1
|
Jeurissen D, van Ham AF, Gilhuis A, Papale P, Roelfsema PR, Self MW. Border-ownership tuning determines the connectivity between V4 and V1 in the macaque visual system. Nat Commun 2024; 15:9115. [PMID: 39438464 PMCID: PMC11496508 DOI: 10.1038/s41467-024-53256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Cortical feedback connections are extremely numerous but the logic of connectivity between higher and lower areas remains poorly understood. Feedback from higher visual areas to primary visual cortex (V1) has been shown to enhance responses on perceptual figures compared to backgrounds, an effect known as figure-background modulation (FBM). A likely source of this feedback are border-ownership (BO) selective cells in mid-tier visual areas (e.g. V4) which represent the location of figures. We examined the connectivity between V4 cells and V1 cells using noise-correlations and micro-stimulation to estimate connectivity strength. We show that connectivity is consistent with a model in which BO-tuned V4 cells send positive feedback in the direction of their preferred figure and negative feedback in the opposite direction. This connectivity scheme can recreate patterns of FBM observed in previous studies. These results provide insights into the cortical connectivity underlying figure-background perception and establish a link between FBM and BO-tuning.
Collapse
Affiliation(s)
- Danique Jeurissen
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY, USA
| | - Anne F van Ham
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
| | - Amparo Gilhuis
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
| | - Paolo Papale
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, Amsterdam, The Netherlands
- Neurosurgery department, Academic University Medical Center, Postbus 22660, Amsterdam, The Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands.
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, Scotland.
| |
Collapse
|
2
|
Pronold J, van Meegen A, Shimoura RO, Vollenbröker H, Senden M, Hilgetag CC, Bakker R, van Albada SJ. Multi-scale spiking network model of human cerebral cortex. Cereb Cortex 2024; 34:bhae409. [PMID: 39428578 PMCID: PMC11491286 DOI: 10.1093/cercor/bhae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Although the structure of cortical networks provides the necessary substrate for their neuronal activity, the structure alone does not suffice to understand the activity. Leveraging the increasing availability of human data, we developed a multi-scale, spiking network model of human cortex to investigate the relationship between structure and dynamics. In this model, each area in one hemisphere of the Desikan-Killiany parcellation is represented by a $1\,\mathrm{mm^{2}}$ column with a layered structure. The model aggregates data across multiple modalities, including electron microscopy, electrophysiology, morphological reconstructions, and diffusion tensor imaging, into a coherent framework. It predicts activity on all scales from the single-neuron spiking activity to the area-level functional connectivity. We compared the model activity with human electrophysiological data and human resting-state functional magnetic resonance imaging (fMRI) data. This comparison reveals that the model can reproduce aspects of both spiking statistics and fMRI correlations if the inter-areal connections are sufficiently strong. Furthermore, we study the propagation of a single-spike perturbation and macroscopic fluctuations through the network. The open-source model serves as an integrative platform for further refinements and future in silico studies of human cortical structure, dynamics, and function.
Collapse
Affiliation(s)
- Jari Pronold
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- RWTH Aachen University, D-52062 Aachen, Germany
| | - Alexander van Meegen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| | - Renan O Shimoura
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
| | - Hannah Vollenbröker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Mario Senden
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, NL-6229 ER Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Maastricht Brain Imaging Centre, Maastricht University, NL-6229 ER Maastricht, The Netherlands
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, D-20246 Hamburg, Germany
| | - Rembrandt Bakker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, NL-6525 EN Nijmegen, The Netherlands
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
3
|
Wu K, Gollo LL. Dendrites contribute to the gradient of intrinsic timescales encompassing cortical and subcortical brain networks. Front Cell Neurosci 2024; 18:1404605. [PMID: 39309702 PMCID: PMC11412829 DOI: 10.3389/fncel.2024.1404605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Cytoarchitectonic studies have uncovered a correlation between higher levels of cortical hierarchy and reduced dendritic size. This hierarchical organization extends to the brain's timescales, revealing longer intrinsic timescales at higher hierarchical levels. However, estimating the contribution of single-neuron dendritic morphology to the hierarchy of timescales, which is typically characterized at a macroscopic level, remains challenging. Method Here we mapped the intrinsic timescales of six functional networks using functional magnetic resonance imaging (fMRI) data, and characterized the influence of neuronal dendritic size on intrinsic timescales of brain regions, utilizing a multicompartmental neuronal modeling approach based on digitally reconstructed neurons. Results The fMRI results revealed a hierarchy of intrinsic timescales encompassing both cortical and subcortical brain regions. The neuronal modeling indicated that neurons with larger dendritic structures exhibit shorter intrinsic timescales. Together these findings highlight the contribution of dendrites at the neuronal level to the hierarchy of intrinsic timescales at the whole-brain level. Discussion This study sheds light on the intricate relationship between neuronal structure, cytoarchitectonic maps, and the hierarchy of timescales in the brain.
Collapse
Affiliation(s)
| | - Leonardo L. Gollo
- Brain Networks and Modelling Laboratory, School of Psychological Sciences, and Monash Biomedical Imaging, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Rudelt L, González Marx D, Spitzner FP, Cramer B, Zierenberg J, Priesemann V. Signatures of hierarchical temporal processing in the mouse visual system. PLoS Comput Biol 2024; 20:e1012355. [PMID: 39173067 PMCID: PMC11373856 DOI: 10.1371/journal.pcbi.1012355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/04/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
A core challenge for the brain is to process information across various timescales. This could be achieved by a hierarchical organization of temporal processing through intrinsic mechanisms (e.g., recurrent coupling or adaptation), but recent evidence from spike recordings of the rodent visual system seems to conflict with this hypothesis. Here, we used an optimized information-theoretic and classical autocorrelation analysis to show that information- and correlation timescales of spiking activity increase along the anatomical hierarchy of the mouse visual system under visual stimulation, while information-theoretic predictability decreases. Moreover, intrinsic timescales for spontaneous activity displayed a similar hierarchy, whereas the hierarchy of predictability was stimulus-dependent. We could reproduce these observations in a basic recurrent network model with correlated sensory input. Our findings suggest that the rodent visual system employs intrinsic mechanisms to achieve longer integration for higher cortical areas, while simultaneously reducing predictability for an efficient neural code.
Collapse
Affiliation(s)
- Lucas Rudelt
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Daniel González Marx
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - F Paul Spitzner
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Benjamin Cramer
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Johannes Zierenberg
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), Göttingen, Germany
| |
Collapse
|
5
|
Pathak A, Menon SN, Sinha S. A hierarchy index for networks in the brain reveals a complex entangled organizational structure. Proc Natl Acad Sci U S A 2024; 121:e2314291121. [PMID: 38923990 PMCID: PMC11228506 DOI: 10.1073/pnas.2314291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Networks involved in information processing often have their nodes arranged hierarchically, with the majority of connections occurring in adjacent levels. However, despite being an intuitively appealing concept, the hierarchical organization of large networks, such as those in the brain, is difficult to identify, especially in absence of additional information beyond that provided by the connectome. In this paper, we propose a framework to uncover the hierarchical structure of a given network, that identifies the nodes occupying each level as well as the sequential order of the levels. It involves optimizing a metric that we use to quantify the extent of hierarchy present in a network. Applying this measure to various brain networks, ranging from the nervous system of the nematode Caenorhabditis elegans to the human connectome, we unexpectedly find that they exhibit a common network architectural motif intertwining hierarchy and modularity. This suggests that brain networks may have evolved to simultaneously exploit the functional advantages of these two types of organizations, viz., relatively independent modules performing distributed processing in parallel and a hierarchical structure that allows sequential pooling of these multiple processing streams. An intriguing possibility is that this property we report may be common to information processing networks in general.
Collapse
Affiliation(s)
- Anand Pathak
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
6
|
Liu Y, Zhang J, Jiang Z, Qin M, Xu M, Zhang S, Ma G. Organization of corticocortical and thalamocortical top-down inputs in the primary visual cortex. Nat Commun 2024; 15:4495. [PMID: 38802410 PMCID: PMC11130321 DOI: 10.1038/s41467-024-48924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Unified visual perception requires integration of bottom-up and top-down inputs in the primary visual cortex (V1), yet the organization of top-down inputs in V1 remains unclear. Here, we used optogenetics-assisted circuit mapping to identify how multiple top-down inputs from higher-order cortical and thalamic areas engage V1 excitatory and inhibitory neurons. Top-down inputs overlap in superficial layers yet segregate in deep layers. Inputs from the medial secondary visual cortex (V2M) and anterior cingulate cortex (ACA) converge on L6 Pyrs, whereas ventrolateral orbitofrontal cortex (ORBvl) and lateral posterior thalamic nucleus (LP) inputs are processed in parallel in Pyr-type-specific subnetworks (Pyr←ORBvl and Pyr←LP) and drive mutual inhibition between them via local interneurons. Our study deepens understanding of the top-down modulation mechanisms of visual processing and establishes that V2M and ACA inputs in L6 employ integrated processing distinct from the parallel processing of LP and ORBvl inputs in L5.
Collapse
Affiliation(s)
- Yanmei Liu
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahe Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhishan Jiang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meiling Qin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siyu Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guofen Ma
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Weiler S, Rahmati V, Isstas M, Wutke J, Stark AW, Franke C, Graf J, Geis C, Witte OW, Hübener M, Bolz J, Margrie TW, Holthoff K, Teichert M. A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration. Nat Commun 2024; 15:3081. [PMID: 38594279 PMCID: PMC11003985 DOI: 10.1038/s41467-024-47459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space. This suppression is mediated by local fast-spiking interneurons that receive a direct cortico-cortical input predominantly from layer 6 neurons located in the posterior primary somatosensory barrel cortex (SSp-bfd). These data demonstrate functional convergence within and between two primary sensory cortical areas for multisensory object detection and recognition.
