Biology Research GroupUniversity of DebrecenDebrecenHungary
| | - Aurora Nedelcu
- Department of BiologyUniversity of new BrunswickFrederictonNew BrunswickCanada
| | - Frédéric Thomas
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
12
|
Beichman AC, Zhu L, Harris K. The Evolutionary Interplay of Somatic and Germline Mutation Rates. Annu Rev Biomed Data Sci 2024; 7:83-105. [PMID: 38669515 DOI: 10.1146/annurev-biodatasci-102523-104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| | - Luke Zhu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Kelley Harris
- Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
13
|
Harper JM. Primary Cell Culture as a Model System for Evolutionary Molecular Physiology. Int J Mol Sci 2024; 25:7905. [PMID: 39063147 PMCID: PMC11277064 DOI: 10.3390/ijms25147905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Primary cell culture is a powerful model system to address fundamental questions about organismal physiology at the cellular level, especially for species that are difficult, or impossible, to study under natural or semi-natural conditions. Due to their ease of use, primary fibroblast cultures are the dominant model system, but studies using both somatic and germ cells are also common. Using these models, genome evolution and phylogenetic relationships, the molecular and biochemical basis of differential longevities among species, and the physiological consequences of life history evolution have been studied in depth. With the advent of new technologies such as gene editing and the generation of induced pluripotent stem cells (iPSC), the field of molecular evolutionary physiology will continue to expand using both descriptive and experimental approaches.
Collapse
Affiliation(s)
- James M Harper
- Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Huntsville, TX 77341, USA
| |
Collapse
|
14
|
Kan H, Chen Y. Revealing endogenous conditions for Peto's paradox via an ordinary differential equation model. J Math Biol 2024; 89:27. [PMID: 38970664 PMCID: PMC11227477 DOI: 10.1007/s00285-024-02123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Cancer, a disease intimately linked to cellular mutations, is commonly believed to exhibit a positive association with the cell count and lifespan of a species. Despite this assumption, the observed uniformity in cancer rates across species, referred to as the Peto's paradox, presents a conundrum. Recognizing that tumour progression is not solely dependent on cancer cells but involves intricate interactions among various cell types, this study employed a Lotka-Volterra (LV) ordinary differential equation model to analyze the evolution of cancerous cells and the cancer incidence in an immune environment. As a result, this study uncovered the sufficient conditions underlying the absence of correlation in Peto's paradox and provide insights into the reasons for the equitable distribution of cancer incidence across diverse species by applying nondimensionalization and drawing an analogy between the characteristic time interval for the variation of cell populations in the ODE model and that of cell cycles of a species.
Collapse
Affiliation(s)
- Haichun Kan
- SCS Laboratory, Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yu Chen
- SCS Laboratory, Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
15
|
Nguyen AK, Blacksmith MS, Kidd JM. Duplications and Retrogenes Are Numerous and Widespread in Modern Canine Genomic Assemblies. Genome Biol Evol 2024; 16:evae142. [PMID: 38946312 PMCID: PMC11259980 DOI: 10.1093/gbe/evae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
Recent years have seen a dramatic increase in the number of canine genome assemblies available. Duplications are an important source of evolutionary novelty and are also prone to misassembly. We explored the duplication content of nine canine genome assemblies using both genome self-alignment and read-depth approaches. We find that 8.58% of the genome is duplicated in the canFam4 assembly, derived from the German Shepherd Dog Mischka, including 90.15% of unplaced contigs. Highlighting the continued difficulty in properly assembling duplications, less than half of read-depth and assembly alignment duplications overlap, but the mCanLor1.2 Greenland wolf assembly shows greater concordance. Further study shows the presence of multiple segments that have alignments to four or more duplicate copies. These high-recurrence duplications correspond to gene retrocopies. We identified 3,892 candidate retrocopies from 1,316 parental genes in the canFam4 assembly and find that ∼8.82% of duplicated base pairs involve a retrocopy, confirming this mechanism as a major driver of gene duplication in canines. Similar patterns are found across eight other recent canine genome assemblies, with metrics supporting a greater quality of the PacBio HiFi mCanLor1.2 assembly. Comparison between the wolf and other canine assemblies found that 92% of retrocopy insertions are shared between assemblies. By calculating the number of generations since genome divergence, we estimate that new retrocopy insertions appear, on average, in 1 out of 3,514 births. Our analyses illustrate the impact of retrogene formation on canine genomes and highlight the variable representation of duplicated sequences among recently completed canine assemblies.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Blacksmith
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Weavers H. Biological resilience in health and disease. Dis Model Mech 2024; 17:dmm050799. [PMID: 39051470 PMCID: PMC11552498 DOI: 10.1242/dmm.050799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
All living organisms - from single-celled prokaryotes through to invertebrates and humans - are frequently exposed to numerous challenges during their lifetime, which could damage their molecular and cellular contents and threaten their survival. Nevertheless, these diverse organisms are, on the whole, remarkably resilient to potential threats. Recent years have seen rapid advances in our mechanistic understanding of this emerging phenomenon of biological resilience, which enables cells, tissues and whole organisms to bounce back from challenges or stress. In this At a Glance article, I discuss current knowledge on the diverse molecular mechanisms driving biological resilience across scales, with particular focus on its dynamic and adaptive nature. I highlight emerging evidence that loss of biological resilience could underly numerous pathologies, including age-related frailty and degenerative disease. Finally, I present the multi-disciplinary experimental approaches that are helping to unravel the causal mechanisms of resilience and how this emerging knowledge could be harnessed therapeutically in the clinic.
Collapse
Affiliation(s)
- Helen Weavers
- School of Biochemistry, Faculty of Life Sciences, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
17
|
Mortazavi SMJ, Zare O, Ghasemi L, Taghizadeh P, Faghani P, Arshadi M, Mortazavi SAR, Sihver L. A Reexamination of Peto's Paradox: Insights Gained from Human Adaptation to Varied Levels of Ionizing and Non-ionizing Radiation. J Biomed Phys Eng 2024; 14:309-314. [PMID: 39027707 PMCID: PMC11252545 DOI: 10.31661/jbpe.v0i0.2402-1729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/27/2024] [Indexed: 07/20/2024]
Abstract
Humans have generally evolved some adaptations to protect against UV and different levels of background ionizing radiation. Similarly, elephants and whales have evolved adaptations to protect against cancer, such as multiple copies of the tumor suppressor gene p53, due to their large size and long lifespan. The difference in cancer protection strategies between humans and elephants/whales depends on genetics, lifestyle, environmental exposures, and evolutionary pressures. In this paper, we discuss how the differences in evolutionary adaptations between humans and elephants could explain why elephants have evolved a protective mechanism against cancer, whereas humans have not. Humans living in regions with high levels of background radiation, e.g. in Ramsar, Iran where exposure rates exceed those on the surface of Mars, seem to have developed some kind of protection against the ionizing radiation. However, humans in general have not developed cancer-fighting adaptations, so they instead rely on medical technologies and interventions. The difference in cancer protection strategies between humans and elephants/whales depends on genetics, lifestyle, environmental exposures, and evolutionary pressures. In this paper, we discuss how the differences in evolutionary adaptations between humans and elephants could explain why elephants have evolved a protective mechanism against cancer, whereas humans have not. Studying elephant adaptations may provide insights into new cancer prevention and treatment strategies for humans, but further research is required to fully understand the evolutionary disparities.
