1
|
Kenry. Machine-learning-guided quantitative delineation of cell morphological features and responses to nanomaterials. NANOSCALE 2024; 16:19656-19668. [PMID: 39373030 DOI: 10.1039/d4nr02466d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Delineation of cell morphological features is essential to decipher cell responses to external stimuli like theranostic nanomaterials. Conventional methods rely on labeled approaches, such as fluorescence imaging and flow cytometry, to assess cell responses. Besides potentially perturbing cell structure and morphology, these approaches are relatively complex, time-consuming, expensive, and may not be compatible with downstream analysis involving live cells. Herein, leveraging label-free phase-contrast or brightfield microscopy imaging and machine learning, the delineation of different cell types, phenotypes, and states for monitoring live cell responses is reported. Notably, pixel classification based on a supervised random forest classifier is used to distinguish between cells and backgrounds from the microscopy images, followed by cell segmentation and morphological feature extraction. Quantitative analysis shows that most of the compared cell groups have distinguishable size and shape features. Principal component analysis and unsupervised k-means clustering of morphological features reveal the possible existence of heterogenous cell subpopulations and treatment responses among the seemingly homogenous cell groups. This shows the merit of the reported approach in complementing conventional techniques for cell analysis. It is anticipated that the demonstrated method will further aid the implementation of machine learning to streamline the analysis of cell morphology and responses for early disease diagnosis and treatment response monitoring.
Collapse
Affiliation(s)
- Kenry
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA.
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Fregin B, Hossain MF, Biedenweg D, Friedrichs V, Balkema-Buschmann A, Bokelmann M, Lehnert K, Mokbel D, Aland S, Scholz CC, Lehmann P, Otto O, Kerth G. Thermomechanical properties of bat and human red blood cells-Implications for hibernation. Proc Natl Acad Sci U S A 2024; 121:e2405169121. [PMID: 39401351 PMCID: PMC11513926 DOI: 10.1073/pnas.2405169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 10/30/2024] Open
Abstract
Hibernation is a widespread and highly efficient mechanism to save energy in mammals. However, one major challenge of hibernation is maintaining blood circulation at low body temperatures, which strongly depends on the viscoelastic properties of red blood cells (RBCs). Here, we examined at physiologically relevant timescales the thermomechanical properties of hundreds of thousands of individual RBCs from the hibernating common noctule bat (Nyctalus noctula), the nonhibernating Egyptian fruit bat (Rousettus aegyptiacus), and humans (Homo sapiens). We exposed RBCs to temperatures encountered during normothermia and hibernation and found a significant increase in elasticity and viscosity with decreasing temperatures. Our data demonstrate that temperature adjustment of RBCs is mainly driven by membrane properties and not the cytosol while viscous dissipation in the membrane of both bat species exceeds the one in humans by a factor of 15. Finally, our results show that RBCs from both bat species reveal a transition to a more viscous-like state when temperature decreases. This process on a minute timescale has an effect size that is comparable with fluctuations in RBC viscoelasticity over the course of the year, implying that environmental factors, such as diets, have a lower impact on the capability of RBCs to respond to different temperatures than general physical properties of the cell membrane. In summary, our findings suggest membrane viscoelasticity as a promising target for identifying mechanisms that could be manipulated to ensure blood circulation at low body temperatures in humans, which may be one first step toward safe synthetic torpor in medicine and space flight.
Collapse
Affiliation(s)
- Bob Fregin
- Institute of Physics, University of Greifswald, Greifswald17489, Germany
- German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald17489, Germany
| | - Mohammed Faruq Hossain
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald17489, Germany
| | - Doreen Biedenweg
- Institute of Physics, University of Greifswald, Greifswald17489, Germany
| | | | | | - Marcel Bokelmann
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems17493, Germany
| | - Kristin Lehnert
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald17475, Germany
| | - Dominic Mokbel
- Institute of Numerical Mathematics and Optimisation, Technical University Bergakademie Freiberg, Freiberg09599, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Sebastian Aland
- Institute of Numerical Mathematics and Optimisation, Technical University Bergakademie Freiberg, Freiberg09599, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Carsten C. Scholz
- Institute of Physiology, University Medicine Greifswald, Greifswald17489, Germany
| | - Philipp Lehmann
- Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald17489, Germany
| | - Oliver Otto
- Institute of Physics, University of Greifswald, Greifswald17489, Germany
- German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald17489, Germany
| | - Gerald Kerth
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Greifswald17489, Germany
| |
Collapse
|
3
|
Eder J, Kräter M, Kirschbaum C, Gao W, Wekenborg M, Penz M, Rothe N, Guck J, Wittwer LD, Walther A. Longitudinal associations between depressive symptoms and cell deformability: do glucocorticoids play a role? Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01902-z. [PMID: 39297974 DOI: 10.1007/s00406-024-01902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
Cell deformability of all major blood cell types is increased in depressive disorders (DD). Furthermore, impaired glucocorticoid secretion is associated with DD, as well as depressive symptoms in general and known to alter cell mechanical properties. Nevertheless, there are no longitudinal studies examining accumulated glucocorticoid output and depressive symptoms regarding cell deformability. The aim of the present study was to investigate, whether depressive symptoms predict cell deformability one year later and whether accumulated hair glucocorticoids mediate this relationship. In 136 individuals (nfemale = 100; Mage = 46.72, SD = 11.28; age range = 20-65), depressive symptoms (PHQ-9) and hair glucocorticoids (cortisol and cortisone) were measured at time point one (T1), while one year later (T2) both depressive symptoms and hair glucocorticoids were reassessed. Additionally, cell deformability of peripheral blood cells was assessed at T2. Depression severity at T1 predicted higher cell deformability in monocytes and lymphocytes at T2. Accumulated hair cortisol and cortisone concentrations from T1 and T2 were not associated with higher cell deformability and further did not mediate the relationship between depressive symptoms and cell deformability. Elevated depressive symptomatology in a population based sample is longitudinally associated with higher immune cell deformability, while long-term integrated glucocorticoid levels seem not to be implicated in the underlying mechanism.
Collapse
Affiliation(s)
- Julian Eder
- Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany
| | - Martin Kräter
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, TUD Dresden University of Technology, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Clemens Kirschbaum
- Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany
| | - Wei Gao
- Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Magdalena Wekenborg
- Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany
- Else Kröner Fresenius Center of Digital Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Marlene Penz
- Institute of Psychology, Johannes Kepler Universität Linz, Linz, Austria
| | - Nicole Rothe
- Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany
| | - Jochen Guck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, TUD Dresden University of Technology, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Lucas Daniel Wittwer
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Institut für Numerische Mathematik und Optimierung, Technische Universität Freiberg, 09599, Freiberg, Germany
| | - Andreas Walther
- Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, Zurich, 8050, Switzerland.
| |
Collapse
|
4
|
Lo MCK, Siu DMD, Lee KCM, Wong JSJ, Yeung MCF, Hsin MKY, Ho JCM, Tsia KK. Information-Distilled Generative Label-Free Morphological Profiling Encodes Cellular Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307591. [PMID: 38864546 PMCID: PMC11304271 DOI: 10.1002/advs.202307591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/17/2024] [Indexed: 06/13/2024]
Abstract
Image-based cytometry faces challenges due to technical variations arising from different experimental batches and conditions, such as differences in instrument configurations or image acquisition protocols, impeding genuine biological interpretation of cell morphology. Existing solutions, often necessitating extensive pre-existing data knowledge or control samples across batches, have proved limited, especially with complex cell image data. To overcome this, "Cyto-Morphology Adversarial Distillation" (CytoMAD), a self-supervised multi-task learning strategy that distills biologically relevant cellular morphological information from batch variations, is introduced to enable integrated analysis across multiple data batches without complex data assumptions or extensive manual annotation. Unique to CytoMAD is its "morphology distillation", symbiotically paired with deep-learning image-contrast translation-offering additional interpretable insights into label-free cell morphology. The versatile efficacy of CytoMAD is demonstrated in augmenting the power of biophysical imaging cytometry. It allows integrated label-free classification of human lung cancer cell types and accurately recapitulates their progressive drug responses, even when trained without the drug concentration information. CytoMAD also allows joint analysis of tumor biophysical cellular heterogeneity, linked to epithelial-mesenchymal plasticity, that standard fluorescence markers overlook. CytoMAD can substantiate the wide adoption of biophysical cytometry for cost-effective diagnosis and screening.
Collapse
Affiliation(s)
- Michelle C. K. Lo
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Dickson M. D. Siu
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Kelvin C. M. Lee
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Justin S. J. Wong
- Conzeb LimitedHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Maximus C. F. Yeung
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam RoadHong Kong000000Hong Kong
| | - Michael K. Y. Hsin
- Department of Surgery, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam RoadHong Kong000000Hong Kong
| | - James C. M. Ho
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam RoadHong Kong000000Hong Kong
| | - Kevin K. Tsia
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| |
Collapse
|
5
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
6
|
Chapman M, Rajagopal V, Stewart A, Collins DJ. Critical review of single-cell mechanotyping approaches for biomedical applications. LAB ON A CHIP 2024; 24:3036-3063. [PMID: 38804123 DOI: 10.1039/d3lc00978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate mechanical measurements of cells has the potential to improve diagnostics, therapeutics and advance understanding of disease mechanisms, where high-resolution mechanical information can be measured by deforming individual cells. Here we evaluate recently developed techniques for measuring cell-scale stiffness properties; while many such techniques have been developed, much of the work examining single-cell stiffness is impacted by difficulties in standardization and comparability, giving rise to large variations in reported mechanical moduli. We highlight the role of underlying mechanical theories driving this variability, and note opportunities to develop novel mechanotyping devices and theoretical models that facilitate convenient and accurate mechanical characterisation. Moreover, many high-throughput approaches are confounded by factors including cell size, surface friction, natural population heterogeneity and convolution of elastic and viscous contributions to cell deformability. We nevertheless identify key approaches based on deformability cytometry as a promising direction for further development, where both high-throughput and accurate single-cell resolutions can be realized.
