1
|
Kang M, Lee D, Mannaa M, Han G, Choi H, Lee S, Lim GH, Kim SW, Kim TJ, Seo YS. Impact of Quorum Sensing on the Virulence and Survival Traits of Burkholderia plantarii. PLANTS (BASEL, SWITZERLAND) 2024; 13:2657. [PMID: 39339632 PMCID: PMC11434762 DOI: 10.3390/plants13182657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Quorum sensing (QS) is a mechanism by which bacteria detect and respond to cell density, regulating collective behaviors. Burkholderia plantarii, the causal agent of rice seedling blight, employs the LuxIR-type QS system, common among Gram-negative bacteria, where LuxI-type synthase produces QS signals recognized by LuxR-type regulators to control gene expression. This study aimed to elucidate the QS mechanism in B. plantarii KACC18965. Through whole-genome analysis and autoinducer assays, the plaI gene, responsible for QS signal production, was identified. Motility assays confirmed that C8-homoserine lactone (C8-HSL) serves as the QS signal. Physiological experiments revealed that the QS-defective mutant exhibited reduced virulence, impaired swarming motility, and delayed biofilm formation compared to the wild type. Additionally, the QS mutant demonstrated weakened antibacterial activity against Escherichia coli and decreased phosphate solubilization. These findings indicate that QS in B. plantarii significantly influences various pathogenicity and survival traits, including motility, biofilm formation, antibacterial activity, and nutrient acquisition, highlighting the critical role of QS in pathogen virulence and adaptability.
Collapse
Affiliation(s)
- Minhee Kang
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
- Institute of System Biology, Pusan National University, Pusan 46241, Republic of Korea
| | - Duyoung Lee
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
- Institute of System Biology, Pusan National University, Pusan 46241, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Haeun Choi
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Seungchul Lee
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Gah-Hyun Lim
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
- Institute of System Biology, Pusan National University, Pusan 46241, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Republic of Korea
- Institute of System Biology, Pusan National University, Pusan 46241, Republic of Korea
| |
Collapse
|
2
|
Lindsay RJ, Holder PJ, Hewlett M, Gudelj I. Experimental evolution of yeast shows that public-goods upregulation can evolve despite challenges from exploitative non-producers. Nat Commun 2024; 15:7810. [PMID: 39242624 PMCID: PMC11379824 DOI: 10.1038/s41467-024-52043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Microbial secretions, such as metabolic enzymes, are often considered to be cooperative public goods as they are costly to produce but can be exploited by others. They create incentives for the evolution of non-producers, which can drive producer and population productivity declines. In response, producers can adjust production levels. Past studies suggest that while producers lower production to reduce costs and exploitation opportunities when under strong selection pressure from non-producers, they overproduce secretions when these pressures are weak. We challenge the universality of this trend with the production of a metabolic enzyme, invertase, by Saccharomyces cerevisiae, which catalyses sucrose hydrolysis into two hexose molecules. Contrary to past studies, overproducers evolve during evolutionary experiments even when under strong selection pressure from non-producers. Phenotypic and competition assays with a collection of synthetic strains - engineered to have modified metabolic attributes - identify two mechanisms for suppressing the benefits of invertase to those who exploit it. Invertase overproduction increases extracellular hexose concentrations that suppresses the metabolic efficiency of competitors, due to the rate-efficiency trade-off, and also enhances overproducers' hexose capture rate by inducing transporter expression. Thus, overproducers are maintained in the environment originally thought to not support public goods production.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Mark Hewlett
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Lu W, Lu H, Huo X, Wang C, Zhang Z, Zong B, Wang G, Dong W, Li X, Li Y, Chen H, Tan C. EvfG is a multi-function protein located in the Type VI secretion system for ExPEC. Microbiol Res 2024; 283:127647. [PMID: 38452551 DOI: 10.1016/j.micres.2024.127647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
The Type VI secretion system (T6SS) functions as a protein transport nanoweapon in several stages of bacterial life. Even though bacterial competition is the primary function of T6SS, different bacteria exhibit significant variations. Particularly in Extraintestinal pathogenic Escherichia coli (ExPEC), research into T6SS remains relatively limited. This study identified the uncharacterized gene evfG within the T6SS cluster of ExPEC RS218. Through our experiments, we showed that evfG is involved in T6SS expression in ExPEC RS218. We also found evfG can modulate T6SS activity by competitively binding to c-di-GMP, leading to a reduction in the inhibitory effect. Furthermore, we found that evfG can recruit sodA to alleviate oxidative stress. The research shown evfG controls an array of traits, both directly and indirectly, through transcriptome and additional tests. These traits include cell adhesion, invasion, motility, drug resistance, and pathogenicity of microorganisms. Overall, we contend that evfG serves as a multi-functional regulator for the T6SS and several crucial activities. This forms the basis for the advancement of T6SS function research, as well as new opportunities for vaccine and medication development.
Collapse
Affiliation(s)
- Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xinyu Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Bingbing Zong
- School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Gaoyan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiaodan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yuying Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Xu KZ, Xiang SL, Wang YJ, Wang B, Jia AQ. Methyl gallate isolated from partridge tea (Mallotus oblongifolius (Miq.) Müll.Arg.) inhibits the biofilms and virulence factors of Burkholderia thailandensis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117422. [PMID: 37977424 DOI: 10.1016/j.jep.2023.117422] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMCOLOGICAL RELEVANCE The formation of biofilms is a factor leading to chronic infection and drug resistance in melioidosis. The production of biofilm formation and many virulence factors are regulated by quorum sensing (QS). Therefore, the discovery of QS inhibitors to reduce antibiotic abuse has attracted a lot of attention. In this case, the methanol extract of a unique ethnic medicinal plant partridge tea (Mallotus oblongifolius (Miq.) Müll.Arg.) and its isolated active compound were used as biofilms and QS inhibitors against Burkholderia thailandensis. AIM OF THE STUDY The purpose of this study is to investigate the anti-biofilm and anti-QS effect of the ethnic medicinal plant partridge tea and its active compounds against B. thailandensis. METHODS Active compound was isolated using classical phytochemical separation techniques under activity tracking. The biofilm and virulence factors (Proteases, lipases, rhamnolipids, and motility) of B. thailandensis were used to evaluate the activity of crude extracts and isolated compounds. RESULTS In this study, the extract of partridge tea and MG had good QS inhibitors activity against B. thailandensis E264. MG was investigated to inhibit QS-related virulence factors and the biofilm formation against B. thailandensis E264. The lipase activity of B. thailandensis E264 decreased by 49.41% at 150 μg/mL. At 75 μg/mL and 150 μg/mL, the erasion of mature biofilms reached 28.18% and 70.87%, respectively. Correspondingly, 150 μg/mL MG could significantly decrease btaR1 and btaR3 by 55.78% and 56.24%, respectively. Contradictorily, the rhamnolipid production of B. thailandensis E264 was 1.67 folds that of the control group at 150 μg/mL MG. CONCLUSION Through molecular docking analysis and biological phenotype data, we speculate that MG may inhibit the biofilms and virulence factors of B. thailandensis E264 by interfering two QS systems, BtaI1/R1 and BtaI3/R3. Therefore, MG should be one potential QSI for the treatment of Burkholderia pathogens.
Collapse
Affiliation(s)
- Kai-Zhong Xu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shi-Liang Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Ying-Jie Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Ramamoorthy S, Pena M, Ghosh P, Liao YY, Paret M, Jones JB, Potnis N. Transcriptome profiling of type VI secretion system core gene tssM mutant of Xanthomonas perforans highlights regulators controlling diverse functions ranging from virulence to metabolism. Microbiol Spectr 2024; 12:e0285223. [PMID: 38018859 PMCID: PMC10782981 DOI: 10.1128/spectrum.02852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE T6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here, Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* in X. perforans AL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria.
