1
|
Guo H, Sheng A, Qi X, Zhu L, Wang G, Zou Y, Guan Q, Lu Y, Tang H, Hou X. Depot-specific differences and heterogeneity of adipose-derived stem cells in diet-induced obesity. Obesity (Silver Spring) 2024. [PMID: 39496515 DOI: 10.1002/oby.24149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 11/06/2024]
Abstract
OBJECTIVE Obesity is a global health concern. Studying the heterogeneity of adipose-derived stem cells (ADSCs) plays a pivotal role in understanding metabolic disorders, such as obesity. METHODS Mass cytometry was used to determine the depot-specific differences and heterogeneity of ADSCs and their alterations at the single-cell level in a diet-induced-obesity (DIO) model in which mice were treated with liraglutide. RESULTS We characterized the relationship among ADSC markers and found that CD26 and CD142 could identify the most representative heterogeneous ADSCs in subcutaneous adipose tissue and visceral adipose tissue. Specifically, CD26+CD142- and CD26+CD142+ ADSCs were exclusive to subcutaneous adipose tissue and visceral adipose tissue, respectively, whereas CD26-CD142+ ADSCs were present in both. RNA analysis explored the potential functions of these three subgroups. In the visceral adipose tissue of DIO mice, we observed a substantial downregulation of CD26+CD142+ ADSCs and upregulation of CD26-CD142+ ADSCs, both of which were mitigated by liraglutide treatment. CONCLUSIONS Our study highlights the depot-specific differences and heterogeneity of ADSCs and their alterations under DIO conditions, which can potentially be reversed by liraglutide treatment. This study provides new insights into the identification of more specific ADSC subgroups to explore the etiology of metabolism-related diseases.
Collapse
Affiliation(s)
- Honglin Guo
- Department of Pathology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
- Department of Center Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Ailing Sheng
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiangyu Qi
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Zhu
- Department of Endocrinology, University Town hospital, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guanyu Wang
- Department of Internal Medicine, No. 2 People's Hospital of Lixia District, Jinan, China
| | - Yizhou Zou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuntao Lu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Stem Cell Clinical Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Tang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Stem Cell Clinical Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Hou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Stem Cell Clinical Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Peters H, Potla P, Rockel JS, Tockovska T, Pastrello C, Jurisica I, Delos Santos K, Vohra S, Fine N, Lively S, Perry K, Looby N, Li SH, Chandran V, Hueniken K, Kaur P, Perruccio AV, Mahomed NN, Rampersaud R, Syed K, Gracey E, Krawetz R, Buechler MB, Gandhi R, Kapoor M. Cell and transcriptomic diversity of infrapatellar fat pad during knee osteoarthritis. Ann Rheum Dis 2024:ard-2024-225928. [PMID: 39375009 DOI: 10.1136/ard-2024-225928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVES In this study, we employ a multiomic approach to identify major cell types and subsets, and their transcriptomic profiles within the infrapatellar fat pad (IFP), and to determine differences in the IFP based on knee osteoarthritis (KOA), sex and obesity status. METHODS Single-nucleus RNA sequencing of 82 924 nuclei from 21 IFPs (n=6 healthy control and n=15 KOA donors), spatial transcriptomics and bioinformatic analyses were used to identify contributions of the IFP to KOA. We mapped cell subclusters from other white adipose tissues using publicly available literature. The diversity of fibroblasts within the IFP was investigated by bioinformatic analyses, comparing by KOA, sex and obesity status. Metabolomics was used to further explore differences in fibroblasts by obesity status. RESULTS We identified multiple subclusters of fibroblasts, macrophages, adipocytes and endothelial cells with unique transcriptomic profiles. Using spatial transcriptomics, we resolved distributions of cell types and their transcriptomic profiles and computationally identified putative cell-cell communication networks. Furthermore, we identified transcriptomic differences in fibroblasts from KOA versus healthy control donor IFPs, female versus male KOA-IFPs and obese versus normal body mass index (BMI) KOA-IFPs. Finally, using metabolomics, we defined differences in metabolite levels in supernatants of naïve, profibrotic stimuli-treated and proinflammatory stimuli-treated fibroblasts from obese compared to normal BMI KOA-IFPs. CONCLUSIONS Overall, by employing a multiomic approach, this study provides the first comprehensive map of the cellular and transcriptomic diversity of human IFP and identifies IFP fibroblasts as key cells contributing to transcriptomic and metabolic differences related to KOA disease, sex or obesity.
Collapse
Affiliation(s)
- Hayley Peters
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pratibha Potla
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jason S Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Teodora Tockovska
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Bioinformatics and HPC Core, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Keemo Delos Santos
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shabana Vohra
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Noah Fine
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kim Perry
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nikita Looby
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Sheng Han Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Vinod Chandran
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Katrina Hueniken
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paramvir Kaur
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony V Perruccio
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Nizar N Mahomed
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Khalid Syed
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Eric Gracey
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Rheumatology, University Hospital Ghent, Ghent, Belgium
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Matthew B Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Rajiv Gandhi
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Rahimi Kahmini A, Valera IC, Crawford RQ, Samarah L, Reis G, Elsheikh S, Kanashiro-Takeuchi RM, Mohammadipoor N, Olateju BS, Matthews AR, Parvatiyar MS. Aging reveals a sex-dependent susceptibility of sarcospan-deficient mice to cardiometabolic disease. Am J Physiol Heart Circ Physiol 2024; 327:H1067-H1085. [PMID: 39120469 PMCID: PMC11482229 DOI: 10.1152/ajpheart.00702.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Numerous genes including sarcospan (SSPN) have been designated as obesity-susceptibility genes by human genome-wide association studies. Variants in the SSPN locus have been linked with sex-dependent obesity-associated traits; however, this association has not been investigated in vivo. To delineate the role SSPN plays in regulating metabolism with potential to impact cardiac function, we subjected young and aged global SSPN-deficient (SSPN-/-) male and female mice to obesogenic conditions (60% fat diet). We hypothesized that loss of SSPN combined with metabolic stress would increase susceptibility of mice to cardiometabolic disease. Baseline and end-point assessments of several anthropometric parameters were performed including weight, glucose tolerance, and fat distribution of mice fed control (CD) and high-fat (HFD) diet. Doppler echocardiography was used to monitor cardiac function. White adipose and cardiac tissues were assessed for inflammation by histological, gene expression, and cytokine analysis. Overall, SSPN deficiency protected both sexes and ages from diet-induced obesity, with a greater effect in females. SSPN-/- HFD mice gained less weight than wild-type (WT) cohorts, while SSPN-/- CD groups increased weight. Furthermore, aged SSPN-/- mice developed glucose intolerance regardless of diet. Echocardiography showed preserved systolic function for all groups; however, aged SSPN-/- males exhibited significant increases in left ventricular mass (CD) and signs of diastolic dysfunction (HFD). Cytokine analysis revealed significantly increased IL-1α and IL-17Α in white adipose tissue from young SSPN-/- male mice, which may be protective from diet-induced obesity. Overall, these studies suggest that several sex-dependent mechanisms influence the role SSPN plays in metabolic responses that become evident with age.NEW & NOTEWORTHY Young and aged sarcospan (SSPN)-deficient mice were examined to assess the role of SSPN in obesity and cardiometabolic disease. Both sexes displayed a "leaner" phenotype in response to high-fat diet (HFD). Notably, several sex differences were identified in aged SSPN-deficient mice: 1) females developed glucose intolerance (control and HFD) and 2) males exhibited increased left ventricular mass (control) and diastolic dysfunction (HFD). Therefore, we conclude that SSPN exerts a sex-dependent influence on obesity-associated diseases.