Collapse
Affiliation(s)
- Max Chapman
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Alastair Stewart
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
- Graeme Clarke Institute University of Melbourne Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
Wohlrab S, Mueller S, Gekle S. Mechanical complexity of living cells can be mapped onto simple homogeneous equivalents. Biomech Model Mechanobiol 2024; 23:1067-1076. [PMID: 38411900 PMCID: PMC11101590 DOI: 10.1007/s10237-024-01823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
Biological cells are built up from different constituents of varying size and stiffness which all contribute to the cell's mechanical properties. Despite this heterogeneity, in the analysis of experimental measurements one often assumes a strongly simplified homogeneous cell and thus a single elastic modulus is assigned to the entire cell. This ad-hoc simplification has so far mostly been used without proper justification. Here, we use computer simulations to show that indeed a mechanically heterogeneous cell can effectively be replaced by a homogeneous equivalent cell with a volume averaged elastic modulus. To demonstrate the validity of this approach, we investigate a hyperelastic cell with a heterogeneous interior under compression and in shear/channel flow mimicking atomic force and microfluidic measurements, respectively. We find that the homogeneous equivalent cell reproduces quantitatively the behavior of its heterogeneous counterpart, and that this equality is largely independent of the stiffness or spatial distribution of the heterogeneity.
Collapse
Affiliation(s)
- Sebastian Wohlrab
- Theoretische Physik VI, Biofluid Simulation and Modeling, Universität Bayreuth, 95440, Bayreuth, Germany.
| | - Sebastian Mueller
- Theoretische Physik VI, Biofluid Simulation and Modeling, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Stephan Gekle
- Theoretische Physik VI, Biofluid Simulation and Modeling, Universität Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
8
|
Siboni H, Ruseska I, Zimmer A. Atomic Force Microscopy for the Study of Cell Mechanics in Pharmaceutics. Pharmaceutics 2024; 16:733. [PMID: 38931854 PMCID: PMC11207904 DOI: 10.3390/pharmaceutics16060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cell mechanics is gaining attraction in drug screening, but the applicable methods have not yet become part of the standardized norm. This review presents the current state of the art for atomic force microscopy, which is the most widely available method. The field is first motivated as a new way of tracking pharmaceutical effects, followed by a basic introduction targeted at pharmacists on how to measure cellular stiffness. The review then moves on to the current state of the knowledge in terms of experimental results and supplementary methods such as fluorescence microscopy that can give relevant additional information. Finally, rheological approaches as well as the theoretical interpretations are presented before ending on additional methods and outlooks.
Collapse
Affiliation(s)
- Henrik Siboni
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
- Single Molecule Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Ivana Ruseska
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
| | - Andreas Zimmer
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
| |
Collapse
|
9
|
Zhou S, Chen T, Fu ES, Zhou T, Shi L, Yan H. A microfluidic microalgae detection system for cellular physiological response based on an object detection algorithm. LAB ON A CHIP 2024; 24:2762-2773. [PMID: 38682283 DOI: 10.1039/d3lc00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The composition of species and the physiological status of microalgal cells serve as significant indicators for monitoring marine environments. Symbiotic with corals, Symbiodiniaceae are more sensitive to the environmental response. However, current methods for evaluating microalgae tend to be population-based indicators that cannot be focused on single-cell level, ignoring potentially heterogeneous cells as well as cell state transitions. In this study, we proposed a microalgal cell detection method based on computer vision and microfluidics, which combined microscopic image processing, microfluidic chip and convolutional neural network to achieve label-free, sheathless, automated and high-throughput microalgae identification and cell state assessment. By optimizing the data import, training process and model architecture, we solved the problem of identifying tiny objects at the micron scale, and the optimized model was able to perform the tasks of cell multi-classification and physiological state assessment with more than 95% mean average precision. We discovered a novel transition state and explored the thermal sensitivity of three clades of Symbiodiniaceae, and discovered the phenomenon of cellular heat shock at high temperatures. The evolution of the physiological state of Symbiodiniaceae cells is very important for directional cell evolution and early warning of coral ecosystem health.
Collapse
Affiliation(s)
- Shizheng Zhou
- School of Computer Science and Technology, Hainan University, Haikou 570228, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Tianhui Chen
- School of Computer Science and Technology, Hainan University, Haikou 570228, China.
| | - Edgar S Fu
- Graduate School of Computing and Information Science, University of Pittsburgh, PA 15260, USA
| | - Teng Zhou
- School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Liuyong Shi
- School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
| | - Hong Yan
- School of Computer Science and Technology, Hainan University, Haikou 570228, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Schuchardt JP, Kräter M, Schlögel M, Guck J, van Oirschot-Hermans BA, Bos J, van Wijk R, Tintle NL, Westra J, Kerlikowsky F, Hahn A, Harris WS. Omega-3 supplementation changes the physical properties of leukocytes but not erythrocytes in healthy individuals: An exploratory trial. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102636. [PMID: 39159530 DOI: 10.1016/j.plefa.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
n3-PUFA impact health in several ways, including cardiovascular protection and anti-inflammatory effects, but the underlying mechanisms are not fully understood. In this exploratory study involving 31 healthy subjects, we aimed to investigate the effects of 12 weeks of fish-oil supplementation (1500 mg EPA+DHA/day) on the physical properties of multiple blood cell types. We used deformability cytometry (DC) for all cell types and Laser-assisted Optical Rotational Red Cell Analysis (Lorrca) to assess red blood cell (RBC) deformability. We also investigated the correlation between changes in the physical properties of blood cells and changes in the Omega-3 Index (O3I), defined as the relative content of EPA+DHA in RBCs. Following supplementation, the mean±SD O3I increased from 5.3 %±1.5 % to 8.3 %±1.4 % (p < 0.001). No significant changes in RBC properties were found by both techniques. However, by DC we observed a consistent pattern of physical changes in lymphocytes, neutrophils and monocytes. Among these were significant increases in metrics correlated with the cells' deformability resulting in less stiff cells. The results suggest that leukocytes become softer and have an increased ability to deform under induced short-term physical stress such as hydrodynamic force in the circulation. These changes could impact immune function since softer leukocytes can potentially circulate more easily and could facilitate a more rapid response to systemic inflammation or infection. In conclusion, fish-oil supplementation modulates some physical properties of leukocyte-subfractions, potentially enhancing their biological function. Further studies are warranted to explore the impact of n3-PUFA on blood cell biology, particularly in disease states associated with leukocyte dysregulation.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany; The Fatty Acid Research Institute, Sioux Falls, SD, USA.
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Maximilian Schlögel
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany; Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Brigitte A van Oirschot-Hermans
- Central Diagnostic Laboratory - Red Blood Cell Research Group, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jennifer Bos
- Central Diagnostic Laboratory - Red Blood Cell Research Group, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory - Red Blood Cell Research Group, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nathan L Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL, USA
| | - Jason Westra
- The Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Felix Kerlikowsky
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany
| | - Andreas Hahn
- Institute of Food and One Health, Leibniz University Hannover, Hannover, Germany
| | - William S Harris
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
11
|
Wei Q, Xiong Y, Ma Y, Liu D, Lu Y, Zhang S, Wang X, Huang H, Liu Y, Dao M, Gong X. High-throughput single-cell assay for precise measurement of the intrinsic mechanical properties and shape characteristics of red blood cells. LAB ON A CHIP 2024; 24:305-316. [PMID: 38087958 PMCID: PMC10949978 DOI: 10.1039/d3lc00323j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The intrinsic physical and mechanical properties of red blood cells (RBCs), including their geometric and rheological characteristics, can undergo changes in various circulatory and metabolic diseases. However, clinical diagnosis using RBC biophysical phenotypes remains impractical due to the unique biconcave shape, remarkable deformability, and high heterogeneity within different subpopulations. Here, we combine the hydrodynamic mechanisms of fluid-cell interactions in micro circular tubes with a machine learning method to develop a relatively high-throughput microfluidic technology that can accurately measure the shear modulus of the membrane, viscosity, surface area, and volume of individual RBCs. The present method can detect the subtle changes of mechanical properties in various RBC components at continuum scales in response to different doses of cytoskeletal drugs. We also investigate the correlation between glycosylated hemoglobin and RBC mechanical properties. Our study develops a methodology that combines microfluidic technology and machine learning to explore the material properties of cells based on fluid-cell interactions. This approach holds promise in offering novel label-free single-cell-assay-based biophysical markers for RBCs, thereby enhancing the potential for more robust disease diagnosis.
Collapse
Affiliation(s)
- Qiaodong Wei
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ying Xiong
- Obstetrics and Gynecology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University Medical School, Shanghai 200240, China
| | - Yuhang Ma
- Endocrinology Department, Shanghai General Hospital, Shanghai 200240, China
| | - Deyun Liu
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yunshu Lu
- Department of Breast Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200433, China
| | - Shenghong Zhang
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaolong Wang
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huaxiong Huang
- Research Center for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong, 519088, China
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, Guangdong, 519088, China
- Department of Mathematics and Statistics York University, Toronto, ON, M3J 1P3, Canada
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Xiaobo Gong
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Markova O, Clanet C, Husson J. Quantifying both viscoelasticity and surface tension: Why sharp tips overestimate cell stiffness. Biophys J 2024; 123:210-220. [PMID: 38087780 PMCID: PMC10808041 DOI: 10.1016/j.bpj.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/10/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Quantifying the mechanical properties of cells is important to better understand how mechanics constrain cellular processes. Furthermore, because pathologies are usually paralleled by altered cell mechanical properties, mechanical parameters can be used as a novel way to characterize the pathological state of cells. Key features used in models are cell tension, cell viscoelasticity (representing the average of the cell bulk), or a combination of both. It is unclear which of these features is the most relevant or whether both should be included. To clarify this, we performed microindentation experiments on cells with microindenters of various tip radii, including micrometer-sized microneedles. We obtained different cell-indenter contact radii and measured the corresponding contact stiffness. We derived a model predicting that this contact stiffness should be an affine function of the contact radius and that, at vanishing contact radius, the cell stiffness should be equal to the cell tension multiplied by a constant. When microindenting leukocytes and both adherent and trypsinized adherent cells, the contact stiffness was indeed an affine function of the contact radius. For leukocytes, the deduced surface tension was consistent with that measured using micropipette aspiration. For detached endothelial cells, agreement between microindentation and micropipette aspiration was better when considering these as only viscoelastic when analyzing micropipette aspiration experiments. This work suggests that indenting cells with sharp tips but neglecting the presence of surface tension leads to an effective elastic modulus whose origin is in fact surface tension. Accordingly, using sharp tips when microindenting a cell is a good way to directly measure its surface tension without the need to let the viscoelastic modulus relax.
Collapse
Affiliation(s)
- Olga Markova
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Christophe Clanet
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
13
|
Kampen PJT, Støttrup-Als GR, Bruun-Andersen N, Secher J, Høier F, Hansen AT, Dziegiel MH, Christensen AN, Berg-Sørensen K. Classification of fetal and adult red blood cells based on hydrodynamic deformation and deep video recognition. Biomed Microdevices 2023; 26:5. [PMID: 38095813 PMCID: PMC10721708 DOI: 10.1007/s10544-023-00688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Flow based deformation cytometry has shown potential for cell classification. We demonstrate the principle with an injection moulded microfluidic chip from which we capture videos of adult and fetal red blood cells, as they are being deformed in a microfluidic chip. Using a deep neural network - SlowFast - that takes the temporal behavior into account, we are able to discriminate between the cells with high accuracy. The accuracy was larger for adult blood cells than for fetal blood cells. However, no significant difference was observed between donors of the two types.