Collapse
Affiliation(s)
- Simon Weiler
- Sainsbury Wellcome Centre for Neuronal Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - Vahid Rahmati
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Marcel Isstas
- Friedrich Schiller University Jena, Institute of General Zoology and Animal Physiology, Erbertstraße 1, 07743, Jena, Germany
| | - Johann Wutke
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Walter Stark
- Friedrich Schiller University Jena, Institute of Applied Optics and Biophysics, Fröbelstieg 1, 07743, Jena, Germany
| | - Christian Franke
- Friedrich Schiller University Jena, Institute of Applied Optics and Biophysics, Fröbelstieg 1, 07743, Jena, Germany
- Friedrich Schiller University Jena, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Straße 6, 07745, Jena, Germany
| | - Jürgen Graf
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Christian Geis
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Otto W Witte
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Mark Hübener
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Jürgen Bolz
- Friedrich Schiller University Jena, Institute of General Zoology and Animal Physiology, Erbertstraße 1, 07743, Jena, Germany
| | - Troy W Margrie
- Sainsbury Wellcome Centre for Neuronal Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - Knut Holthoff
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Manuel Teichert
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
8
|
Joshi SD, Ruffini G, Nuttall HE, Watson DG, Braithwaite JJ. Optimised Multi-Channel Transcranial Direct Current Stimulation (MtDCS) Reveals Differential Involvement of the Right-Ventrolateral Prefrontal Cortex (rVLPFC) and Insular Complex in those Predisposed to Aberrant Experiences. Conscious Cogn 2024; 117:103610. [PMID: 38056338 DOI: 10.1016/j.concog.2023.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Research has shown a prominent role for cortical hyperexcitability underlying aberrant perceptions, hallucinations, and distortions in human conscious experience - even in neurotypical groups. The rVLPFC has been identified as an important structure in mediating cognitive affective states / feeling conscious states. The current study examined the involvement of the rVLPFC in mediating cognitive affective states in those predisposed to aberrant experiences in the neurotypical population. Participants completed two trait-based measures: (i) the Cortical Hyperexcitability Index_II (CHi_II, a proxy measure of cortical hyperexcitability) and (ii) two factors from the Cambridge Depersonalisation Scale (CDS). An optimised 7-channel MtDCS montage for stimulation conditions (Anodal, Cathodal and Sham) was created targeting the rVLPFC in a single-blind study. At the end of each stimulation session, participants completed a body-threat task (BTAB) while skin conductance responses (SCRs) and psychological responses were recorded. Participants with signs of increasing cortical hyperexcitability showed significant suppression of SCRs in the Cathodal stimulation relative to the Anodal and sSham conditions. Those high on the trait-based measures of depersonalisation-like experiences failed to show reliable effects. Collectively, the findings suggest that baseline brain states can mediate the effects of neurostimulation which would be missed via sample level averaging and without appropriate measures for stratifying individual differences.
Collapse
|
9
|
Ryan L, Sun-Yan A, Laughton M, Peron S. Cortical circuitry mediating interareal touch signal amplification. Cell Rep 2023; 42:113532. [PMID: 38064338 PMCID: PMC10842872 DOI: 10.1016/j.celrep.2023.113532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Sensory cortical areas are organized into topographic maps representing the sensory epithelium. Interareal projections typically connect topographically matched subregions across areas. Because matched subregions process the same stimulus, their interaction is central to many computations. Here, we ask how topographically matched subregions of primary and secondary vibrissal somatosensory cortices (vS1 and vS2) interact during active touch. Volumetric calcium imaging in mice palpating an object with two whiskers revealed a sparse population of highly responsive, broadly tuned touch neurons especially pronounced in layer 2 of both areas. These rare neurons exhibited elevated synchrony and carried most touch-evoked activity in both directions. Lesioning the subregion of either area responding to the spared whiskers degraded touch responses in the unlesioned area, with whisker-specific vS1 lesions degrading whisker-specific vS2 touch responses. Thus, a sparse population of broadly tuned touch neurons dominates vS1-vS2 communication in both directions, and topographically matched vS1 and vS2 subregions recurrently amplify whisker touch activity.
Collapse
Affiliation(s)
- Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Maya Laughton
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA.
| |
Collapse
|
10
|
Neske GT, Cardin JA. Transthalamic input to higher-order cortex selectively conveys state information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561424. [PMID: 37873181 PMCID: PMC10592671 DOI: 10.1101/2023.10.08.561424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Communication among different neocortical areas is largely thought to be mediated by long-range synaptic interactions between cortical neurons, with the thalamus providing only an initial relay of information from the sensory periphery. Higher-order thalamic nuclei receive strong synaptic inputs from the cortex and send robust projections back to other cortical areas, providing a distinct and potentially critical route for cortico-cortical communication. However, the relative contributions of corticocortical and thalamocortical inputs to higher-order cortical function remain unclear. Using imaging of cortical neurons and projection axon terminals in combination with optogenetic manipulations, we find that the higher-order visual thalamus of mice conveys a specialized stream of information to higher-order visual cortex. Whereas corticocortical projections from lower cortical areas convey robust visual information, higher-order thalamocortical projections convey strong behavioral state information. Together, these findings suggest a key role for higher-order thalamus in providing contextual signals that flexibly modulate sensory processing in higher-order cortex.
Collapse
Affiliation(s)
- Garrett T. Neske
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Neuroscience Institute, Yale University, New Haven, CT, USA
- Present address: Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Jessica A. Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Neuroscience Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Mertens PEC, Marchesi P, Ruikes TR, Oude Lohuis M, Krijger Q, Pennartz CMA, Lansink CS. Coherent mapping of position and head direction across auditory and visual cortex. Cereb Cortex 2023; 33:7369-7385. [PMID: 36967108 PMCID: PMC10267650 DOI: 10.1093/cercor/bhad045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 09/21/2024] Open
Abstract
Neurons in primary visual cortex (V1) may not only signal current visual input but also relevant contextual information such as reward expectancy and the subject's spatial position. Such contextual representations need not be restricted to V1 but could participate in a coherent mapping throughout sensory cortices. Here, we show that spiking activity coherently represents a location-specific mapping across auditory cortex (AC) and lateral, secondary visual cortex (V2L) of freely moving rats engaged in a sensory detection task on a figure-8 maze. Single-unit activity of both areas showed extensive similarities in terms of spatial distribution, reliability, and position coding. Importantly, reconstructions of subject position based on spiking activity displayed decoding errors that were correlated between areas. Additionally, we found that head direction, but not locomotor speed or head angular velocity, was an important determinant of activity in AC and V2L. By contrast, variables related to the sensory task cues or to trial correctness and reward were not markedly encoded in AC and V2L. We conclude that sensory cortices participate in coherent, multimodal representations of the subject's sensory-specific location. These may provide a common reference frame for distributed cortical sensory and motor processes and may support crossmodal predictive processing.
Collapse
Affiliation(s)
- Paul E C Mertens
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Pietro Marchesi
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Thijs R Ruikes
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Matthijs Oude Lohuis
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Quincy Krijger
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Cyriel M A Pennartz
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Carien S Lansink
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
12
|
Ryan L, Sun-Yan A, Laughton M, Peron S. Cortical circuitry mediating inter-areal touch signal amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543886. [PMID: 37333308 PMCID: PMC10274616 DOI: 10.1101/2023.06.06.543886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Sensory cortical areas are often organized into topographic maps which represent the sensory epithelium1,2. Individual areas are richly interconnected3, in many cases via reciprocal projections that respect the topography of the underlying map4,5. Because topographically matched cortical patches process the same stimulus, their interaction is likely central to many neural computations6-10. Here, we ask how topographically matched subregions of primary and secondary vibrissal somatosensory cortices (vS1 and vS2) interact during whisker touch. In the mouse, whisker touch-responsive neurons are topographically organized in both vS1 and vS2. Both areas receive thalamic touch input and are topographically interconnected4. Volumetric calcium imaging in mice actively palpating an object with two whiskers revealed a sparse population of highly active, broadly tuned touch neurons responsive to both whiskers. These neurons were especially pronounced in superficial layer 2 in both areas. Despite their rarity, these neurons served as the main conduits of touch-evoked activity between vS1 and vS2 and exhibited elevated synchrony. Focal lesions of the whisker touch-responsive region in vS1 or vS2 degraded touch responses in the unlesioned area, with whisker-specific vS1 lesions degrading whisker-specific vS2 touch responses. Thus, a sparse and superficial population of broadly tuned touch neurons recurrently amplifies touch responses across vS1 and vS2.
Collapse
Affiliation(s)
- Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Maya Laughton
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| |
Collapse
|
13
|
Shen S, Jiang X, Scala F, Fu J, Fahey P, Kobak D, Tan Z, Zhou N, Reimer J, Sinz F, Tolias AS. Distinct organization of two cortico-cortical feedback pathways. Nat Commun 2022; 13:6389. [PMID: 36302912 PMCID: PMC9613627 DOI: 10.1038/s41467-022-33883-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Neocortical feedback is critical for attention, prediction, and learning. To mechanically understand its function requires deciphering its cell-type wiring. Recent studies revealed that feedback between primary motor to primary somatosensory areas in mice is disinhibitory, targeting vasoactive intestinal peptide-expressing interneurons, in addition to pyramidal cells. It is unknown whether this circuit motif represents a general cortico-cortical feedback organizing principle. Here we show that in contrast to this wiring rule, feedback between higher-order lateromedial visual area to primary visual cortex preferentially activates somatostatin-expressing interneurons. Functionally, both feedback circuits temporally sharpen feed-forward excitation eliciting a transient increase-followed by a prolonged decrease-in pyramidal cell activity under sustained feed-forward input. However, under feed-forward transient input, the primary motor to primary somatosensory cortex feedback facilitates bursting while lateromedial area to primary visual cortex feedback increases time precision. Our findings argue for multiple cortico-cortical feedback motifs implementing different dynamic non-linear operations.