Collapse
Affiliation(s)
- Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Isela C Valera
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rhiannon Q Crawford
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Luaye Samarah
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Gisienne Reis
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Salma Elsheikh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Nazanin Mohammadipoor
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Bolade S Olateju
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Aaron R Matthews
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michelle S Parvatiyar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
5
|
Hofwimmer K, de Paula Souza J, Subramanian N, Vujičić M, Rachid L, Méreau H, Zhao C, Dror E, Barreby E, Björkström NK, Wernstedt Asterholm I, Böni-Schnetzler M, Meier DT, Donath MY, Laurencikiene J. IL-1β promotes adipogenesis by directly targeting adipocyte precursors. Nat Commun 2024; 15:7957. [PMID: 39261467 PMCID: PMC11390900 DOI: 10.1038/s41467-024-51938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Postprandial IL-1β surges are predominant in the white adipose tissue (WAT), but its consequences are unknown. Here, we investigate the role of IL-1β in WAT energy storage and show that adipocyte-specific deletion of IL-1 receptor 1 (IL1R1) has no metabolic consequences, whereas ubiquitous lack of IL1R1 reduces body weight, WAT mass, and adipocyte formation in mice. Among all major WAT-resident cell types, progenitors express the highest IL1R1 levels. In vitro, IL-1β potently promotes adipogenesis in murine and human adipose-derived stem cells. This effect is exclusive to early-differentiation-stage cells, in which the adipogenic transcription factors C/EBPδ and C/EBPβ are rapidly upregulated by IL-1β and enriched near important adipogenic genes. The pro-adipogenic, but not pro-inflammatory effect of IL-1β is potentiated by acute treatment and blocked by chronic exposure. Thus, we propose that transient postprandial IL-1β surges regulate WAT remodeling by promoting adipogenesis, whereas chronically elevated IL-1β levels in obesity blunts this physiological function.
Collapse
Affiliation(s)
- Kaisa Hofwimmer
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Joyce de Paula Souza
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Narmadha Subramanian
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Leila Rachid
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Hélène Méreau
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Cheng Zhao
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Erez Dror
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Emelie Barreby
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 52, Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 52, Huddinge, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Marianne Böni-Schnetzler
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland.
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland.
| | - Marc Y Donath
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Jurga Laurencikiene
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden.
| |
Collapse
|
6
|
Uhrbom M, Muhl L, Genové G, Liu J, Palmgren H, Alexandersson I, Karlsson F, Zhou AX, Lunnerdal S, Gustafsson S, Buyandelger B, Petkevicius K, Ahlstedt I, Karlsson D, Aasehaug L, He L, Jeansson M, Betsholtz C, Peng XR. Adipose stem cells are sexually dimorphic cells with dual roles as preadipocytes and resident fibroblasts. Nat Commun 2024; 15:7643. [PMID: 39223126 PMCID: PMC11369120 DOI: 10.1038/s41467-024-51867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cell identities are defined by intrinsic transcriptional networks and spatio-temporal environmental factors. Here, we explored multiple factors that contribute to the identity of adipose stem cells, including anatomic location, microvascular neighborhood, and sex. Our data suggest that adipose stem cells serve a dual role as adipocyte precursors and fibroblast-like cells that shape the adipose tissue's extracellular matrix in an organotypic manner. We further find that adipose stem cells display sexual dimorphism regarding genes involved in estrogen signaling, homeobox transcription factor expression and the renin-angiotensin-aldosterone system. These differences could be attributed to sex hormone effects, developmental origin, or both. Finally, our data demonstrate that adipose stem cells are distinct from mural cells, and that the state of commitment to adipogenic differentiation is linked to their anatomic position in the microvascular niche. Our work supports the importance of sex and microvascular function in adipose tissue physiology.
Collapse
Affiliation(s)
- Martin Uhrbom
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden.
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway
| | - Guillem Genové
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Jianping Liu
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Henrik Palmgren
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ida Alexandersson
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D AstraZeneca, Gothenburg, Sweden
| | - Alex-Xianghua Zhou
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandra Lunnerdal
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sonja Gustafsson
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Byambajav Buyandelger
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Kasparas Petkevicius
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Ahlstedt
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Karlsson
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leif Aasehaug
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 23, Uppsala, Sweden
| | - Marie Jeansson
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 23, Uppsala, Sweden.
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
7
|
Pollard AE. New concepts in the roles of AMPK in adipocyte stem cell biology. Essays Biochem 2024:EBC20240008. [PMID: 39175418 DOI: 10.1042/ebc20240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Obesity is a major risk factor for many life-threatening diseases. Adipose tissue dysfunction is emerging as a driving factor in the transition from excess adiposity to comorbidities such as metabolic-associated fatty liver disease, cardiovascular disease, Type 2 diabetes and cancer. However, the transition from healthy adipose expansion to the development of these conditions is poorly understood. Adipose stem cells, residing in the vasculature and stromal regions of subcutaneous and visceral depots, are responsible for the expansion and maintenance of organ function, and are now recognised as key mediators of pathological transformation. Impaired tissue expansion drives inflammation, dysregulation of endocrine function and the deposition of lipids in the liver, muscle and around vital organs, where it is toxic. Contrary to previous hypotheses, it is the promotion of healthy adipose tissue expansion and function, not inhibition of adipogenesis, that presents the most attractive therapeutic strategy in the treatment of metabolic disease. AMP-activated protein kinase, a master regulator of energy homeostasis, has been regarded as one such target, due to its central role in adipose tissue lipid metabolism, and its apparent inhibition of adipogenesis. However, recent studies utilising AMP-activated protein kinase (AMPK)-specific compounds highlight a more subtle, time-dependent role for AMPK in the process of adipogenesis, and in a previously unexplored repression of leptin, independent of adipocyte maturity. In this article, I discuss historic evidence for AMPK-mediated adipogenesis inhibition and the multi-faceted roles for AMPK in adipose tissue.
Collapse
Affiliation(s)
- Alice E Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
8
|
Whytock KL, Divoux A, Sun Y, Pino MF, Yu G, Jin CA, Robino JJ, Plekhanov A, Varlamov O, Smith SR, Walsh MJ, Sparks LM. Aging human abdominal subcutaneous white adipose tissue at single cell resolution. Aging Cell 2024:e14287. [PMID: 39141531 DOI: 10.1111/acel.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
White adipose tissue (WAT) is a robust energy storage and endocrine organ critical for maintaining metabolic health as we age. Our aim was to identify cell-specific transcriptional aberrations that occur in WAT with aging. We leveraged full-length snRNA-Seq and histology to characterize the cellular landscape of human abdominal subcutaneous WAT in a prospective cohort of 10 younger (≤30 years) and 10 older individuals (≥65 years) balanced for sex and body mass index (BMI). The older group had greater cholesterol, very-low-density lipoprotein, triglycerides, thyroid stimulating hormone, and aspartate transaminase compared to the younger group (p < 0.05). We highlight that aging WAT is associated with adipocyte hypertrophy, increased proportions of lipid-associated macrophages and mast cells, an upregulation of immune responses linked to fibrosis in pre-adipocyte, adipocyte, and vascular populations, and highlight CXCL14 as a biomarker of these processes. We show that older WAT has elevated levels of senescence marker p16 in adipocytes and identify the adipocyte subpopulation driving this senescence profile. We confirm that these transcriptional and phenotypical changes occur without overt fibrosis and in older individuals that have comparable WAT insulin sensitivity to the younger individuals.
Collapse
Affiliation(s)
- K L Whytock
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - A Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - Y Sun
- Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - M F Pino
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - G Yu
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - C A Jin
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, USA
| | - J J Robino
- Divisions of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - A Plekhanov
- Divisions of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - O Varlamov
- Divisions of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - S R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - M J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - L M Sparks
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| |
Collapse
|
9
|
So J, Strobel O, Wann J, Kim K, Paul A, Acri DJ, Dabin LC, Peng G, Kim J, Roh HC. Robust single nucleus RNA sequencing reveals depot-specific cell population dynamics in adipose tissue remodeling during obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588525. [PMID: 38645263 PMCID: PMC11030456 DOI: 10.1101/2024.04.08.588525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Single nucleus RNA sequencing (snRNA-seq), an alternative to single cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying adipose tissue remodeling during obesity. By integrating bulk nuclear RNA-seq from adipocyte nuclei of different sizes, we identify distinct adipocyte subpopulations categorized by size and functionality. These subpopulations follow two divergent trajectories, adaptive and pathological, with their prevalence varying by depot. Specifically, we identify a key molecular feature of dysfunctional hypertrophic adipocytes, a global shutdown in gene expression, along with elevated stress and inflammatory responses. Furthermore, our differential gene expression analysis reveals distinct contributions of adipocyte subpopulations to the overall pathophysiology of adipose tissue. Our study establishes a robust snRNA-seq method, providing novel insights into the biological processes involved in adipose tissue remodeling during obesity, with broader applicability across diverse biological systems.