Collapse
Affiliation(s)
| | - Gustav Ragnar Støttrup-Als
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicklas Bruun-Andersen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Joachim Secher
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Freja Høier
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Todsen Hansen
- Department of Clinical Immunology, University Hospital Copenhagen, Copenhagen, Denmark
| | - Morten Hanefeld Dziegiel
- Department of Clinical Immunology, University Hospital Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Anders Nymark Christensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kirstine Berg-Sørensen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
- , Kongens Lyngby, Denmark.
| |
Collapse
|
14
|
So WY, Wong CS, Azubuike UF, Paul CD, Sangsari PR, Gordon PB, Gong H, Maity TK, Lim P, Yang Z, Haryanto CA, Batchelor E, Jenkins LM, Morgan NY, Tanner K. YAP localization mediates mechanical adaptation of human cancer cells during extravasation in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567015. [PMID: 38076880 PMCID: PMC10705547 DOI: 10.1101/2023.11.14.567015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Biophysical profiling of primary tumors has revealed that individual tumor cells fall along a highly heterogeneous continuum of mechanical phenotypes. One idea is that a subset of tumor cells is "softer" to facilitate detachment and escape from the primary site, a step required to initiate metastasis. However, it has also been postulated that cells must be able to deform and generate sufficient force to exit into distant sites. Here, we aimed to dissect the mechanical changes that occur during extravasation and organ colonization. Using multiplexed methods of intravital microscopy and optical tweezer based active microrheology, we obtained longitudinal images and mechanical profiles of cells during organ colonization in vivo. We determined that cells were softer, more liquid like upon exit of the vasculature but stiffened and became more solid like once in the new organ microenvironment. We also determined that a YAP mediated mechanogenotype influenced the global dissemination in our in vivo and in vitro models and that reducing mechanical heterogeneity could reduce extravasation. Moreover, our high throughput analysis of mechanical phenotypes of patient samples revealed that this mechanics was in part regulated by the external hydrodynamic forces that the cancer cells experienced within capillary mimetics. Our findings indicate that disseminated cancer cells can keep mutating with a continuum landscape of mechano-phenotypes, governed by the YAP-mediated mechanosensing of hydrodynamic flow.
Collapse
Affiliation(s)
- Woong Young So
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Claudia S. Wong
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | | | - Colin D. Paul
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Paniz Rezvan Sangsari
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | | | - Hyeyeon Gong
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Tapan K. Maity
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Perry Lim
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Zhilin Yang
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | | | | | - Lisa M. Jenkins
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Nicole Y. Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | - Kandice Tanner
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| |
Collapse
|
15
|
Soteriou D, Kubánková M, Schweitzer C, López-Posadas R, Pradhan R, Thoma OM, Györfi AH, Matei AE, Waldner M, Distler JHW, Scheuermann S, Langejürgen J, Eckstein M, Schneider-Stock R, Atreya R, Neurath MF, Hartmann A, Guck J. Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. Nat Biomed Eng 2023; 7:1392-1403. [PMID: 37024677 PMCID: PMC10651479 DOI: 10.1038/s41551-023-01015-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2023] [Indexed: 04/08/2023]
Abstract
During surgery, rapid and accurate histopathological diagnosis is essential for clinical decision making. Yet the prevalent method of intra-operative consultation pathology is intensive in time, labour and costs, and requires the expertise of trained pathologists. Here we show that biopsy samples can be analysed within 30 min by sequentially assessing the physical phenotypes of singularized suspended cells dissociated from the tissues. The diagnostic method combines the enzyme-free mechanical dissociation of tissues, real-time deformability cytometry at rates of 100-1,000 cells s-1 and data analysis by unsupervised dimensionality reduction and logistic regression. Physical phenotype parameters extracted from brightfield images of single cells distinguished cell subpopulations in various tissues, enhancing or even substituting measurements of molecular markers. We used the method to quantify the degree of colon inflammation and to accurately discriminate healthy and tumorous tissue in biopsy samples of mouse and human colons. This fast and label-free approach may aid the intra-operative detection of pathological changes in solid biopsies.
Collapse
Affiliation(s)
- Despina Soteriou
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markéta Kubánková
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Christine Schweitzer
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Rashmita Pradhan
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Andrea-Hermina Györfi
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Alexandru-Emil Matei
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Jörg H W Distler
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | | | | | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Regine Schneider-Stock
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| |
Collapse
|
16
|
Bhosle VK, Sun C, Patel S, Ho TWW, Westman J, Ammendolia DA, Langari FM, Fine N, Toepfner N, Li Z, Sharma M, Glogauer J, Capurro MI, Jones NL, Maynes JT, Lee WL, Glogauer M, Grinstein S, Robinson LA. The chemorepellent, SLIT2, bolsters innate immunity against Staphylococcus aureus. eLife 2023; 12:e87392. [PMID: 37773612 PMCID: PMC10541174 DOI: 10.7554/elife.87392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
Neutrophils are essential for host defense against Staphylococcus aureus (S. aureus). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular S. aureus more efficiently. N-SLIT2 amplifies reactive oxygen species production in response to the bacteria by activating p38 mitogen-activated protein kinase that in turn phosphorylates NCF1, an essential subunit of the NADPH oxidase complex. N-SLIT2 also enhances the exocytosis of neutrophil secondary granules. In a murine model of S. aureus skin and soft tissue infection (SSTI), local SLIT2 levels fall initially but increase subsequently, peaking at 3 days after infection. Of note, the neutralization of endogenous SLIT2 worsens SSTI. Temporal fluctuations in local SLIT2 levels may promote neutrophil recruitment and retention at the infection site and hasten bacterial clearance by augmenting neutrophil oxidative burst and degranulation. Collectively, these actions of SLIT2 coordinate innate immune responses to limit susceptibility to S. aureus.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Chunxiang Sun
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Sajedabanu Patel
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Tse Wing Winnie Ho
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
| | - Johannes Westman
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Dustin A Ammendolia
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Molecular Genetics, Medical Sciences Building, University of TorontoTorontoCanada
| | - Fatemeh Mirshafiei Langari
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Noah Fine
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Nicole Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Zhubing Li
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Manraj Sharma
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Judah Glogauer
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Mariana I Capurro
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Nicola L Jones
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick ChildrenTorontoCanada
- Department of Physiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Jason T Maynes
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick ChildrenTorontoCanada
- Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Warren L Lee
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Michael Glogauer
- Faculty of Dentistry, University of TorontoTorontoCanada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer CentreTorontoCanada
- Centre for Advanced Dental Research and Care, Mount Sinai HospitalTorontoCanada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Lisa A Robinson
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, University of TorontoTorontoCanada
- Division of Nephrology, The Hospital for Sick ChildrenTorontoCanada
| |
Collapse
|
17
|
Zhou S, Chen B, Fu ES, Yan H. Computer vision meets microfluidics: a label-free method for high-throughput cell analysis. MICROSYSTEMS & NANOENGINEERING 2023; 9:116. [PMID: 37744264 PMCID: PMC10511704 DOI: 10.1038/s41378-023-00562-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 09/26/2023]
Abstract
In this paper, we review the integration of microfluidic chips and computer vision, which has great potential to advance research in the life sciences and biology, particularly in the analysis of cell imaging data. Microfluidic chips enable the generation of large amounts of visual data at the single-cell level, while computer vision techniques can rapidly process and analyze these data to extract valuable information about cellular health and function. One of the key advantages of this integrative approach is that it allows for noninvasive and low-damage cellular characterization, which is important for studying delicate or fragile microbial cells. The use of microfluidic chips provides a highly controlled environment for cell growth and manipulation, minimizes experimental variability and improves the accuracy of data analysis. Computer vision can be used to recognize and analyze target species within heterogeneous microbial populations, which is important for understanding the physiological status of cells in complex biological systems. As hardware and artificial intelligence algorithms continue to improve, computer vision is expected to become an increasingly powerful tool for in situ cell analysis. The use of microelectromechanical devices in combination with microfluidic chips and computer vision could enable the development of label-free, automatic, low-cost, and fast cellular information recognition and the high-throughput analysis of cellular responses to different compounds, for broad applications in fields such as drug discovery, diagnostics, and personalized medicine.
Collapse
Affiliation(s)
- Shizheng Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| | - Bingbing Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| | - Edgar S. Fu
- Graduate School of Computing and Information Science, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Hong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| |
Collapse
|
18
|
Shalchi-Amirkhiz P, Bensch T, Proschmann U, Stock AK, Ziemssen T, Akgün K. Pilot study on the influence of acute alcohol exposure on biophysical parameters of leukocytes. Front Mol Biosci 2023; 10:1243155. [PMID: 37614440 PMCID: PMC10442941 DOI: 10.3389/fmolb.2023.1243155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Objective: This pilot study explores the influence of acute alcohol exposure on cell mechanical properties of steady-state and activated leukocytes conducted with real-time deformability cytometry. Methods: Nineteen healthy male volunteers were enrolled to investigate the effect of binge drinking on biophysical properties and cell counts of peripheral blood leukocytes. Each participant consumed an individualized amount of alcohol to achieve a blood alcohol concentration of 1.2 ‰ as a mean peak. In addition, we also incubated whole blood samples from healthy donors with various ethanol concentrations and performed stimulation experiments using lipopolysaccharide and CytoStim™ in the presence of ethanol. Results: Our findings indicate that the biophysical properties of steady-state leukocytes are not significantly affected by a single episode of binge drinking within the first two hours. However, we observed significant alterations in relative cell counts and a shift toward a memory T cell phenotype. Moreover, exposure to ethanol during stimulation appears to inhibit the cytoskeleton reorganization of monocytes, as evidenced by a hindered increase in cell deformability. Conclusion: Our observations indicate the promising potential of cell mechanical analysis in understanding the influence of ethanol on immune cell functions. Nevertheless, additional investigations in this field are warranted to validate biophysical properties as biomarkers or prognostic indicators for alcohol-related changes in the immune system.