Collapse
Affiliation(s)
- Seyed Mohammad Javad Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Zare
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leyla Ghasemi
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parmis Taghizadeh
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parsa Faghani
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Arshadi
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lembit Sihver
- Department of Physics, East Carolina University, Greenville, USA
- Royal Military College of Canada, Kingston, ON, Canada
- Department of Radiation Physics, Technische Universität Wien, Atominstitut, Vienna, Austria
| |
Collapse
|
18
|
Trexler M, Bányai L, Kerekes K, Patthy L. Arginines of the CGN codon family are Achilles' heels of cancer genes. Sci Rep 2024; 14:11715. [PMID: 38778164 PMCID: PMC11111792 DOI: 10.1038/s41598-024-62553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Recent studies have revealed that arginine is the most favorable target of amino acid alteration in most cancer types and it has been suggested that the high preference for arginine mutations reflects the critical roles of this amino acid in the function of proteins. High rates of mutations of arginine residues in cancer, however, might also be due to increased mutability of arginine codons of the CGN family as the CpG dinucleotides of these codons may be methylated. In the present work we have analyzed spectra of single base substitutions of cancer genes (oncogenes, tumor suppressor genes) and passenger genes in cancer tissues to assess the contributions of CpG hypermutability and selection to arginine mutations. Our studies have shown that arginines encoded by the CGN codon family display higher rates of mutation in both cancer genes and passenger genes than arginine codons AGA and AGG that are devoid of CpG dinucleotide, suggesting that the predominance of arginine mutations in cancer is primarily due to CpG hypermutability, rather than selection for arginine replacement. Nevertheless, our results also suggest that CGN codons for arginines may serve as Achilles' heels of cancer genes. CpG hypermutability of key arginines of proto-oncogenes, leading to high rates of recurrence of driver mutations, contributes significantly to carcinogenesis. Similarly, our results indicate that hypermutability of the CpG dinucleotide of CGA codons (converting them to TGA stop codons) contributes significantly to recurrent truncation and inactivation of tumor suppressor genes.
Collapse
Affiliation(s)
- Mária Trexler
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - László Bányai
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Krisztina Kerekes
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - László Patthy
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
19
|
MacDonald N, Raven N, Diep W, Evans S, Pannipitiya S, Bramwell G, Vanbeek C, Thomas F, Russell T, Dujon AM, Telonis-Scott M, Ujvari B. The molecular evolution of cancer associated genes in mammals. Sci Rep 2024; 14:11650. [PMID: 38773187 PMCID: PMC11109183 DOI: 10.1038/s41598-024-62425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.
Collapse
Affiliation(s)
- Nick MacDonald
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Nynke Raven
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Wendy Diep
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Samantha Evans
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Senuri Pannipitiya
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Caitlin Vanbeek
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Tracey Russell
- Faculty of Science, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Marina Telonis-Scott
- School of Life and Environmental Sciences, Deakin University, Burwood, Burwood, VIC, 3125, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
20
|
Bennett DC. Review: Are moles senescent? Pigment Cell Melanoma Res 2024; 37:391-402. [PMID: 38361107 DOI: 10.1111/pcmr.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Melanocytic nevi (skin moles) have been regarded as a valuable example of cell senescence occurring in vivo. However, a study of induced nevi in a mouse model reported that the nevi were arrested by cell interactions rather than a cell-autonomous process like senescence, and that size distributions of cell nests within nevi could not be accounted for by a stochastic model of oncogene-induced senescence. Moreover, others reported that some molecular markers used to identify cell senescence in human nevi are also found in melanoma cells-not senescent. It has thus been questioned whether nevi really are senescent, with potential implications for melanoma diagnosis and therapy. Here I review these areas, along with the genetic, biological, and molecular evidence supporting senescence in nevi. In conclusion, there is strong evidence that cells of acquired human benign (banal) nevi are very largely senescent, though some must contain a minor non-senescent cell subpopulation. There is also persuasive evidence that this senescence is primarily induced by dysfunctional telomeres rather than directly oncogene-induced.
Collapse
Affiliation(s)
- Dorothy C Bennett
- Molecular & Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
21
|
Compton ZT, Mellon W, Harris V, Rupp S, Mallo D, Kapsetaki S, Wilmot M, Kennington R, Noble K, Baciu C, Ramirez L, Peraza A, Martins B, Sudhakar S, Aksoy S, Furukawa G, Vincze O, Giraudeau MT, Duke E, Spiro S, Flach E, Davidson H, Li C, Zehnder A, Graham TA, Troan B, Harrison T, Tollis M, Schiffman J, Aktipis A, Abegglen L, Maley C, Boddy A. Cancer Prevalence Across Vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.15.527881. [PMID: 36824942 PMCID: PMC9948983 DOI: 10.1101/2023.02.15.527881] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer is pervasive across multicellular species, but what explains differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades (amphibians, sauropsids and mammals) we found that neoplasia and malignancy prevalence increases with adult weight (contrary to Petos Paradox) and somatic mutation rate, but decreases with gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%) the black-footed penguin (<0.4%), ferrets (63%) and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer.
Collapse
|
22
|
Birkemeier M, Swindle A, Bowman J, Lynch VJ. Pervasive loss of regulated necrotic cell death genes in elephants, hyraxes, and sea cows ( Paenungualta). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588129. [PMID: 38617256 PMCID: PMC11014510 DOI: 10.1101/2024.04.04.588129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Gene loss can promote phenotypic differences between species, for example, if a gene constrains phenotypic variation in a trait, its loss allows for the evolution of a greater range of variation or even new phenotypes. Here, we explore the contribution of gene loss to the evolution of large bodies and augmented cancer resistance in elephants. We used genomes from 17 Afrotherian and Xenarthran species to identify lost genes, i.e., genes that have pseudogenized or been completely lost, and Dollo parsimony to reconstruct the evolutionary history of gene loss across species. We unexpectedly discovered a burst of gene losses in the Afrotherian stem lineage and found that the loss of genes with functions in regulated necrotic cell death modes was pervasive in elephants, hyraxes, and sea cows (Paenungulata). Among the lost genes are MLKL and RIPK3, which mediate necroptosis, and sensors that activate inflammasomes to induce pyroptosis, including AIM2, MEFV, NLRC4, NLRP1, and NLRP6. These data suggest that the mechanisms that regulate necrosis and pyroptosis are either extremely derived or potentially lost in these lineages, which may contribute to the repeated evolution of large bodies and cancer resistance in Paenungulates as well as susceptibility to pathogen infection.
Collapse
Affiliation(s)
- Meaghan Birkemeier
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - Arianna Swindle
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| |
Collapse
|
23
|
Masoudi M, Torabi P, Judson-Torres RL, Khodarahmi R, Moradi S. Natural resistance to cancer: A window of hope. Int J Cancer 2024; 154:1131-1142. [PMID: 37860922 DOI: 10.1002/ijc.34766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
As healthcare systems are improving and thereby the life expectancy of human populations is increasing, cancer is representing itself as the second leading cause of death. Although cancer biologists have put enormous effort on cancer research so far, we still have a long way to go before being able to treat cancers efficiently. One interesting approach in cancer biology is to learn from natural resistance and/or predisposition to cancer. Cancer-resistant species and tissues are thought-provoking models whose study shed light on the inherent cancer resistance mechanisms that arose during the course of evolution. On the other hand, there are some syndromes and factors that increase the risk of cancer development, and revealing their underlying mechanisms will increase our knowledge about the process of cancer formation. Here, we review natural resistance and predisposition to cancer and the known mechanisms at play. Further insights from these natural phenomena will help design future cancer research and could ultimately lead to the development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Masoudi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Parisa Torabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | | | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
24
|
Bukhman YV, Morin PA, Meyer S, Chu LF, Jacobsen JK, Antosiewicz-Bourget J, Mamott D, Gonzales M, Argus C, Bolin J, Berres ME, Fedrigo O, Steill J, Swanson SA, Jiang P, Rhie A, Formenti G, Phillippy AM, Harris RS, Wood JMD, Howe K, Kirilenko BM, Munegowda C, Hiller M, Jain A, Kihara D, Johnston JS, Ionkov A, Raja K, Toh H, Lang A, Wolf M, Jarvis ED, Thomson JA, Chaisson MJP, Stewart R. A High-Quality Blue Whale Genome, Segmental Duplications, and Historical Demography. Mol Biol Evol 2024; 41:msae036. [PMID: 38376487 PMCID: PMC10919930 DOI: 10.1093/molbev/msae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.