Collapse
Affiliation(s)
- Jisun So
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olivia Strobel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie Wann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kyungchan Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Avishek Paul
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dominic J. Acri
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Luke C. Dabin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gang Peng
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
11
|
Mattar P, Reginato A, Lavados C, Das D, Kalyani M, Martinez-Lopez N, Sharma M, Skovbjerg G, Skytte JL, Roostalu U, Subbarayan R, Picarda E, Zang X, Zhang J, Guha C, Schwartz G, Rajbhandari P, Singh R. Insulin and leptin oscillations license food-entrained browning and metabolic flexibility. Cell Rep 2024; 43:114390. [PMID: 38900636 DOI: 10.1016/j.celrep.2024.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Timed feeding drives adipose browning, although the integrative mechanisms for the same remain unclear. Here, we show that twice-a-night (TAN) feeding generates biphasic oscillations of circulating insulin and leptin, representing their entrainment by timed feeding. Insulin and leptin surges lead to marked cellular, functional, and metabolic remodeling of subcutaneous white adipose tissue (sWAT), resulting in increased energy expenditure. Single-cell RNA-sequencing (scRNA-seq) analyses and flow cytometry demonstrate a role for insulin and leptin surges in innate lymphoid type 2 (ILC2) cell recruitment and sWAT browning, since sWAT depot denervation or loss of leptin or insulin receptor signaling or ILC2 recruitment each dampens TAN feeding-induced sWAT remodeling and energy expenditure. Consistently, recreating insulin and leptin oscillations via once-a-day timed co-injections is sufficient to favorably remodel innervated sWAT. Innervation is necessary for sWAT remodeling, since denervation of sWAT, but not brown adipose tissue (BAT), blocks TAN-induced sWAT remodeling and resolution of inflammation. In sum, reorganization of nutrient-sensitive pathways remodels sWAT and drives the metabolic benefits of timed feeding.
Collapse
Affiliation(s)
- Pamela Mattar
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | - Andressa Reginato
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christian Lavados
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Debajyoti Das
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | - Manu Kalyani
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at UCLA, University of Los Angeles, Los Angeles, CA, USA
| | - Mridul Sharma
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | - Elodie Picarda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gary Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Prashant Rajbhandari
- Department of Medicine, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajat Singh
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Comprehensive Liver Research Center at UCLA, University of Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
McCartney EE, Chung Y, Buechler MB. Life of Pi: Exploring functions of Pi16+ fibroblasts. F1000Res 2024; 13:126. [PMID: 38919948 PMCID: PMC11196929 DOI: 10.12688/f1000research.143511.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 06/27/2024] Open
Abstract
Fibroblasts are mesenchymal cells that are responsible for creating and maintaining tissue architecture through the production of extracellular matrix. These cells also play critical roles in processes such as wound repair and immune modulation in normal tissues and various disease states including fibrosis, autoimmunity, and cancer. Fibroblasts have a complex repertoire of functions that vary by organ, inflammatory state, and the developmental stage of an organism. How fibroblasts manage so many functions in such a context-dependent manner represents a gap in our understanding of these cells. One possibility is that a tissue-resident precursor cell state exists that provides the fibroblast lineage with flexibility during growth, inflammation, or other contexts that require dynamic tissue changes. Recent work has suggested that a precursor fibroblast cell state is marked by expression of Peptidase inhibitor 16 ( Pi16). This review aims to concatenate and compare studies on fibroblasts that express Pi16 to clarify the roles of this cell state in fibroblast lineage development and other functions.
Collapse
Affiliation(s)
- Erika E. McCartney
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Yein Chung
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Matthew B. Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
13
|
Buras ED, Woo MS, Kaul Verma R, Kondisetti SH, Davis CS, Claflin DR, Converso-Baran K, Michele DE, Brooks SV, Chun TH. Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity. JCI Insight 2024; 9:e175047. [PMID: 38954467 PMCID: PMC11343600 DOI: 10.1172/jci.insight.175047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Pulmonary disorders affect 40%-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragm muscle weakness. Increased intradiaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs) - mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing the effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1-knockout (Thbs1-/-) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGF-β-related expression signatures and augmentation of a Thy1-expressing subpopulation previously linked to type 2 diabetes. Despite similar weight gain, Thbs1-/- mice were protected from these transcriptomic changes and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1-/- diaphragms maintained normal contractile force and motion after DIO challenge. THBS1 is therefore a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition and a potential therapeutic target in obesity-associated respiratory dysfunction.
Collapse
Affiliation(s)
- Eric D. Buras
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
| | - Moon-Sook Woo
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
| | - Romil Kaul Verma
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
| | | | | | - Dennis R. Claflin
- Department of Biomedical Engineering
- Department of Surgery, Section of Plastic Surgery
| | | | | | | | - Tae-Hwa Chun
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin Positive Cell-derived Extracellular Vesicles Contribute to Cardiac Amyloidosis After Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601297. [PMID: 39005419 PMCID: PMC11244852 DOI: 10.1101/2024.06.28.601297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Amyloidosis is a major long-term complication of chronic disease; however, whether it represents one of the complications of post-myocardial infarction (MI) is yet to be fully understood. Methods Using wild-type and knocked-out MI mouse models and characterizing in vitro the exosomal communication between bone marrow-derived macrophages and activated mesenchymal stromal cells (MSC) isolated after MI, we investigated the mechanism behind Serum Amyloid A 3 (SAA3) protein overproduction in injured hearts. Results Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived SAA3 monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from a subset of activated MSC, which, in response to MI, acquire the expression of a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin (PDPN). Cardiac MSC PDPN+ communicate with and activate macrophages through their extracellular vesicles or exosomes. Specifically, MSC PDPN+ derived exosomes (MSC PDPN+ Exosomes) are enriched in SAA3 and exosomal SAA3 protein engages with Toll-like receptor 2 (TRL2) on macrophages, triggering an overproduction and impaired clearance of SAA3 proteins, resulting in aggregation of SAA3 monomers as rigid amyloid deposits in the extracellular space. The onset of amyloid fibers deposition alongside extra-cellular-matrix (ECM) proteins in the ischemic heart exacerbates the rigidity and stiffness of the scar, hindering the contractility of viable myocardium and overall impairing organ function. Using SAA3 and TLR2 deficient mouse models, we show that SAA3 delivered by MSC PDPN+ exosomes promotes post-MI amyloidosis. Inhibition of SAA3 aggregation via administration of a retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils, positively modulates the scar formation, and improves heart function post-MI. Conclusion Overall, our findings provide mechanistic insights into post-MI amyloidosis and suggest that SAA3 may be an attractive target for effective scar reversal after ischemic injury and a potential target in multiple diseases characterized by a similar pattern of inflammation and amyloid deposition. NOVELTY AND SIGNIFICANCE What is known? Accumulation of rigid amyloid structures in the left ventricular wall impairs ventricle contractility.After myocardial infarction cardiac Mesenchymal Stromal Cells (MSC) acquire Podoplanin (PDPN) to better interact with immune cells.Amyloid structures can accumulate in the heart after chronic inflammatory conditions. What information does this article contribute? Whether accumulation of cumbersome amyloid structures in the ischemic scar impairs left ventricle contractility, and scar reversal after myocardial infarction (MI) has never been investigated.The pathophysiological relevance of PDPN acquirement by MSC and the functional role of their secreted exosomes in the context of post-MI cardiac remodeling has not been investigated.Amyloid structures are present in the scar after ischemia and are composed of macrophage-derived Serum Amyloid A (SAA) 3 monomers, although mechanisms of SAA3 overproduction is not established. SUMMARY OF NOVELTY AND SIGNIFICANCE Here, we report that amyloidosis, a secondary phenomenon of an already preexisting and prolonged chronic inflammatory condition, occurs after MI and that amyloid structures are composed of macrophage-derived SAA3 monomers. Frequently studied cardiac amyloidosis are caused by aggregation of immunoglobulin light chains, transthyretin, fibrinogen, and apolipoprotein in a healthy heart as a consequence of systemic chronic inflammation leading to congestive heart failure with various types of arrhythmias and tissue stiffness. Although chronic MI is considered a systemic inflammatory condition, studies regarding the possible accumulation of amyloidogenic proteins after MI and the mechanisms involved in that process are yet to be reported. Here, we show that SAA3 overproduction in macrophages is triggered in a Toll-like Receptor 2 (TLR2)-p38MAP Kinase-dependent manner by exosomal communication from a subset of activated MSC, which, in response to MI, express a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin. We provide the full mechanism of this phenomenon in murine models and confirm SAA3 amyloidosis in failing human heart samples. Moreover, we developed a retro-inverso D-peptide therapeutic approach, "DRI-R5S," specifically designed to bind SAA3 monomers and prevent post-MI aggregation and deposition of SAA3 amyloid fibrils without interfering with the innate immune response.