Collapse
Affiliation(s)
- Puya Shalchi-Amirkhiz
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tristan Bensch
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Undine Proschmann
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Biopsychology, Department of Psychology, School of Science, TU Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
19
|
Suttorp M, Sembill S, Kalwak K, Metzler M, Millot F. Priapism at Diagnosis of Pediatric Chronic Myeloid Leukemia: Data Derived from a Large Cohort of Children and Teenagers and a Narrative Review on Priapism Management. J Clin Med 2023; 12:4776. [PMID: 37510891 PMCID: PMC10380995 DOI: 10.3390/jcm12144776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Pediatric chronic myeloid leukemia (CML) is a very rare malignancy (age-related incidence 0.1/100,000) typically presenting with leucocyte counts >100,000/µL. However, clinical signs of leukostasis are observed at diagnosis in only approximately 10% of all cases and among these, priapism is infrequent. Here, we analyze data from pediatric CML registries on the occurrence of priapism heralding diagnosis of CML in 16/491 (3.2%) boys (median age 13.5 years, range 4-18) with pediatric CML. In the cohort investigated, duration of priapism resulting in a diagnosis of CML was not reported in 5 patients, and in the remaining 11 patients, occurred as stuttering priapism over 3 months (n = 1), over 6 weeks (n = 1), over 1-2 weeks (n = 2), over several days (n = 2), or 24 h (n = 1), while the remaining 4 boys reported continuous erection lasting over 11-12 h. All patients exhibited splenomegaly and massive leukocytosis (median WBC 470,000/µL, range 236,700-899,000). Interventions to treat priapism were unknown in 5 patients, and in the remaining cohort, comprised intravenous fluids ± heparin (n = 2), penile puncture (n = 5) ± injection of sympathomimetics (n = 4) ± intracavernous shunt operation (n = 1) paralleled by leukocyte-reductive measures. Management without penile puncture by leukapheresis or exchange transfusion was performed in 3 boys. In total, 7 out 15 (47%) long-term survivors (median age 20 years, range 19-25) responded to a questionnaire. All had maintained full erectile function; however, 5/7 had presented with stuttering priapism while in the remaining 2 patients priapism had lasted <12 h until intervention. At its extreme, low-flow priapism lasting for longer than 24 h may result in partial or total impotence by erectile dysfunction. This physical disability can exert a large psychological impact on patients' lives. In a narrative review fashion, we analyzed the literature on priapism in boys with CML which is by categorization stuttering or persisting as mostly painful, ischemic (low-flow) priapism. Details on the pathophysiology are discussed on the background of the different blood rheology of hyperleukocytosis in acute and chronic leukemias. In addition to the data collected, instructive case vignettes demonstrate the diagnostic and treatment approaches and the outcome of boys presenting with priapism. An algorithm for management of priapism in a stepwise fashion is presented. All approaches must be performed in parallel with cytoreductive treatment of leukostasis in CML which comprises leukapheresis and exchange transfusions ± cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Meinolf Suttorp
- Pediatric Hematology and Oncology, Medical Faculty, TU Dresden, 01307 Dresden, Germany
| | - Stephanie Sembill
- Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany; (S.S.); (M.M.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Krzysztof Kalwak
- Supraregional Center of Pediatric Oncology “Cape of Hope”, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Markus Metzler
- Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany; (S.S.); (M.M.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Frederic Millot
- Inserm CIC 1402, University Hospital of Poitiers, 86000 Poitiers, France;
| |
Collapse
|
20
|
An L, Ji F, Zhao E, Liu Y, Liu Y. Measuring cell deformation by microfluidics. Front Bioeng Biotechnol 2023; 11:1214544. [PMID: 37434754 PMCID: PMC10331473 DOI: 10.3389/fbioe.2023.1214544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Microfluidics is an increasingly popular method for studying cell deformation, with various applications in fields such as cell biology, biophysics, and medical research. Characterizing cell deformation offers insights into fundamental cell processes, such as migration, division, and signaling. This review summarizes recent advances in microfluidic techniques for measuring cellular deformation, including the different types of microfluidic devices and methods used to induce cell deformation. Recent applications of microfluidics-based approaches for studying cell deformation are highlighted. Compared to traditional methods, microfluidic chips can control the direction and velocity of cell flow by establishing microfluidic channels and microcolumn arrays, enabling the measurement of cell shape changes. Overall, microfluidics-based approaches provide a powerful platform for studying cell deformation. It is expected that future developments will lead to more intelligent and diverse microfluidic chips, further promoting the application of microfluidics-based methods in biomedical research, providing more effective tools for disease diagnosis, drug screening, and treatment.
Collapse
Affiliation(s)
- Ling An
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Fenglong Ji
- School of Textile Materials and Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Enming Zhao
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Yi Liu
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, PA, United States
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
21
|
Eder J, Schumm L, Armann JP, Puhan MA, Beuschlein F, Kirschbaum C, Berner R, Toepfner N. Increased red blood cell deformation in children and adolescents after SARS-CoV-2 infection. Sci Rep 2023; 13:9823. [PMID: 37330522 PMCID: PMC10276822 DOI: 10.1038/s41598-023-35692-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/22/2023] [Indexed: 06/19/2023] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) is associated with hyperinflammation, hypercoagulability and hypoxia. Red blood cells (RBCs) play a key role in microcirculation and hypoxemia and are therefore of special interest in COVID-19 pathophysiology. While this novel disease has claimed the lives of many older patients, it often goes unnoticed or with mild symptoms in children. This study aimed to investigate morphological and mechanical characteristics of RBCs after SARS-CoV-2 infection in children and adolescents by real-time deformability-cytometry (RT-DC), to investigate the relationship between alterations of RBCs and clinical course of COVID-19. Full blood of 121 students from secondary schools in Saxony, Germany, was analyzed. SARS-CoV-2-serostatus was acquired at the same time. Median RBC deformation was significantly increased in SARS-CoV-2-seropositive compared to seronegative children and adolescents, but no difference could be detected when the infection dated back more than 6 months. Median RBC area was the same in seropositive and seronegative adolescents. Our findings of increased median RBC deformation in SARS-CoV-2 seropositive children and adolescents until 6 months post COVID-19 could potentially serve as a progression parameter in the clinical course of the disease with an increased RBC deformation pointing towards a mild course of COVID-19.
Collapse
Affiliation(s)
- Julian Eder
- Biopsychology, Technische Universität Dresden, Dresden, Germany
| | - Leonie Schumm
- Department of Paediatrics, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jakob P Armann
- Department of Paediatrics, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Milo A Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | | | - Reinhard Berner
- Department of Paediatrics, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nicole Toepfner
- Department of Paediatrics, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
22
|
Ly C, Ogana H, Kim HN, Hurwitz S, Deeds EJ, Kim YM, Rowat AC. Altered physical phenotypes of leukemia cells that survive chemotherapy treatment. Integr Biol (Camb) 2023; 15:7185561. [PMID: 37247849 DOI: 10.1093/intbio/zyad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
The recurrence of cancer following chemotherapy treatment is a major cause of death across solid and hematologic cancers. In B-cell acute lymphoblastic leukemia (B-ALL), relapse after initial chemotherapy treatment leads to poor patient outcomes. Here we test the hypothesis that chemotherapy-treated versus control B-ALL cells can be characterized based on cellular physical phenotypes. To quantify physical phenotypes of chemotherapy-treated leukemia cells, we use cells derived from B-ALL patients that are treated for 7 days with a standard multidrug chemotherapy regimen of vincristine, dexamethasone, and L-asparaginase (VDL). We conduct physical phenotyping of VDL-treated versus control cells by tracking the sequential deformations of single cells as they flow through a series of micron-scale constrictions in a microfluidic device; we call this method Quantitative Cyclical Deformability Cytometry. Using automated image analysis, we extract time-dependent features of deforming cells including cell size and transit time (TT) with single-cell resolution. Our findings show that VDL-treated B-ALL cells have faster TTs and transit velocity than control cells, indicating that VDL-treated cells are more deformable. We then test how effectively physical phenotypes can predict the presence of VDL-treated cells in mixed populations of VDL-treated and control cells using machine learning approaches. We find that TT measurements across a series of sequential constrictions can enhance the classification accuracy of VDL-treated cells in mixed populations using a variety of classifiers. Our findings suggest the predictive power of cell physical phenotyping as a complementary prognostic tool to detect the presence of cells that survive chemotherapy treatment. Ultimately such complementary physical phenotyping approaches could guide treatment strategies and therapeutic interventions. Insight box Cancer cells that survive chemotherapy treatment are major contributors to patient relapse, but the ability to predict recurrence remains a challenge. Here we investigate the physical properties of leukemia cells that survive treatment with chemotherapy drugs by deforming individual cells through a series of micron-scale constrictions in a microfluidic channel. Our findings reveal that leukemia cells that survive chemotherapy treatment are more deformable than control cells. We further show that machine learning algorithms applied to physical phenotyping data can predict the presence of cells that survive chemotherapy treatment in a mixed population. Such an integrated approach using physical phenotyping and machine learning could be valuable to guide patient treatments.
Collapse
Affiliation(s)
- Chau Ly
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Heather Ogana
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hye Na Kim
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samantha Hurwitz
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric J Deeds
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Children's Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy C Rowat
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Wittwer LD, Reichel F, Müller P, Guck J, Aland S. A new hyperelastic lookup table for RT-DC. SOFT MATTER 2023; 19:2064-2073. [PMID: 36853279 DOI: 10.1039/d2sm01418a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Real-time deformability cytometry (RT-DC) is an established method that quantifies features like size, shape, and stiffness for whole cell populations on a single-cell level in real-time. A lookup table (LUT) disentangles the experimentally derived steady-state cell deformation and the projected area to extract the cell stiffness in the form of the Young's modulus. So far, two lookup tables exist but are limited to simple linear material models and cylindrical channel geometries. Here, we present two new lookup tables for RT-DC based on a neo-Hookean hyperelastic material numerically derived by simulations based on the finite element method in square and cylindrical channel geometries. At the same time, we quantify the influence of the shear-thinning behavior of the surrounding medium on the stationary deformation of cells in RT-DC and discuss the applicability and impact of the proposed LUTs regarding past and future RT-DC data analysis. Additionally, we provide insights about the cell strain and stresses, as well as the influence resulting from the rotational symmetric assumption on the cell deformation and volume estimation. The new lookup tables and the numerical cell shapes are made freely available.
Collapse
Affiliation(s)
- Lucas Daniel Wittwer
- Institute of Numerical Mathematics and Optimisation, TU Freiberg, Akademiestrasse 6, 09599 Freiberg, Germany
- Faculty of Informatics/Mathematics, HTW Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudtstrasse 2, 91058 Erlangen, Germany.
| | - Felix Reichel
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudtstrasse 2, 91058 Erlangen, Germany.