Collapse
Affiliation(s)
- Sivakumar Ramamoorthy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Michelle Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Palash Ghosh
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Ying-Yu Liao
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Mathews Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
Lin H, Wang D, Wang Q, Mao J, Bai Y, Qu J. Interspecific competition prevents the proliferation of social cheaters in an unstructured environment. THE ISME JOURNAL 2024; 18:wrad038. [PMID: 38365247 PMCID: PMC10939377 DOI: 10.1093/ismejo/wrad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/18/2024]
Abstract
Bacterial communities are intricate ecosystems in which various members interact, compete for resources, and influence each other's growth. Antibiotics intensify this complexity, posing challenges in maintaining biodiversity. In this study, we delved into the behavior of kin bacterial communities when subjected to antibiotic perturbations, with a particular focus on how interspecific interactions shape these responses. We hypothesized that social cheating-where resistant strains shield both themselves and neighboring cheaters-obstructed coexistence, especially when kin bacteria exhibited varied growth rates and antibiotic sensitivities. To explore potential pathways to coexistence, we incorporated a third bacterial member, anticipating a shift in the dynamics of community coexistence. Simulations and experimental bacterial communities confirmed our predictions, emphasizing the pivotal role of interspecific competition in promoting coexistence under antibiotic interference. These insights are crucial for understanding bacterial ecosystem stability, interpreting drug-microbiome interactions, and predicting bacterial community adaptations to environmental changes.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Jie Mao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
7
|
Song L, Xu L, Wu T, Shi Z, Kareem HA, Wang Z, Dai Q, Guo C, Pan J, Yang M, Wei X, Wang Y, Wei G, Shen X. Trojan horselike T6SS effector TepC mediates both interference competition and exploitative competition. THE ISME JOURNAL 2024; 18:wrad028. [PMID: 38365238 PMCID: PMC10833071 DOI: 10.1093/ismejo/wrad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 02/18/2024]
Abstract
The type VI secretion system (T6SS) is a bacterial weapon capable of delivering antibacterial effectors to kill competing cells for interference competition, as well as secreting metal ion scavenging effectors to acquire essential micronutrients for exploitation competition. However, no T6SS effectors that can mediate both interference competition and exploitation competition have been reported. In this study, we identified a unique T6SS-1 effector in Yersinia pseudotuberculosis named TepC, which plays versatile roles in microbial communities. First, secreted TepC acts as a proteinaceous siderophore that binds to iron and mediates exploitative competition. Additionally, we discovered that TepC has DNase activity, which gives it both contact-dependent and contact-independent interference competition abilities. In conditions where iron is limited, the iron-loaded TepC is taken up by target cells expressing the outer membrane receptor TdsR. For kin cells encoding the cognate immunity protein TipC, TepC facilitates iron acquisition, and its toxic effects are neutralized. On the other hand, nonkin cells lacking TipC are enticed to uptake TepC and are killed by its DNase activity. Therefore, we have uncovered a T6SS effector, TepC, that functions like a "Trojan horse" by binding to iron ions to provide a valuable resource to kin cells, whereas punishing cheaters that do not produce public goods. This lure-to-kill mechanism, mediated by a bifunctional T6SS effector, may offer new insights into the molecular mechanisms that maintain stability in microbial communities.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong Wu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenkun Shi
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Abdul Kareem
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuo Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyun Dai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenghao Guo
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingming Yang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomeng Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Abstract
The first discovered and well-characterized bacterial quorum sensing (QS) system belongs to Vibrio fischeri, which uses N-acyl homo-serine lactones (AHLs) for cell-cell signaling. AHL QS cell-cell communication is often regarded as a cell density-dependent regulatory switch. Since the discovery of QS, it has been known that AHL concentration (which correlates imperfectly with cell density) is not necessarily the only QS trigger. Additionally, not all cells respond to a QS signal. Bacteria could, via QS, exhibit phenotypic heterogeneity, resulting in sub-populations with unique phenotypes. It is time to ascribe greater importance to QS-dependent phenotypic heterogeneity, and its potential purpose in natura, with emphasis on the division of labor, specialization, and "bet-hedging". We hope that this perspective article will stimulate the awareness that QS can be more than just a cell-density switch. This basic mechanism could result in "bacterial civilizations", thus forcing us to reconsider the way bacterial communities are envisioned in natura.
Collapse
Affiliation(s)
- Mihael Spacapan
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
9
|
Guadarrama-Orozco KD, Perez-Gonzalez C, Kota K, Cocotl-Yañez M, Jiménez-Cortés JG, Díaz-Guerrero M, Hernández-Garnica M, Munson J, Cadet F, López-Jácome LE, Estrada-Velasco ÁY, Fernández-Presas AM, García-Contreras R. To cheat or not to cheat: cheatable and non-cheatable virulence factors in Pseudomonas aeruginosa. FEMS Microbiol Ecol 2023; 99:fiad128. [PMID: 37827541 DOI: 10.1093/femsec/fiad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023] Open
Abstract
Important bacterial pathogens such as Pseudomonas aeruginosa produce several exoproducts such as siderophores, degradative enzymes, biosurfactants, and exopolysaccharides that are used extracellularly, benefiting all members of the population, hence being public goods. Since the production of public goods is a cooperative trait, it is in principle susceptible to cheating by individuals in the population who do not invest in their production, but use their benefits, hence increasing their fitness at the expense of the cooperators' fitness. Among the most studied virulence factors susceptible to cheating are siderophores and exoproteases, with several studies in vitro and some in animal infection models. In addition to these two well-known examples, cheating with other virulence factors such as exopolysaccharides, biosurfactants, eDNA production, secretion systems, and biofilm formation has also been studied. In this review, we discuss the evidence of the susceptibility of each of those virulence factors to cheating, as well as the mechanisms that counteract this behavior and the possible consequences for bacterial virulence.
Collapse
Affiliation(s)
- Katya Dafne Guadarrama-Orozco
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Caleb Perez-Gonzalez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Kokila Kota
- Ramapo College of New Jersey, Biology Department, Mahwah, NJ 07430, USA
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Jesús Guillermo Jiménez-Cortés
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Mariel Hernández-Garnica
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Julia Munson
- Ramapo College of New Jersey, Biology Department, Mahwah, NJ 07430, USA
| | - Frederic Cadet
- PEACCEL, Artificial Intelligence Department, AI for Biologics, Paris, 75013, France
| | - Luis Esaú López-Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, 14389 Mexico City, Mexico
| | - Ángel Yahir Estrada-Velasco
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| |
Collapse
|
10
|
Hespanhol JT, Nóbrega-Silva L, Bayer-Santos E. Regulation of type VI secretion systems at the transcriptional, posttranscriptional and posttranslational level. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001376. [PMID: 37552221 PMCID: PMC10482370 DOI: 10.1099/mic.0.001376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Luize Nóbrega-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Ethel Bayer-Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
11
|
Jensen SJ, Ruhe ZC, Williams AF, Nhan DQ, Garza-Sánchez F, Low DA, Hayes CS. Paradoxical Activation of a Type VI Secretion System Phospholipase Effector by Its Cognate Immunity Protein. J Bacteriol 2023; 205:e0011323. [PMID: 37212679 PMCID: PMC10294671 DOI: 10.1128/jb.00113-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Type VI secretion systems (T6SSs) deliver cytotoxic effector proteins into target bacteria and eukaryotic host cells. Antibacterial effectors are invariably encoded with cognate immunity proteins that protect the producing cell from self-intoxication. Here, we identify transposon insertions that disrupt the tli immunity gene of Enterobacter cloacae and induce autopermeabilization through unopposed activity of the Tle phospholipase effector. This hyperpermeability phenotype is T6SS dependent, indicating that the mutants are intoxicated by Tle delivered from neighboring sibling cells rather than by internally produced phospholipase. Unexpectedly, an in-frame deletion of tli does not induce hyperpermeability because Δtli null mutants fail to deploy active Tle. Instead, the most striking phenotypes are associated with disruption of the tli lipoprotein signal sequence, which prevents immunity protein localization to the periplasm. Immunoblotting reveals that most hyperpermeable mutants still produce Tli, presumably from alternative translation initiation codons downstream of the signal sequence. These observations suggest that cytosolic Tli is required for the activation and/or export of Tle. We show that Tle growth inhibition activity remains Tli dependent when phospholipase delivery into target bacteria is ensured through fusion to the VgrG β-spike protein. Together, these findings indicate that Tli has distinct functions, depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to neutralize incoming effector proteins, while a cytosolic pool of Tli is required to activate the phospholipase domain of Tle prior to T6SS-dependent export. IMPORTANCE Gram-negative bacteria use type VI secretion systems deliver toxic effector proteins directly into neighboring competitors. Secreting cells also produce specific immunity proteins that neutralize effector activities to prevent autointoxication. Here, we show the Tli immunity protein of Enterobacter cloacae has two distinct functions, depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to block Tle lipase effector activity, while cytoplasmic Tli is required to activate the lipase prior to export. These results indicate Tle interacts transiently with its cognate immunity protein to promote effector protein folding and/or packaging into the secretion apparatus.
Collapse
Affiliation(s)
- Steven J. Jensen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Zachary C. Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - August F. Williams
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Dinh Q. Nhan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - David A. Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
12
|
Gonzales M, Plener L, Armengaud J, Armstrong N, Chabrière É, Daudé D. Lactonase-mediated inhibition of quorum sensing largely alters phenotypes, proteome, and antimicrobial activities in Burkholderia thailandensis E264. Front Cell Infect Microbiol 2023; 13:1190859. [PMID: 37333853 PMCID: PMC10272358 DOI: 10.3389/fcimb.2023.1190859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Burkholderia thailandensis is a study model for Burkholderia pseudomallei, a highly virulent pathogen, known to be the causative agent of melioidosis and a potential bioterrorism agent. These two bacteria use an (acyl-homoserine lactone) AHL-mediated quorum sensing (QS) system to regulate different behaviors including biofilm formation, secondary metabolite productions, and motility. Methods Using an enzyme-based quorum quenching (QQ) strategy, with the lactonase SsoPox having the best activity on B. thailandensis AHLs, we evaluated the importance of QS in B. thailandensis by combining proteomic and phenotypic analyses. Results We demonstrated that QS disruption largely affects overall bacterial behavior including motility, proteolytic activity, and antimicrobial molecule production. We further showed that QQ treatment drastically decreases B. thailandensis bactericidal activity against two bacteria (Chromobacterium violaceum and Staphylococcus aureus), while a spectacular increase in antifungal activity was observed against fungi and yeast (Aspergillus niger, Fusarium graminearum and Saccharomyces cerevisiae). Discussion This study provides evidence that QS is of prime interest when it comes to understanding the virulence of Burkholderia species and developing alternative treatments.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Gene&GreenTK, Marseille, France
| | | | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | |
Collapse
|
13
|
Kumar R, Barbhuiya RI, Bohra V, Wong JWC, Singh A, Kaur G. Sustainable rhamnolipids production in the next decade - Advancing with Burkholderia thailandensis as a potent biocatalytic strain. Microbiol Res 2023; 272:127386. [PMID: 37094547 DOI: 10.1016/j.micres.2023.127386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Rhamnolipids are one of the most promising eco-friendly green glycolipids for bio-replacements of commercially available fossil fuel-based surfactants. However, the current industrial biotechnology practices cannot meet the required standards due to the low production yields, expensive biomass feedstocks, complicated processing, and opportunistic pathogenic nature of the conventional rhamnolipid producer strains. To overcome these problems, it has become important to realize non-pathogenic producer substitutes and high-yielding strategies supporting biomass-based production. We hereby review the inherent characteristics of Burkholderia thailandensis E264 which favor its competence towards such sustainable rhamnolipid biosynthesis. The underlying biosynthetic networks of this species have unveiled unique substrate specificity, carbon flux control and rhamnolipid congener profile. Acknowledging such desirable traits, the present review provides critical insights towards metabolism, regulation, upscaling, and applications of B. thailandensis rhamnolipids. Identification of their unique and naturally inducible physiology has proved to be beneficial for achieving previously unmet redox balance and metabolic flux requirements in rhamnolipids production. These developments in part are targeted by the strategic optimization of B. thailandensis valorizing low-cost substrates ranging from agro-industrial byproducts to next generation (waste) fractions. Accordingly, safer bioconversions can propel the industrial rhamnolipids in advanced biorefinery domains to promote circular economy, reduce carbon footprint and increased applicability as both social and environment friendly bioproducts.