Collapse
Affiliation(s)
- Yury V Bukhman
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Li-Fang Chu
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | | | | | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Maylie Gonzales
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Cara Argus
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jennifer Bolin
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Mark E Berres
- University of Wisconsin Biotechnology Center, Bioinformatics Resource Center, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - John Steill
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Scott A Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Arang Rhie
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - Adam M Phillippy
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Alexander Ionkov
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Huishi Toh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Aimee Lang
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Magnus Wolf
- Institute for Evolution and Biodiversity (IEB), University of Muenster, 48149, Muenster, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
25
|
Sekine A, Yasunaga G, Kumamoto S, Fujibayashi S, Munirah I, Bai L, Tani T, Sugano E, Tomita H, Ozaki T, Kiyono T, Inoue-Murayama M, Fukuda T. Characterization of Common Minke Whale (Balaenoptera Acutorostrata) Cell Lines Immortalized with the Expression of Cell Cycle Regulators. Adv Biol (Weinh) 2024; 8:e2300227. [PMID: 38087887 DOI: 10.1002/adbi.202300227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/07/2023] [Indexed: 03/16/2024]
Abstract
Primary cultured cells cannot proliferate infinite. The overcoming of this limit can be classified as immortalization. Bypass of p16 senescence protein induces efficient immortalization various types of mammalians is previously reported. However, the Cetacea species is not known. Here, that common minke whale-derived cells can be immortalized with a combination of human genes, mutant cyclin-dependent kinase 4 (CDK4R24C ), cyclin D1, and Telomerase Reverse Transcriptase (TERT) is reported. These results indicate that the function of cell cycle regulators in premature senescence is evolutionarily conserved. This study describes the conserved roles of cell cycle regulators in the immortalization of cells from humans to Cetacea species. Furthermore, using RNA-seq based on next-generation sequencing, the gene expression profiles of immortalized cells are compared with parental cells as well as those immortalized with SV40 large T antigen, which is once a popular method for cellular immortalization. The profiling results show that newly established common minke-whale-derived immortaliozed cells have completely different profiles from SV40 cells. This result indicates that the expression of mutant CDK4, cyclin D1, and TERT enables to establish immortalized cell lines with different biological nature from SV40 expressing cells.
Collapse
Affiliation(s)
- Aya Sekine
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Genta Yasunaga
- Institute of Cetacean Research, 4-5 Toyomi-cho, Chuoku, Tokyo, 104-0055, Japan
| | - Soichiro Kumamoto
- School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - So Fujibayashi
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Izzah Munirah
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Lanlan Bai
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Tetsuya Tani
- Laboratory of Animal Reproduction, Department of Agriculture, Kindai University, Nara, 3327-204, Japan
| | - Eriko Sugano
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Hiroshi Tomita
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Taku Ozaki
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, 2-24, Tanakasekiden-cho, Sakyo-ku, Kyoto, 606-8203, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| |
Collapse
|
26
|
Bowman J, Lynch VJ. Rapid evolution of genes with anti-cancer functions during the origins of large bodies and cancer resistance in elephants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582135. [PMID: 38463968 PMCID: PMC10925141 DOI: 10.1101/2024.02.27.582135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Elephants have emerged as a model system to study the evolution of body size and cancer resistance because, despite their immense size, they have a very low prevalence of cancer. Previous studies have found that duplication of tumor suppressors at least partly contributes to the evolution of anti-cancer cellular phenotypes in elephants. Still, many other mechanisms must have contributed to their augmented cancer resistance. Here, we use a suite of codon-based maximum-likelihood methods and a dataset of 13,310 protein-coding gene alignments from 261 Eutherian mammals to identify positively selected and rapidly evolving elephant genes. We found 496 genes (3.73% of alignments tested) with statistically significant evidence for positive selection and 660 genes (4.96% of alignments tested) that likely evolved rapidly in elephants. Positively selected and rapidly evolving genes are statistically enriched in gene ontology terms and biological pathways related to regulated cell death mechanisms, DNA damage repair, cell cycle regulation, epidermal growth factor receptor (EGFR) signaling, and immune functions, particularly neutrophil granules and degranulation. All of these biological factors are plausibly related to the evolution of cancer resistance. Thus, these positively selected and rapidly evolving genes are promising candidates for genes contributing to elephant-specific traits, including the evolution of molecular and cellular characteristics that enhance cancer resistance.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| |
Collapse
|
27
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
28
|
Boddy AM. The need for evolutionary theory in cancer research. Eur J Epidemiol 2023; 38:1259-1264. [PMID: 36385398 PMCID: PMC10757905 DOI: 10.1007/s10654-022-00936-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022]
Abstract
Sir Richard Peto is well known for proposing puzzling paradoxes in cancer biology-some more well-known than others. In a 1984 piece, Peto proposed that after decades of molecular biology in cancer research, we are still ignorant of the biology underpinning cancer. Cancer is a product of somatic mutations. How do these mutations arise and what are the mechanisms? As an epidemiologist, Peto asked if we really need to understand mechanisms in order to prevent cancer? Four decades after Peto's proposed ignorance in cancer research, we can simply ask, are we still ignorant? Did the great pursuit to uncover mechanisms of cancer eclipse our understanding of causes and preventions? Or can we get closer to treating and preventing cancer by understanding the underlying mechanisms that make us most vulnerable to this disease?
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA.
- Arizona Cancer and Evolution Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
29
|
Huang Z, Jiang C, Gu J, Uvizl M, Power S, Douglas D, Kacprzyk J. Duplications of Human Longevity-Associated Genes Across Placental Mammals. Genome Biol Evol 2023; 15:evad186. [PMID: 37831410 PMCID: PMC10588791 DOI: 10.1093/gbe/evad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023] Open
Abstract
Natural selection has shaped a wide range of lifespans across mammals, with a few long-lived species showing negligible signs of ageing. Approaches used to elucidate the genetic mechanisms underlying mammalian longevity usually involve phylogenetic selection tests on candidate genes, detections of convergent amino acid changes in long-lived lineages, analyses of differential gene expression between age cohorts or species, and measurements of age-related epigenetic changes. However, the link between gene duplication and evolution of mammalian longevity has not been widely investigated. Here, we explored the association between gene duplication and mammalian lifespan by analyzing 287 human longevity-associated genes across 37 placental mammals. We estimated that the expansion rate of these genes is eight times higher than their contraction rate across these 37 species. Using phylogenetic approaches, we identified 43 genes whose duplication levels are significantly correlated with longevity quotients (False Discovery Rate (FDR) < 0.05). In particular, the strong correlation observed for four genes (CREBBP, PIK3R1, HELLS, FOXM1) appears to be driven mainly by their high duplication levels in two ageing extremists, the naked mole rat (Heterocephalus glaber) and the greater mouse-eared bat (Myotis myotis). Further sequence and expression analyses suggest that the gene PIK3R1 may have undergone a convergent duplication event, whereby the similar region of its coding sequence was independently duplicated multiple times in both of these long-lived species. Collectively, this study identified several candidate genes whose duplications may underlie the extreme longevity in mammals, and highlighted the potential role of gene duplication in the evolution of mammalian long lifespans.