- Chair of Biological Optomechanics, FAU Erlangen-Nürnberg, Universitätsstraße 40, 91054 Erlangen, Germany
| | - Paul Müller
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudtstrasse 2, 91058 Erlangen, Germany.
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudtstrasse 2, 91058 Erlangen, Germany.
- Chair of Biological Optomechanics, FAU Erlangen-Nürnberg, Universitätsstraße 40, 91054 Erlangen, Germany
| | - Sebastian Aland
- Institute of Numerical Mathematics and Optimisation, TU Freiberg, Akademiestrasse 6, 09599 Freiberg, Germany
- Faculty of Informatics/Mathematics, HTW Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
| |
Collapse
|
24
|
Büyükurgancı B, Basu SK, Neuner M, Guck J, Wierschem A, Reichel F. Shear rheology of methyl cellulose based solutions for cell mechanical measurements at high shear rates. SOFT MATTER 2023; 19:1739-1748. [PMID: 36779239 DOI: 10.1039/d2sm01515c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methyl cellulose (MC) is a widely used material in various microfluidic applications in biology. Due to its biocompatibility, it has become a popular crowding agent for microfluidic cell deformability measurements, which usually operate at high shear rates (>10 000 s-1). However, a full rheological characterization of methyl cellulose solutions under these conditions has not yet been reported. With this study, we provide a full shear-rheological description for solutions of up to 1% MC dissolved in phosphate-buffered saline (PBS) that are commonly used in real-time deformability cytometry (RT-DC). We characterized three different MC-PBS solutions used for cell mechanical measurements in RT-DC with three different shear rheometer setups to cover a range of shear rates from 0.1-150 000 s-1. We report viscosities and normal stress differences in this regime. Viscosity functions can be well described using a Carreau-Yasuda model. Furthermore, we present the temperature dependency of shear viscosity and first normal stress difference of these solutions. Our results show that methyl cellulose solutions behave like power-law liquids in viscosity and exhibit first normal stress difference at shear rates between 5000-150 000 s-1. We construct a general viscosity equation for each MC solution at a certain shear rate and temperature. Furthermore, we investigated how MC concentration influences the rheology of the solutions and found the entanglement concentration at around 0.64 w/w%. Our results help to better understand the viscoelastic behavior of MC solutions, which can now be considered when modelling stresses in microfluidic channels.
Collapse
Affiliation(s)
- Beyza Büyükurgancı
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Santanu Kumar Basu
- Institute of Fluid Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Markus Neuner
- Institute of Fluid Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
- Chair of Biological Optomechanics, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Wierschem
- Institute of Fluid Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Felix Reichel
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
- Chair of Biological Optomechanics, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
25
|
Nawaz AA, Soteriou D, Xu CK, Goswami R, Herbig M, Guck J, Girardo S. Image-based cell sorting using focused travelling surface acoustic waves. LAB ON A CHIP 2023; 23:372-387. [PMID: 36620943 PMCID: PMC9844123 DOI: 10.1039/d2lc00636g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/21/2022] [Indexed: 05/27/2023]
Abstract
Sorting cells is an essential primary step in many biological and clinical applications such as high-throughput drug screening, cancer research and cell transplantation. Cell sorting based on their mechanical properties has long been considered as a promising label-free biomarker that could revolutionize the isolation of cells from heterogeneous populations. Recent advances in microfluidic image-based cell analysis combined with subsequent label-free sorting by on-chip actuators demonstrated the possibility of sorting cells based on their physical properties. However, the high purity of sorting is achieved at the expense of a sorting rate that lags behind the analysis throughput. Furthermore, stable and reliable system operation is an important feature in enabling the sorting of small cell fractions from a concentrated heterogeneous population. Here, we present a label-free cell sorting method, based on the use of focused travelling surface acoustic wave (FTSAW) in combination with real-time deformability cytometry (RT-DC). We demonstrate the flexibility and applicability of the method by sorting distinct blood cell types, cell lines and particles based on different physical parameters. Finally, we present a new strategy to sort cells based on their mechanical properties. Our system enables the sorting of up to 400 particles per s. Sorting is therefore possible at high cell concentrations (up to 36 million per ml) while retaining high purity (>92%) for cells with diverse sizes and mechanical properties moving in a highly viscous buffer. Sorting of small cell fraction from a heterogeneous population prepared by processing of small sample volume (10 μl) is also possible and here demonstrated by the 667-fold enrichment of white blood cells (WBCs) from raw diluted whole blood in a continuous 10-hour sorting experiment. The real-time analysis of multiple parameters together with the high sensitivity and high-throughput of our method thus enables new biological and therapeutic applications in the future.
Collapse
Affiliation(s)
- Ahmad Ahsan Nawaz
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Despina Soteriou
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Catherine K Xu
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Maik Herbig
- Department of Chemistry, University of Tokyo, Tokyo, Japan
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| |
Collapse
|
26
|
Taraconat P, Gineys JP, Isebe D, Nicoud F, Mendez S. Red blood cell rheology during a complete blood count: A proof of concept. PLoS One 2023; 18:e0280952. [PMID: 36706122 PMCID: PMC9882912 DOI: 10.1371/journal.pone.0280952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Counting and sizing blood cells in hematological analyzers is achieved using the Coulter principle. The cells flow in a micro-aperture in which a strong electrical field is imposed, so that an electrical perturbation, called pulse, is measured each time a cell crosses the orifice. The pulses are expected to contain information on the shape and deformability of Red Blood Cells (RBCs), since recent studies state that RBCs rotate and deform in the micro-orifice. By implementing a dedicated numerical model, the present study sheds light on a variety of cells dynamics, which leads to different associated pulse signatures. Furthermore, simulations provide new insights on how RBCs shapes and mechanical properties affect the measured signals. Those numerical observations are confirmed by experimental assays. Finally, specific features are introduced for assessing the most relevant characteristics from the various pulse signatures and shown to highlight RBCs alterations induced by drugs. In summary, this study paves the way to a characterization of RBC rheology by routine hematological instruments.
Collapse
Affiliation(s)
- Pierre Taraconat
- Horiba Medical, Montpellier, France
- Institut Montpellierain Alexander Grothendieck, CNRS, Univ. Montpellier, Montpellier, France
- * E-mail: (PT); (SM)
| | | | | | - Franck Nicoud
- Institut Montpellierain Alexander Grothendieck, CNRS, Univ. Montpellier, Montpellier, France
| | - Simon Mendez
- Institut Montpellierain Alexander Grothendieck, CNRS, Univ. Montpellier, Montpellier, France
- * E-mail: (PT); (SM)
| |
Collapse
|
27
|
Komaragiri Y, Panhwar MH, Fregin B, Jagirdar G, Wolke C, Spiegler S, Otto O. Mechanical characterization of isolated mitochondria under conditions of oxidative stress. BIOMICROFLUIDICS 2022; 16:064101. [PMID: 36406339 PMCID: PMC9674388 DOI: 10.1063/5.0111581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.
Collapse
Affiliation(s)
| | | | | | - Gayatri Jagirdar
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany
| | - Carmen Wolke
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany
| | | | - Oliver Otto
- Author to whom correspondence should be addressed:
| |
Collapse
|
28
|
Hu S, Liu T, Xue C, Li Y, Yang Y, Xu X, Liu B, Chen X, Zhao Y, Qin K. A high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4813-4821. [PMID: 36382629 DOI: 10.1039/d2ay01416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mechanical properties of single cells have been recognized as biomarkers for identifying individual cells and diagnosing human diseases. Microfluidic devices based on the flow cytometry principle, which are not limited by the vision field of a microscope and can achieve a very high throughput, have been extensively adopted to measure the mechanical properties of single cells. However, these kinds of microfluidic devices usually required pressure-driven pumps with a very low flow rate and high precision. In this study, we developed a high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells. The microfluidic analogue of the Wheatstone bridge not only took advantage of flow cytometry, but also allowed precise control of a very low flow rate through the constricted channel with a higher input flow rate generated by a commercially available pressure-driven pump. Under different input flow rates of the pump, the apparent elastic moduli and the fluidity of osteosarcoma (U-2OS) cells and cervical carcinoma (HeLa) cells were measured by monitoring their dynamic deformations passing through the bridge-channel with different sizes of rectangular constrictions. The results showed that the input flow rate had little effect on measuring the mechanical properties of the cells, while the ratio of cell radius to effective constriction radius was different, i.e., for U-2OS cells it was 1.20 and for HeLa cells it was 1.09. Under this condition compared with predecessors, our statistic results of cell mechanical properties exhibited minimal errors. Furthermore, the cell viability after measurements was kept above 90% that demonstrated the non-destructive property of our proposed method.
Collapse
Affiliation(s)
- Siyu Hu
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Tianmian Liu
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Chundong Xue
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Yongjiang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Yunong Yang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Xing Xu
- Department of Endoscopy, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning Province, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Xiaoming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Yan Zhao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, Liaoning Province, China
| | - Kairong Qin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| |
Collapse
|
29
|
Matei AE, Kubánková M, Xu L, Györfi AH, Boxberger E, Soteriou D, Papava M, Prater J, Hong X, Bergmann C, Kräter M, Schett G, Guck J, Distler JHW. Identification of a Distinct Monocyte-Driven Signature in Systemic Sclerosis Using Biophysical Phenotyping of Circulating Immune Cells. Arthritis Rheumatol 2022; 75:768-781. [PMID: 36281753 DOI: 10.1002/art.42394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Pathologically activated circulating immune cells, including monocytes, play major roles in systemic sclerosis (SSc). Their functional characterization can provide crucial information with direct clinical relevance. However, tools for the evaluation of pathologic immune cell activation and, in general, of clinical outcomes in SSc are scarce. Biophysical phenotyping (including characterization of cell mechanics and morphology) provides access to a novel, mostly unexplored layer of information regarding pathophysiologic immune cell activation. We hypothesized that the biophysical phenotyping of circulating immune cells, reflecting their pathologic activation, can be used as a clinical tool for the evaluation and risk stratification of patients with SSc. METHODS We performed biophysical phenotyping of circulating immune cells by real-time fluorescence and deformability cytometry (RT-FDC) in 63 SSc patients, 59 rheumatoid arthritis (RA) patients, 28 antineutrophil cytoplasmic antibody-associated vasculitis (AAV) patients, and 22 age- and sex-matched healthy donors. RESULTS We identified a specific signature of biophysical properties of circulating immune cells in SSc patients that was mainly driven by monocytes. Since it is absent in RA and AAV, this signature reflects an SSc-specific monocyte activation rather than general inflammation. The biophysical properties of monocytes indicate current disease activity, the extent of skin or lung fibrosis, and the severity of manifestations of microvascular damage, as well as the risk of disease progression in SSc patients. CONCLUSION Changes in the biophysical properties of circulating immune cells reflect their pathologic activation in SSc patients and are associated with clinical outcomes. As a high-throughput approach that requires minimal preparations, RT-FDC-based biophysical phenotyping of monocytes can serve as a tool for the evaluation and risk stratification of patients with SSc.