Collapse
Affiliation(s)
- Rajat Kumar
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Varsha Bohra
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Institute of Bioresources and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada.
| |
Collapse
|
14
|
Jensen SJ, Ruhe ZC, Williams AF, Nhan DQ, Garza-Sánchez F, Low DA, Hayes CS. Paradoxical activation of a type VI secretion system (T6SS) phospholipase effector by its cognate immunity protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534661. [PMID: 37034769 PMCID: PMC10081291 DOI: 10.1101/2023.03.28.534661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Type VI secretion systems (T6SS) deliver cytotoxic effector proteins into target bacteria and eukaryotic host cells. Antibacterial effectors are invariably encoded with cognate immunity proteins that protect the producing cell from self-intoxication. Here, we identify transposon insertions that disrupt the tli immunity gene of Enterobacter cloacae and induce auto-permeabilization through unopposed activity of the Tle phospholipase effector. This hyper-permeability phenotype is T6SS-dependent, indicating that the mutants are intoxicated by Tle delivered from neighboring sibling cells rather than by internally produced phospholipase. Unexpectedly, an in-frame deletion of tli does not induce hyper-permeability because Δ tli null mutants fail to deploy active Tle. Instead, the most striking phenotypes are associated with disruption of the tli lipoprotein signal sequence, which prevents immunity protein localization to the periplasm. Immunoblotting reveals that most hyper-permeable mutants still produce Tli, presumably from alternative translation initiation codons downstream of the signal sequence. These observations suggest that cytosolic Tli is required for the activation and/or export of Tle. We show that Tle growth inhibition activity remains Tli-dependent when phospholipase delivery into target bacteria is ensured through fusion to the VgrG β-spike protein. Together, these findings indicate that Tli has distinct functions depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to neutralize incoming effector proteins, while a cytosolic pool of Tli is required to activate the phospholipase domain of Tle prior to T6SS-dependent export.
Collapse
|
15
|
Septer AN, Sharpe G, Shook EA. The Vibrio fischeri type VI secretion system incurs a fitness cost under host-like conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.529561. [PMID: 36945377 PMCID: PMC10028907 DOI: 10.1101/2023.03.07.529561] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The type VI secretion system (T6SS) is an interbacterial weapon composed of thousands of protein subunits and predicted to require significant cellular energy to deploy, yet a fitness cost from T6SS use is rarely observed. Here, we identify host-like conditions where the T6SS incurs a fitness cost using the beneficial symbiont, Vibrio fischeri, which uses its T6SS to eliminate competitors in the natural squid host. We hypothesized that a fitness cost for the T6SS could be dependent on the cellular energetic state and used theoretical ATP cost estimates to predict when a T6SS-dependent fitness cost may be apparent. Theoretical energetic cost estimates predicted a minor relative cost for T6SS use in fast-growing populations (0.4-0.45% of total ATP used cell-1), and a higher relative cost (3.1-13.6%) for stationary phase cells. Consistent with these predictions, we observed no significant T6SS-dependent fitness cost for fast-growing populations typically used for competition assays. However, the stationary phase cell density was significantly lower in the wild-type strain, compared to a regulator mutant that does not express the T6SS, and this T6SS-dependent fitness cost was between 11 and 23%. Such a fitness cost could influence the prevalence and biogeography of T6SSs in animal-associated bacteria. While the T6SS may be required in kill or be killed scenarios, once the competitor is eliminated there is no longer selective pressure to maintain the weapon. Our findings indicate an evolved genotype lacking the T6SS would have a growth advantage over its parent, resulting in the eventual dominance of the unarmed population.
Collapse
Affiliation(s)
- Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Garrett Sharpe
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599
- Environment, Ecology & Energy Program, University of North Carolina, Chapel Hill, NC 27599
| | - Erika A. Shook
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
16
|
Huang D, Wang Y, Xiao J, Wang Y, Zhu X, Xu B, Wang M. Scavenging of reactive oxygen species effectively reduces Pseudomonas aeruginosa biofilms through disrupting policing. ENVIRONMENTAL RESEARCH 2023; 220:115182. [PMID: 36586713 DOI: 10.1016/j.envres.2022.115182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Biofilm formation is likely to contribute greatly to antibiotic resistance in bacteria and therefore the efficient removal of bacterial biofilms needs addressing urgently. Here, we reported that the supplement of non-inhibitory concentration of N-acetyl-L-cysteine (NAC), a common reactive oxygen species (ROS) scavenger, can significantly reduce the biomass of mature Pseudomonas aeruginosa biofilms (corroborated by crystal violet assay and laser scanning confocal microscopy). 1 mM NAC increased the cheater (ΔlasR mutant) frequency to 89.4 ± 1.5% in the evolved PAO1 after the 15-day treatment. Scavenging of ROS by NAC induced the collapse of P. aeruginosa biofilms, but it did not alter quorum sensing-regulated genes expression (e.g., hcnC and cioAB) and hydrogen cyanide production. The replenishment of public good protease contributed to the recovery of biofilm biomass, indicating the role of disrupting policing in biofilm inhibition. Furthermore, 7 typical ROS scavengers (e.g., superoxide dismutase, catalase and peroxidase, etc.) also effectively inhibited mature P. aeruginosa biofilms. This study demonstrates that scavenging of ROS can promote the selective control of P. aeruginosa biofilms through policing disruption as a targeted biofilm control strategy in complex water environments.
Collapse
Affiliation(s)
- Dan Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Junwei Xiao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yufan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xinyu Zhu
- Eco-Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Baile Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China.
| |
Collapse
|
17
|
Et tu, Vibrio cholerae? Kin-cannibalism and a bacterial secretion system. Cell 2022; 185:4039-4040. [PMID: 36306729 DOI: 10.1016/j.cell.2022.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Type VI secretion systems are molecular syringes used by Gram-negative bacteria to kill heterospecific (non-kin) niche competitors. In this issue of Cell, Mashruwala et al. show that colonies of the pathogen Vibrio cholera can also exhibit T6SS-mediated cell killing of kin cells and that this process benefits emerging resistant mutants, thereby increasing genetic diversity.
Collapse
|
18
|
Recipient Cell Factors Influence Interbacterial Competition Mediated by Two Distinct Burkholderia dolosa Contact-Dependent Growth Inhibition Systems. J Bacteriol 2022; 204:e0054121. [PMID: 36000834 PMCID: PMC9487645 DOI: 10.1128/jb.00541-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems mediate interbacterial antagonism between Gram-negative bacteria by delivering the toxic portion of a large surface protein (termed BcpA in Burkholderia species) to the cytoplasm of neighboring bacteria. Translocation of the antibacterial polypeptide into recipient cells requires specific recipient outer and inner membrane proteins, but the identity of these factors outside several model organisms is unknown. To identify genes involved in CDI susceptibility in the Burkholderia cepacia complex member Burkholderia dolosa, a transposon mutagenesis selection approach was used to enrich for mutants resistant to BcpA-1 or BcpA-2. Subsequent analysis showed that candidate regulatory genes contributed modestly to recipient cell susceptibility to B. dolosa CDI. However, most candidate deletion mutants did not show the same phenotypes as the corresponding transposon mutants. Whole-genome resequencing revealed that these transposon mutants also contained unique mutations within a three gene locus (wabO, BDAG_01006, and BDAG_01005) encoding predicted lipopolysaccharide (LPS) biosynthesis enzymes. B. dolosa wabO, BDAG_01006, or BDAG_01005 mutants were resistant to CDI and produced LPS with altered core oligosaccharide and O-antigen. Although BcpA-1 and BcpA-2 are dissimilar and expected to utilize different outer membrane receptors, intoxication by both proteins was similarly impacted by LPS changes. Together, these findings suggest that alterations in cellular regulation may indirectly impact the efficiency of CDI-mediated competition and demonstrate that LPS is required for intoxication by two distinct B. dolosa BcpA proteins. IMPORTANCEContact-dependent growth inhibition (CDI) system proteins, produced by many Gram-negative bacteria, are narrow spectrum antimicrobials that inhibit the growth of closely related neighboring bacteria. Here, we use the opportunistic pathogen Burkholderia dolosa to identify genes required for intoxication by two distinct CDI system proteins. Our findings suggest that B. dolosa recipient cells targeted by CDI systems are only intoxicated if they produce full-length lipopolysaccharide. Understanding the mechanisms underlying antagonistic interbacterial interactions may contribute to future therapeutic development.