Collapse
Affiliation(s)
- Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Chongyi Jiang
- Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - Jiayun Gu
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Marek Uvizl
- Department of Zoology, National Museum, Prague, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sarahjane Power
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Declan Douglas
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Harman RM, Das SP, Kanke M, Sethupathy P, Van de Walle GR. miRNA-214-3p stimulates carcinogen-induced mammary epithelial cell apoptosis in mammary cancer-resistant species. Commun Biol 2023; 6:1006. [PMID: 37789172 PMCID: PMC10547694 DOI: 10.1038/s42003-023-05370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Mammary cancer incidence varies greatly across species and underlying mechanisms remain elusive. We previously showed that mammosphere-derived epithelial cells from species with low mammary cancer incidence, such as horses, respond to carcinogen 7, 12-Dimethylbenz(a)anthracene-induced DNA damage by undergoing apoptosis, a postulated anti-cancer mechanism. Additionally, we found that miR-214-3p expression in mammosphere-derived epithelial cells is lower in mammary cancer-resistant as compared to mammary cancer-susceptible species. Here we show that increasing miR-214 expression and decreasing expression of its target gene nuclear factor kappa B subunit 1 in mammosphere-derived epithelial cells from horses abolishes 7,12-Dimethylbenz(a)anthracene-induced apoptosis. A direct interaction of miR-214-3p with another target gene, unc-5 netrin receptor A, is also demonstrated. We propose that relatively low levels of miR-214 in mammosphere-derived epithelial cells from mammals with low mammary cancer incidence, allow for constitutive gene nuclear factor kappa B subunit 1 expression and apoptosis in response to 7, 12-Dimethylbenz(a)anthracene. Better understanding of the mechanisms regulating cellular responses to carcinogens improves our overall understanding of mammary cancer resistance mechanisms.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
31
|
Jara TC, Park K, Vahmani P, Van Eenennaam AL, Smith LR, Denicol AC. Stem cell-based strategies and challenges for production of cultivated meat. NATURE FOOD 2023; 4:841-853. [PMID: 37845547 DOI: 10.1038/s43016-023-00857-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cultivated meat scale-up and industrial production will require multiple stable cell lines from different species to recreate the organoleptic and nutritional properties of meat from livestock. In this Review, we explore the potential of stem cells to create the major cellular components of cultivated meat. By using developments in the fields of tissue engineering and biomedicine, we explore the advantages and disadvantages of strategies involving primary adult and pluripotent stem cells for generating cell sources that can be grown at scale. These myogenic, adipogenic or extracellular matrix-producing adult stem cells as well as embryonic or inducible pluripotent stem cells are discussed for their proliferative and differentiation capacity, necessary for cultivated meat. We examine the challenges for industrial scale-up, including differentiation and culture protocols, as well as genetic modification options for stem cell immortalization and controlled differentiation. Finally, we discuss stem cell-related safety and regulatory challenges for bringing cultivated meat to the marketplace.
Collapse
Affiliation(s)
- T C Jara
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - K Park
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - P Vahmani
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - A L Van Eenennaam
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - L R Smith
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - A C Denicol
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
32
|
Kim JJ, Ahn A, Ying J, Hickman E, Ludlow AT. Exercise as a Therapy to Maintain Telomere Function and Prevent Cellular Senescence. Exerc Sport Sci Rev 2023; 51:150-160. [PMID: 37288975 PMCID: PMC10526708 DOI: 10.1249/jes.0000000000000324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exercise transiently impacts the expression, regulation, and activity of TERT/telomerase to maintain telomeres and protect the genome from insults. By protecting the telomeres (chromosome ends) and the genome, telomerase promotes cellular survival and prevents cellular senescence. By increasing cellular resiliency, via the actions of telomerase and TERT, exercise promotes healthy aging.
Collapse
Affiliation(s)
- Jeongjin J Kim
- School of Kinesiology, University of Michigan, Ann Arbor, MI
| | | | | | | | | |
Collapse
|
33
|
Liu W, Zhu P, Li M, Li Z, Yu Y, Liu G, Du J, Wang X, Yang J, Tian R, Seim I, Kaya A, Li M, Li M, Gladyshev VN, Zhou X. Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals. EMBO J 2023; 42:e112740. [PMID: 37427458 PMCID: PMC10476176 DOI: 10.15252/embj.2022112740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Lifespan varies significantly among mammals, with more than 100-fold difference between the shortest and longest living species. This natural difference may uncover the evolutionary forces and molecular features that define longevity. To understand the relationship between gene expression variation and longevity, we conducted a comparative transcriptomics analysis of liver, kidney, and brain tissues of 103 mammalian species. We found that few genes exhibit common expression patterns with longevity in the three organs analyzed. However, pathways related to translation fidelity, such as nonsense-mediated decay and eukaryotic translation elongation, correlated with longevity across mammals. Analyses of selection pressure found that selection intensity related to the direction of longevity-correlated genes is inconsistent across organs. Furthermore, expression of methionine restriction-related genes correlated with longevity and was under strong selection in long-lived mammals, suggesting that a common strategy is utilized by natural selection and artificial intervention to control lifespan. Our results indicate that lifespan regulation via gene expression is driven through polygenic and indirect natural selection.
Collapse
Affiliation(s)
- Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Yu
- School of Life SciencesUniversity of Science and Technology of ChinaAnhuiChina
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Tian
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Inge Seim
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLDAustralia
| | - Alaattin Kaya
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural UniversityChengduChina
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
34
|
Li X, Wang P, Pan Q, Liu G, Liu W, Omotoso O, Du J, Li Z, Yu Y, Huang Y, Zhu P, Li M, Zhou X. Chromosome-level Asian elephant genome assembly and comparative genomics of long-lived mammals reveal the common substitutions for cancer resistance. Aging Cell 2023; 22:e13917. [PMID: 37395176 PMCID: PMC10497851 DOI: 10.1111/acel.13917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
The naked mole rat (Heterocephalus glaber), bats (e.g., genus Myotis), and elephants (family Elephantidae) are known as long-lived mammals and are assumed to be excellent cancer antagonists. However, whether there are common genetic changes underpinning cancer resistance in these long-lived species is yet to be fully established. Here, we newly generated a high-quality chromosome-level Asian elephant (Elephas maximus) genome and identified that the expanded gene families in elephants are involved in Ras-associated and base excision repair pathways. Moreover, we performed comparative genomic analyses of 12 mammals and examined genes with signatures of positive selection in elephants, naked mole rat, and greater horseshoe bat. Residues at positively selected sites of CDR2L and ALDH6A1 in these long-lived mammals enhanced the inhibition of tumor cell migration compared to those in short-lived relatives. Overall, our study provides a new genome resource and a preliminary survey of common genetic changes in long-lived mammals.