Collapse
Affiliation(s)
- Alexandru-Emil Matei
- Department of Rheumatology and Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany, and Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markéta Kubánková
- Max Planck Institute for the Science of Light & Max-Planck-Center für Physik und Medizin, Erlangen, Germany, and Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Liyan Xu
- Department of Rheumatology and Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany, and Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Rheumatology and Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany, and Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Evgenia Boxberger
- Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Despina Soteriou
- Max Planck Institute for the Science of Light & Max-Planck-Center für Physik und Medizin, Erlangen, Germany
| | - Maria Papava
- Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Prater
- Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xuezhi Hong
- Department of Rheumatology and Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany, and Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Center für Physik und Medizin, Erlangen, Germany, and Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Center für Physik und Medizin, Erlangen, Germany, and Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jörg H W Distler
- Department of Rheumatology and Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany, and Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
Su Z, Chen Z, Ma K, Chen H, Ho JWK. Molecular determinants of intrinsic cellular stiffness in health and disease. Biophys Rev 2022; 14:1197-1209. [PMID: 36345276 PMCID: PMC9636357 DOI: 10.1007/s12551-022-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022] Open
Abstract
In recent years, the role of intrinsic biophysical features, especially cellular stiffness, in diverse cellular and disease processes is being increasingly recognized. New high throughput techniques for the quantification of cellular stiffness facilitate the study of their roles in health and diseases. In this review, we summarized recent discovery about how cellular stiffness is involved in cell stemness, tumorigenesis, and blood diseases. In addition, we review the molecular mechanisms underlying the gene regulation of cellular stiffness in health and disease progression. Finally, we discussed the current understanding on how the cytoskeleton structure and the regulation of these genes contribute to cellular stiffness, highlighting where the field of cellular stiffness is headed.
Collapse
Affiliation(s)
- Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Kun Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055 China
| | - Joshua W. K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
31
|
Blache U, Popp G, Dünkel A, Koehl U, Fricke S. Potential solutions for manufacture of CAR T cells in cancer immunotherapy. Nat Commun 2022; 13:5225. [PMID: 36064867 PMCID: PMC9445013 DOI: 10.1038/s41467-022-32866-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany. .,Fraunhofer Cluster of Excellence for Immune-Mediated Disease, Frankfurt, Germany.
| | - Georg Popp
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Anna Dünkel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Disease, Frankfurt, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Disease, Frankfurt, Germany
| |
Collapse
|
32
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
33
|
Jain N, Lord JM, Vogel V. Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors? APL Bioeng 2022; 6:031502. [PMID: 36051106 PMCID: PMC9427154 DOI: 10.1063/5.0087699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis, but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activation, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require urgent attention if this therapeutic potential is to be realized.
Collapse
Affiliation(s)
- Nikhil Jain
- Authors to whom correspondence should be addressed: and
| | | | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Petchakup C, Yang H, Gong L, He L, Tay HM, Dalan R, Chung AJ, Li KHH, Hou HW. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104822. [PMID: 35253966 DOI: 10.1002/smll.202104822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The intrinsic biophysical states of neutrophils are associated with immune dysfunctions in diseases. While advanced image-based biophysical flow cytometers can probe cell deformability at high throughput, it is nontrivial to couple different sensing modalities (e.g., electrical) to measure other critical cell attributes including cell viability and membrane integrity. Herein, an "optics-free" impedance-deformability cytometer for multiparametric single cell mechanophenotyping is reported. The microfluidic platform integrates hydrodynamic cell pinching, and multifrequency impedance quantification of cell size, deformability, and membrane impedance (indicative of cell viability and activation). A newly-defined "electrical deformability index" is validated by numerical simulations, and shows strong correlations with the optical cell deformability index of HL-60 experimentally. Human neutrophils treated with various biochemical stimul are further profiled, and distinct differences in multimodal impedance signatures and UMAP analysis are observed. Overall, the integrated cytometer enables label-free cell profiling at throughput of >1000 cells min-1 without any antibodies labeling to facilitate clinical diagnostics.
Collapse
Affiliation(s)
- Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haoning Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rinkoo Dalan
- Endocrinology Department, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng Road, Singapore, 308433, Singapore
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building Level 11, Singapore, 308232, Singapore
| |
Collapse
|
35
|
Brameshuber M, Klotzsch E, Ponjavic A, Sezgin E. Understanding immune signaling using advanced imaging techniques. Biochem Soc Trans 2022; 50:853-866. [PMID: 35343569 PMCID: PMC9162467 DOI: 10.1042/bst20210479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
Advanced imaging is key for visualizing the spatiotemporal regulation of immune signaling which is a complex process involving multiple players tightly regulated in space and time. Imaging techniques vary in their spatial resolution, spanning from nanometers to micrometers, and in their temporal resolution, ranging from microseconds to hours. In this review, we summarize state-of-the-art imaging methodologies and provide recent examples on how they helped to unravel the mysteries of immune signaling. Finally, we discuss the limitations of current technologies and share our insights on how to overcome these limitations to visualize immune signaling with unprecedented fidelity.
Collapse
Affiliation(s)
- Mario Brameshuber
- Institute of Applied Physics – Biophysics, TU Wien, 1040 Vienna, Austria
| | - Enrico Klotzsch
- Humboldt-Universität zu Berlin, Institut für Biophysik, Experimentelle Biophysik Mechanobiologie, Sitz Invalidenstrasse 42, 10115 Berlin, Germany
| | - Aleks Ponjavic
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|
36
|
Divalent magnesium restores cytoskeletal storage lesions in cold-stored platelet concentrates. Sci Rep 2022; 12:6229. [PMID: 35422472 PMCID: PMC9010418 DOI: 10.1038/s41598-022-10231-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/04/2022] [Indexed: 01/20/2023] Open
Abstract
Cold storage of platelet concentrates (PC) has become attractive due to the reduced risk of bacterial proliferation, but in vivo circulation time of cold-stored platelets is reduced. Ca2+ release from storage organelles and higher activity of Ca2+ pumps at temperatures < 15 °C triggers cytoskeleton changes. This is suppressed by Mg2+ addition, avoiding a shift in Ca2+ hemostasis and cytoskeletal alterations. We report on the impact of 2–10 mM Mg2+ on cytoskeleton alterations of platelets from PC stored at room temperature (RT) or 4 °C in additive solution (PAS), 30% plasma. Deformation of platelets was assessed by real-time deformability cytometry (RT-DC), a method for biomechanical cell characterization. Deformation was strongly affected by storage at 4 °C and preserved by Mg2+ addition ≥ 4 mM Mg2+ (mean ± SD of median deformation 4 °C vs. 4 °C + 10 mM Mg2+ 0.073 ± 0.021 vs. 0.118 ± 0.023, p < 0.01; n = 6, day 7). These results were confirmed by immunofluorescence microscopy, showing that Mg2+ ≥ 4 mM prevents 4 °C storage induced cytoskeletal structure lesion. Standard in vitro platelet function tests showed minor differences between RT and cold-stored platelets. Hypotonic shock response was not significantly different between RT stored (56.38 ± 29.36%) and cold-stored platelets with (55.22 ± 11.16%) or without magnesium (45.65 ± 11.59%; p = 0.042, all n = 6, day 1). CD62P expression and platelet aggregation response were similar between RT and 4 °C stored platelets, with minor changes in the presence of higher Mg2+ concentrations. In conclusion, increasing Mg2+ up to 10 mM in PAS counteracts 4 °C storage lesions in platelets, maintains platelet cytoskeletal integrity and biomechanical properties comparable to RT stored platelets.
Collapse
|
37
|
Walther A, Mackens-Kiani A, Eder J, Herbig M, Herold C, Kirschbaum C, Guck J, Wittwer LD, Beesdo-Baum K, Kräter M. Depressive disorders are associated with increased peripheral blood cell deformability: a cross-sectional case-control study (Mood-Morph). Transl Psychiatry 2022; 12:150. [PMID: 35396373 PMCID: PMC8990596 DOI: 10.1038/s41398-022-01911-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022] Open
Abstract
Pathophysiological landmarks of depressive disorders are chronic low-grade inflammation and elevated glucocorticoid output. Both can potentially interfere with cytoskeleton organization, cell membrane bending and cell function, suggesting altered cell morpho-rheological properties like cell deformability and other cell mechanical features in depressive disorders. We performed a cross-sectional case-control study using the image-based morpho-rheological characterization of unmanipulated blood samples facilitating real-time deformability cytometry (RT-DC). Sixty-nine pre-screened individuals at high risk for depressive disorders and 70 matched healthy controls were included and clinically evaluated by Composite International Diagnostic Interview leading to lifetime and 12-month diagnoses. Facilitating deep learning on blood cell images, major blood cell types were classified and morpho-rheological parameters such as cell size and cell deformability of every individual cell was quantified. We found peripheral blood cells to be more deformable in patients with depressive disorders compared to controls, while cell size was not affected. Lifetime persistent depressive disorder was associated with increased cell deformability in monocytes and neutrophils, while in 12-month persistent depressive disorder erythrocytes deformed more. Lymphocytes were more deformable in 12-month major depressive disorder, while for lifetime major depressive disorder no differences could be identified. After correction for multiple testing, only associations for lifetime persistent depressive disorder remained significant. This is the first study analyzing morpho-rheological properties of entire blood cells and highlighting depressive disorders and in particular persistent depressive disorders to be associated with increased blood cell deformability. While all major blood cells tend to be more deformable, lymphocytes, monocytes, and neutrophils are mostly affected. This indicates that immune cell mechanical changes occur in depressive disorders, which might be predictive of persistent immune response.