Collapse
|
19
|
A Quorum Sensing-Regulated Type VI Secretion System Containing Multiple Nonredundant VgrG Proteins Is Required for Interbacterial Competition in Chromobacterium violaceum. Microbiol Spectr 2022; 10:e0157622. [PMID: 35876575 PMCID: PMC9430734 DOI: 10.1128/spectrum.01576-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The environmental pathogenic bacterium Chromobacterium violaceum kills Gram-positive bacteria by delivering violacein packed into outer membrane vesicles, but nothing is known about its contact-dependent competition mechanisms. In this work, we demonstrate that C. violaceum utilizes a type VI secretion system (T6SS) containing multiple VgrG proteins primarily for interbacterial competition. The single T6SS of C. violaceum contains six vgrG genes, which are located in the main T6SS cluster and four vgrG islands. Using T6SS core component-null mutant strains, Western blotting, fluorescence microscopy, and competition assays, we showed that the C. violaceum T6SS is active and required for competition against Gram-negative bacteria such as Pseudomonas aeruginosa but dispensable for C. violaceum infection in mice. Characterization of single and multiple vgrG mutants revealed that, despite having high sequence similarity, the six VgrGs show little functional redundancy, with VgrG3 showing a major role in T6SS function. Our coimmunoprecipitation data support a model of VgrG3 interacting directly with the other VgrGs. Moreover, we determined that the promoter activities of T6SS genes increased at high cell density, but the produced Hcp protein was not secreted under such condition. This T6SS growth phase-dependent regulation was dependent on CviR but not on CviI, the components of a C. violaceum quorum sensing (QS) system. Indeed, a ΔcviR but not a ΔcviI mutant was completely defective in Hcp secretion, T6SS activity, and interbacterial competition. Overall, our data reveal that C. violaceum relies on a QS-regulated T6SS to outcompete other bacteria and expand our knowledge about the redundancy of multiple VgrGs. IMPORTANCE The type VI secretion system (T6SS) is a contractile nanomachine used by many Gram-negative bacteria to inject toxic effectors into adjacent cells. The delivered effectors are bound to the components of a puncturing apparatus containing the protein VgrG. The T6SS has been implicated in pathogenesis and, more commonly, in competition among bacteria. Chromobacterium violaceum is an environmental bacterium that causes deadly infections in humans. In this work, we characterized the single T6SS of C. violaceum ATCC 12472, including its six VgrG proteins, regarding its function and regulation. This previously undescribed C. violaceum T6SS is active, regulated by QS, and required for interbacterial competition instead of acute infection in mice. Among the VgrGs, VgrG3, encoded outside the main T6SS cluster, showed a major contribution to T6SS function. These results shed light on a key contact-dependent killing mechanism used by C. violaceum to antagonize other bacteria.
Collapse
|
20
|
Genome-Wide Analysis and Characterization of the Riemerella anatipestifer Putative T9SS Secretory Proteins with a Conserved C-Terminal Domain. J Bacteriol 2022; 204:e0007322. [PMID: 35670588 DOI: 10.1128/jb.00073-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) acts as a crucial virulence factor. We previously identified two T9SS component proteins, GldK and GldM, and one T9SS effector metallophosphoesterase, which play important roles in bacterial virulence. In this study, 19 T9SS-secreted proteins that contained a conserved T9SS C-terminal domain (CTD) were predicted in R. anatipestifer strain Yb2 by searching for CTD-encoding sequences in the whole genome. The proteins were confirmed with a liquid chromatography-tandem mass spectrometry analysis of the bacterial culture supernatant. Nine of them were reported in our previous study. We generated recombinant proteins and mouse antisera for the 19 predicted proteins to confirm their expression in the bacterial culture supernatant and in bacterial cells. Western blotting indicated that the levels of 14 proteins were significantly reduced in the T9SS mutant Yb2ΔgldM culture medium but were increased in the bacterial cells. RT-qPCR indicated that the expression of these genes did not differ between the wild-type strain Yb2 and the T9SS mutant Yb2ΔgldM. Nineteen mutant strains were successfully constructed to determine their virulence and proteolytic activity, which indicated that seven proteins are associated with bacterial virulence, and two proteins, AS87_RS04190 and AS87_RS07295, are protease-activity-associated virulence factors. In summary, we have identified at least 19 genes encoding T9SS-secreted proteins in the R. anatipestifer strain Yb2 genome, which encode multiple functions associated with the bacterium's virulence and proteolytic activity. IMPORTANCE Riemerella anatipestifer T9SS plays an important role in bacterial virulence. We have previously reported nine R. anatipestifer T9SS-secreted proteins and clarified the function of the metallophosphoesterase. In this study, we identified 10 more secreted proteins associated with the R. anatipestifer T9SS, in addition to the nine previously reported. Of these, 14 proteins showed significantly reduced secretion into the bacterial culture medium but increased expression in the bacterial cells of the T9SS mutant Yb2ΔgldM; seven proteins were shown to be associated with bacterial virulence; and two proteins, AS87_RS04190 and AS87_RS07295, were shown to be protease-activity-associated virulence factors. Thus, we have demonstrated that multiple R. anatipestifer T9SS-secreted proteins function in virulence and proteolytic activity.
Collapse
|
21
|
Riemerella anatipestifer T9SS Effector SspA Functions in Bacterial Virulence and Defending Natural Host Immunity. Appl Environ Microbiol 2022; 88:e0240921. [PMID: 35575548 DOI: 10.1128/aem.02409-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) is a crucial factor in bacterial virulence. The AS87_RS04190 protein was obviously missing from the secreted proteins of the T9SS mutant strain Yb2ΔgldM. A bioinformatic analysis indicated that the AS87_RS04190 protein contains a T9SS C-terminal domain sequence and encodes a putative subtilisin-like serine protease (SspA). To determine the role of the putative SspA protein in R. anatipestifer pathogenesis and proteolysis, we constructed two strains with an sspA mutation and complementation, respectively, and determined their median lethal doses, their bacterial loads in infected duck blood, and their adherence to and invasion of cells. Our results demonstrate that the SspA protein functions in bacterial virulence. It is also associated with the bacterial protease activity and has a conserved catalytic triad structure (Asp126, His158, and Ser410), which is necessary for protein function. The optimal reactive pH and temperature were determined to be 7.0 and 50°C, respectively, and Km and Vmax were determined to be 10.15 mM and 246.96 U/mg, respectively. The enzymatic activity of SspA is activated by Ca2+, Mg2+, and Mn2+ and inhibited by Cu2+ and EDTA. SspA degrades gelatin, fibrinogen, and bacitracin LL-37. These results demonstrate that SspA is an effector protein of T9SS and functions in R. anatipestifer virulence and its proteolysis of gelatin, fibrinogen, and bacitracin LL-37. IMPORTANCE In recent years, Riemerella anatipestifer T9SS has been reported to act as a virulence factor. However, the functions of the proteins secreted by R. anatipestifer T9SS are not entirely clear. In this study, a secreted subtilisin-like serine protease SspA was shown to be associated with R. anatipestifer virulence, host complement evasion, and degradation of gelatin, fibrinogen, and LL-37. The enzymatic activity of recombinant SspA was determined, and its Km and Vmax were 10.15 mM and 246.96 U/mg, respectively. Three conserved sites (Asp126, His158, and Ser410) are necessary for the protein's function. The median lethal dose of the sspA-deleted mutant strain was reduced >10,000-fold, indicating that SspA is an important virulence factor. In summary, we demonstrate that the R. anatipestifer AS87_RS04190 gene encodes an important T9SS effector, SspA, which plays an important role in bacterial virulence.
Collapse
|
22
|
Unni R, Pintor KL, Diepold A, Unterweger D. Presence and absence of type VI secretion systems in bacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467500 DOI: 10.1099/mic.0.001151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The type VI secretion system (T6SS) is a molecular puncturing device that enables Gram-negative bacteria to kill competitors, manipulate host cells and take up nutrients. Who would want to miss such superpowers? Indeed, many studies show how widespread the secretion apparatus is among microbes. However, it is becoming evident that, on multiple taxonomic levels, from phyla to species and strains, some bacteria lack a T6SS. Here, we review who does and does not have a type VI secretion apparatus and speculate on the dynamic process of gaining and losing the secretion system to better understand its spread and distribution across the microbial world.