Collapse
Affiliation(s)
- Xuanjing Li
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengcheng Wang
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Qi Pan
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Gaoming Liu
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
| | - Weiqiang Liu
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Olatunde Omotoso
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Juan Du
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zihao Li
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Yu
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yun Huang
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Pingfen Zhu
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
| | - Meng Li
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyBeijingChina
| |
Collapse
|
35
|
Picolo F, Piégu B, Monget P. Genes encoding teleost orthologues of human signal transduction proteins remain duplicated or triplicated more frequently than the whole genome. Heliyon 2023; 9:e20217. [PMID: 37809565 PMCID: PMC10559978 DOI: 10.1016/j.heliyon.2023.e20217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Cell signalling involves a myriad of proteins, many of which belong to families of related proteins, and these proteins display a huge number of interactions. One of the events that has led to the creation of new genes is whole genome duplication (WGD), a phenomenon that has made some major innovations possible. In addition to the two WGDs that happened before gnathostome radiation, teleost genomes underwent one (the 3WGD group) or two (the 4WGD group) extra WGD after separation from the lineage leading to holostei. In the present work, we studied in 63 teleost species whether the orthologues of human genes involved in 47 signalling pathways (HGSP) remain more frequently duplicated, triplicated or in the singleton state compared with the whole genome. We found that these genes have remained duplicated and triplicated more frequently in teleost of the 3WGD and 4WGD groups, respectively. Moreover, by examining pairs of interacting gene products in terms of conserved copy numbers, we found a majority of the 1:1 and 1:2 proportions in the 3WGD group (between 54% and 60%) and of the 2:2 and 2:4 proportions in the 4WGD group (30%). In both groups, we observed the 0:n proportion at a mean of approximately 10%, and we found some pseudogenes in the concerned genomes. Finally, the proportions were very different between the studied pathways. The n:n (i.e. same) proportion concerned 20%-65% of the interactions, depending on the pathways, and the n:m (i.e. different) proportion concerned 34%-70% of the interactions. Among the n:n proportion, the 1:1 ratio is most represented (25.8%) and among the n:m ratios, the 1:2 is most represented (25.0%). We noted the absence of gene loss for the JAK-STAT, FoxO and glucagon pathways. Overall, these results show that the teleost gene orthologues of HGSP remain duplicated (3WGD) and triplicated (4WGD) more frequently than the whole genome, although some genes have been lost, and the proportions have not always been maintained.
Collapse
Affiliation(s)
- Floriane Picolo
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| | - Benoît Piégu
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| | - Philippe Monget
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| |
Collapse
|
36
|
Herrick J. Kimura's Theory of Non-Adaptive Radiation and Peto's Paradox: A Missing Link? BIOLOGY 2023; 12:1140. [PMID: 37627024 PMCID: PMC10452704 DOI: 10.3390/biology12081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Karyotype diversity reflects genome integrity and stability. A strong correlation between karyotype diversity and species richness, meaning the number of species in a phylogenetic clade, was first reported in mammals over forty years ago: in mammalian phylogenetic clades, the standard deviation of karyotype diversity (KD) closely corresponded to species richness (SR) at the order level. These initial studies, however, did not control for phylogenetic signal, raising the possibility that the correlation was due to phylogenetic relatedness among species in a clade. Accordingly, karyotype diversity trivially reflects species richness simply as a passive consequence of adaptive radiation. A more recent study in mammals controlled for phylogenetic signals and established the correlation as phylogenetically independent, suggesting that species richness cannot, in itself, explain the observed corresponding karyotype diversity. The correlation is, therefore, remarkable because the molecular mechanisms contributing to karyotype diversity are evolutionarily independent of the ecological mechanisms contributing to species richness. Recently, it was shown in salamanders that the two processes generating genome size diversity and species richness were indeed independent and operate in parallel, suggesting a potential non-adaptive, non-causal but biologically meaningful relationship. KD depends on mutational input generating genetic diversity and reflects genome stability, whereas species richness depends on ecological factors and reflects natural selection acting on phenotypic diversity. As mutation and selection operate independently and involve separate and unrelated evolutionary mechanisms-there is no reason a priori to expect such a strong, let alone any, correlation between KD and SR. That such a correlation exists is more consistent with Kimura's theory of non-adaptive radiation than with ecologically based adaptive theories of macro-evolution, which are not excluded in Kimura's non-adaptive theory. The following reviews recent evidence in support of Kimura's proposal, and other findings that contribute to a wider understanding of the molecular mechanisms underlying the process of non-adaptive radiation.
Collapse
Affiliation(s)
- John Herrick
- Independent Researcher, 3, rue des Jeûneurs, 75002 Paris, France
| |
Collapse
|
37
|
Jansen van Vuuren A, Bolcaen J, Engelbrecht M, Burger W, De Kock M, Durante M, Fisher R, Martínez-López W, Miles X, Rahiman F, Tinganelli W, Vandevoorde C. Establishment of Primary Adult Skin Fibroblast Cell Lines from African Savanna Elephants ( Loxodonta africana). Animals (Basel) 2023; 13:2353. [PMID: 37508130 PMCID: PMC10376752 DOI: 10.3390/ani13142353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Following population declines of the African savanna elephant (Loxodonta africana) across the African continent, the establishment of primary cell lines of endangered wildlife species is paramount for the preservation of their genetic resources. In addition, it allows molecular and functional studies on the cancer suppression mechanisms of elephants, which have previously been linked to a redundancy of tumor suppressor gene TP53. This methodology describes the establishment of primary elephant dermal fibroblast (EDF) cell lines from skin punch biopsy samples (diameter: ±4 mm) of African savanna elephants (n = 4, 14-35 years). The applied tissue collection technique is minimally invasive and paves the way for future remote biopsy darting. On average, the first explant outgrowth was observed after 15.75 ± 6.30 days. The average doubling time (Td) was 93.02 ± 16.94 h and 52.39 ± 0.46 h at passage 1 and 4, respectively. Metaphase spreads confirmed the diploid number of 56 chromosomes. The successful establishment of EDF cell lines allows for future elephant cell characterization studies and for research on the cancer resistance mechanisms of elephants, which can be harnessed for human cancer prevention and treatment and contributes to the conservation of their genetic material.
Collapse
Affiliation(s)
- Amèlia Jansen van Vuuren
- Separated Sector Cyclotron (SSC) Laboratory, Radiation Biophysics Division, National Research Foundation (NRF)-iThemba Laboratories for Accelerator Based Sciences (LABS), Cape Town 7100, South Africa
- Department of Medical Biosciences (MBS), Faculty of Natural Sciences, University of the Western Cape (UWC), Cape Town 7530, South Africa
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Julie Bolcaen
- Separated Sector Cyclotron (SSC) Laboratory, Radiation Biophysics Division, National Research Foundation (NRF)-iThemba Laboratories for Accelerator Based Sciences (LABS), Cape Town 7100, South Africa
| | - Monique Engelbrecht
- Separated Sector Cyclotron (SSC) Laboratory, Radiation Biophysics Division, National Research Foundation (NRF)-iThemba Laboratories for Accelerator Based Sciences (LABS), Cape Town 7100, South Africa
| | - Willem Burger
- Dr Willem Burger Consulting, Mossel Bay 6503, South Africa
| | - Maryna De Kock
- Department of Medical Biosciences (MBS), Faculty of Natural Sciences, University of the Western Cape (UWC), Cape Town 7530, South Africa
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
- Institut für Physik Kondensierter Materie, Technische Universität (TU) Darmstadt, 64289 Darmstadt, Germany
| | - Randall Fisher
- Separated Sector Cyclotron (SSC) Laboratory, Radiation Biophysics Division, National Research Foundation (NRF)-iThemba Laboratories for Accelerator Based Sciences (LABS), Cape Town 7100, South Africa
| | - Wilner Martínez-López
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Xanthene Miles
- Separated Sector Cyclotron (SSC) Laboratory, Radiation Biophysics Division, National Research Foundation (NRF)-iThemba Laboratories for Accelerator Based Sciences (LABS), Cape Town 7100, South Africa
| | - Farzana Rahiman
- Department of Medical Biosciences (MBS), Faculty of Natural Sciences, University of the Western Cape (UWC), Cape Town 7530, South Africa
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| |
Collapse
|
38
|
Compton ZT, Harris V, Mellon W, Rupp S, Mallo D, Kapsetaki SE, Wilmot M, Kennington R, Noble K, Baciu C, Ramirez L, Peraza A, Martins B, Sudhakar S, Aksoy S, Furukawa G, Vincze O, Giraudeau M, Duke EG, Spiro S, Flach E, Davidson H, Zehnder A, Graham TA, Troan B, Harrison TM, Tollis M, Schiffman JD, Aktipis A, Abegglen LM, Maley CC, Boddy AM. Cancer Prevalence Across Vertebrates. RESEARCH SQUARE 2023:rs.3.rs-3117313. [PMID: 37461608 PMCID: PMC10350200 DOI: 10.21203/rs.3.rs-3117313/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Cancer is pervasive across multicellular species, but what explains differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades (amphibians, sauropsids and mammals) we found that neoplasia and malignancy prevalence increases with adult weight (contrary to Peto's Paradox) and somatic mutation rate, but decreases with gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%) the black-footed penguin (<0.4%), ferrets (63%) and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer.