Collapse
|
15
|
Lin T, Mohammad A, Kolonin MG, Eckel-Mahan KL. Mechanisms and metabolic consequences of adipocyte progenitor replicative senescence. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00046. [PMID: 39211801 PMCID: PMC11356692 DOI: 10.1097/in9.0000000000000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function. APCs have the capability to self-renew and undergo adipogenesis to propagate new adipocytes capable of lipid storage, which is important for maintaining a healthy fat pad, devoid of dysfunctional lipid droplet hypertrophy, inflammation, and fibrosis, which is linked to metabolic diseases, including type 2 diabetes. Like other dividing cells, APCs are at risk for undergoing cell senescence, a state of irreversible cell proliferation arrest that occurs under a variety of stress conditions, including DNA damage and telomere attrition. APC proliferation is controlled by a variety of factors, including paracrine and endocrine factors, quality and timing of energy intake, and the circadian clock system. Therefore, alteration in any of the underlying signaling pathways resulting in excessive proliferation of APCs can lead to premature APC senescence. Better understanding of APCs senescence mechanisms will lead to new interventions extending metabolic health.
Collapse
Affiliation(s)
- Tonghui Lin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aftab Mohammad
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L. Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
16
|
Reed JN, Huang J, Li Y, Ma L, Banka D, Wabitsch M, Wang T, Ding W, Björkegren JL, Civelek M. Systems genetics analysis of human body fat distribution genes identifies adipocyte processes. Life Sci Alliance 2024; 7:e202402603. [PMID: 38702075 PMCID: PMC11068934 DOI: 10.26508/lsa.202402603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.
Collapse
Affiliation(s)
- Jordan N Reed
- https://ror.org/0153tk833 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- https://ror.org/0153tk833 Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jiansheng Huang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Yong Li
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Lijiang Ma
- https://ror.org/04a9tmd77 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dhanush Banka
- https://ror.org/0153tk833 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Tianfang Wang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Wen Ding
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Johan Lm Björkegren
- https://ror.org/04a9tmd77 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Mete Civelek
- https://ror.org/0153tk833 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- https://ror.org/0153tk833 Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
17
|
Verma S, Giagnocavo SD, Curtin MC, Arumugam M, Osburn-Staker SM, Wang G, Atkinson A, Nix DA, Lum DH, Cox JE, Hilgendorf KI. Zinc-alpha-2-glycoprotein Secreted by Triple-Negative Breast Cancer Promotes Peritumoral Fibrosis. CANCER RESEARCH COMMUNICATIONS 2024; 4:1655-1666. [PMID: 38888911 PMCID: PMC11224648 DOI: 10.1158/2767-9764.crc-24-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Obesity is a modifiable predisposition factor for postmenopausal breast cancer. This suggests a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of 10 human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells. The screen identified an adipogenic modulator, zinc-alpha-2-glycoprotein (ZAG/AZGP1) that is secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG is linked to poor prognosis in patients with TNBC but not in patients with other clinical subtypes of breast cancer. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of adipocyte stem and progenitor cells into cancer-associated fibroblasts to support tumorigenesis. SIGNIFICANCE Functional screening of breast cancer secretomes revealed that triple-negative breast cancer promotes fibrosis in the adipose tissue microenvironment by secreting zinc-alpha-2-glycoprotein and promoting the transdifferentiation of adipocyte stem cells into myofibroblasts.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah.
| | | | - Meghan C. Curtin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Menusha Arumugam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Sandra M. Osburn-Staker
- Metabolomics, Proteomics and Mass Spectrometry Core, School of Medicine, University of Utah, Salt Lake City, Utah.
| | - Guoying Wang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Aaron Atkinson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - David A. Nix
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - David H. Lum
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - James E. Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah.
- Metabolomics, Proteomics and Mass Spectrometry Core, School of Medicine, University of Utah, Salt Lake City, Utah.
| | - Keren I. Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
18
|
Qian S, Zhang C, Tang Y, Dai M, He Z, Ma H, Wang L, Yang Q, Liu Y, Xu W, Zhang Z, Tang QQ. A single-cell sequence analysis of mouse subcutaneous white adipose tissue reveals dynamic changes during weaning. Commun Biol 2024; 7:787. [PMID: 38951550 PMCID: PMC11217364 DOI: 10.1038/s42003-024-06448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
Adipose tissue development begins in the fetal period, and continues to expand after birth. Dysregulation of adipose tissue during weaning may predispose individuals to lifelong metabolic disorders. However, the developmental remodeling of adipose tissue during weaning remains largely unexplored. Here we comprehensively compare the changes in mouse subcutaneous white adipose tissue from 7 days after birth to 7 days after weaning using single-cell RNA sequencing along with other molecular and histologic assays. We characterize the developmental trajectory of preadipocytes and indicate the commitment of preadipocytes with beige potential during weaning. Meanwhile, we find immune cells unique to weaning period, whose expression of extracellular matrix proteins implies potential regulation on preadipocyte. Finally, the strongest cell-cell interaction during weaning determined by the TGFβ ligand-receptor pairs is between preadipocytes and endotheliocytes. Our results provide a detailed and unbiased cellular landscape and offer insights into the potential regulation of adipose tissue remodeling during weaning.
Collapse
Affiliation(s)
- Shuwen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenyang Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengyuan Dai
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhihui He
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong Ma
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linyuan Wang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiqi Yang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Xu
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhao Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Wang H, Du Y, Huang S, Sun X, Ye Y, Sun H, Chu X, Shan X, Yuan Y, Shen L, Bi Y. Single-cell analysis reveals a subpopulation of adipose progenitor cells that impairs glucose homeostasis. Nat Commun 2024; 15:4827. [PMID: 38844451 PMCID: PMC11156882 DOI: 10.1038/s41467-024-48914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Adipose progenitor cells (APCs) are heterogeneous stromal cells and help to maintain metabolic homeostasis. However, the influence of obesity on human APC heterogeneity and the role of APC subpopulations on regulating glucose homeostasis remain unknown. Here, we find that APCs in human visceral adipose tissue contain four subsets. The composition and functionality of APCs are altered in patients with type 2 diabetes (T2D). CD9+CD55low APCs are the subset which is significantly increased in T2D patients. Transplantation of these cells from T2D patients into adipose tissue causes glycemic disturbance. Mechanistically, CD9+CD55low APCs promote T2D development through producing bioactive proteins to form a detrimental niche, leading to upregulation of adipocyte lipolysis. Depletion of pathogenic APCs by inducing intracellular diphtheria toxin A expression or using a hunter-killer peptide improves obesity-related glycemic disturbance. Collectively, our data provide deeper insights in human APC functionality and highlights APCs as a potential therapeutic target to combat T2D. All mice utilized in this study are male.