Collapse
Affiliation(s)
- Rahul Unni
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| | - Katherine L Pintor
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniel Unterweger
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| |
Collapse
|
23
|
Gallegos-Monterrosa R, Coulthurst SJ. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev 2021; 45:fuab033. [PMID: 34156081 PMCID: PMC8632748 DOI: 10.1093/femsre/fuab033] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteria inhabit all known ecological niches and establish interactions with organisms from all kingdoms of life. These interactions are mediated by a wide variety of mechanisms and very often involve the secretion of diverse molecules from the bacterial cells. The Type VI secretion system (T6SS) is a bacterial protein secretion system that uses a bacteriophage-like machinery to secrete a diverse array of effectors, usually translocating them directly into neighbouring cells. These effectors display toxic activity in the recipient cell, making the T6SS an effective weapon during inter-bacterial competition and interactions with eukaryotic cells. Over the last two decades, microbiology research has experienced a shift towards using systems-based approaches to study the interactions between diverse organisms and their communities in an ecological context. Here, we focus on this aspect of the T6SS. We consider how our perspective of the T6SS has developed and examine what is currently known about the impact that bacteria deploying the T6SS can have in diverse environments, including niches associated with plants, insects and mammals. We consider how T6SS-mediated interactions can affect host organisms by shaping their microbiota, as well as the diverse interactions that can be established between different microorganisms through the deployment of this versatile secretion system.
Collapse
Affiliation(s)
| | - Sarah J Coulthurst
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
24
|
Defending against the Type Six Secretion System: beyond Immunity Genes. Cell Rep 2021; 33:108259. [PMID: 33053336 DOI: 10.1016/j.celrep.2020.108259] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
The bacterial type six secretion system (T6SS) delivers toxic effector proteins into neighboring cells, but bacteria must protect themselves against their own T6SS. Immunity genes are the best-characterized defenses, protecting against specific cognate effectors. However, the prevalence of the T6SS and the coexistence of species with heterologous T6SSs suggest evolutionary pressure selecting for additional defenses against it. Here we review defenses against the T6SS beyond self-associated immunity genes, such as diverse stress responses that can recognize T6SS-inflicted damage and coordinate induction of molecular armor, repair pathways, and overall survival. Some of these stress responses are required for full survival even in the presence of immunity genes. Finally, we propose that immunity gene-independent protection is, mechanistically, bacterial innate immunity and that such defenses and the T6SS have co-evolved and continue to shape one another in polymicrobial communities.
Collapse
|
25
|
Kern L, Abdeen SK, Kolodziejczyk AA, Elinav E. Commensal inter-bacterial interactions shaping the microbiota. Curr Opin Microbiol 2021; 63:158-171. [PMID: 34365152 DOI: 10.1016/j.mib.2021.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The gut microbiota, a complex ecosystem of microorganisms of different kingdoms, impacts host physiology and disease. Within this ecosystem, inter-bacterial interactions and their impacts on microbiota community structure and the eukaryotic host remain insufficiently explored. Microbiota-related inter-bacterial interactions range from symbiotic interactions, involving exchange of nutrients, enzymes, and genetic material; competition for nutrients and space, mediated by biophysical alterations and secretion of toxins and anti-microbials; to predation of overpopulating bacteria. Collectively, these understudied interactions hold important clues as to forces shaping microbiota diversity, niche formation, and responses to signals perceived from the host, incoming pathogens and the environment. In this review, we highlight the roles and mechanisms of selected inter-bacterial interactions in the microbiota, and their potential impacts on the host and pathogenic infection. We discuss challenges in mechanistically decoding these complex interactions, and prospects of harnessing them as future targets for rational microbiota modification in a variety of diseases.
Collapse
Affiliation(s)
- Lara Kern
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Suhaib K Abdeen
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel; Cancer-Microbiota Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
27
|
West SA, Cooper GA, Ghoul MB, Griffin AS. Ten recent insights for our understanding of cooperation. Nat Ecol Evol 2021; 5:419-430. [PMID: 33510431 PMCID: PMC7612052 DOI: 10.1038/s41559-020-01384-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Since Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques. We highlight ten insights that have arisen from these advances, which have illuminated generalizations across different taxa, making the world simpler to explain. Furthermore, progress in these areas has opened up numerous new problems to solve, suggesting exciting directions for future research.
Collapse
Affiliation(s)
- Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Guy A Cooper
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
28
|
Boopathi S, Liu D, Jia AQ. Molecular trafficking between bacteria determines the shape of gut microbial community. Gut Microbes 2021; 13:1959841. [PMID: 34455923 PMCID: PMC8432619 DOI: 10.1080/19490976.2021.1959841] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Complex inter-bacterial interactions largely influence the structure and function of the gut microbial community. Though several host-associated phenomena have often been shown to be involved in the stability, structure, and function of the gut microbial community, the implication of contact-dependent and contact-independent inter-bacterial interactions has been overlooked. Such interactions are tightly governed at multiple layers through several extracellular organelles, including contact-dependent inhibition (CDI), nanotubes, type VI secretion system (T6SS), and membrane vesicles (MVs). Recent advancements in molecular techniques have revealed that such extracellular organelles function beyond exhibiting competitive behavior and are also involved in manifesting cooperative behaviors. Cooperation between bacteria occurs through the sharing of several beneficial molecules including nucleic acids, proteins, metabolites, and nutrients among the members of the community, while competition occurs by means of multiple toxins. Intrinsic coordination between contact-dependent and contact-independent mechanisms collectively provides a fitness advantage and increased colonization resistance to the gut microbiota, where molecular trafficking plays a key role. This review is intended to provide a comprehensive view of the salient features of the different bacterial interactions and to highlight how microbiota deploy multifaceted organelles, for exerting both cooperative and competitive behaviors. We discuss the current knowledge of bacterial molecular trafficking and its impact on shaping the gut microbial community.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Danrui Liu
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
29
|
Aguilar EJ, Barbosa VC, Donangelo R, Souza SR. Interspecies evolutionary dynamics mediated by public goods in bacterial quorum sensing. Phys Rev E 2021; 103:012403. [PMID: 33601496 DOI: 10.1103/physreve.103.012403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/15/2020] [Indexed: 11/07/2022]
Abstract
Bacterial quorum sensing is the communication that takes place between bacteria as they secrete certain molecules into the intercellular medium that later get absorbed by the secreting cells themselves and by others. Depending on cell density, this uptake has the potential to alter gene expression and thereby affect global properties of the community. We consider the case of multiple bacterial species coexisting, referring to each one of them as a genotype and adopting the usual denomination of the molecules they collectively secrete as public goods. A crucial problem in this setting is characterizing the coevolution of genotypes as some of them secrete public goods (and pay the associated metabolic costs) while others do not but may nevertheless benefit from the available public goods. We introduce a network model to describe genotype interaction and evolution when genotype fitness depends on the production and uptake of public goods. The model comprises a random graph to summarize the possible evolutionary pathways the genotypes may take as they interact genetically with one another, and a system of coupled differential equations to characterize the behavior of genotype abundance in time. We study some simple variations of the model analytically and more complex variations computationally. Our results point to a simple trade-off affecting the long-term survival of those genotypes that do produce public goods. This trade-off involves, on the producer side, the impact of producing and that of absorbing the public good. On the nonproducer side, it involves the impact of absorbing the public good as well, now compounded by the molecular compatibility between the producer and the nonproducer. Depending on how these factors turn out, producers may or may not survive.
Collapse
Affiliation(s)
- Eduardo J Aguilar
- Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, Rodovia José Aurélio Vilela, 11999, 37715-400 Poços de Caldas, Minais Gerais, Brazil
| | - Valmir C Barbosa
- Programa de Engenharia de Sistemas e Computação, COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Sala H-319, 21941-914 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raul Donangelo
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, 11300 Montevideo, Uruguay
- Instituto de Física, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco A, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio R Souza
- Instituto de Física, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco A, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minais Gerais, Brazil
| |
Collapse
|
30
|
Steinbach G, Crisan C, Ng SL, Hammer BK, Yunker PJ. Accumulation of dead cells from contact killing facilitates coexistence in bacterial biofilms. J R Soc Interface 2020; 17:20200486. [PMID: 33292099 PMCID: PMC7811593 DOI: 10.1098/rsif.2020.0486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial communities are governed by a wide variety of social interactions, some of which are antagonistic with potential significance for bacterial warfare. Several antagonistic mechanisms, such as killing via the type VI secretion system (T6SS), require killer cells to directly contact target cells. The T6SS is hypothesized to be a highly potent weapon, capable of facilitating the invasion and defence of bacterial populations. However, we find that the efficacy of contact killing is severely limited by the material consequences of cell death. Through experiments with Vibrio cholerae strains that kill via the T6SS, we show that dead cell debris quickly accumulates at the interface that forms between competing strains, preventing physical contact and thus preventing killing. While previous experiments have shown that T6SS killing can reduce a population of target cells by as much as 106-fold, we find that, as a result of the formation of dead cell debris barriers, the impact of contact killing depends sensitively on the initial concentration of killer cells. Killer cells are incapable of invading or eliminating competitors on a community level. Instead, bacterial warfare itself can facilitate coexistence between nominally antagonistic strains. While a variety of defensive strategies against microbial warfare exist, the material consequences of cell death provide target cells with their first line of defence.