Collapse
Affiliation(s)
- Zachary T. Compton
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Valerie Harris
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Walker Mellon
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Shawn Rupp
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Diego Mallo
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Mallory Wilmot
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Ryan Kennington
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kathleen Noble
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Cristina Baciu
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- Department of Psychology, Arizona State University, Tempe, AZ
| | - Lucia Ramirez
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC
| | - Ashley Peraza
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Brian Martins
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Sushil Sudhakar
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Selin Aksoy
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Gabriella Furukawa
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Orsolya Vincze
- Institute of Aquatic Ecology, Centre for Ecological Research, 4026 Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania
| | | | - Elizabeth G. Duke
- North Carolina State College of Veterinary Medicine, Raleigh, NC
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, NC
| | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Edmund Flach
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Hannah Davidson
- North Carolina State College of Veterinary Medicine, Raleigh, NC
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, NC
| | - Ashley Zehnder
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, NC
| | - Trevor A. Graham
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Brigid Troan
- North Carolina State College of Veterinary Medicine, Raleigh, NC
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, NC
- The North Carolina Zoo, Asheboro, NC
| | - Tara M. Harrison
- North Carolina State College of Veterinary Medicine, Raleigh, NC
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, NC
| | - Marc Tollis
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | - Joshua D. Schiffman
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Peel Therapeutics, Inc., Salt Lake City, UT
| | - Athena Aktipis
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- Department of Psychology, Arizona State University, Tempe, AZ
| | - Lisa M. Abegglen
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Peel Therapeutics, Inc., Salt Lake City, UT
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- University of California Santa Barbara, Santa Barbara, CA
| |
Collapse
|
39
|
Batcher K, Varney S, Raudsepp T, Jevit M, Dickinson P, Jagannathan V, Leeb T, Bannasch D. Ancient segmentally duplicated LCORL retrocopies in equids. PLoS One 2023; 18:e0286861. [PMID: 37289743 PMCID: PMC10249811 DOI: 10.1371/journal.pone.0286861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
LINE-1 is an active transposable element encoding proteins capable of inserting host gene retrocopies, resulting in retro-copy number variants (retroCNVs) between individuals. Here, we performed retroCNV discovery using 86 equids and identified 437 retrocopy insertions. Only 5 retroCNVs were shared between horses and other equids, indicating that the majority of retroCNVs inserted after the species diverged. A large number (17-35 copies) of segmentally duplicated Ligand Dependent Nuclear Receptor Corepressor Like (LCORL) retrocopies were present in all equids but absent from other extant perissodactyls. The majority of LCORL transcripts in horses and donkeys originate from the retrocopies. The initial LCORL retrotransposition occurred 18 million years ago (17-19 95% CI), which is coincident with the increase in body size, reduction in digit number, and changes in dentition that characterized equid evolution. Evolutionary conservation of the LCORL retrocopy segmental amplification in the Equidae family, high expression levels and the ancient timeline for LCORL retrotransposition support a functional role for this structural variant.
Collapse
Affiliation(s)
- Kevin Batcher
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| | - Scarlett Varney
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Matthew Jevit
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Peter Dickinson
- Department of Surgical and Radiological Sciences, University of California Davis, Davis, CA, United States of America
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
40
|
Díez-Del-Molino D, Dehasque M, Chacón-Duque JC, Pečnerová P, Tikhonov A, Protopopov A, Plotnikov V, Kanellidou F, Nikolskiy P, Mortensen P, Danilov GK, Vartanyan S, Gilbert MTP, Lister AM, Heintzman PD, van der Valk T, Dalén L. Genomics of adaptive evolution in the woolly mammoth. Curr Biol 2023; 33:1753-1764.e4. [PMID: 37030294 DOI: 10.1016/j.cub.2023.03.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/24/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Ancient genomes provide a tool to investigate the genetic basis of adaptations in extinct organisms. However, the identification of species-specific fixed genetic variants requires the analysis of genomes from multiple individuals. Moreover, the long-term scale of adaptive evolution coupled with the short-term nature of traditional time series data has made it difficult to assess when different adaptations evolved. Here, we analyze 23 woolly mammoth genomes, including one of the oldest known specimens at 700,000 years old, to identify fixed derived non-synonymous mutations unique to the species and to obtain estimates of when these mutations evolved. We find that at the time of its origin, the woolly mammoth had already acquired a broad spectrum of positively selected genes, including ones associated with hair and skin development, fat storage and metabolism, and immune system function. Our results also suggest that these phenotypes continued to evolve during the last 700,000 years, but through positive selection on different sets of genes. Finally, we also identify additional genes that underwent comparatively recent positive selection, including multiple genes related to skeletal morphology and body size, as well as one gene that may have contributed to the small ear size in Late Quaternary woolly mammoths.
Collapse
Affiliation(s)
- David Díez-Del-Molino
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden.
| | - Marianne Dehasque
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden
| | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Patrícia Pečnerová
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexei Tikhonov
- Zoological Institute of the Russian Academy of Sciences, 190121 Saint Petersburg, Russia
| | | | | | - Foteini Kanellidou
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Facility, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pavel Nikolskiy
- Geological Institute, Russian Academy of Sciences, 119017 Moscow, Russia
| | - Peter Mortensen
- Department of Zoology, Swedish Museum of Natural History, 10405 Stockholm, Sweden
| | - Gleb K Danilov
- Peter the Great Museum of Anthropology and Ethnography, Kunstkamera, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A. Shilo, Far East Branch, Russian Academy of Sciences (NEISRI FEB RAS), 685000 Magadan, Russia
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway
| | | | - Peter D Heintzman
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Geological Sciences, Stockholm University, 11418 Stockholm, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Science for Life Laboratory, 17165 Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden.