Collapse
Affiliation(s)
- Shan Shen
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Federico Scala
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jiakun Fu
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Paul Fahey
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dmitry Kobak
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Zhenghuan Tan
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Na Zhou
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Reimer
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Fabian Sinz
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Andreas S Tolias
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computational Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
14
|
Wang XJ. Theory of the Multiregional Neocortex: Large-Scale Neural Dynamics and Distributed Cognition. Annu Rev Neurosci 2022; 45:533-560. [PMID: 35803587 DOI: 10.1146/annurev-neuro-110920-035434] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The neocortex is a complex neurobiological system with many interacting regions. How these regions work together to subserve flexible behavior and cognition has become increasingly amenable to rigorous research. Here, I review recent experimental and theoretical work on the modus operandi of a multiregional cortex. These studies revealed several general principles for the neocortical interareal connectivity, low-dimensional macroscopic gradients of biological properties across cortical areas, and a hierarchy of timescales for information processing. Theoretical work suggests testable predictions regarding differential excitation and inhibition along feedforward and feedback pathways in the cortical hierarchy. Furthermore, modeling of distributed working memory and simple decision-making has given rise to a novel mathematical concept, dubbed bifurcation in space, that potentially explains how different cortical areas, with a canonical circuit organization but gradients of biological heterogeneities, are able to subserve their respective (e.g., sensory coding versus executive control) functions in a modularly organized brain.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA;
| |
Collapse
|
15
|
Haney M, Bedi G, Cooper ZD, Herrmann ES, Reed SC, Foltin RW, Kingsley PJ, Marnett LJ, Patel S. Impact of cyclooxygenase‐2 inhibition on cannabis withdrawal and circulating endocannabinoids in daily cannabis smokers. Addict Biol 2022; 27:e13183. [DOI: 10.1111/adb.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Margaret Haney
- New York State Psychiatric Institute New York New York USA
- Columbia University Irving Medical Center New York New York USA
| | - Gillinder Bedi
- Centre for Youth Mental Health The University of Melbourne and Substance Use Research Group, Orygen Melbourne Australia
| | - Ziva D. Cooper
- Los Angeles Cannabis Research Initiative, Jane & Terry Semel Institute for Neuroscience & Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine University of California Los Angeles California USA
| | - Evan S. Herrmann
- Division of Therapeutics and Medical Consequences National Institute on Drug Abuse Bethesda Maryland USA
| | - Stephanie Collins Reed
- New York State Psychiatric Institute New York New York USA
- Columbia University Irving Medical Center New York New York USA
| | - Richard W. Foltin
- New York State Psychiatric Institute New York New York USA
- Columbia University Irving Medical Center New York New York USA
| | - Philip J. Kingsley
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology Vanderbilt University Nashville Tennessee USA
| | - Lawrence J. Marnett
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology Vanderbilt University Nashville Tennessee USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences Vanderbilt University Medical Center Nashville Tennessee USA
| |
Collapse
|
16
|
Morgenstern NA, Isidro AF, Israely I, Costa RM. Pyramidal tract neurons drive amplification of excitatory inputs to striatum through cholinergic interneurons. SCIENCE ADVANCES 2022; 8:eabh4315. [PMID: 35138902 PMCID: PMC8827762 DOI: 10.1126/sciadv.abh4315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/15/2021] [Indexed: 05/07/2023]
Abstract
Corticostriatal connectivity is central for many cognitive and motor processes, such as reinforcement or action initiation and invigoration. The cortical input to the striatum arises from two main cortical populations: intratelencephalic (IT) and pyramidal tract (PT) neurons. We report a previously unknown excitatory circuit, supported by a polysynaptic motif from PT neurons to cholinergic interneurons (ChIs) to glutamate-releasing axons, which runs in parallel to the canonical monosynaptic corticostriatal connection. This motif conveys a delayed second phase of excitation to striatal spiny projection neurons, through an acetylcholine-dependent glutamate release mechanism mediated by α4-containing nicotinic receptors, resulting in biphasic corticostriatal signals. These biphasic signals are a hallmark of PT, but not IT, corticostriatal inputs, due to a stronger relative input from PT neurons to ChIs. These results describe a previously unidentified circuit mechanism by which PT activity amplifies excitatory inputs to the striatum, with potential implications for behavior, plasticity, and learning.
Collapse
Affiliation(s)
| | - Ana Filipa Isidro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Inbal Israely
- Departments of Pathology and Cell Biology, and Neuroscience, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10027, USA
| | - Rui M. Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
- Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
17
|
Barzegaran E, Plomp G. Four concurrent feedforward and feedback networks with different roles in the visual cortical hierarchy. PLoS Biol 2022; 20:e3001534. [PMID: 35143472 PMCID: PMC8865670 DOI: 10.1371/journal.pbio.3001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 02/23/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Visual stimuli evoke fast-evolving activity patterns that are distributed across multiple cortical areas. These areas are hierarchically structured, as indicated by their anatomical projections, but how large-scale feedforward and feedback streams are functionally organized in this system remains an important missing clue to understanding cortical processing. By analyzing visual evoked responses in laminar recordings from 6 cortical areas in awake mice, we uncovered a dominant feedforward network with scale-free interactions in the time domain. In addition, we established the simultaneous presence of a gamma band feedforward and 2 low frequency feedback networks, each with a distinct laminar functional connectivity profile, frequency spectrum, temporal dynamics, and functional hierarchy. We could identify distinct roles for each of these 4 processing streams, by leveraging stimulus contrast effects, analyzing receptive field (RF) convergency along functional interactions, and determining relationships to spiking activity. Our results support a dynamic dual counterstream view of hierarchical processing and provide new insight into how separate functional streams can simultaneously and dynamically support visual processes. Visual stimuli evoke fast-evolving activity patterns that are distributed across multiple cortical areas, but how large-scale feedforward and feedback streams are functionally organized in this system remains unclear. Visual evoked responses in laminar recordings from six cortical areas in awake mice reveal how layers and rhythms dynamically orchestrate functional streams in vision.
Collapse
Affiliation(s)
- Elham Barzegaran
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland
- * E-mail: (EB); (GP)
| | - Gijs Plomp
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland
- * E-mail: (EB); (GP)
| |
Collapse
|
18
|
Hierarchical and nonhierarchical features of the mouse visual cortical network. Nat Commun 2022; 13:503. [PMID: 35082302 PMCID: PMC8791996 DOI: 10.1038/s41467-022-28035-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Neocortical computations underlying vision are performed by a distributed network of functionally specialized areas. Mouse visual cortex, a dense interareal network that exhibits hierarchical properties, comprises subnetworks interconnecting distinct processing streams. To determine the layout of the mouse visual hierarchy, we have evaluated the laminar patterns formed by interareal axonal projections originating in each of ten areas. Reciprocally connected pairs of areas exhibit feedforward/feedback relationships consistent with a hierarchical organization. Beta regression analyses, which estimate a continuous hierarchical distance measure, indicate that the network comprises multiple nonhierarchical circuits embedded in a hierarchical organization of overlapping levels. Single-unit recordings in anaesthetized mice show that receptive field sizes are generally consistent with the hierarchy, with the ventral stream exhibiting a stricter hierarchy than the dorsal stream. Together, the results provide an anatomical metric for hierarchical distance, and reveal both hierarchical and nonhierarchical motifs in mouse visual cortex. Mouse visual cortex is a dense, interconnected network of distinct areas. D’Souza et al. identify an anatomical index to quantify the hierarchical nature of pathways, and highlight the hierarchical and nonhierarchical features of the network.
Collapse
|
19
|
Hage TA, Bosma-Moody A, Baker CA, Kratz MB, Campagnola L, Jarsky T, Zeng H, Murphy GJ. Synaptic connectivity to L2/3 of primary visual cortex measured by two-photon optogenetic stimulation. eLife 2022; 11:71103. [PMID: 35060903 PMCID: PMC8824465 DOI: 10.7554/elife.71103] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding cortical microcircuits requires thorough measurement of physiological properties of synaptic connections formed within and between diverse subclasses of neurons. Towards this goal, we combined spatially precise optogenetic stimulation with multicellular recording to deeply characterize intralaminar and translaminar monosynaptic connections to supragranular (L2/3) neurons in the mouse visual cortex. The reliability and specificity of multiphoton optogenetic stimulation were measured across multiple Cre lines, and measurements of connectivity were verified by comparison to paired recordings and targeted patching of optically identified presynaptic cells. With a focus on translaminar pathways, excitatory and inhibitory synaptic connections from genetically defined presynaptic populations were characterized by their relative abundance, spatial profiles, strength, and short-term dynamics. Consistent with the canonical cortical microcircuit, layer 4 excitatory neurons and interneurons within L2/3 represented the most common sources of input to L2/3 pyramidal cells. More surprisingly, we also observed strong excitatory connections from layer 5 intratelencephalic neurons and potent translaminar inhibition from multiple interneuron subclasses. The hybrid approach revealed convergence to and divergence from excitatory and inhibitory neurons within and across cortical layers. Divergent excitatory connections often spanned hundreds of microns of horizontal space. In contrast, divergent inhibitory connections were more frequently measured from postsynaptic targets near each other.