Collapse
Affiliation(s)
- Gabi Steinbach
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cristian Crisan
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
31
|
Perault AI, Chandler CE, Rasko DA, Ernst RK, Wolfgang MC, Cotter PA. Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex. Cell Host Microbe 2020; 28:534-547.e3. [PMID: 32755549 PMCID: PMC7554260 DOI: 10.1016/j.chom.2020.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) species are opportunistic lung pathogens of cystic fibrosis (CF) patients. While P. aeruginosa can initiate long-term infections in younger CF patients, Bcc infections only arise in teenagers and adults. Both P. aeruginosa and Bcc use type VI secretion systems (T6SSs) to mediate interbacterial competition. Here, we show P. aeruginosa isolates from teenage and adult CF patients, but not those from young CF patients, are outcompeted by the epidemic Bcc isolate Burkholderia cenocepacia strain AU1054 in a T6SS-dependent manner. The genomes of susceptible P. aeruginosa isolates harbor T6SS-abrogating mutations, the repair of which, in some cases, rendered the isolates resistant. Moreover, seven of eight Bcc strains outcompeted P. aeruginosa strains isolated from the same patients. Our findings suggest certain mutations that arise as P. aeruginosa adapts to the CF lung abrogate T6SS activity, making P. aeruginosa and its human host susceptible to potentially fatal Bcc superinfection.
Collapse
Affiliation(s)
- Andrew I Perault
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - David A Rasko
- Institute for Genome Sciences, University of Maryland, Baltimore, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marsio Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Weiland-Bräuer N, Prasse D, Brauer A, Jaspers C, Reusch TBH, Schmitz RA. Cultivable microbiota associated with Aurelia aurita and Mnemiopsis leidyi. Microbiologyopen 2020; 9:e1094. [PMID: 32652897 PMCID: PMC7520997 DOI: 10.1002/mbo3.1094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
The associated microbiota of marine invertebrates plays an important role to the host in relation to fitness, health, and homeostasis. Cooperative and competitive interactions between bacteria, due to release of, for example, antibacterial substances and quorum sensing (QS)/quorum quenching (QQ) molecules, ultimately affect the establishment and dynamics of the associated microbial community. Aiming to address interspecies competition of cultivable microbes associated with emerging model species of the basal animal phyla Cnidaria (Aurelia aurita) and Ctenophora (Mnemiopsis leidyi), we performed a classical isolation approach. Overall, 84 bacteria were isolated from A. aurita medusae and polyps, 64 bacteria from M. leidyi, and 83 bacteria from ambient seawater, followed by taxonomically classification by 16S rRNA gene analysis. The results show that A. aurita and M. leidyi harbor a cultivable core microbiome consisting of typical marine ubiquitous bacteria also found in the ambient seawater. However, several bacteria were restricted to one host suggesting host‐specific microbial community patterns. Interbacterial interactions were assessed by (a) a growth inhibition assay and (b) QS interference screening assay. Out of 231 isolates, 4 bacterial isolates inhibited growth of 17 isolates on agar plates. Moreover, 121 of the 231 isolates showed QS‐interfering activities. They interfered with the acyl‐homoserine lactone (AHL)‐based communication, of which 21 showed simultaneous interference with autoinducer 2. Overall, this study provides insights into the cultivable part of the microbiota associated with two environmentally important marine non‐model organisms and into interbacterial interactions, which are most likely considerably involved in shaping a healthy and resilient microbiota.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| | - Daniela Prasse
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| | - Annika Brauer
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| | - Cornelia Jaspers
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Ruth A Schmitz
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| |
Collapse
|
33
|
ScmR, a Global Regulator of Gene Expression, Quorum Sensing, pH Homeostasis, and Virulence in Burkholderia thailandensis. J Bacteriol 2020; 202:JB.00776-19. [PMID: 32312745 DOI: 10.1128/jb.00776-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/13/2020] [Indexed: 11/20/2022] Open
Abstract
The nonpathogenic soil saprophyte Burkholderia thailandensis is a member of the Burkholderia pseudomallei /B. thailandensis/B. mallei group, which also comprises the closely related human pathogens B. pseudomallei and Burkholderia mallei responsible for the melioidosis and glanders diseases, respectively. ScmR, a recently identified LysR-type transcriptional regulator in B. thailandensis, acts as a global transcriptional regulator throughout the stationary phase and modulates the production of a wide range of secondary metabolites, including N-acyl-l-homoserine lactones and 4-hydroxy-3-methyl-2-alkylquinolines and virulence in the Caenorhabditis elegans nematode worm host model, as well as several quorum sensing (QS)-dependent phenotypes. We have investigated the role of ScmR in B. thailandensis strain E264 during the exponential phase. We used RNA sequencing transcriptomic analyses to identify the ScmR regulon, which was compared to the QS-controlled regulon, showing a considerable overlap between the ScmR-regulated genes and those controlled by QS. We characterized several genes modulated by ScmR using quantitative reverse transcription-PCR or mini-CTX-lux transcriptional reporters, including the oxalate biosynthetic gene obc1 required for pH homeostasis, the orphan LuxR-type transcriptional regulator BtaR5-encoding gene, and the bsa (Burkholderia secretion apparatus) type III secretion system genes essential for both B. pseudomallei and B. mallei pathogenicity, as well as the scmR gene itself. We confirmed that the transcription of scmR is under QS control, presumably ensuring fine-tuned modulation of gene expression. Finally, we demonstrated that ScmR influences virulence using the fruit fly model host Drosophila melanogaster We conclude that ScmR represents a central component of the B. thailandensis QS regulatory network.IMPORTANCE Coordination of the expression of genes associated with bacterial virulence and environmental adaptation is often dependent on quorum sensing (QS). The QS circuitry of the nonpathogenic bacterium Burkholderia thailandensis, widely used as a model system for the study of the human pathogen Burkholderia pseudomallei, is complex. We found that the LysR-type transcriptional regulator, ScmR, which is highly conserved and involved in the control of virulence/survival factors in the Burkholderia genus, is a global regulator mediating gene expression through the multiple QS systems coexisting in B. thailandensis, as well as QS independently. We conclude that ScmR represents a key QS modulatory network element, ensuring tight regulation of the transcription of QS-controlled genes, particularly those required for acclimatization to the environment.
Collapse
|
34
|
Wang S, Payne GF, Bentley WE. Quorum Sensing Communication: Molecularly Connecting Cells, Their Neighbors, and Even Devices. Annu Rev Chem Biomol Eng 2020; 11:447-468. [DOI: 10.1146/annurev-chembioeng-101519-124728] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quorum sensing (QS) is a molecular signaling modality that mediates molecular-based cell–cell communication. Prevalent in nature, QS networks provide bacteria with a method to gather information from the environment and make decisions based on the intel. With its ability to autonomously facilitate both inter- and intraspecies gene regulation, this process can be rewired to enable autonomously actuated, but molecularly programmed, genetic control. On the one hand, novel QS-based genetic circuits endow cells with smart functions that can be used in many fields of engineering, and on the other, repurposed QS circuitry promotes communication and aids in the development of synthetic microbial consortia. Furthermore, engineered QS systems can probe and intervene in interkingdom signaling between bacteria and their hosts. Lastly, QS is demonstrated to establish conversation with abiotic materials, especially by taking advantage of biological and even electronically induced assembly processes; such QS-incorporated biohybrid devices offer innovative ways to program cell behavior and biological function.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
35
|
Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog 2020; 16:e1007969. [PMID: 32191774 PMCID: PMC7108748 DOI: 10.1371/journal.ppat.1007969] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/31/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae is recognized as an urgent threat to human health due to the increasing isolation of multidrug resistant strains. Hypervirulent strains are a major concern due to their ability to cause life-threating infections in healthy hosts. The type VI secretion system (T6SS) is widely implicated in microbial antagonism, and it mediates interactions with host eukaryotic cells in some cases. In silico search for genes orthologous to T6SS component genes and T6SS effector genes across 700 K. pneumoniae genomes shows extensive diversity in T6SS genes across the K. pneumoniae species. Temperature, oxygen tension, pH, osmolarity, iron levels, and NaCl regulate the expression of the T6SS encoded by a hypervirulent K. pneumoniae strain. Polymyxins and human defensin 3 also increase the activity of the T6SS. A screen for regulators governing T6SS uncover the correlation between the transcription of the T6SS and the ability to kill E. coli prey. Whereas H-NS represses the T6SS, PhoPQ, PmrAB, Hfq, Fur, RpoS and RpoN positively regulate the T6SS. K. pneumoniae T6SS mediates intra and inter species bacterial competition. This antagonism is only evident when the prey possesses an active T6SS. The PhoPQ two component system governs the activation of K. pneumoniae T6SS in bacterial competitions. Mechanistically, PhoQ periplasmic domain, and the acid patch within, is essential to activate K. pneumoniae T6SS. Klebsiella T6SS also mediates anti-fungal competition. We have delineated the contribution of each of the individual VgrGs in microbial competition and identified VgrG4 as a T6SS effector. The DUF2345 domain of VgrG4 is sufficient to intoxicate bacteria and yeast. ROS generation mediates the antibacterial effects of VgrG4, and the antitoxin Sel1E protects against the toxic activity of VgrG4. Our findings provide a better understanding of the regulation of the T6SS in bacterial competitions, and place ROS as an early event in microbial competition. Klebsiella pneumoniae has been singled out as an “urgent threat to human health” due to extremely drug resistant strains. Numerous studies investigate the molecular mechanisms underlying antibiotic resistance in K. pneumoniae, while others dissect the virulence strategies of this pathogen. However, there is still limited knowledge on the fitness of Klebsiella in the environment, and, particularly, the competition of Klebsiella with other species. Here, we demonstrate that Klebsiella exploits the type VI secretion system (T6SS) nanoweapon to kill bacterial competitors and fungi. K. pneumoniae perceives T6SS attacks from bacterial competitors, resulting in retaliation against the aggressive cell. The perception of the attack involved the sensor PhoPQ and led to the up-regulation of the T6SS. We identified one of the toxins deployed by the T6SS to antagonize other microbes and revealed how Klebsiella protects itself from this toxin. Our findings provide a better understanding of the T6SS role in microbial competition and uncover new aspects on how bacteria regulate T6SS-mediated microbial antagonism.