Collapse
Affiliation(s)
- Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yanhua Du
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Huang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xitai Sun
- Department of General Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixiang Sun
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xuehui Chu
- Department of General Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Xiaodong Shan
- Department of General Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yue Yuan
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
20
|
Damerau A, Rosenow E, Alkhoury D, Buttgereit F, Gaber T. Fibrotic pathways and fibroblast-like synoviocyte phenotypes in osteoarthritis. Front Immunol 2024; 15:1385006. [PMID: 38895122 PMCID: PMC11183113 DOI: 10.3389/fimmu.2024.1385006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, characterized by osteophyte formation, cartilage degradation, and structural and cellular alterations of the synovial membrane. Activated fibroblast-like synoviocytes (FLS) of the synovial membrane have been identified as key drivers, secreting humoral mediators that maintain inflammatory processes, proteases that cause cartilage and bone destruction, and factors that drive fibrotic processes. In normal tissue repair, fibrotic processes are terminated after the damage has been repaired. In fibrosis, tissue remodeling and wound healing are exaggerated and prolonged. Various stressors, including aging, joint instability, and inflammation, lead to structural damage of the joint and micro lesions within the synovial tissue. One result is the reduced production of synovial fluid (lubricants), which reduces the lubricity of the cartilage areas, leading to cartilage damage. In the synovial tissue, a wound-healing cascade is initiated by activating macrophages, Th2 cells, and FLS. The latter can be divided into two major populations. The destructive thymocyte differentiation antigen (THY)1─ phenotype is restricted to the synovial lining layer. In contrast, the THY1+ phenotype of the sublining layer is classified as an invasive one with immune effector function driving synovitis. The exact mechanisms involved in the transition of fibroblasts into a myofibroblast-like phenotype that drives fibrosis remain unclear. The review provides an overview of the phenotypes and spatial distribution of FLS in the synovial membrane of OA, describes the mechanisms of fibroblast into myofibroblast activation, and the metabolic alterations of myofibroblast-like cells.
Collapse
Affiliation(s)
- Alexandra Damerau
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| | - Emely Rosenow
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Dana Alkhoury
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| |
Collapse
|
21
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
22
|
Lecoutre S, Rebière C, Marcelin G, Clément K. How does bariatric surgery remodel adipose tissue? ANNALES D'ENDOCRINOLOGIE 2024; 85:175-178. [PMID: 38871506 DOI: 10.1016/j.ando.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This lecture delves into the pivotal role of adipose tissue in obesity and its response to weight loss, particularly via bariatric surgery. Adipose tissue, responsible for storing excess energy, undergoes significant changes during obesity, marked by inflammation and fibrosis. Bariatric surgery, serving as a model, allow the exploration of adipose tissue remodeling post-weight loss, inducing metabolic and fibro-inflammatory shifts. Despite successful weight loss, inflammation and fibrosis persist, as evidenced by changes in immune cells, altered cytokine profiles and the accumulation of extracellular matrix (ECM). Unfortunately, these lingering effects impair the normal adipose tissue function. In this context, adipose progenitors, an heterogenous resident population of mesenchymal stromal cells, display functions important to fibrosis development, capable of differentiating into myofibroblasts and contributing to ECM deposition. Particularly, a distinct subpopulation of adipose progenitors with high CD9 expression (CD9high) is associated with fibrosis and insulin resistance in human obesity. The persistence of fibrosis post-weight loss poses challenges, correlating with metabolic dysfunction despite improved glucose tolerance. A comprehensive understanding of the mechanisms driving adipose tissue remodeling and fibrosis post-weight loss is imperative for the development of effective treatments for obesity. The intricate interplay between adipose tissue, inflammation, and fibrosis underscores the necessity for further in-depth research to elucidate these mechanisms and formulate targeted therapies for obesity-related complications.
Collapse
Affiliation(s)
- Simon Lecoutre
- Research Unit: Nutrition and Obesities; Systemic Approaches, NutriOmics, Inserm, Sorbonne université, Paris, France
| | - Clémentine Rebière
- Research Unit: Nutrition and Obesities; Systemic Approaches, NutriOmics, Inserm, Sorbonne université, Paris, France; Nutrition Department, Pitié-Salpêtrière Hospital, Paris Public Hospitals, Paris, France
| | - Geneviève Marcelin
- Nutrition Department, Pitié-Salpêtrière Hospital, Paris Public Hospitals, Paris, France
| | - Karine Clément
- Research Unit: Nutrition and Obesities; Systemic Approaches, NutriOmics, Inserm, Sorbonne université, Paris, France.
| |
Collapse
|
23
|
Zeng X, Wang TW, Yamaguchi K, Hatakeyama S, Yamazaki S, Shimizu E, Imoto S, Furukawa Y, Johmura Y, Nakanishi M. M2 macrophage-derived TGF-β induces age-associated loss of adipogenesis through progenitor cell senescence. Mol Metab 2024; 84:101943. [PMID: 38657734 PMCID: PMC11079528 DOI: 10.1016/j.molmet.2024.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES Adipose tissue is an endocrine and energy storage organ composed of several different cell types, including mature adipocytes, stromal cells, endothelial cells, and a variety of immune cells. Adipose tissue aging contributes to the pathogenesis of metabolic dysfunction and is likely induced by crosstalk between adipose progenitor cells (APCs) and immune cells, but the underlying molecular mechanisms remain largely unknown. In this study, we revealed the biological role of p16high senescent APCs, and investigated the crosstalk between each cell type in the aged white adipose tissue. METHODS We performed the single-cell RNA sequencing (scRNA-seq) analysis on the p16high adipose cells sorted from aged p16-CreERT2/Rosa26-LSL-tdTomato mice. We also performed the time serial analysis on the age-dependent bulk RNA-seq datasets of human and mouse white adipose tissues to infer the transcriptome alteration of adipogenic potential within aging. RESULTS We show that M2 macrophage-derived TGF-β induces APCs senescence which impairs adipogenesis in vivo. p16high senescent APCs increase with age and show loss of adipogenic potential. The ligand-receptor interaction analysis reveals that M2 macrophages are the donors for TGF-β and the senescent APCs are the recipients. Indeed, treatment of APCs with TGF-β1 induces senescent phenotypes through mitochondrial ROS-mediated DNA damage in vitro. TGF-β1 injection into gonadal white adipose tissue (gWAT) suppresses adipogenic potential and induces fibrotic genes as well as p16 in APCs. A gWAT atrophy is observed in cancer cachexia by APCs senescence, whose induction appeared to be independent of TGF-β induction. CONCLUSIONS Our results suggest that M2 macrophage-derived TGF-β induces age-related lipodystrophy by APCs senescence. The TGF-β treatment induced DNA damage, mitochondrial ROS, and finally cellular senescence in APCs.
Collapse
Affiliation(s)
- Xinyi Zeng
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
24
|
Drygalski K, Higos R, Merabtene F, Mojsak P, Grubczak K, Ciborowski M, Razak H, Clément K, Dugail I. Extracellular matrix hyaluronan modulates fat cell differentiation and primary cilia dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159470. [PMID: 38423452 DOI: 10.1016/j.bbalip.2024.159470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Hyaluronan is an important extracellular matrix component, with poorly documented physiological role in the context of lipid-rich adipose tissue. We have investigated the global impact of hyaluronan removal from adipose tissue environment by in vitro exposure to exogenous hyaluronidase (or heat inactivated enzyme). Gene set expression analysis from RNA sequencing revealed downregulated adipogenesis as a main response to hyaluronan removal from human adipose tissue samples, which was confirmed by hyaluronidase-mediated inhibition of adipocyte differentiation in the 3T3L1 adipose cell line. Hyaluronidase exposure starting from the time of induction with the differentiation cocktail reduced lipid accumulation in mature adipocytes, limited the expression of terminal differentiation marker genes, and impaired the early induction of co-regulated Cebpa and Pparg mRNA. Reduction of Cebpa and Pparg expression by exogenous hyaluronidase was also observed in cultured primary preadipocytes from subcutaneous, visceral or brown adipose tissue of mice. Mechanistically, inhibition of adipogenesis by hyaluronan removal was not caused by changes in osmotic pressure or cell inflammatory status, could not be mimicked by exposure to threose, a metabolite generated by hyaluronan degradation, and was not linked to alteration in endogenous Wnt ligands expression. Rather, we observed that hyaluronan removal associated with disrupted primary cilia dynamics, with elongated cilium and higher proportions of preadipocytes that remained ciliated in hyaluronidase-treated conditions. Thus, our study points to a new link between ciliogenesis and hyaluronan impacting adipose tissue development.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France; Department of Hypertension and Diabetology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Romane Higos
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France
| | - Fatiha Merabtene
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France
| | - Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, 15-276 Białystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Białystok, Poland
| | - Hady Razak
- Department of General and Endocrine Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Karine Clément
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France; Assistance Publique-Hopitaux de Paris, Nutrition department, Pitié-Salpetrière Hospital, 75013 Paris, France
| | - Isabelle Dugail
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France.