Collapse
Affiliation(s)
- Travis A Hage
- Electrophysiology, Allen Institute for Brain Science
| | | | | | - Megan B Kratz
- Electrophysiology, Allen Institute for Brain Science
| | | | - Tim Jarsky
- Synaptic Physiology, Allen Institute for Brain Science
| | - Hongkui Zeng
- Synaptic Physiology, Allen Institute for Brain Science
| | - Gabe J Murphy
- Synaptic Physiology, Allen Institute for Brain Science
| |
Collapse
|
20
|
Nano PR, Nguyen CV, Mil J, Bhaduri A. Cortical Cartography: Mapping Arealization Using Single-Cell Omics Technology. Front Neural Circuits 2021; 15:788560. [PMID: 34955761 PMCID: PMC8707733 DOI: 10.3389/fncir.2021.788560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
The cerebral cortex derives its cognitive power from a modular network of specialized areas processing a multitude of information. The assembly and organization of these regions is vital for human behavior and perception, as evidenced by the prevalence of area-specific phenotypes that manifest in neurodevelopmental and psychiatric disorders. Generations of scientists have examined the architecture of the human cortex, but efforts to capture the gene networks which drive arealization have been hampered by the lack of tractable models of human neurodevelopment. Advancements in "omics" technologies, imaging, and computational power have enabled exciting breakthroughs into the molecular and structural characteristics of cortical areas, including transcriptomic, epigenomic, metabolomic, and proteomic profiles of mammalian models. Here we review the single-omics atlases that have shaped our current understanding of cortical areas, and their potential to fuel a new era of multi-omic single-cell endeavors to interrogate both the developing and adult human cortex.
Collapse
Affiliation(s)
| | | | | | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Gămănuţ R, Shimaoka D. Anatomical and functional connectomes underlying hierarchical visual processing in mouse visual system. Brain Struct Funct 2021; 227:1297-1315. [PMID: 34846596 DOI: 10.1007/s00429-021-02415-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
Over the last 10 years, there has been a surge in interest in the rodent visual system resulting from the discovery of visual processing functions shared with primates V1, and of a complex anatomical structure in the extrastriate visual cortex. This surprisingly intricate visual system was elucidated by recent investigations using rapidly growing genetic tools primarily available in the mouse. Here, we examine the structural and functional connections of visual areas that have been identified in mice mostly during the past decade, and the impact of these findings on our understanding of brain functions associated with vision. Special attention is paid to structure-function relationships arising from the hierarchical organization, which is a prominent feature of the primate visual system. Recent evidence supports the existence of a hierarchical organization in rodents that contains levels that are poorly resolved relative to those observed in primates. This shallowness of the hierarchy indicates that the mouse visual system incorporates abundant non-hierarchical processing. Thus, the mouse visual system provides a unique opportunity to study non-hierarchical processing and its relation to hierarchical processing.
Collapse
Affiliation(s)
- Răzvan Gămănuţ
- Department of Physiology, Monash University, Melbourne, Australia
| | - Daisuke Shimaoka
- Department of Physiology, Monash University, Melbourne, Australia.
| |
Collapse
|
22
|
Li JY, Hass CA, Matthews I, Kristl AC, Glickfeld LL. Distinct recruitment of feedforward and recurrent pathways across higher-order areas of mouse visual cortex. Curr Biol 2021; 31:5024-5036.e5. [PMID: 34637748 DOI: 10.1016/j.cub.2021.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/18/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Cortical visual processing transforms features of the external world into increasingly complex and specialized neuronal representations. These transformations arise in part through target-specific routing of information; however, within-area computations may also contribute to area-specific function. Here, we sought to determine whether higher order visual cortical areas lateromedial (LM), anterolateral (AL), posteromedial (PM), and anteromedial (AM) have specialized anatomical and physiological properties by using a combination of whole-cell recordings and optogenetic stimulation of primary visual cortex (V1) axons in vitro. We discovered area-specific differences in the strength of recruitment of interneurons through feedforward and recurrent pathways, as well as differences in cell-intrinsic properties and interneuron densities. These differences were most striking when comparing across medial and lateral areas, suggesting that these areas have distinct profiles for net excitability and integration of V1 inputs. Thus, cortical areas are not defined simply by the information they receive but also by area-specific circuit properties that enable specialized filtering of these inputs.
Collapse
Affiliation(s)
- Jennifer Y Li
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Charles A Hass
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ian Matthews
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy C Kristl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Gated feedforward inhibition in the frontal cortex releases goal-directed action. Nat Neurosci 2021; 24:1452-1464. [PMID: 34413512 DOI: 10.1038/s41593-021-00910-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Cortical circuits process both sensory and motor information in animals performing perceptual tasks. However, it is still unclear how sensory inputs are transformed into motor signals in the cortex to initiate goal-directed actions. In this study, we found that a visual-to-motor inhibitory circuit in the anterior cingulate cortex (ACC) triggers precise action in mice performing visual Go/No-go tasks. Three distinct features of ACC neurons-visual amplitudes of sensory neurons, suppression times of motor neurons and network activity from other neurons-predicted response times of the mice. Moreover, optogenetic activation of visual inputs in the ACC, which drives fast-spiking sensory neurons, prompted task-relevant actions in mice by suppressing ACC motor neurons and disinhibiting downstream striatal neurons. Notably, when mice terminated actions in response to stop signals, both motor neuron and network activity increased. Collectively, our data demonstrate that visual inputs to the frontal cortex trigger gated feedforward inhibition to initiate goal-directed actions.
Collapse
|
24
|
Martinetti LE, Bonekamp KE, Autio DM, Kim HH, Crandall SR. Short-Term Facilitation of Long-Range Corticocortical Synapses Revealed by Selective Optical Stimulation. Cereb Cortex 2021; 32:1932-1949. [PMID: 34519352 PMCID: PMC9070351 DOI: 10.1093/cercor/bhab325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/14/2022] Open
Abstract
Short-term plasticity regulates the strength of central synapses as a function of previous activity. In the neocortex, direct synaptic interactions between areas play a central role in cognitive function, but the activity-dependent regulation of these long-range corticocortical connections and their impact on a postsynaptic target neuron is unclear. Here, we use an optogenetic strategy to study the connections between mouse primary somatosensory and motor cortex. We found that short-term facilitation was strong in both corticocortical synapses, resulting in far more sustained responses than local intracortical and thalamocortical connections. A major difference between pathways was that the synaptic strength and magnitude of facilitation were distinct for individual excitatory cells located across all cortical layers and specific subtypes of GABAergic neurons. Facilitation was dependent on the presynaptic calcium sensor synaptotagmin-7 and altered by several optogenetic approaches. Current-clamp recordings revealed that during repetitive activation, the short-term dynamics of corticocortical synapses enhanced the excitability of layer 2/3 pyramidal neurons, increasing the probability of spiking with activity. Furthermore, the properties of the connections linking primary with secondary somatosensory cortex resemble those between somatosensory-motor areas. These short-term changes in transmission properties suggest long-range corticocortical synapses are specialized for conveying information over relatively extended periods.
Collapse
Affiliation(s)
| | | | - Dawn M Autio
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Hye-Hyun Kim
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
25
|
Shapiro JT, Michaud NM, King JL, Crowder NA. Optogenetic Activation of Interneuron Subtypes Modulates Visual Contrast Responses of Mouse V1 Neurons. Cereb Cortex 2021; 32:1110-1124. [PMID: 34411240 DOI: 10.1093/cercor/bhab269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Interneurons are critical for information processing in the cortex. In vitro optogenetic studies in mouse primary visual cortex (V1) have sketched the connectivity of a local neural circuit comprising excitatory pyramidal neurons and distinct interneuron subtypes that express parvalbumin (Pvalb+), somatostatin (SOM+), or vasoactive intestinal peptide (VIP+). However, in vivo studies focusing on V1 orientation tuning have ascribed discrepant computational roles to specific interneuron subtypes. Here, we sought to clarify the differences between interneuron subtypes by examining the effects of optogenetic activation of Pvalb+, SOM+, or VIP+ interneurons on contrast tuning of V1 neurons while also accounting for cortical depth and photostimulation intensity. We found that illumination of the cortical surface produced a similar spectrum of saturating additive photostimulation effects in all 3 interneuron subtypes, which varied with cortical depth rather than light intensity in Pvalb+ and SOM+ cells. Pyramidal cell modulation was well explained by a conductance-based model that incorporated these interneuron photostimulation effects.
Collapse
Affiliation(s)
- Jared T Shapiro
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Nicole M Michaud
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jillian L King
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Nathan A Crowder
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
26
|
Niell CM, Scanziani M. How Cortical Circuits Implement Cortical Computations: Mouse Visual Cortex as a Model. Annu Rev Neurosci 2021; 44:517-546. [PMID: 33914591 PMCID: PMC9925090 DOI: 10.1146/annurev-neuro-102320-085825] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex.
Collapse
Affiliation(s)
- Cristopher M. Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | - Massimo Scanziani
- Department of Physiology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94158, USA;
| |
Collapse
|
27
|
Yao Z, van Velthoven CTJ, Nguyen TN, Goldy J, Sedeno-Cortes AE, Baftizadeh F, Bertagnolli D, Casper T, Chiang M, Crichton K, Ding SL, Fong O, Garren E, Glandon A, Gouwens NW, Gray J, Graybuck LT, Hawrylycz MJ, Hirschstein D, Kroll M, Lathia K, Lee C, Levi B, McMillen D, Mok S, Pham T, Ren Q, Rimorin C, Shapovalova N, Sulc J, Sunkin SM, Tieu M, Torkelson A, Tung H, Ward K, Dee N, Smith KA, Tasic B, Zeng H. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 2021; 184:3222-3241.e26. [PMID: 34004146 PMCID: PMC8195859 DOI: 10.1016/j.cell.2021.04.021] [Citation(s) in RCA: 465] [Impact Index Per Article: 155.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022]
Abstract
The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.