Collapse
|
36
|
Allsopp LP, Bernal P, Nolan LM, Filloux A. Causalities of war: The connection between type VI secretion system and microbiota. Cell Microbiol 2020; 22:e13153. [PMID: 31872954 PMCID: PMC7540082 DOI: 10.1111/cmi.13153] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/23/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Microbiota niches have space and/or nutrient restrictions, which has led to the coevolution of cooperation, specialisation, and competition within the population. Different animal and environmental niches contain defined resident microbiota that tend to be stable over time and offer protection against undesired intruders. Yet fluxes can occur, which alter the composition of a bacterial population. In humans, the microbiota are now considered a key contributor to maintenance of health and homeostasis, and its alteration leads to dysbiosis. The bacterial type VI secretion system (T6SS) transports proteins into the environment, directly into host cells or can function as an antibacterial weapon by killing surrounding competitors. Upon contact with neighbouring cells, the T6SS fires, delivering a payload of effector proteins. In the absence of an immunity protein, this results in growth inhibition or death of prey leading to a competitive advantage for the attacker. It is becoming apparent that the T6SS has a role in modulating and shaping the microbiota at multiple levels, which is the focus of this review. Discussed here is the T6SS, its role in competition, key examples of its effect upon the microbiota, and future avenues of research.
Collapse
Affiliation(s)
- Luke P Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patricia Bernal
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura M Nolan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
37
|
Peñil-Celis A, Garcillán-Barcia MP. Crosstalk Between Type VI Secretion System and Mobile Genetic Elements. Front Mol Biosci 2019; 6:126. [PMID: 31799257 PMCID: PMC6863884 DOI: 10.3389/fmolb.2019.00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Many bacterial processes require cell-cell contacts. Such are the cases of bacterial conjugation, one of the main horizontal gene transfer mechanisms that physically spreads DNA, and the type VI secretion systems (T6SSs), which deploy antibacterial activity. Bacteria depend on conjugation to adapt to changing environments, while T6SS killing activity could pose a threat to mating partners. Here we review the experimental evidences of overlapping and interaction between the T6SSs, bacterial conjugation, and conjugative genetic elements.
Collapse
Affiliation(s)
- Arancha Peñil-Celis
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain
| |
Collapse
|
38
|
Sathe S, Mathew A, Agnoli K, Eberl L, Kümmerli R. Genetic architecture constrains exploitation of siderophore cooperation in the bacterium Burkholderia cenocepacia. Evol Lett 2019; 3:610-622. [PMID: 31844554 PMCID: PMC6906993 DOI: 10.1002/evl3.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Explaining how cooperation can persist in the presence of cheaters, exploiting the cooperative acts, is a challenge for evolutionary biology. Microbial systems have proved extremely useful to test evolutionary theory and identify mechanisms maintaining cooperation. One of the most widely studied system is the secretion and sharing of iron‐scavenging siderophores by Pseudomonas bacteria, with many insights gained from this system now being considered as hallmarks of bacterial cooperation. Here, we introduce siderophore secretion by the bacterium Burkholderia cenocepacia H111 as a novel parallel study system, and show that this system behaves differently. For ornibactin, the main siderophore of this species, we discovered a novel mechanism of how cheating can be prevented. Particularly, we found that secreted ornibactin cannot be exploited by ornibactin‐defective mutants because ornibactin receptor and synthesis genes are co‐expressed from the same operon, such that disruptive mutations in synthesis genes compromise receptor availability required for siderophore uptake and cheating. For pyochelin, the secondary siderophore of this species, we found that cheating was possible, but the relative success of cheaters was positive frequency dependent, thus diametrically opposite to the Pseudomonas and other microbial systems. Altogether, our results highlight that expanding our repertoire of microbial study systems leads to new discoveries and suggest that there is an enormous diversity of social interactions out there in nature, and we might have only looked at the tip of the iceberg so far.
Collapse
Affiliation(s)
- Santosh Sathe
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.,Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland
| | - Anugraha Mathew
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.,Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
39
|
McCarthy RR, Yu M, Eilers K, Wang Y, Lai E, Filloux A. Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens. Mol Microbiol 2019; 112:632-648. [PMID: 31102484 PMCID: PMC6771610 DOI: 10.1111/mmi.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
Abstract
The Type VI secretion system (T6SS) is a bacterial nanomachine that delivers effector proteins into prokaryotic and eukaryotic preys. This secretion system has emerged as a key player in regulating the microbial diversity in a population. In the plant pathogen Agrobacterium tumefaciens, the signalling cascades regulating the activity of this secretion system are poorly understood. Here, we outline how the universal eubacterial second messenger cyclic di-GMP impacts the production of T6SS toxins and T6SS structural components. We demonstrate that this has a significant impact on the ability of the phytopathogen to compete with other bacterial species in vitro and in planta. Our results suggest that, as opposed to other bacteria, c-di-GMP turns down the T6SS in A. tumefaciens thus impacting its ability to compete with other bacterial species within the rhizosphere. We also demonstrate that elevated levels of c-di-GMP within the cell decrease the activity of the Type IV secretion system (T4SS) and subsequently the capacity of A. tumefaciens to transform plant cells. We propose that such peculiar control reflects on c-di-GMP being a key second messenger that silences energy-costing systems during early colonization phase and biofilm formation, while low c-di-GMP levels unleash T6SS and T4SS to advance plant colonization.
Collapse
Affiliation(s)
- Ronan R. McCarthy
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonSW7 2AZUK
- Division of Biosciences, Department of Life SciencesCollege of Health and Life Sciences, Brunel University LondonUxbridgeUB8 3PHUK
| | - Manda Yu
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Kira Eilers
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | - Yi‐Chieh Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Erh‐Min Lai
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
40
|
Pena RT, Blasco L, Ambroa A, González-Pedrajo B, Fernández-García L, López M, Bleriot I, Bou G, García-Contreras R, Wood TK, Tomás M. Relationship Between Quorum Sensing and Secretion Systems. Front Microbiol 2019; 10:1100. [PMID: 31231316 PMCID: PMC6567927 DOI: 10.3389/fmicb.2019.01100] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Quorum sensing (QS) is a communication mechanism between bacteria that allows specific processes to be controlled, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms such as bacterial competition systems including secretion systems (SS). These SS have an important role in bacterial communication. SS are ubiquitous; they are present in both Gram-negative and Gram-positive bacteria and in Mycobacterium sp. To date, 8 types of SS have been described (T1SS, T2SS, T3SS, T4SS, T5SS, T6SS, T7SS, and T9SS). They have global functions such as the transport of proteases, lipases, adhesins, heme-binding proteins, and amidases, and specific functions such as the synthesis of proteins in host cells, adaptation to the environment, the secretion of effectors to establish an infectious niche, transfer, absorption and release of DNA, translocation of effector proteins or DNA and autotransporter secretion. All of these functions can contribute to virulence and pathogenesis. In this review, we describe the known types of SS and discuss the ones that have been shown to be regulated by QS. Due to the large amount of information about this topic in some pathogens, we focus mainly on Pseudomonas aeruginosa and Vibrio spp.
Collapse
Affiliation(s)
- Rocio Trastoy Pena
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Lucia Blasco
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Antón Ambroa
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Fernández-García
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Maria López
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Ines Bleriot
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - German Bou
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thomas Keith Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Maria Tomás
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| |
Collapse
|
41
|
|
42
|
Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology (Reading) 2019; 165:503-515. [DOI: 10.1099/mic.0.000789] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sarah Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
43
|
Abstract
The Type VI secretion system (T6SS) is a protein nanomachine that is widespread in Gram-negative bacteria and is used to translocate effector proteins directly into neighbouring cells. It represents a versatile bacterial weapon that can deliver effectors into distinct classes of target cells, playing key roles in inter-bacterial competition and bacterial interactions with eukaryotic cells. This versatility is underpinned by the ability of the T6SS to deliver a vast array of effector proteins, with many distinct activities and modes of interaction with the secretion machinery. Recent work has highlighted the importance and diversity of interactions mediated by T6SSs within polymicrobial communities, and offers new molecular insights into effector delivery and action in target cells.
Collapse
Affiliation(s)
- Sarah Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
44
|
Wechsler T, Kümmerli R, Dobay A. Understanding policing as a mechanism of cheater control in cooperating bacteria. J Evol Biol 2019; 32:412-424. [PMID: 30724418 PMCID: PMC6520251 DOI: 10.1111/jeb.13423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
Policing occurs in insect, animal and human societies, where it evolved as a mechanism maintaining cooperation. Recently, it has been suggested that policing might even be relevant in enforcing cooperation in much simpler organisms such as bacteria. Here, we used individual-based modelling to develop an evolutionary concept for policing in bacteria and identify the conditions under which it can be adaptive. We modelled interactions between cooperators, producing a beneficial public good, cheaters, exploiting the public good without contributing to it, and public good-producing policers that secrete a toxin to selectively target cheaters. We found that toxin-mediated policing is favoured when (a) toxins are potent and durable, (b) toxins are cheap to produce, (c) cell and public good diffusion is intermediate, and (d) toxins diffuse farther than the public good. Although our simulations identify the parameter space where toxin-mediated policing can evolve, we further found that policing decays when the genetic linkage between public good and toxin production breaks. This is because policing is itself a public good, offering protection to toxin-resistant mutants that still produce public goods, yet no longer invest in toxins. Our work thus highlights that not only specific environmental conditions are required for toxin-mediated policing to evolve, but also strong genetic linkage between the expression of public goods, toxins and toxin resistance is essential for this mechanism to remain evolutionarily stable in the long run.