| |
Collapse
|
25
|
Zhang Q, Lu C, Lu F, Liao Y, Cai J, Gao J. Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis. Front Endocrinol (Lausanne) 2024; 15:1365156. [PMID: 38686209 PMCID: PMC11056552 DOI: 10.3389/fendo.2024.1365156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxuan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Tong X, Zhu Q, Duo T, Liang Z, Zhang C, Cai S, Wang X, Liu Y, Li Y, Liu X, He Z, Hu B, Zeng J, Chen Y, Mo D. The Impact of FBN1-α5β1 Axis in Fibro/Adipogenic Progenitor Cells (FAP CD9-) on Intramuscular Fat Content in Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38598771 DOI: 10.1021/acs.jafc.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Intramuscular fat (IMF) plays a crucial role in enhancing meat quality, enriching meat flavor, and overall improving palatability. In this study, Single-cell RNA sequencing was employed to analyze the longissimus dorsi (LD) obtained from Guangdong small-ear spotted pigs (GDSS, with high IMF) and Yorkshire pigs (YK, with low IMF). GDSS had significantly more Fibro/Adipogenic Progenitor (FAPs), in which the CD9 negative FAPs (FAPCD9-) having adipogenic potential, as demonstrated by in vitro assays using cells originated from mouse muscle. On the other hand, Yorkshire had more fibro-inflammatory progenitors (FIPs, marked with FAPCD9+), presenting higher expression of the FBN1-Integrin α5β1. FBN1-Integrin α5β1 could inhibit insulin signaling in FAPCD9-, suppressing adipogenic differentiation. Our results demonstrated that fat-type pigs possess a greater number of FAPCD9-, which are the exclusive cells in muscle capable of differentiating into adipocytes. Moreover, lean-type pigs exhibit higher expression of FBN1-Integrin α5β1 axis, which inhibits adipocyte differentiation. These results appropriately explain the observed higher IMF content in fat-type pigs.
Collapse
Affiliation(s)
- Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Chong Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Yihao Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Yongpeng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Bin Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key, Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Jianhua Zeng
- Guangdong YIHAO Food Co.,Ltd., Guangzhou 510620, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
27
|
Zhao JY, Zhou LJ, Ma KL, Hao R, Li M. MHO or MUO? White adipose tissue remodeling. Obes Rev 2024; 25:e13691. [PMID: 38186200 DOI: 10.1111/obr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
In this review, we delve into the intricate relationship between white adipose tissue (WAT) remodeling and metabolic aspects in obesity, with a specific focus on individuals with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO). WAT is a highly heterogeneous, plastic, and dynamically secreting endocrine and immune organ. WAT remodeling plays a crucial role in metabolic health, involving expansion mode, microenvironment, phenotype, and distribution. In individuals with MHO, WAT remodeling is beneficial, reducing ectopic fat deposition and insulin resistance (IR) through mechanisms like increased adipocyte hyperplasia, anti-inflammatory microenvironment, appropriate extracellular matrix (ECM) remodeling, appropriate vascularization, enhanced WAT browning, and subcutaneous adipose tissue (SWAT) deposition. Conversely, for those with MUO, WAT remodeling leads to ectopic fat deposition and IR, causing metabolic dysregulation. This process involves adipocyte hypertrophy, disrupted vascularization, heightened pro-inflammatory microenvironment, enhanced brown adipose tissue (BAT) whitening, and accumulation of visceral adipose tissue (VWAT) deposition. The review underscores the pivotal importance of intervening in WAT remodeling to hinder the transition from MHO to MUO. This insight is valuable for tailoring personalized and effective management strategies for patients with obesity in clinical practice.
Collapse
Affiliation(s)
- Jing Yi Zhao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Juan Zhou
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Le Ma
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Liao X, Zeng Q, Xie L, Zhang H, Hu W, Xiao L, Zhou H, Wang F, Xie W, Song J, Sun X, Wang D, Ding Y, Jiao Y, Mai W, Aini W, Hui X, Liu W, Hsueh WA, Deng T. Adipose stem cells control obesity-induced T cell infiltration into adipose tissue. Cell Rep 2024; 43:113963. [PMID: 38492218 DOI: 10.1016/j.celrep.2024.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
T cell infiltration into white adipose tissue (WAT) drives obesity-induced adipose inflammation, but the mechanisms of obesity-induced T cell infiltration into WAT remain unclear. Our single-cell RNA sequencing reveals a significant impact of adipose stem cells (ASCs) on T cells. Transplanting ASCs from obese mice into WAT enhances T cell accumulation. C-C motif chemokine ligand 5 (CCL5) is upregulated in ASCs as early as 4 weeks of high-fat diet feeding, coinciding with the onset of T cell infiltration into WAT during obesity. ASCs and bone marrow transplantation experiments demonstrate that CCL5 from ASCs plays a crucial role in T cell accumulation during obesity. The production of CCL5 in ASCs is induced by tumor necrosis factor alpha via the nuclear factor κB pathway. Overall, our findings underscore the pivotal role of ASCs in regulating T cell accumulation in WAT during the early phases of obesity, emphasizing their importance in modulating adaptive immunity in obesity-induced adipose inflammation.
Collapse
Affiliation(s)
- Xiyan Liao
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qin Zeng
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Limin Xie
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haowei Zhang
- The First Affiliated Hospital, Department of Orthopedics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wanyu Hu
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77080, USA
| | - Hui Zhou
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fanqi Wang
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wanqin Xie
- NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha, Hunan 410028, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yayi Jiao
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wuqian Mai
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wufuer Aini
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wei Liu
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Willa A Hsueh
- The Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
29
|
Yao T, Wei D, Tian X, Zhao L, Wan Q, Zhang X, Cai J, Li S, Diao B, Feng S, Shan B, Shao M, Wu Y. PDGFRβ + cell HIF2α is dispensable for white adipose tissue metabolic remodeling and hepatic lipid accumulation in obese mice. Lipids Health Dis 2024; 23:81. [PMID: 38509584 PMCID: PMC10953078 DOI: 10.1186/s12944-024-02069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Obesity is associated with extensive white adipose tissue (WAT) expansion and remodeling. Healthy WAT expansion contributes to the maintenance of energy balance in the liver, thereby ameliorating obesity-related hepatic steatosis. Tissue-resident mesenchymal stromal cell populations, including PDGFRβ + perivascular cells, are increasingly recognized pivotal as determinants of the manner in which WAT expands. However, the full array of regulatory factors controlling WAT stromal cell functions remains to be fully elucidated. Hypoxia-inducible factors (HIFs) are critical regulators in WAT stromal cell populations such as adipocyte precursor cells (APCs). It is revealed that HIF1α activation within PDGFRβ + stromal cells results in the suppression of de novo adipogenesis and the promotion of a pro-fibrogenic cellular program in obese animals. However, the role of HIF2α in PDGFRβ + cells remains undetermined in vivo. METHODS New genetic models were employed in which HIF1α (encoded by the Hif1a gene) and HIF2α (encoded by the Epas1 gene) are selectively inactivated in PDGFRβ + cells in an inducible manner using tamoxifen (TAM). With these models, both in vitro and in vivo functional analysis of PDGFRβ + cells lacking HIF proteins were performed. Additionally, comprehensive metabolic phenotyping in diet-induced mouse models were performed to investigate the roles of PDGFRβ + cell HIF proteins in WAT remodeling, liver energy balance and systemic metabolism. RESULTS Unlike HIF1α inactivation, the new findings in this study suggest that inducible ablation of HIF2α in PDGFRβ + cells does not cause apparent effects on WAT expansion induced by obesogenic diet. The adipogenic ability of PDGFRβ + APCs is not significantly altered by genetic HIF2α ablation. Moreover, no difference of key parameters associated with healthy WAT remodeling such as improvements of WAT insulin sensitivity, reduction in metabolic inflammation, as well as changes in liver fat accumulation or systemic glucose metabolism, is detected in PDGFRβ + cell Epas1-deficient mice. CONCLUSION The new findings in this study support that, in contrast to HIF1α, PDGFRβ + cell HIF2α appears dispensable for WAT metabolic remodeling and the resulting effects on liver metabolic homeostasis in diet-induced obesity, underscoring the isoform-specific roles of HIFα proteins in the regulation of adipose tissue biology.