Collapse
Affiliation(s)
- Andreas Walther
- Biopsychology, TU Dresden, Dresden, Germany. .,Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland.
| | - Anne Mackens-Kiani
- grid.4488.00000 0001 2111 7257Biopsychology, TU Dresden, Dresden, Germany
| | - Julian Eder
- grid.4488.00000 0001 2111 7257Biopsychology, TU Dresden, Dresden, Germany
| | - Maik Herbig
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering, Biotechnology Center, TU Dresden, Dresden, Germany ,grid.419562.d0000 0004 0374 4283Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Christoph Herold
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering, Biotechnology Center, TU Dresden, Dresden, Germany ,Zellmechanik Dresden GmbH, Dresden, Germany
| | - Clemens Kirschbaum
- grid.4488.00000 0001 2111 7257Biopsychology, TU Dresden, Dresden, Germany
| | - Jochen Guck
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering, Biotechnology Center, TU Dresden, Dresden, Germany ,grid.419562.d0000 0004 0374 4283Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Lucas Daniel Wittwer
- grid.419562.d0000 0004 0374 4283Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany ,grid.434947.90000 0004 0643 2840Faculty of Informatics/Mathematics, HTW Dresden, Dresden, Germany
| | - Katja Beesdo-Baum
- grid.4488.00000 0001 2111 7257Behavioral Epidemiology, TU Dresden, Dresden, Germany
| | - Martin Kräter
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering, Biotechnology Center, TU Dresden, Dresden, Germany ,grid.419562.d0000 0004 0374 4283Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| |
Collapse
|
38
|
Reichel F, Kräter M, Peikert K, Glaß H, Rosendahl P, Herbig M, Rivera Prieto A, Kihm A, Bosman G, Kaestner L, Hermann A, Guck J. Changes in Blood Cell Deformability in Chorea-Acanthocytosis and Effects of Treatment With Dasatinib or Lithium. Front Physiol 2022; 13:852946. [PMID: 35444561 PMCID: PMC9013823 DOI: 10.3389/fphys.2022.852946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
Misshaped red blood cells (RBCs), characterized by thorn-like protrusions known as acanthocytes, are a key diagnostic feature in Chorea-Acanthocytosis (ChAc), a rare neurodegenerative disorder. The altered RBC morphology likely influences their biomechanical properties which are crucial for the cells to pass the microvasculature. Here, we investigated blood cell deformability of five ChAc patients compared to healthy controls during up to 1-year individual off-label treatment with the tyrosine kinase inhibitor dasatinib or several weeks with lithium. Measurements with two microfluidic techniques allowed us to assess RBC deformability under different shear stresses. Furthermore, we characterized leukocyte stiffness at high shear stresses. The results showed that blood cell deformability–including both RBCs and leukocytes - in general was altered in ChAc patients compared to healthy donors. Therefore, this study shows for the first time an impairment of leukocyte properties in ChAc. During treatment with dasatinib or lithium, we observed alterations in RBC deformability and a stiffness increase for leukocytes. The hematological phenotype of ChAc patients hinted at a reorganization of the cytoskeleton in blood cells which partly explains the altered mechanical properties observed here. These findings highlight the need for a systematic assessment of the contribution of impaired blood cell mechanics to the clinical manifestation of ChAc.
Collapse
Affiliation(s)
- Felix Reichel
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Kräter
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Maik Herbig
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Alejandro Rivera Prieto
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Alexander Kihm
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Giel Bosman
- Department of Biochemistry, Radboud UMC, Nijmegen, Netherlands
| | - Lars Kaestner
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, Rostock, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Jochen Guck,
| |
Collapse
|
39
|
Abstract
During cancer progression, metastatic dissemination accounts for ∼90% of death in patients. Metastasis occurs upon dissemination of circulating tumor cells (CTC) through body fluids, in particular the bloodstream, and several key steps remain elusive. Although the majority of CTCs travel as single cells, they can form clusters either with themselves (homoclusters) or with other circulating cells (heteroclusters) and thereby increase their metastatic potential. In addition, cancer cell mechanics and mechanical cues from the microenvironment are important factors during metastatic progression. Recent progress in intravital imaging technologies, biophysical methods, and microfluidic-based isolation of CTCs allow now to probe mechanics at single cell resolution while shedding light on key steps of the hematogenous metastatic cascade. In this review, we discuss the importance of CTC mechanics and their correlation with metastatic success and how such development could lead to the identification of therapeutically relevant targets.
Collapse
Affiliation(s)
- Marina Peralta
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67000, France.,Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France.,Equipe Labellisée Ligue Contre le Cancer
| | - Naël Osmani
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67000, France.,Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France.,Equipe Labellisée Ligue Contre le Cancer
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67000, France.,Université de Strasbourg, Strasbourg 67000, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France.,Equipe Labellisée Ligue Contre le Cancer
| |
Collapse
|
40
|
Zak A, Dupré-Crochet S, Hudik E, Babataheri A, Barakat AI, Nüsse O, Husson J. Distinct timing of neutrophil spreading and stiffening during phagocytosis. Biophys J 2022; 121:1381-1394. [PMID: 35318004 PMCID: PMC9072703 DOI: 10.1016/j.bpj.2022.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Phagocytic cells form the first line of defense in an organism, engulfing microbial pathogens. Phagocytosis involves cell mechanical changes that are not yet well understood. Understanding these mechanical modifications promises to shed light on the immune processes that trigger pathological complications. Previous studies showed that phagocytes undergo a sequence of spreading events around their target followed by an increase in cell tension. Seemingly in contradiction, other studies observed an increase in cell tension concomitant with membrane expansion. Even though phagocytes are viscoelastic, few studies have quantified viscous changes during phagocytosis. It is also unclear whether cell lines behave mechanically similarly to primary neutrophils. We addressed the question of simultaneous versus sequential spreading and mechanical changes during phagocytosis by using immunoglobulin-G-coated 8- and 20-μm-diameter beads as targets. We used a micropipette-based single-cell rheometer to monitor viscoelastic properties during phagocytosis by both neutrophil-like PLB cells and primary human neutrophils. We show that the faster expansion of PLB cells on larger beads is a geometrical effect reflecting a constant advancing speed of the phagocytic cup. Cells become stiffer on 20- than on 8-μm beads, and the relative timing of spreading and stiffening of PLB cells depends on target size: on larger beads, stiffening starts before maximal spreading area is reached but ends after reaching maximal area. On smaller beads, the stiffness begins to increase after cells have engulfed the bead. Similar to PLB cells, primary cells become stiffer on larger beads but start spreading and stiffen faster, and the stiffening begins before the end of spreading on both bead sizes. Our results show that mechanical changes in phagocytes are not a direct consequence of cell spreading and that models of phagocytosis should be amended to account for causes of cell stiffening other than membrane expansion.
Collapse
Affiliation(s)
- Alexandra Zak
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Elodie Hudik
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Avin Babataheri
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Oliver Nüsse
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Julien Husson
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
41
|
Fregin B, Biedenweg D, Otto O. Interpretation of cell mechanical experiments in microfluidic systems depend on the choice of cellular shape descriptors. BIOMICROFLUIDICS 2022; 16:024109. [PMID: 35541026 PMCID: PMC9054269 DOI: 10.1063/5.0084673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The capability to parameterize shapes is of essential importance in biomechanics to identify cells, to track their motion, and to quantify deformation. While various shape descriptors have already been investigated to study the morphology and migration of adherent cells, little is known of how the mathematical definition of a contour impacts the outcome of rheological experiments on cells in suspension. In microfluidic systems, hydrodynamic stress distributions induce time-dependent cell deformation that needs to be quantified to determine viscoelastic properties. Here, we compared nine different shape descriptors to characterize the deformation of suspended cells in an extensional as well as shear flow using dynamic real-time deformability cytometry. While stress relaxation depends on the amplitude and duration of stress, our results demonstrate that steady-state deformation can be predicted from single cell traces even for translocation times shorter than their characteristic time. Implementing an analytical simulation, performing experiments, and testing various data analysis strategies, we compared single cell and ensemble studies to address the question of computational costs vs experimental accuracy. Results indicate that high-throughput viscoelastic measurements of cells in suspension can be performed on an ensemble scale as long as the characteristic time matches the dimensions of the microfluidic system. Finally, we introduced a score to evaluate the shape descriptor-dependent effect size for cell deformation after cytoskeletal modifications. We provide evidence that single cell analysis in an extensional flow provides the highest sensitivity independent of shape parametrization, while inverse Haralick's circularity is mostly applicable to study cells in shear flow.
Collapse
Affiliation(s)
| | | | - Oliver Otto
- Author to whom correspondence should be addressed:
| |
Collapse
|
42
|
Li B, Maslan A, Kitayama SE, Pierce C, Streets AM, Sohn LL. Mechanical phenotyping reveals unique biomechanical responses in retinoic acid-resistant acute promyelocytic leukemia. iScience 2022; 25:103772. [PMID: 35141508 PMCID: PMC8814755 DOI: 10.1016/j.isci.2022.103772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/11/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
All-trans retinoic acid (ATRA) is an essential therapy in the treatment of acute promyelocytic leukemia (APL), but nearly 20% of patients with APL are resistant to ATRA. As there are no biomarkers for ATRA resistance that yet exist, we investigated whether cell mechanics could be associated with this pathological phenotype. Using mechano-node-pore sensing, a single-cell mechanical phenotyping platform, and patient-derived APL cell lines, we discovered that ATRA-resistant APL cells are less mechanically pliable. By investigating how different subcellular components of APL cells contribute to whole-cell mechanical phenotype, we determined that nuclear mechanics strongly influence an APL cell's mechanical response. Moreover, decondensing chromatin with trichostatin A is especially effective in softening ATRA-resistant APL cells. RNA-seq allowed us to compare the transcriptomic differences between ATRA-resistant and ATRA-responsive APL cells and highlighted gene expression changes that could be associated with mechanical changes. Overall, we have demonstrated the potential of "physical" biomarkers in identifying APL resistance.
Collapse
Affiliation(s)
- Brian Li
- UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA 94709, USA
| | - Annie Maslan
- UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA 94709, USA
| | - Sean E. Kitayama
- UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA 94709, USA
| | - Corinne Pierce
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley 94720, USA
| | - Aaron M. Streets
- UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA 94709, USA
- Center for Computational Biology, University of California, Berkeley, CA 94709, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Lydia L. Sohn
- UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA 94709, USA
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
Krug B, Koukourakis N, Guck J, Czarske J. Nonlinear microscopy using impulsive stimulated Brillouin scattering for high-speed elastography. OPTICS EXPRESS 2022; 30:4748-4758. [PMID: 35209449 DOI: 10.1364/oe.449980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The impulsive stimulated Brillouin microscopy promises fast, non-contact measurements of the elastic properties of biological samples. The used pump-probe approach employs an ultra-short pulse laser and a cw laser to generate Brillouin signals. Modeling of the microscopy technique has already been carried out partially, but not for biomedical applications. The nonlinear relationship between pulse energy and Brillouin signal amplitude is proven with both simulations and experiments. Tayloring of the excitation parameters on the biologically relevant polyacrylamide hydrogels outline sub-ms temporal resolutions at a relative precision of <1%. Brillouin microscopy using the impulsive stimulated scattering therefore exhibits high potential for the measurements of viscoelastic properties of cells and tissues.