Collapse
Affiliation(s)
- Tobias Wechsler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Akos Dobay
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Bettenworth V, Steinfeld B, Duin H, Petersen K, Streit WR, Bischofs I, Becker A. Phenotypic Heterogeneity in Bacterial Quorum Sensing Systems. J Mol Biol 2019; 431:4530-4546. [PMID: 31051177 DOI: 10.1016/j.jmb.2019.04.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Quorum sensing is usually thought of as a collective behavior in which all members of a population partake. However, over the last decade, several reports of phenotypic heterogeneity in quorum sensing-related gene expression have been put forward, thus challenging this view. In the respective systems, cells of isogenic populations did not contribute equally to autoinducer production or target gene activation, and in some cases, the fraction of contributing cells was modulated by environmental factors. Here, we look into potential origins of these incidences and into how initial cell-to-cell variations might be amplified to establish distinct phenotypic heterogeneity. We furthermore discuss potential functions heterogeneity in bacterial quorum sensing systems could serve: as a preparation for environmental fluctuations (bet hedging), as a more cost-effective way of producing public goods (division of labor), as a loophole for genotypic cooperators when faced with non-contributing mutants (cheat protection), or simply as a means to fine-tune the output of the population as a whole (output modulation). We illustrate certain aspects of these recent developments with the model organisms Sinorhizobium meliloti, Sinorhizobium fredii and Bacillus subtilis, which possess quorum sensing systems of different complexity, but all show phenotypic heterogeneity therein.
Collapse
Affiliation(s)
- Vera Bettenworth
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| | - Benedikt Steinfeld
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Hilke Duin
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Katrin Petersen
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Ilka Bischofs
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| |
Collapse
|
46
|
Wellington S, Greenberg EP. Quorum Sensing Signal Selectivity and the Potential for Interspecies Cross Talk. mBio 2019; 10:e00146-19. [PMID: 30837333 PMCID: PMC6401477 DOI: 10.1128/mbio.00146-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
Abstract
Many species of proteobacteria communicate with kin and coordinate group behaviors through a form of cell-cell signaling called acyl-homoserine lactone (AHL) quorum sensing (QS). Most AHL receptors are thought to be specific for their cognate signal, ensuring that bacteria cooperate and share resources only with closely related kin cells. Although specificity is considered fundamental to QS, there are reports of "promiscuous" receptors that respond broadly to nonself signals. These promiscuous responses expand the function of QS systems to include interspecies interactions and have been implicated in both interspecies competition and cooperation. Because bacteria are frequently members of polymicrobial communities, AHL cross talk between species could have profound impacts. To better understand the prevalence of QS promiscuity, we measured the activity of seven QS receptors in their native host organisms. To facilitate comparison of our results to previous studies, we also measured receptor activity using heterologous expression in Escherichia coli We found that the standard E. coli methods consistently overestimate receptor promiscuity and sensitivity and that overexpression of the receptors is sufficient to account for the discrepancy between native and E. coli reporters. Additionally, receptor overexpression resulted in AHL-independent activity in Pseudomonas aeruginosa Using our activation data, we developed a quantitative score of receptor selectivity. We find that the receptors display a wide range of selectivity and that most receptors respond sensitively and strongly to at least one nonself signal, suggesting a broad potential for cross talk between QS systems.IMPORTANCE Specific recognition of cognate signals is considered fundamental to cell signaling circuits as it creates fidelity in the communication system. In bacterial quorum sensing (QS), receptor specificity ensures that bacteria cooperate only with kin. There are examples, however, of QS receptors that respond promiscuously to multiple signals. "Eavesdropping" by these promiscuous receptors can be beneficial in both interspecies competition and cooperation. Despite their potential significance, we know little about the prevalence of promiscuous QS receptors. Further, many studies rely on methods requiring receptor overexpression, which is known to increase apparent promiscuity. By systematically studying QS receptors in their natural parent strains, we find that the receptors display a wide range of selectivity and that there is potential for significant cross talk between QS systems. Our results provide a basis for hypotheses about the evolution and function of promiscuous signal receptors and for predictions about interspecies interactions in complex microbial communities.
Collapse
Affiliation(s)
- Samantha Wellington
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
47
|
Martín-Rodríguez AJ, Álvarez-Méndez SJ, Overå C, Baruah K, Lourenço TM, Norouzitallab P, Bossier P, Martín VS, Fernández JJ. The 9 H-Fluoren Vinyl Ether Derivative SAM461 Inhibits Bacterial Luciferase Activity and Protects Artemia franciscana From Luminescent Vibriosis. Front Cell Infect Microbiol 2018; 8:368. [PMID: 30467537 PMCID: PMC6236115 DOI: 10.3389/fcimb.2018.00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/03/2018] [Indexed: 11/13/2022] Open
Abstract
Vibrio campbellii is a major pathogen in aquaculture. It is a causative agent of the so-called “luminescent vibriosis,” a life-threatening condition caused by bioluminescent Vibrio spp. that often involves mass mortality of farmed shrimps. The emergence of multidrug resistant Vibrio strains raises a concern and poses a challenge for the treatment of this infection in the coming years. Inhibition of bacterial cell-to-cell communication or quorum sensing (QS) has been proposed as an alternative to antibiotic therapies. Aiming to identify novel QS disruptors, the 9H-fluroen-9yl vinyl ether derivative SAM461 was found to thwart V. campbellii bioluminescence, a QS-regulated phenotype. Phenotypic and gene expression analyses revealed, however, that the mode of action of SAM461 was unrelated to QS inhibition. Further evaluation with purified Vibrio fischeri and NanoLuc luciferases revealed enzymatic inhibition at micromolar concentrations. In silico analysis by molecular docking suggested binding of SAM461 in the active site cavities of both luciferase enzymes. Subsequent in vivo testing of SAM461 with gnotobiotic Artemia franciscana nauplii demonstrated naupliar protection against V. campbellii infection at low micromolar concentrations. Taken together, these findings suggest that suppression of luciferase activity could constitute a novel paradigm in the development of alternative anti-infective chemotherapies against luminescent vibriosis, and pave the ground for the chemical synthesis and biological characterization of derivatives with promising antimicrobial prospects.
Collapse
Affiliation(s)
- Alberto J Martín-Rodríguez
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sergio J Álvarez-Méndez
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Caroline Overå
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Regensburg, Germany
| | - Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tânia Margarida Lourenço
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Víctor S Martín
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
48
|
Liu Y, Qin Q, Defoirdt T. Does quorum sensing interference affect the fitness of bacterial pathogens in the real world? Environ Microbiol 2018; 20:3918-3926. [DOI: 10.1111/1462-2920.14446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yiying Liu
- College of Marine Sciences, South China Agricultural University; Guangzhou China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University; Guangzhou China
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET); Ghent University; Ghent Belgium
| |
Collapse
|
49
|
García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science 2018; 361:361/6408/eaat2456. [PMID: 30237322 DOI: 10.1126/science.aat2456] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Antagonistic interactions are abundant in microbial communities and contribute not only to the composition and relative proportions of their members but also to the longer-term stability of a community. This Review will largely focus on bacterial antagonism mediated by ribosomally synthesized peptides and proteins produced by members of host-associated microbial communities. We discuss recent findings on their diversity, functions, and ecological impacts. These systems play key roles in ecosystem defense, pathogen invasion, spatial segregation, and diversity but also confer indirect gains to the aggressor from products released by killed cells. Investigations into antagonistic bacterial interactions are important for our understanding of how the microbiota establish within hosts, influence health and disease, and offer insights into potential translational applications.
Collapse
Affiliation(s)
- Leonor García-Bayona
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
dos Santos M, Ghoul M, West SA. Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biol 2018; 16:e2006671. [PMID: 30359363 PMCID: PMC6219813 DOI: 10.1371/journal.pbio.2006671] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/06/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Pleiotropy has been suggested as a novel mechanism for stabilising cooperation in bacteria and other microbes. The hypothesis is that linking cooperation with a trait that provides a personal (private) benefit can outweigh the cost of cooperation in situations when cooperation would not be favoured by mechanisms such as kin selection. We analysed the theoretical plausibility of this hypothesis, with analytical models and individual-based simulations. We found that (1) pleiotropy does not stabilise cooperation, unless the cooperative and private traits are linked via a genetic architecture that cannot evolve (mutational constraint); (2) if the genetic architecture is constrained in this way, then pleiotropy favours any type of trait and not especially cooperation; (3) if the genetic architecture can evolve, then pleiotropy does not favour cooperation; and (4) there are several alternative explanations for why traits may be linked, and causality can even be predicted in the opposite direction, with cooperation favouring pleiotropy. Our results suggest that pleiotropy could only explain cooperation under restrictive conditions and instead show how social evolution can shape the genetic architecture.
Collapse
Affiliation(s)
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Stuart A. West
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|