Collapse
Affiliation(s)
- Tao Yao
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Danni Wei
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Tian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lin Zhao
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Qiangyou Wan
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Zhang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Juan Cai
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Siqi Li
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Diao
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Suihan Feng
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bo Shan
- Cancer Center, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Mengle Shao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Ying Wu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
30
|
Verma S, Giagnocavo SD, Curtin MC, Arumugam M, Osburn-Staker SM, Wang G, Atkinson A, Nix DA, Lum DH, Cox JE, Hilgendorf KI. Zinc Alpha-2-Glycoprotein (ZAG/AZGP1) secreted by triple-negative breast cancer promotes tumor microenvironment fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583349. [PMID: 38496643 PMCID: PMC10942361 DOI: 10.1101/2024.03.04.583349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Obesity is a predisposition factor for breast cancer, suggesting a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of ten human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells (ASPC). The screen identified a key adipogenic modulator, Zinc Alpha-2-Glycoprotein (ZAG/AZGP1), secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG in TNBC patients, but not other clinical subtypes of breast cancer, is linked to poor prognosis. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of ASPCs into cancer-associated fibroblasts to support tumorigenesis.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Meghan C Curtin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Menusha Arumugam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sandra M Osburn-Staker
- Metabolomics, Proteomics and Mass Spectrometry Core, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Guoying Wang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Aaron Atkinson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David A Nix
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David H Lum
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Metabolomics, Proteomics and Mass Spectrometry Core, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Lead contact:
| |
Collapse
|
31
|
Ye RZ, Montastier E, Frisch F, Noll C, Allard-Chamard H, Gévry N, Tchernof A, Carpentier AC. Adipocyte hypertrophy associates with in vivo postprandial fatty acid metabolism and adipose single-cell transcriptional dynamics. iScience 2024; 27:108692. [PMID: 38226167 PMCID: PMC10788217 DOI: 10.1016/j.isci.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Adipocyte hypertrophy is associated with metabolic complications independent of obesity. We aimed to determine: 1) the association between adipocyte size and postprandial fatty acid metabolism; 2) the potential mechanisms driving the obesity-independent, hypertrophy-associated dysmetabolism in vivo and at a single-cell resolution. Tracers with positron emission tomography were used to measure fatty acid metabolism in 40 men and women with normal or impaired glucose tolerance (NCT02808182), and single nuclei RNA-sequencing (snRNA-seq) to determine transcriptional dynamics of subcutaneous adipose tissue (AT) between individuals with AT hypertrophy vs. hyperplasia matched for sex, ethnicity, glucose-tolerance status, BMI, total and percent body fat, and waist circumference. Adipocyte size was associated with high postprandial total cardiac fatty acid uptake and higher visceral AT dietary fatty acid uptake, but lower lean tissue dietary fatty acid uptake. We found major shifts in cell transcriptomal dynamics with AT hypertrophy that were consistent with in vivo metabolic changes.
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Emilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugues Allard-Chamard
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, QC G1V 4G5, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
32
|
Kajita K, Ishii I, Mori I, Asano M, Fuwa M, Morita H. Sphingosine 1-Phosphate Regulates Obesity and Glucose Homeostasis. Int J Mol Sci 2024; 25:932. [PMID: 38256005 PMCID: PMC10816022 DOI: 10.3390/ijms25020932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
One of the major global health and welfare issues is the treatment of obesity and associated metabolic disorders, such as type 2 diabetes mellitus and nonalcoholic fatty liver disease. Obesity, caused by the excessive accumulation of triglycerides in adipose tissues, induces adipocyte dysfunction, followed by inflammation, in adipose tissues and lipotoxicity in nonadipose tissues. Several studies have shown that obesity and glucose homeostasis are influenced by sphingolipid mediators, including ceramide and sphingosine 1-phosphate (S1P). Cellular accumulation of ceramide impairs pancreatic β-cell survival, confers insulin resistance in the liver and the skeletal muscle, and deteriorates adipose tissue inflammation via unknown molecular mechanisms. The roles of S1P are more complicated, because there are five cell-surface S1P receptors (S1PRs: S1P1-5) which have altered functions, different cellular expression patterns, and inapparent intracellular targets. Recent findings, including those by our group, support the notable concept that the pharmacological activation of S1P1 or S1P3 improves obesity and associated metabolic disorders, whereas that of S1P2 has the opposite effect. In addition, the regulation of S1P production by sphingosine kinase (SphK) is an essential factor affecting glucose homeostasis. This review summarizes the current knowledge on SphK/S1P/S1PR signaling in and against obesity, insulin resistance, and associated disorders.
Collapse
Affiliation(s)
- Kazuo Kajita
- Department of Health and Nutrition, Faculty of Home Economics, Gifu Women’s University, 80 Taromaru, Gifu 501-2592, Japan
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, 3-3165 Higashitamagawagakuen, Machida 194-8543, Japan
| | - Ichiro Mori
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| | - Motochika Asano
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| | - Masayuki Fuwa
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| | - Hiroyuki Morita
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| |
Collapse
|
33
|
Schutz PW, Cheung S, Yi L, Rossi FMV. Cellular activation patterns of CD10+ fibro-adipogenic progenitors across acquired disease states in human skeletal muscle biopsies. FREE NEUROPATHOLOGY 2024; 5:5-3. [PMID: 38357523 PMCID: PMC10865694 DOI: 10.17879/freeneuropathology-2024-5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2024]
Abstract
Background: Fibro-adipogenic progenitors (FAP) are muscle resident mesenchymal stem cells pivotal for regulation of myofiber repair. Experimental results show in addition involvement in a range of other pathological conditions and potential for pharmacological intervention. FAP histopathology in human muscle biopsies is largely unknown, but has potential to inform translational research. Methods: CD10+ FAPs in 32 archival muscle biopsies from 8 groups (normal, dermatomyositis, inclusion body myositis (IBM), anti-synthetase syndrome, immune-mediated necrotizing myopathy (IMNM), denervation, type 2 atrophy, rhabdomyolysis) were visualized by CD10 immunohistochemistry and their histology compared. Groups are compared by semi-quantitative scoring. Results: Histological activation of endomysial CD10+ FAPs includes prominent expansion of a network of cell processes surrounding muscle fibers, as well as endomysial cell clusters evidencing proliferation. Prominence of periarteriolar processes is a notable feature in some pathologies. FAP activation is often associated with fiber degeneration/regeneration, foci of inflammation, and denervation in keeping with experimental results. Type 2 atrophy shows no evidence of FAP activation. Dermatomyositis and anti-synthetase syndrome associated myositis demonstrate diffuse activation. Conclusion: Assessment of CD10+ FAP activation is routinely possible using CD10 immunohistochemistry and demonstrates several patterns in keeping with preclinical results. Prominent expansion of FAP processes surrounding myofibers suggests enhanced interaction between myofiber/basement membranes and FAPs during activation. The presence of diffuse FAP activation in dermatomyositis biopsies unrelated to fiber repair raises the possibility of FAP activation as part of the autoimmune process. Future diagnostic applications, clinical significance and therapeutic potential remain to be elucidated.