Collapse
Affiliation(s)
- Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Tamara Casper
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Megan Chiang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Emma Garren
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - James Gray
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Matthew Kroll
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Stephanie Mok
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Thanh Pham
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Qingzhong Ren
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Amy Torkelson
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Katelyn Ward
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
28
|
Kirchberger L, Mukherjee S, Schnabel UH, van Beest EH, Barsegyan A, Levelt CN, Heimel JA, Lorteije JAM, van der Togt C, Self MW, Roelfsema PR. The essential role of recurrent processing for figure-ground perception in mice. SCIENCE ADVANCES 2021; 7:eabe1833. [PMID: 34193411 PMCID: PMC8245045 DOI: 10.1126/sciadv.abe1833] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/17/2021] [Indexed: 05/15/2023]
Abstract
The segregation of figures from the background is an important step in visual perception. In primary visual cortex, figures evoke stronger activity than backgrounds during a delayed phase of the neuronal responses, but it is unknown how this figure-ground modulation (FGM) arises and whether it is necessary for perception. Here, we show, using optogenetic silencing in mice, that the delayed V1 response phase is necessary for figure-ground segregation. Neurons in higher visual areas also exhibit FGM and optogenetic silencing of higher areas reduced FGM in V1. In V1, figures elicited higher activity of vasoactive intestinal peptide-expressing (VIP) interneurons than the background, whereas figures suppressed somatostatin-positive interneurons, resulting in an increased activation of pyramidal cells. Optogenetic silencing of VIP neurons reduced FGM in V1, indicating that disinhibitory circuits contribute to FGM. Our results provide insight into how lower and higher areas of the visual cortex interact to shape visual perception.
Collapse
Affiliation(s)
- Lisa Kirchberger
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Sreedeep Mukherjee
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Ulf H Schnabel
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Enny H van Beest
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Areg Barsegyan
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Christiaan N Levelt
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - J Alexander Heimel
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Jeannette A M Lorteije
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, 1098XH Amsterdam, Netherlands
| | - Chris van der Togt
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands.
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
- Department of Psychiatry, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
29
|
Ma G, Liu Y, Wang L, Xiao Z, Song K, Wang Y, Peng W, Liu X, Wang Z, Jin S, Tao Z, Li CT, Xu T, Xu F, Xu M, Zhang S. Hierarchy in sensory processing reflected by innervation balance on cortical interneurons. SCIENCE ADVANCES 2021; 7:7/20/eabf5676. [PMID: 33990327 PMCID: PMC8121429 DOI: 10.1126/sciadv.abf5676] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Sensory processing is subjected to modulation by behavioral contexts that are often mediated by long-range inputs to cortical interneurons, but their selectivity to different types of interneurons remains largely unknown. Using rabies-virus tracing and optogenetics-assisted recording, we analyzed the long-range connections to various brain regions along the hierarchy of visual processing, including primary visual cortex, medial association cortices, and frontal cortices. We found that hierarchical corticocortical and thalamocortical connectivity is reflected by the relative weights of inputs to parvalbumin-positive (PV+) and vasoactive intestinal peptide-positive (VIP+) neurons within the conserved local circuit motif, with bottom-up and top-down inputs preferring PV+ and VIP+ neurons, respectively. Our algorithms based on innervation weights for these two types of local interneurons generated testable predictions of the hierarchical position of many brain areas. These results support the notion that preferential long-range inputs to specific local interneurons are essential for the hierarchical information flow in the brain.
Collapse
Affiliation(s)
- Guofen Ma
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanmei Liu
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lizhao Wang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhongyi Xiao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Song
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanjie Wang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanling Peng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaotong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ziyue Wang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sen Jin
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zi Tao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chengyu T Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Tianle Xu
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Fuqiang Xu
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Siyu Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
30
|
Mariscal MG, Berry-Kravis E, Buxbaum JD, Ethridge LE, Filip-Dhima R, Foss-Feig JH, Kolevzon A, Modi ME, Mosconi MW, Nelson CA, Powell CM, Siper PM, Soorya L, Thaliath A, Thurm A, Zhang B, Sahin M, Levin AR. Shifted phase of EEG cross-frequency coupling in individuals with Phelan-McDermid syndrome. Mol Autism 2021; 12:29. [PMID: 33910615 PMCID: PMC8082621 DOI: 10.1186/s13229-020-00411-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Phelan-McDermid Syndrome (PMS) is a rare condition caused by deletion or mutation of the SHANK3 gene. Individuals with PMS frequently present with intellectual disability, autism spectrum disorder, and other neurodevelopmental challenges. Electroencephalography (EEG) can provide a window into network-level function in PMS. METHODS Here, we analyze EEG data collected across multiple sites in individuals with PMS (n = 26) and typically developing individuals (n = 15). We quantify oscillatory power, alpha-gamma phase-amplitude coupling strength, and phase bias, a measure of the phase of cross frequency coupling thought to reflect the balance of feedforward (bottom-up) and feedback (top-down) activity. RESULTS We find individuals with PMS display increased alpha-gamma phase bias (U = 3.841, p < 0.0005), predominantly over posterior electrodes. Most individuals with PMS demonstrate positive overall phase bias while most typically developing individuals demonstrate negative overall phase bias. Among individuals with PMS, strength of alpha-gamma phase-amplitude coupling was associated with Sameness, Ritualistic, and Compulsive behaviors as measured by the Repetitive Behavior Scales-Revised (Beta = 0.545, p = 0.011). CONCLUSIONS Increased phase bias suggests potential circuit-level mechanisms underlying phenotype in PMS, offering opportunities for back-translation of findings into animal models and targeting in clinical trials.
Collapse
Affiliation(s)
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Joseph D Buxbaum
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - Lauren E Ethridge
- Department of Pediatrics, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Rajna Filip-Dhima
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jennifer H Foss-Feig
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meera E Modi
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Matthew W Mosconi
- Clinical Child Psychology Program, Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, USA
| | - Charles A Nelson
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Craig M Powell
- Department of Neurobiology, UAB School of Medicine, Birmingham, AL, USA
| | - Paige M Siper
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| | - Andrew Thaliath
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Audrey Thurm
- Intramural Research Program, National Institute of Mental Health, Bethesda, USA
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - April R Levin
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
31
|
Protachevicz PR, Hansen M, Iarosz KC, Caldas IL, Batista AM, Kurths J. Emergence of Neuronal Synchronisation in Coupled Areas. Front Comput Neurosci 2021; 15:663408. [PMID: 33967729 PMCID: PMC8100315 DOI: 10.3389/fncom.2021.663408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most fundamental questions in the field of neuroscience is the emergence of synchronous behaviour in the brain, such as phase, anti-phase, and shift-phase synchronisation. In this work, we investigate how the connectivity between brain areas can influence the phase angle and the neuronal synchronisation. To do this, we consider brain areas connected by means of excitatory and inhibitory synapses, in which the neuron dynamics is given by the adaptive exponential integrate-and-fire model. Our simulations suggest that excitatory and inhibitory connections from one area to another play a crucial role in the emergence of these types of synchronisation. Thus, in the case of unidirectional interaction, we observe that the phase angles of the neurons in the receiver area depend on the excitatory and inhibitory synapses which arrive from the sender area. Moreover, when the neurons in the sender area are synchronised, the phase angle variability of the receiver area can be reduced for some conductance values between the areas. For bidirectional interactions, we find that phase and anti-phase synchronisation can emerge due to excitatory and inhibitory connections. We also verify, for a strong inhibitory-to-excitatory interaction, the existence of silent neuronal activities, namely a large number of excitatory neurons that remain in silence for a long time.
Collapse
Affiliation(s)
- Paulo R Protachevicz
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Matheus Hansen
- Computer Science Department, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, Brazil
| | - Kelly C Iarosz
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.,Faculdade de Telêmaco Borba, Telêmaco Borba, Brazil.,Graduate Program in Chemical Engineering, Federal University of Technology Paraná, Ponta Grossa, Brazil
| | - Iberê L Caldas
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Antonio M Batista
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.,Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Jürgen Kurths
- Department Complexity Science, Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Physics, Humboldt University, Berlin, Germany.,Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
32
|
Hayashi T, Hou Y, Glasser MF, Autio JA, Knoblauch K, Inoue-Murayama M, Coalson T, Yacoub E, Smith S, Kennedy H, Van Essen DC. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage 2021; 229:117726. [PMID: 33484849 PMCID: PMC8079967 DOI: 10.1016/j.neuroimage.2021.117726] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022] Open
Abstract
Multi-modal neuroimaging projects such as the Human Connectome Project (HCP) and UK Biobank are advancing our understanding of human brain architecture, function, connectivity, and their variability across individuals using high-quality non-invasive data from many subjects. Such efforts depend upon the accuracy of non-invasive brain imaging measures. However, 'ground truth' validation of connectivity using invasive tracers is not feasible in humans. Studies using nonhuman primates (NHPs) enable comparisons between invasive and non-invasive measures, including exploration of how "functional connectivity" from fMRI and "tractographic connectivity" from diffusion MRI compare with long-distance connections measured using tract tracing. Our NonHuman Primate Neuroimaging & Neuroanatomy Project (NHP_NNP) is an international effort (6 laboratories in 5 countries) to: (i) acquire and analyze high-quality multi-modal brain imaging data of macaque and marmoset monkeys using protocols and methods adapted from the HCP; (ii) acquire quantitative invasive tract-tracing data for cortical and subcortical projections to cortical areas; and (iii) map the distributions of different brain cell types with immunocytochemical stains to better define brain areal boundaries. We are acquiring high-resolution structural, functional, and diffusion MRI data together with behavioral measures from over 100 individual macaques and marmosets in order to generate non-invasive measures of brain architecture such as myelin and cortical thickness maps, as well as functional and diffusion tractography-based connectomes. We are using classical and next-generation anatomical tracers to generate quantitative connectivity maps based on brain-wide counting of labeled cortical and subcortical neurons, providing ground truth measures of connectivity. Advanced statistical modeling techniques address the consistency of both kinds of data across individuals, allowing comparison of tracer-based and non-invasive MRI-based connectivity measures. We aim to develop improved cortical and subcortical areal atlases by combining histological and imaging methods. Finally, we are collecting genetic and sociality-associated behavioral data in all animals in an effort to understand how genetic variation shapes the connectome and behavior.