Collapse
|
44
|
Beeghly GF, Amofa KY, Fischbach C, Kumar S. Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annu Rev Biomed Eng 2022; 24:29-59. [PMID: 35119915 DOI: 10.1146/annurev-bioeng-110220-115419] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical properties for mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Kwasi Y Amofa
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
45
|
Sachs L, Wesche J, Lenkeit L, Greinacher A, Bender M, Otto O, Palankar R. Ex vivo anticoagulants affect human blood platelet biomechanics with implications for high-throughput functional mechanophenotyping. Commun Biol 2022; 5:86. [PMID: 35064207 PMCID: PMC8782918 DOI: 10.1038/s42003-021-02982-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Inherited platelet disorders affecting the human platelet cytoskeleton result in increased bleeding risk. However, deciphering their impact on cytoskeleton-dependent intrinsic biomechanics of platelets remains challenging and represents an unmet need from a diagnostic and prognostic perspective. It is currently unclear whether ex vivo anticoagulants used during collection of peripheral blood impact the mechanophenotype of cellular components of blood. Using unbiased, high-throughput functional mechanophenotyping of single human platelets by real-time deformability cytometry, we found that ex vivo anticoagulants are a critical pre-analytical variable that differentially influences platelet deformation, their size, and functional response to agonists by altering the cytoskeleton. We applied our findings to characterize the functional mechanophenotype of platelets from a patient with Myosin Heavy Chain 9 (MYH9) related macrothrombocytopenia. Our data suggest that platelets from MYH9 p.E1841K mutation in humans affecting platelet non-muscle myosin heavy chain IIa (NMMHC-IIA) are biomechanically less deformable in comparison to platelets from healthy individuals. Sachs et al. examine the effects of different ex vivo anticoagulants on the biomechanical and functional properties of single platelets using high-throughput real-time fluorescence and deformability cytometry (RT-FDC). Their results demonstrate that the choice of ex vivo anticoagulant may strongly impact the outcomes of mechanophenotyping.
Collapse
|
46
|
Herbig M, Jacobi A, Wobus M, Weidner H, Mies A, Kräter M, Otto O, Thiede C, Weickert MT, Götze KS, Rauner M, Hofbauer LC, Bornhäuser M, Guck J, Ader M, Platzbecker U, Balaian E. Machine learning assisted real-time deformability cytometry of CD34+ cells allows to identify patients with myelodysplastic syndromes. Sci Rep 2022; 12:870. [PMID: 35042906 PMCID: PMC8766444 DOI: 10.1038/s41598-022-04939-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Diagnosis of myelodysplastic syndrome (MDS) mainly relies on a manual assessment of the peripheral blood and bone marrow cell morphology. The WHO guidelines suggest a visual screening of 200 to 500 cells which inevitably turns the assessor blind to rare cell populations and leads to low reproducibility. Moreover, the human eye is not suited to detect shifts of cellular properties of entire populations. Hence, quantitative image analysis could improve the accuracy and reproducibility of MDS diagnosis. We used real-time deformability cytometry (RT-DC) to measure bone marrow biopsy samples of MDS patients and age-matched healthy individuals. RT-DC is a high-throughput (1000 cells/s) imaging flow cytometer capable of recording morphological and mechanical properties of single cells. Properties of single cells were quantified using automated image analysis, and machine learning was employed to discover morpho-mechanical patterns in thousands of individual cells that allow to distinguish healthy vs. MDS samples. We found that distribution properties of cell sizes differ between healthy and MDS, with MDS showing a narrower distribution of cell sizes. Furthermore, we found a strong correlation between the mechanical properties of cells and the number of disease-determining mutations, inaccessible with current diagnostic approaches. Hence, machine-learning assisted RT-DC could be a promising tool to automate sample analysis to assist experts during diagnosis or provide a scalable solution for MDS diagnosis to regions lacking sufficient medical experts.
Collapse
Affiliation(s)
- Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Angela Jacobi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Manja Wobus
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Heike Weidner
- Medical Department III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- Center for Healthy Aging, Dresden, Germany
| | - Anna Mies
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen in Kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany
| | - Christian Thiede
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Marie-Theresa Weickert
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Katharina S Götze
- Department of Medicine III: Hematology and Oncology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Martina Rauner
- Medical Department III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- Center for Healthy Aging, Dresden, Germany
| | - Lorenz C Hofbauer
- Medical Department III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Healthy Aging, Dresden, Germany
| | - Martin Bornhäuser
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Ekaterina Balaian
- Medical Department I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
47
|
Electrodeformation of White Blood Cells Enriched with Gold Nanoparticles. Processes (Basel) 2022. [DOI: 10.3390/pr10010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The elasticity of white blood cells (WBCs) provides valuable insight into the condition of the cells themselves, the presence of some diseases, as well as immune system activity. In this work, we describe a novel process of refined control of WBCs’ elasticity through a combined use of gold nanoparticles (AuNPs) and the microelectrode array device. The capture and controlled deformation of gold nanoparticles enriched white blood cells in vitro are demonstrated and quantified. Gold nanoparticles enhance the effect of electrically induced deformation and make the DEP-related processes more controllable.
Collapse
|
48
|
Liquid Biopsies: Flowing Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:341-368. [DOI: 10.1007/978-3-031-04039-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Jacobi A, Ariza de Schellenberger A, Uca YO, Herbig M, Guck J, Sack I. Real-Time Deformability Cytometry Detects Leukocyte Stiffening After Gadolinium-Based Contrast Agent Exposure. Invest Radiol 2021; 56:837-844. [PMID: 34038063 DOI: 10.1097/rli.0000000000000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Reports on gadolinium (Gd) retention in soft tissues after administration of Gd-based contrast agents (GBCAs) raise concerns about Gd-induced changes in the biophysical properties of cells and tissues. Here, we investigate if clinical GBCAs of both classes of linear and macrocyclic structure cause changes in the mechanical properties of leukocytes in human blood samples. MATERIAL AND METHODS Real-time deformability cytometry was applied to human blood samples from 6 donors. The samples were treated with 1 mM gadoteric acid (Dotarem), gadopentetic acid (Magnevist), gadobutrol (Gadovist), or Gd trichloride at 37°C for 1 hour to mimic clinical doses of GBCAs and exposure times. Leukocyte subtypes-lymphocytes, monocytes, and neutrophils-were identified based on their size and brightness and analyzed for deformability, which is inversely correlated with cellular stiffness. RESULTS We observed significant stiffening (3%-13%, P < 0.01) of all investigated leukocyte subtypes, which was most pronounced for lymphocytes, followed by neutrophils and monocytes, and the effects were independent of the charge and steric structure of the GBCA applied. In contrast, no changes in cell size and brightness were observed, suggesting that deformability and cell stiffness measured by real-time deformability cytometry are sensitive to changes in the physical phenotypes of leukocytes after GBCA exposure. CONCLUSIONS Real-time deformability cytometry might provide a quantitative blood marker for critical changes in the physical properties of blood cells in patients undergoing GBCA-enhanced magnetic resonance imaging.
Collapse
Affiliation(s)
| | - Angela Ariza de Schellenberger
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin
| | - Yavuz Oguz Uca
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin
| | | | - Jochen Guck
- From the Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin
| |
Collapse
|
50
|
Bebeshko VG, Bruslova KM, Lyashenko LO, Pushkariova TI, Tsvetkova NM, Galkina SG, Vasylenko VV, Yaroshenko ZS, Zaitseva AL, Gonchar LO, Yatsemirskyi SM. ASSESSMENT OF QUALITATIVE CHANGES IN PERIPHERAL BLOOD CELLS IN CHILDREN - RESIDENTS OF RADIOLOGICALLY CONTAMINATED TERRITORIES IN THE LATE PERIOD AFTER THE ChNPP ACCIDENT. PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2021; 26:297-308. [PMID: 34965556 DOI: 10.33145/2304-8336-2021-26-297-308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE to establish the relationship between quantitative and qualitative parameters of peripheral blood cells(lymphocytes, neutrophilic granulocytes, monocytes, platelets) depending on the type of somatic diseases andannual internal radiation doses from 137Cs in children - residents of radiologically contaminated territories in thelate period after the Chornobyl Nuclear Power Plant (ChNPP) accident. MATERIALS AND METHODS There were 175 children included in the study comprising residents of radiologically con-taminated territories (n = 79) aged from 4 to 18 years. Annual internal radiation doses in children from 137Cs rangedfrom 0.004 to 0.067 mSv. Certain blood parameters were assessed in a comparative mode in children having got theradiation doses up to 0.01 mSv and higher. The comparison group (n = 96) included children living in settlementsnot attributed to the radiologically contaminated ones. Incidence and type of somatic diseases and its impact onquantitative and qualitative changes in blood parameters (i.e. lymphocyte, neutrophilic granulocyte, monocyte, andplatelet count) were studied. The cell size, state of nucleus, membranes and cytoplasm, signs of proliferative anddegenerative processes were taken into account. RESULTS Incidence and type of somatic diseases in children did not depend on the annual internal radiation dose.Number of cases of monocytosis was significantly higher among the children exposed to ionizing radiation than inthe comparison group (16.6 % vs. 7.3 %). There were, however, no correlation between these changes and radiationdoses. Number of activated blood monocytes with cytoplasmic basophilia and residues of nucleoli in nuclei washigher in individuals with internal radiation doses > 0.01 mSv. A direct correlation between the qualitative param-eters of monocytes and internal radiation doses was established (rs = 0.60; р < 0.001), as well as a direct correlationof different strength between qualitative parameters of blood cells, indicating their unidirectional pattern depend-ing on the somatic morbid conditions. Regardless of annual internal radiation dose, there was an increase in thenumber of degenerative and aberrant cells vs. the comparison group (р < 0.05), which could be due to the role ofnon-radiation factors. CONCLUSIONS Results of the assessment of quantitative and qualitative parameters of peripheral blood cells reflect-ed the state of morbid conditions in children and are of a diagnostic value. The identified dose-dependent changesin monocyte lineage of hematopoiesis may be the markers of impact of long-term radionuclide incorporation withfood in children living in environmentally unfavorable conditions after the ChNPP accident.
Collapse
Affiliation(s)
- V G Bebeshko
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - K M Bruslova
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - L O Lyashenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - T I Pushkariova
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N M Tsvetkova
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - S G Galkina
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - V V Vasylenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - Zh S Yaroshenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - A L Zaitseva
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - L O Gonchar
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - S M Yatsemirskyi
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| |
Collapse
|