| |
Collapse
|
41
|
AbdulJabbar K, Castillo SP, Hughes K, Davidson H, Boddy AM, Abegglen LM, Minoli L, Iussich S, Murchison EP, Graham TA, Spiro S, Maley CC, Aresu L, Palmieri C, Yuan Y. Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nat Commun 2023; 14:2408. [PMID: 37100774 PMCID: PMC10133243 DOI: 10.1038/s41467-023-37879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Cancers occur across species. Understanding what is consistent and varies across species can provide new insights into cancer initiation and evolution, with significant implications for animal welfare and wildlife conservation. We build a pan-species cancer digital pathology atlas (panspecies.ai) and conduct a pan-species study of computational comparative pathology using a supervised convolutional neural network algorithm trained on human samples. The artificial intelligence algorithm achieves high accuracy in measuring immune response through single-cell classification for two transmissible cancers (canine transmissible venereal tumour, 0.94; Tasmanian devil facial tumour disease, 0.88). In 18 other vertebrate species (mammalia = 11, reptilia = 4, aves = 2, and amphibia = 1), accuracy (range 0.57-0.94) is influenced by cell morphological similarity preserved across different taxonomic groups, tumour sites, and variations in the immune compartment. Furthermore, a spatial immune score based on artificial intelligence and spatial statistics is associated with prognosis in canine melanoma and prostate tumours. A metric, named morphospace overlap, is developed to guide veterinary pathologists towards rational deployment of this technology on new samples. This study provides the foundation and guidelines for transferring artificial intelligence technologies to veterinary pathology based on understanding of morphological conservation, which could vastly accelerate developments in veterinary medicine and comparative oncology.
Collapse
Affiliation(s)
- Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Simon P Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Hannah Davidson
- Zoological Society of London, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Lucia Minoli
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, 4343, Gatton, QLD, Australia
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Preston AJ, Rogers A, Sharp M, Mitchell G, Toruno C, Barney BB, Donovan LN, Bly J, Kennington R, Payne E, Iovino A, Furukawa G, Robinson R, Shamloo B, Buccilli M, Anders R, Eckstein S, Fedak EA, Wright T, Maley CC, Kiso WK, Schmitt D, Malkin D, Schiffman JD, Abegglen LM. Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Cell Death Discov 2023; 9:66. [PMID: 36797268 PMCID: PMC9935553 DOI: 10.1038/s41420-023-01348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Approximately 20 TP53 retrogenes exist in the African and Asian elephant genomes (Loxodonta Africana, Elephas Maximus) in addition to a conserved TP53 gene that encodes a full-length protein. Elephant TP53-RETROGENE 9 (TP53-R9) encodes a p53 protein (p53-R9) that is truncated in the middle of the canonical DNA binding domain. This C-terminally truncated p53 retrogene protein lacks the nuclear localization signals and oligomerization domain of its full-length counterpart. When expressed in human osteosarcoma cells (U2OS), p53-R9 binds to Tid1, the chaperone protein responsible for mitochondrial translocation of human p53 in response to cellular stress. Tid1 expression is required for p53-R9-induced apoptosis. At the mitochondria, p53-R9 binds to the pro-apoptotic BCL-2 family member Bax, which leads to caspase activation, cytochrome c release, and cell death. Our data show, for the first time, that expression of this truncated elephant p53 retrogene protein induces apoptosis in human cancer cells. Understanding the molecular mechanism by which the additional elephant TP53 retrogenes function may provide evolutionary insight that can be utilized for the development of therapeutics to treat human cancers.
Collapse
Affiliation(s)
- Aidan J Preston
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Aaron Rogers
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Miranda Sharp
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gareth Mitchell
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Cristhian Toruno
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Brayden B Barney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Journey Bly
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ryan Kennington
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Emily Payne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anthony Iovino
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gabriela Furukawa
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | - Matthew Buccilli
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Rachel Anders
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sarah Eckstein
- Duke Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth A Fedak
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
| | - Tanner Wright
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlo C Maley
- Biodesign Institute, School of Life Sciences, and Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
| | | | - Dennis Schmitt
- Department of Animal Science, William H. Darr College of Agriculture, Missouri State University, Springfield, MO, USA
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Joshua D Schiffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Salt Lake City, UT, USA
| | - Lisa M Abegglen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.
- Peel Therapeutics, Salt Lake City, UT, USA.
| |
Collapse
|
43
|
Oka K, Yamakawa M, Kawamura Y, Kutsukake N, Miura K. The Naked Mole-Rat as a Model for Healthy Aging. Annu Rev Anim Biosci 2023; 11:207-226. [PMID: 36318672 DOI: 10.1146/annurev-animal-050322-074744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Naked mole-rats (NMRs, Heterocephalus glaber) are the longest-lived rodents with a maximum life span exceeding 37 years. They exhibit a delayed aging phenotype and resistance to age-related functional decline/diseases. Specifically, they do not display increased mortality with age, maintain several physiological functions until nearly the end of their lifetime, and rarely develop cancer and Alzheimer's disease. NMRs live in a hypoxic environment in underground colonies in East Africa and are highly tolerant of hypoxia. These unique characteristics of NMRs have attracted considerable interest from zoological and biomedical researchers. This review summarizes previous studies of the ecology, hypoxia tolerance, longevity/delayed aging, and cancer resistance of NMRs and discusses possible mechanisms contributing to their healthy aging. In addition, we discuss current issues and future perspectives to fully elucidate the mechanisms underlying delayed aging and resistance to age-related diseases in NMRs.
Collapse
Affiliation(s)
- Kaori Oka
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , ,
| | - Masanori Yamakawa
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan; ,
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , ,
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan; , .,Research Center for Integrative Evolutionary Science, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , , .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
44
|
Voskarides K, Giannopoulou N. The Role of TP53 in Adaptation and Evolution. Cells 2023; 12:cells12030512. [PMID: 36766853 PMCID: PMC9914165 DOI: 10.3390/cells12030512] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The TP53 gene is a major player in cancer formation, and it is considered the most important tumor suppressor gene. The p53 protein acts as a transcription factor, and it is involved in DNA repair, senescence, cell-cycle control, autophagy, and apoptosis. Beyond cancer, there is evidence that TP53 is associated with fertility, aging, and longevity. Additionally, more evidence exists that genetic variants in TP53 are associated with environmental adaptation. Special TP53 amino-acid residues or pathogenic TP53 mutations seem to be adaptive for animals living in hypoxic and cold environments or having been exposed to starvation, respectively. At the somatic level, it has recently been proven that multiple cancer genes, including TP53, are under positive selection in healthy human tissues. It is not clear why these driver mutations do not transform these tissues into cancerous ones. Other studies have shown that elephants have multiple TP53 copies, probably this being the reason for the very low cancer incidence in these large animals. This may explain the famous Peto's paradox. This review discusses in detail the multilevel role of TP53 in adaptation, according to the published evidence. This role is complicated, and it extends from cells to individuals and to populations.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414 Nicosia, Cyprus
- School of Veterinary Medicine, University of Nicosia, 2414 Nicosia, Cyprus
- Correspondence: ; Tel.: +357-22-471-819
| | - Nefeli Giannopoulou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414 Nicosia, Cyprus
| |
Collapse
|
45
|
Trivedi DD, Dalai SK, Bakshi SR. The Mystery of Cancer Resistance: A Revelation Within Nature. J Mol Evol 2023; 91:133-155. [PMID: 36693985 DOI: 10.1007/s00239-023-10092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).