Collapse
Affiliation(s)
- Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yujie Hou
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Matthew F Glasser
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA; Department of Neuroscience and Radiology, Washington University Medical School, St Louis, MO USA
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kenneth Knoblauch
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | | | - Tim Coalson
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Stephen Smith
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Henry Kennedy
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai, China
| | - David C Van Essen
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| |
Collapse
|
33
|
Young H, Belbut B, Baeta M, Petreanu L. Laminar-specific cortico-cortical loops in mouse visual cortex. eLife 2021; 10:e59551. [PMID: 33522479 PMCID: PMC7877907 DOI: 10.7554/elife.59551] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Many theories propose recurrent interactions across the cortical hierarchy, but it is unclear if cortical circuits are selectively wired to implement looped computations. Using subcellular channelrhodopsin-2-assisted circuit mapping in mouse visual cortex, we compared feedforward (FF) or feedback (FB) cortico-cortical (CC) synaptic input to cells projecting back to the input source (looped neurons) with cells projecting to a different cortical or subcortical area. FF and FB afferents showed similar cell-type selectivity, making stronger connections with looped neurons than with other projection types in layer (L)5 and L6, but not in L2/3, resulting in selective modulation of activity in looped neurons. In most cases, stronger connections in looped L5 neurons were located on their apical tufts, but not on their perisomatic dendrites. Our results reveal that CC connections are selectively wired to form monosynaptic excitatory loops and support a differential role of supragranular and infragranular neurons in hierarchical recurrent computations.
Collapse
Affiliation(s)
- Hedi Young
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| | - Beatriz Belbut
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| | - Margarida Baeta
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| | - Leopoldo Petreanu
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| |
Collapse
|
34
|
Vezoli J, Magrou L, Goebel R, Wang XJ, Knoblauch K, Vinck M, Kennedy H. Cortical hierarchy, dual counterstream architecture and the importance of top-down generative networks. Neuroimage 2021; 225:117479. [PMID: 33099005 PMCID: PMC8244994 DOI: 10.1016/j.neuroimage.2020.117479] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Hierarchy is a major organizational principle of the cortex and underscores modern computational theories of cortical function. The local microcircuit amplifies long-distance inter-areal input, which show distance-dependent changes in their laminar profiles. Statistical modeling of these changes in laminar profiles demonstrates that inputs from multiple hierarchical levels to their target areas show remarkable consistency, allowing the construction of a cortical hierarchy based on a principle of hierarchical distance. The statistical modeling that is applied to structure can also be applied to laminar differences in the oscillatory coherence between areas thereby determining a functional hierarchy of the cortex. Close examination of the anatomy of inter-areal connectivity reveals a dual counterstream architecture with well-defined distance-dependent feedback and feedforward pathways in both the supra- and infragranular layers, suggesting a multiplicity of feedback pathways with well-defined functional properties. These findings are consistent with feedback connections providing a generative network involved in a wide range of cognitive functions. A dynamical model constrained by connectivity data sheds insight into the experimentally observed signatures of frequency-dependent Granger causality for feedforward versus feedback signaling. Concerted experiments capitalizing on recent technical advances and combining tract-tracing, high-resolution fMRI, optogenetics and mathematical modeling hold the promise of a much improved understanding of lamina-constrained mechanisms of neural computation and cognition. However, because inter-areal interactions involve cortical layers that have been the target of important evolutionary changes in the primate lineage, these investigations will need to include human and non-human primate comparisons.
Collapse
Affiliation(s)
- Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Loïc Magrou
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Xiao-Jing Wang
- Center for Neural Science, New York University (NYU), New York, NY 10003, USA
| | - Kenneth Knoblauch
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany.
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai 200031, China.
| |
Collapse
|
35
|
Pan H, Zhang S, Pan D, Ye Z, Yu H, Ding J, Wang Q, Sun Q, Hua T. Characterization of Feedback Neurons in the High-Level Visual Cortical Areas That Project Directly to the Primary Visual Cortex in the Cat. Front Neuroanat 2021; 14:616465. [PMID: 33488364 PMCID: PMC7820340 DOI: 10.3389/fnana.2020.616465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Previous studies indicate that top-down influence plays a critical role in visual information processing and perceptual detection. However, the substrate that carries top-down influence remains poorly understood. Using a combined technique of retrograde neuronal tracing and immunofluorescent double labeling, we characterized the distribution and cell type of feedback neurons in cat's high-level visual cortical areas that send direct connections to the primary visual cortex (V1: area 17). Our results showed: (1) the high-level visual cortex of area 21a at the ventral stream and PMLS area at the dorsal stream have a similar proportion of feedback neurons back projecting to the V1 area, (2) the distribution of feedback neurons in the higher-order visual area 21a and PMLS was significantly denser than in the intermediate visual cortex of area 19 and 18, (3) feedback neurons in all observed high-level visual cortex were found in layer II-III, IV, V, and VI, with a higher proportion in layer II-III, V, and VI than in layer IV, and (4) most feedback neurons were CaMKII-positive excitatory neurons, and few of them were identified as inhibitory GABAergic neurons. These results may argue against the segregation of ventral and dorsal streams during visual information processing, and support "reverse hierarchy theory" or interactive model proposing that recurrent connections between V1 and higher-order visual areas constitute the functional circuits that mediate visual perception. Also, the corticocortical feedback neurons from high-level visual cortical areas to the V1 area are mostly excitatory in nature.
Collapse
Affiliation(s)
- Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qin Wang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
36
|
Swinehart BD, Bland KM, Holley ZL, Lopuch AJ, Casey ZO, Handwerk CJ, Vidal GS. Integrin β3 organizes dendritic complexity of cerebral cortical pyramidal neurons along a tangential gradient. Mol Brain 2020; 13:168. [PMID: 33317577 PMCID: PMC7734815 DOI: 10.1186/s13041-020-00707-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 11/10/2022] Open
Abstract
Dysfunctional dendritic arborization is a key feature of many developmental neurological disorders. Across various human brain regions, basal dendritic complexity is known to increase along a caudal-to-rostral gradient. We recently discovered that basal dendritic complexity of layer II/III cortical pyramidal neurons in the mouse increases along a caudomedial-to-rostrolateral gradient spanning multiple regions, but at the time, no molecules were known to regulate that exquisite pattern. Integrin subunits have been implicated in dendritic development, and the subunit with the strongest associations with autism spectrum disorder and intellectual disability is integrin β3 (Itgb3). In mice, global knockout of Itgb3 leads to autistic-like neuroanatomy and behavior. Here, we tested the hypothesis that Itgb3 is required for increasing dendritic complexity along the recently discovered tangential gradient among layer II/III cortical pyramidal neurons. We targeted a subset of layer II/III cortical pyramidal neurons for Itgb3 loss-of-function via Cre-loxP-mediated excision of Itgb3. We tracked the rostrocaudal and mediolateral position of the targeted neurons and reconstructed their dendritic arbors. In contrast to controls, the basal dendritic complexity of Itgb3 mutant neurons was not related to their cortical position. Basal dendritic complexity of mutant and control neurons differed because of overall changes in branch number across multiple branch orders (primary, secondary, etc.), rather than any changes in the average length at those branch orders. Furthermore, dendritic spine density was related to cortical position in control but not mutant neurons. Thus, the autism susceptibility gene Itgb3 is required for establishing a tangential pattern of basal dendritic complexity among layer II/III cortical pyramidal neurons, suggesting an early role for this molecule in the developing brain.
Collapse
Affiliation(s)
- Brian D Swinehart
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - Katherine M Bland
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - Z Logan Holley
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - Andrew J Lopuch
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - Zachary O Casey
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - Christopher J Handwerk
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - George S Vidal
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA.
| |
Collapse
|
37
|
Jin M, Glickfeld LL. Mouse Higher Visual Areas Provide Both Distributed and Specialized Contributions to Visually Guided Behaviors. Curr Biol 2020; 30:4682-4692.e7. [PMID: 33035487 PMCID: PMC7725996 DOI: 10.1016/j.cub.2020.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/06/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Cortical parallel processing streams segregate many diverse features of a sensory scene. However, some features are distributed across streams, begging the question of whether and how such distributed representations contribute to perception. We determined the necessity of the primary visual cortex (V1) and three key higher visual areas (lateromedial [LM], anterolateral [AL], and posteromedial [PM]) for perception of orientation and contrast, two features that are robustly encoded across all four areas. Suppressing V1, LM, or AL decreased sensitivity for both orientation discrimination and contrast detection, consistent with a role for these areas in sensory perception. In comparison, suppressing PM selectively increased false alarm (FA) rates during contrast detection, without any effect on orientation discrimination. This effect was not retinotopically specific, suggesting that suppression of PM altered sensory integration or the decision-making process rather than processing of local visual features. Thus, we find that distributed representations in the visual system can nonetheless support specialized perceptual roles for higher visual cortical areas.