Collapse
|
46
|
Papadogiannis V, Manousaki T, Nousias O, Tsakogiannis A, Kristoffersen JB, Mylonas CC, Batargias C, Chatziplis D, Tsigenopoulos CS. Chromosome genome assembly for the meagre, Argyrosomus regius, reveals species adaptations and sciaenid sex-related locus evolution. Front Genet 2023; 13:1081760. [PMID: 36704347 PMCID: PMC9871315 DOI: 10.3389/fgene.2022.1081760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
The meagre, Argyrosomus regius, has recently become a species of increasing economic interest for the Mediterranean aquaculture and there is ongoing work to boost production efficiency through selective breeding. Access to the complete genomic sequence will provide an essential resource for studying quantitative trait-associated loci and exploring the genetic diversity of different wild populations and aquaculture stocks in more detail. Here, we present the first complete genome for A. regius, produced through a combination of long and short read technologies and an efficient in-house developed pipeline for assembly and polishing. Scaffolding using previous linkage map data allowed us to reconstruct a chromosome level assembly with high completeness, complemented with gene annotation and repeat masking. The 696 Mb long assembly has an N50 = 27.87 Mb and an L50 = 12, with 92.85% of its length placed in 24 chromosomes. We use this new resource to study the evolution of the meagre genome and other Sciaenids, via a comparative analysis of 25 high-quality teleost genomes. Combining a rigorous investigation of gene duplications with base-wise conservation analysis, we identify candidate loci related to immune, fat metabolism and growth adaptations in the meagre. Following phylogenomic reconstruction, we show highly conserved synteny within Sciaenidae. In contrast, we report rapidly evolving syntenic rearrangements and gene copy changes in the sex-related dmrt1 neighbourhood in meagre and other members of the family. These novel genomic datasets and findings will add important new tools for aquaculture studies and greatly facilitate husbandry and breeding work in the species.
Collapse
Affiliation(s)
- Vasileios Papadogiannis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece
| | - Tereza Manousaki
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece
| | - Orestis Nousias
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece,Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Alexandros Tsakogiannis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece
| | - Jon B. Kristoffersen
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece
| | - Constantinos C. Mylonas
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece
| | | | - Dimitrios Chatziplis
- Department of Agriculture, International Hellenic University (IHU), Thessaloniki, Greece
| | - Costas S. Tsigenopoulos
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece,*Correspondence: Costas S. Tsigenopoulos,
| |
Collapse
|
47
|
Schraverus H, Larondelle Y, Page MM. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers (Basel) 2022; 14:cancers14246177. [PMID: 36551658 PMCID: PMC9776354 DOI: 10.3390/cancers14246177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer research has benefited immensely from the use of animal models. Several genetic tools accessible in rodent models have provided valuable insight into cellular and molecular mechanisms linked to cancer development or metastasis and various lines are available. However, at the same time, it is important to accompany these findings with those from alternative or non-model animals to offer new perspectives into the understanding of tumor development, prevention, and treatment. In this review, we first discuss animals characterized by little or no tumor development. Cancer incidence in small animals, such as the naked mole rat, blind mole rat and bats have been reported as almost negligible and tumor development may be inhibited by increased defense and repair mechanisms, altered cell cycle signaling and reduced rates of cell migration to avoid tumor microenvironments. On the other end of the size spectrum, large animals such as elephants and whales also appear to have low overall cancer rates, possibly due to gene replicates that are involved in apoptosis and therefore can inhibit uncontrolled cell cycle progression. While it is important to determine the mechanisms that lead to cancer protection in these animals, we can also take advantage of other animals that are highly susceptible to cancer, especially those which develop tumors similar to humans, such as carnivores or poultry. The use of such animals does not require the transplantation of malignant cancer cells or use of oncogenic substances as they spontaneously develop tumors of similar presentation and pathophysiology to those found in humans. For example, some tumor suppressor genes are highly conserved between humans and domestic species, and various tumors develop in similar ways or because of a common environment. These animals are therefore of great interest for broadening perspectives and techniques and for gathering information on the tumor mechanisms of certain types of cancer. Here we present a detailed review of alternative and/or non-model vertebrates, that can be used at different levels of cancer research to open new perspectives and fields of action.
Collapse
|
48
|
Evo-devo perspectives on cancer. Essays Biochem 2022; 66:797-815. [PMID: 36250956 DOI: 10.1042/ebc20220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
The integration of evolutionary and developmental approaches into the field of evolutionary developmental biology has opened new areas of inquiry- from understanding the evolution of development and its underlying genetic and molecular mechanisms to addressing the role of development in evolution. For the last several decades, the terms 'evolution' and 'development' have been increasingly linked to cancer, in many different frameworks and contexts. This mini-review, as part of a special issue on Evolutionary Developmental Biology, discusses the main areas in cancer research that have been addressed through the lenses of both evolutionary and developmental biology, though not always fully or explicitly integrated in an evo-devo framework. First, it briefly introduces the current views on carcinogenesis that invoke evolutionary and/or developmental perspectives. Then, it discusses the main mechanisms proposed to have specifically evolved to suppress cancer during the evolution of multicellularity. Lastly, it considers whether the evolution of multicellularity and development was shaped by the threat of cancer (a cancer-evo-devo perspective), and/or whether the evolution of developmental programs and life history traits can shape cancer resistance/risk in various lineages (an evo-devo-cancer perspective). A proper evolutionary developmental framework for cancer, both as a disease and in terms of its natural history (in the context of the evolution of multicellularity and development as well as life history traits), could bridge the currently disparate evolutionary and developmental perspectives and uncover aspects that will provide new insights for cancer prevention and treatment.
Collapse
|
49
|
Angelini M, Collatuzzo G, Teglia F, Sassano M, Siea AC, Boffetta P. The role of chance in cancer causation. LA MEDICINA DEL LAVORO 2022; 113:e2022056. [PMID: 36475502 PMCID: PMC9766839 DOI: 10.23749/mdl.v113i6.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
In the last years, the discussion about the role of chance in the causation of cancer has generated much scientific and public debate. The concept that chance, or "bad luck", as responsible for a majority of the variation of cancer incidence, may be misleading, possibly causing an underestimation of the role played by known risk factors. In this commentary we discuss how host and external factors interact with chance in cancer causation in different ways, and provide examples of situations where chance appears to play only a minor role on cancer onset.
Collapse
Affiliation(s)
- Marco Angelini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Federica Teglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Michele Sassano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Andrei Cosmin Siea
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, New York NY, USA.
| |
Collapse
|
50
|
Pavličev M, Wagner GP. The value of broad taxonomic comparisons in evolutionary medicine: Disease is not a trait but a state of a trait! MedComm (Beijing) 2022; 3:e174. [PMID: 36186235 PMCID: PMC9495303 DOI: 10.1002/mco2.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/09/2022] Open
Abstract
In this short paper, we argue that there is a fundamental connection between the medical sciences and evolutionary biology as both are sciences of biological variation. Medicine studies pathological variation among humans (and domestic animals in veterinary medicine) and evolutionary biology studies variation within and among species in general. A key principle of evolutionary biology is that genetic differences among species have arisen first from mutations originating within populations. This implies a mechanistic continuity between variation among individuals within a species and variation between species. This fact motivates research that seeks to leverage comparisons among species to unravel the genetic basis of human disease vulnerabilities. This view also implies that genetically caused diseases can be understood as extreme states of an underlying trait, that is, an axis of variation, rather than distinct traits, as often assumed in GWAS studies. We illustrate these points with a number of examples as diverse as anatomical birth defects, cranio-facial variation, preeclampsia and vulnerability to metastatic cancer.
Collapse
Affiliation(s)
- Mihaela Pavličev
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | - Günter P. Wagner
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
- Yale Systems Biology InstituteYale UniversityWest HavenConnecticutUSA
- Department of ObstetricsGynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
- Department of Obstetrics and GynecologyWayne State UniversityDetroitMichiganUSA
| |
Collapse
|