Collapse
Affiliation(s)
- Miaomiao Jin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
38
|
Kirch C, Gollo LL. Spatially resolved dendritic integration: towards a functional classification of neurons. PeerJ 2020; 8:e10250. [PMID: 33282551 PMCID: PMC7694565 DOI: 10.7717/peerj.10250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/06/2020] [Indexed: 01/19/2023] Open
Abstract
The vast tree-like dendritic structure of neurons allows them to receive and integrate input from many neurons. A wide variety of neuronal morphologies exist, however, their role in dendritic integration, and how it shapes the response of the neuron, is not yet fully understood. Here, we study the evolution and interactions of dendritic spikes in excitable neurons with complex real branch structures. We focus on dozens of digitally reconstructed illustrative neurons from the online repository NeuroMorpho.org, which contains over 130,000 neurons. Yet, our methods can be promptly extended to any other neuron. This approach allows us to estimate and map specific and heterogeneous patterns of activity observed across extensive dendritic trees with thousands of compartments. We propose a classification of neurons based on the location of the soma (centrality) and the number of branches connected to the soma. These are key topological factors in determining the neuron's energy consumption, firing rate, and the dynamic range, which quantifies the range in synaptic input rate that can be reliably encoded by the neuron's firing rate. Moreover, we find that bifurcations, the structural building blocks of complex dendrites, play a major role in increasing the dynamic range of neurons. Our results provide a better understanding of the effects of neuronal morphology in the diversity of neuronal dynamics and function.
Collapse
Affiliation(s)
- Christoph Kirch
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Leonardo L. Gollo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Laliberté G, Othman R, Vaucher E. Mesoscopic Mapping of Stimulus-Selective Response Plasticity in the Visual Pathways Modulated by the Cholinergic System. Front Neural Circuits 2020; 14:38. [PMID: 32719589 PMCID: PMC7350895 DOI: 10.3389/fncir.2020.00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
The cholinergic potentiation of visual conditioning enhances visual acuity and discrimination of the trained stimulus. To determine if this also induces long-term plastic changes on cortical maps and connectivity in the visual cortex and higher associative areas, mesoscopic calcium imaging was performed in head-fixed awake GCaMP6s adult mice before and after conditioning. The conditioned stimulus (0.03 cpd, 30°, 100% contrast, 1 Hz-drifting gratings) was presented 10 min daily for a week. Saline or Donepezil (DPZ, 0.3 mg/kg, s.c.), a cholinesterase inhibitor that potentiates cholinergic transmission, were injected prior to each conditioning session and compared to a sham-conditioned group. Cortical maps of resting state and evoked response to the monocular presentation of conditioned or non-conditioned stimulus (30°, 50 and 75% contrast; 90°, 50, 75, and 100% contrast) were established. Amplitude, duration, and latency of the peak response, as well as size of activation were measured in the primary visual cortex (V1), secondary visual areas (AL, A, AM, PM, LM, RL), retrosplenial cortex (RSC), and higher cortical areas. Visual stimulation increased calcium signaling in all primary and secondary visual areas, the RSC, but no other cortices. There were no significant effects of sham-conditioning or conditioning alone, but DPZ treatment during conditioning significantly decreased the integrated neuronal activity of superficial layers evoked by the conditioned stimulus in V1, AL, PM, and LM. The activity of downstream cortical areas was not changed. The size of the activated area was decreased in V1 and PM, and the signal-to-noise ratio was decreased in AL and PM. Interestingly, signal correlation was seen only between V1, the ventral visual pathway, and the RSC, and was decreased by DPZ administration. The resting state activity was slightly correlated and rarely affected by treatments, except between binocular and monocular V1 in both hemispheres. In conclusion, cholinergic potentiation of visual conditioning induced change in visual processing in the superficial cortical layers. This effect might be a key mechanism in the establishment of the fine cortical tuning in response to the conditioned visual stimulus.
Collapse
Affiliation(s)
- Guillaume Laliberté
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Rahmeh Othman
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada.,Départment de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
40
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
41
|
Wang XJ. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat Rev Neurosci 2020; 21:169-178. [PMID: 32029928 PMCID: PMC7334830 DOI: 10.1038/s41583-020-0262-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
With advances in connectomics, transcriptome and neurophysiological technologies, the neuroscience of brain-wide neural circuits is poised to take off. A major challenge is to understand how a vast diversity of functions is subserved by parcellated areas of mammalian neocortex composed of repetitions of a canonical local circuit. Areas of the cerebral cortex differ from each other not only in their input-output patterns but also in their biological properties. Recent experimental and theoretical work has revealed that such variations are not random heterogeneities; rather, synaptic excitation and inhibition display systematic macroscopic gradients across the entire cortex, and they are abnormal in mental illness. Quantitative differences along these gradients can lead to qualitatively novel behaviours in non-linear neural dynamical systems, by virtue of a phenomenon mathematically described as bifurcation. The combination of macroscopic gradients and bifurcations, in tandem with biological evolution, development and plasticity, provides a generative mechanism for functional diversity among cortical areas, as a general principle of large-scale cortical organization.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
42
|
NeuroPath2Path: Classification and elastic morphing between neuronal arbors using path-wise similarity. Neuroinformatics 2020; 18:479-508. [PMID: 32107735 DOI: 10.1007/s12021-019-09450-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neuron shape and connectivity affect function. Modern imaging methods have proven successful at extracting morphological information. One potential path to achieve analysis of this morphology is through graph theory. Encoding by graphs enables the use of high throughput informatic methods to extract and infer brain function. However, the application of graph-theoretic methods to neuronal morphology comes with certain challenges in term of complex subgraph matching and the difficulty in computing intermediate shapes in between two imaged temporal samples. Here we report a novel, efficacious graph-theoretic method that rises to the challenges. The morphology of a neuron, which consists of its overall size, global shape, local branch patterns, and cell-specific biophysical properties, can vary significantly with the cell's identity, location, as well as developmental and physiological state. Various algorithms have been developed to customize shape based statistical and graph related features for quantitative analysis of neuromorphology, followed by the classification of neuron cell types using the features. Unlike the classical feature extraction based methods from imaged or 3D reconstructed neurons, we propose a model based on the rooted path decomposition from the soma to the dendrites of a neuron and extract morphological features from each constituent path. We hypothesize that measuring the distance between two neurons can be realized by minimizing the cost of continuously morphing the set of all rooted paths of one neuron to another. To validate this claim, we first establish the correspondence of paths between two neurons using a modified Munkres algorithm. Next, an elastic deformation framework that employs the square root velocity function is established to perform the continuous morphing, which, as an added benefit, provides an effective visualization tool. We experimentally show the efficacy of NeuroPath2Path, NeuroP2P, over the state of the art.
Collapse
|
43
|
Vangeneugden J, van Beest EH, Cohen MX, Lorteije JAM, Mukherjee S, Kirchberger L, Montijn JS, Thamizharasu P, Camillo D, Levelt CN, Roelfsema PR, Self MW, Heimel JA. Activity in Lateral Visual Areas Contributes to Surround Suppression in Awake Mouse V1. Curr Biol 2019; 29:4268-4275.e7. [PMID: 31786063 DOI: 10.1016/j.cub.2019.10.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 11/18/2022]
Abstract
Neuronal response to sensory stimuli depends on the context. The response in primary visual cortex (V1), for instance, is reduced when a stimulus is surrounded by a similar stimulus [1-3]. The source of this surround suppression is partially known. In mouse, local horizontal integration by somatostatin-expressing interneurons contributes to surround suppression [4]. In primates, however, surround suppression arises too quickly to come from local horizontal integration alone, and myelinated axons from higher visual areas, where cells have larger receptive fields, are thought to provide additional surround suppression [5, 6]. Silencing higher visual areas indeed decreased surround suppression in the awake primate by increasing responses to large stimuli [7, 8], although not under anesthesia [9, 10]. In smaller mammals, like mice, fast surround suppression could be possible without feedback. Recent studies revealed a small reduction in V1 responses when silencing higher areas [11, 12] but have not investigated surround suppression. To determine whether higher visual areas contribute to V1 surround suppression, even when this is not necessary for fast processing, we inhibited the areas lateral to V1, particularly the lateromedial area (LM), a possible homolog of primate V2 [13], while recording in V1 of awake and anesthetized mice. We found that part of the surround suppression depends on activity from lateral visual areas in the awake, but not anesthetized, mouse. Inhibiting the lateral visual areas specifically increased responses in V1 to large stimuli. We present a model explaining how excitatory feedback to V1 can have these suppressive effects for large stimuli.
Collapse
Affiliation(s)
- Joris Vangeneugden
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Enny H van Beest
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Michael X Cohen
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Jeannette A M Lorteije
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Sreedeep Mukherjee
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Lisa Kirchberger
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Jorrit S Montijn
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Premnath Thamizharasu
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Daniela Camillo
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Christiaan N Levelt
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Psychiatry Department, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Matthew W Self
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - J Alexander Heimel
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Amsterdam, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| |
Collapse
|
44
|
Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, Bohn P, Caldejon S, Casal L, Cho A, Feiner A, Feng D, Gaudreault N, Gerfen CR, Graddis N, Groblewski PA, Henry AM, Ho A, Howard R, Knox JE, Kuan L, Kuang X, Lecoq J, Lesnar P, Li Y, Luviano J, McConoughey S, Mortrud MT, Naeemi M, Ng L, Oh SW, Ouellette B, Shen E, Sorensen SA, Wakeman W, Wang Q, Wang Y, Williford A, Phillips JW, Jones AR, Koch C, Zeng H. Hierarchical organization of cortical and thalamic connectivity. Nature 2019; 575:195-202. [PMID: 31666704 PMCID: PMC8433044 DOI: 10.1038/s41586-019-1716-z] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/24/2019] [Indexed: 01/23/2023]
Abstract
The mammalian cortex is a laminar structure containing many areas and cell types that are densely interconnected in complex ways, and for which generalizable principles of organization remain mostly unknown. Here we describe a major expansion of the Allen Mouse Brain Connectivity Atlas resource1, involving around a thousand new tracer experiments in the cortex and its main satellite structure, the thalamus. We used Cre driver lines (mice expressing Cre recombinase) to comprehensively and selectively label brain-wide connections by layer and class of projection neuron. Through observations of axon termination patterns, we have derived a set of generalized anatomical rules to describe corticocortical, thalamocortical and corticothalamic projections. We have built a model to assign connection patterns between areas as either feedforward or feedback, and generated testable predictions of hierarchical positions for individual cortical and thalamic areas and for cortical network modules. Our results show that cell-class-specific connections are organized in a shallow hierarchy within the mouse corticothalamic network.
Collapse
Affiliation(s)
| | | | | | | | - Hannah Choi
- Allen Institute for Brain Science, Seattle, WA, USA
- University of Washington, Department of Applied Mathematics, Seattle, WA, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Linzy Casal
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Andrew Cho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Aaron Feiner
- Allen Institute for Brain Science, Seattle, WA, USA
| | - David Feng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Nile Graddis
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Alex M Henry
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Anh Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Leonard Kuan
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Xiuli Kuang
- Wenzhou Medical University, Wenzhou, P. R. China
| | - Jerome Lecoq
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yaoyao Li
- Wenzhou Medical University, Wenzhou, P. R. China
| | | | | | | | | | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Elise Shen
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Quanxin Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yun Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
45
|
D'Souza RD, Bista P, Meier AM, Ji W, Burkhalter A. Spatial Clustering of Inhibition in Mouse Primary Visual Cortex. Neuron 2019; 104:588-600.e5. [PMID: 31623918 DOI: 10.1016/j.neuron.2019.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/08/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Whether mouse visual cortex contains orderly feature maps is debated. The overlapping pattern of geniculocortical inputs with M2 muscarinic acetylcholine receptor-rich patches in layer 1 (L1) suggests a non-random architecture. Here, we found that L1 inputs from the lateral posterior thalamus (LP) avoid patches and target interpatches. Channelrhodopsin-2-assisted mapping of excitatory postsynaptic currents (EPSCs) in L2/3 shows that the relative excitation of parvalbumin-expressing interneurons (PVs) and pyramidal neurons (PNs) by dLGN, LP, and cortical feedback is distinct and depends on whether the neurons reside in clusters aligned with patches or interpatches. Paired recordings from PVs and PNs show that unitary inhibitory postsynaptic currents (uIPSCs) are larger in interpatches than in patches. The spatial clustering of inhibition is matched by dense clustering of PV terminals in interpatches. The results show that the excitation/inhibition balance across V1 is organized into patch and interpatch subnetworks, which receive distinct long-range inputs and are specialized for the processing of distinct spatiotemporal features.
Collapse
Affiliation(s)
- Rinaldo D D'Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pawan Bista
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew M Meier
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weiqing Ji
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andreas Burkhalter
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
46
|
Hafner G, Witte M, Guy J, Subhashini N, Fenno LE, Ramakrishnan C, Kim YS, Deisseroth K, Callaway EM, Oberhuber M, Conzelmann KK, Staiger JF. Mapping Brain-Wide Afferent Inputs of Parvalbumin-Expressing GABAergic Neurons in Barrel Cortex Reveals Local and Long-Range Circuit Motifs. Cell Rep 2019; 28:3450-3461.e8. [PMID: 31553913 PMCID: PMC6897332 DOI: 10.1016/j.celrep.2019.08.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin (PV)-expressing GABAergic neurons are the largest class of inhibitory neocortical cells. We visualize brain-wide, monosynaptic inputs to PV neurons in mouse barrel cortex. We develop intersectional rabies virus tracing to specifically target GABAergic PV cells and exclude a small fraction of excitatory PV cells from our starter population. Local inputs are mainly from layer (L) IV and excitatory cells. A small number of inhibitory inputs originate from LI neurons, which connect to LII/III PV neurons. Long-range inputs originate mainly from other sensory cortices and the thalamus. In visual cortex, most transsynaptically labeled neurons are located in LIV, which contains a molecularly mixed population of projection neurons with putative functional similarity to LIII neurons. This study expands our knowledge of the brain-wide circuits in which PV neurons are embedded and introduces intersectional rabies virus tracing as an applicable tool to dissect the circuitry of more clearly defined cell types.
Collapse
Affiliation(s)
- Georg Hafner
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Mirko Witte
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Julien Guy
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Nidhi Subhashini
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Lief E Fenno
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martina Oberhuber
- Max von Pettenkofer-Institute, Virology & Gene Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute, Virology & Gene Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
47
|
Abstract
In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.
Collapse
Affiliation(s)
- Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Jamaica Plain VA Medical Center, Boston, Massachusetts 02130, USA
| | - Edward J Tehovnik
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
48
|
Pennartz CMA, Farisco M, Evers K. Indicators and Criteria of Consciousness in Animals and Intelligent Machines: An Inside-Out Approach. Front Syst Neurosci 2019; 13:25. [PMID: 31379521 PMCID: PMC6660257 DOI: 10.3389/fnsys.2019.00025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
In today's society, it becomes increasingly important to assess which non-human and non-verbal beings possess consciousness. This review article aims to delineate criteria for consciousness especially in animals, while also taking into account intelligent artifacts. First, we circumscribe what we mean with "consciousness" and describe key features of subjective experience: qualitative richness, situatedness, intentionality and interpretation, integration and the combination of dynamic and stabilizing properties. We argue that consciousness has a biological function, which is to present the subject with a multimodal, situational survey of the surrounding world and body, subserving complex decision-making and goal-directed behavior. This survey reflects the brain's capacity for internal modeling of external events underlying changes in sensory state. Next, we follow an inside-out approach: how can the features of conscious experience, correlating to mechanisms inside the brain, be logically coupled to externally observable ("outside") properties? Instead of proposing criteria that would each define a "hard" threshold for consciousness, we outline six indicators: (i) goal-directed behavior and model-based learning; (ii) anatomic and physiological substrates for generating integrative multimodal representations; (iii) psychometrics and meta-cognition; (iv) episodic memory; (v) susceptibility to illusions and multistable perception; and (vi) specific visuospatial behaviors. Rather than emphasizing a particular indicator as being decisive, we propose that the consistency amongst these indicators can serve to assess consciousness in particular species. The integration of scores on the various indicators yields an overall, graded criterion for consciousness, somewhat comparable to the Glasgow Coma Scale for unresponsive patients. When considering theoretically derived measures of consciousness, it is argued that their validity should not be assessed on the basis of a single quantifiable measure, but requires cross-examination across multiple pieces of evidence, including the indicators proposed here. Current intelligent machines, including deep learning neural networks (DLNNs) and agile robots, are not indicated to be conscious yet. Instead of assessing machine consciousness by a brief Turing-type of test, evidence for it may gradually accumulate when we study machines ethologically and across time, considering multiple behaviors that require flexibility, improvisation, spontaneous problem-solving and the situational conspectus typically associated with conscious experience.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
49
|
Farhoodi R, Lansdell BJ, Kording KP. Quantifying How Staining Methods Bias Measurements of Neuron Morphologies. Front Neuroinform 2019; 13:36. [PMID: 31191283 PMCID: PMC6541099 DOI: 10.3389/fninf.2019.00036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The process through which neurons are labeled is a key methodological choice in measuring neuron morphology. However, little is known about how this choice may bias measurements. To quantify this bias we compare the extracted morphology of neurons collected from the same rodent species, experimental condition, gender distribution, age distribution, brain region and putative cell type, but obtained with 19 distinct staining methods. We found strong biases on measured features of morphology. These were largest in features related to the coverage of the dendritic tree (e.g., the total dendritic tree length). Understanding measurement biases is crucial for interpreting morphological data.
Collapse
Affiliation(s)
- Roozbeh Farhoodi
- Department of Mathematics, Sharif University of Technology, Tehran, Iran
| | | | - Konrad Paul Kording
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
50
|
Abstract
The primate cerebral cortex displays a hierarchy that extends from primary sensorimotor to association areas, supporting increasingly integrated function underpinned by a gradient of heterogeneity in the brain's microcircuits. The extent to which these hierarchical gradients are unique to primate or may reflect a conserved mammalian principle of brain organization remains unknown. Here we report the topographic similarity of large-scale gradients in cytoarchitecture, gene expression, interneuron cell densities, and long-range axonal connectivity, which vary from primary sensory to prefrontal areas of mouse cortex, highlighting an underappreciated spatial dimension of mouse cortical specialization. Using the T1-weighted:T2-weighted (T1w:T2w) magnetic resonance imaging map as a common spatial reference for comparison across species, we report interspecies agreement in a range of large-scale cortical gradients, including a significant correspondence between gene transcriptional maps in mouse cortex with their human orthologs in human cortex, as well as notable interspecies differences. Our results support the view of systematic structural variation across cortical areas as a core organizational principle that may underlie hierarchical specialization in mammalian brains.
Collapse
Affiliation(s)
- Ben D Fulcher
- School of Physics, Sydney University, Sydney, NSW 2006, Australia;
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Valerio Zerbi
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, 8057 Zürich, Switzerland
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003;
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|