Collapse
Affiliation(s)
- Peter W. Schutz
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | - Simon Cheung
- Department of Pathology, Vancouver General Hospital, Vancouver, Canada
| | - Lin Yi
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Fabio M. V. Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
34
|
Kesharwani D, Brown AC. Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis. JOURNAL OF CELLULAR SIGNALING 2024; 5:65-86. [PMID: 38826152 PMCID: PMC11141760 DOI: 10.33696/signaling.5.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Support for stem cell self-renewal and differentiation hinges upon the intricate microenvironment termed the stem cell 'niche'. Within the adipose tissue stem cell niche, diverse cell types, such as endothelial cells, immune cells, mural cells, and adipocytes, intricately regulate the function of adipocyte precursors. These interactions, whether direct or indirect, play a pivotal role in governing the balance between self-renewal and differentiation of adipocyte precursors into adipocytes. The mechanisms orchestrating the maintenance and coordination of this niche are still in the early stages of comprehension, despite their crucial role in regulating adipose tissue homeostasis. The complexity of understanding adipocyte precursor renewal and differentiation is amplified due to the challenges posed by the absence of suitable surface receptors for identification, limitations in creating optimal ex vivo culture conditions for expansion and constraints in conducting in vivo studies. This review delves into the current landscape of knowledge surrounding adipocyte precursors within the adipose stem cell niche. We will review the identification of adipocyte precursors, the cell-cell interactions they engage in, the factors influencing their renewal and commitment toward adipocytes and the transformations they undergo during instances of obesity.
Collapse
Affiliation(s)
- Devesh Kesharwani
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Aaron C. Brown
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
35
|
Shan B, Barker CS, Theraulaz H, Zhang X, Ping Y, Gupta RK, Shao M, Wu Y. Protocol for quantitative proteomic analysis of heterogeneous adipose tissue-residing progenitor subpopulations in mice. STAR Protoc 2023; 4:102676. [PMID: 38048219 PMCID: PMC10730372 DOI: 10.1016/j.xpro.2023.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 12/06/2023] Open
Abstract
Recent studies have revealed cellular heterogeneity of mesenchymal stromal cells and immune cells in adipose tissue and emphasized the need for quantitative analysis of small numbers of functionally distinct cells using state-of-the-art "omics" technologies. Here, we present an optimized protocol for precise protein quantification from minute amounts of samples. We describe steps for isolation of mouse adipose progenitor cells, proteomics sample preparation, mass spectrometry measurement, and computational analysis. This protocol can be adapted to other samples with limited amounts. For complete details on the use and execution of this protocol, please refer to Shan et al. (2022).1.
Collapse
Affiliation(s)
- Bo Shan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Clive S Barker
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Harry Theraulaz
- Chemical Biology Mass Spectrometry (ChemBioMS) Platform, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Xiaoli Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Yan Ping
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Rana K Gupta
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Mengle Shao
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Chemical Biology Mass Spectrometry (ChemBioMS) Platform, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
36
|
Sabaratnam R, Hansen DR, Svenningsen P. White adipose tissue mitochondrial bioenergetics in metabolic diseases. Rev Endocr Metab Disord 2023; 24:1121-1133. [PMID: 37558853 DOI: 10.1007/s11154-023-09827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
White adipose tissue (WAT) is an important endocrine organ that regulates systemic energy metabolism. In metabolically unhealthy obesity, adipocytes become dysfunctional through hypertrophic mechanisms associated with a reduced endocrine function, reduced mitochondrial function, but increased inflammation, fibrosis, and extracellular remodelling. A pathologic WAT remodelling promotes systemic lipotoxicity characterized by fat accumulation in tissues such as muscle and liver, leading to systemic insulin resistance and type 2 diabetes. Several lines of evidence from human and animal studies suggest a link between unhealthy obesity and adipocyte mitochondrial dysfunction, and interventions that improve mitochondrial function may reduce the risk of obesity-associated diseases. This review discusses the importance of mitochondrial function and metabolism in human adipocyte biology and intercellular communication mechanisms within WAT. Moreover, a selected interventional approach for better adipocyte mitochondrial metabolism in humans is reviewed. A greater understanding of mitochondrial bioenergetics in WAT might provide novel therapeutic opportunities to prevent or restore dysfunctional adipose tissue in obesity-associated diseases.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Department of Clinical Research, University of Southern Denmark, Odense C, DK-5000, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark.
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| | - Didde Riisager Hansen
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| |
Collapse
|
37
|
Xu D, Wan B, Qiu K, Wang Y, Zhang X, Jiao N, Yan E, Wu J, Yu R, Gao S, Du M, Liu C, Li M, Fan G, Yin J. Single-Cell RNA-Sequencing Provides Insight into Skeletal Muscle Evolution during the Selection of Muscle Characteristics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305080. [PMID: 37870215 PMCID: PMC10724408 DOI: 10.1002/advs.202305080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Indexed: 10/24/2023]
Abstract
Skeletal muscle comprises a large, heterogeneous assortment of cell populations that interact to maintain muscle homeostasis, but little is known about the mechanism that controls myogenic development in response to artificial selection. Different pig (Sus scrofa) breeds exhibit distinct muscle phenotypes resulting from domestication and selective breeding. Using unbiased single-cell transcriptomic sequencing analysis (scRNA-seq), the impact of artificial selection on cell profiles is investigated in neonatal skeletal muscle of pigs. This work provides panoramic muscle-resident cell profiles and identifies novel and breed-specific cells, mapping them on pseudotime trajectories. Artificial selection has elicited significant changes in muscle-resident cell profiles, while conserving signs of generational environmental challenges. These results suggest that fibro-adipogenic progenitors serve as a cellular interaction hub and that specific transcription factors identified here may serve as candidate target regulons for the pursuit of a specific muscle phenotype. Furthermore, a cross-species comparison of humans, mice, and pigs illustrates the conservation and divergence of mammalian muscle ontology. The findings of this study reveal shifts in cellular heterogeneity, novel cell subpopulations, and their interactions that may greatly facilitate the understanding of the mechanism underlying divergent muscle phenotypes arising from artificial selection.
Collapse
Affiliation(s)
- Doudou Xu
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
- Molecular Design Breeding Frontier Science Center of the Ministry of EducationBeijingChina
| | - Ning Jiao
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Enfa Yan
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Jiangwei Wu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Run Yu
- Beijing National Day SchoolBeijing100039China
| | - Shuai Gao
- Key Laboratory of Animal GeneticsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Min Du
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciences and School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
| | | | - Mingzhou Li
- Institute of Animal Genetics and BreedingCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu625014China
| | - Guoping Fan
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
- Molecular Design Breeding Frontier Science Center of the Ministry of EducationBeijingChina
| |
Collapse
|
38
|
Couchet M, Gao H, Klingelhuber F, Jalkanen J, De Castro Barbosa T, Omar-Hmeadi M, Massier L, Krahmer N, Mejhert N, Rydén M. Adipogenic characterization of immortalized CD55 + progenitor cells from human white adipose tissue. Adipocyte 2023:2283213. [PMID: 37982546 DOI: 10.1080/21623945.2023.2283213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Mature adipocytes are notoriously difficult to study ex vivo and alternative cell culture systems have therefore been developed. One of the most common models are human adipose progenitor cells (hAPCs). Unfortunately, these display replicative senescence after prolonged culture conditions, which limits their use in mechanistic studies. METHODS Herein, we knocked in human telomerase reverse transcriptase (TERT) into the AAVS1 locus of CD55+ hAPCs derived from abdominal subcutaneous adipose tissue and characterized the cells before and after differentiation into adipocytes. RESULTS Immortalized TERT-hAPCs retained proliferative and adipogenic capacities comparable to those of early-passage wild type hAPCs for > 80 passages. In line with this, our integrative transcriptomic and proteomic analyses revealed that TERT-hAPCs displayed robust adipocyte expression profiles in comparison to wild type hAPCs. This was confirmed by functional analyses of lipid turnover where TERT-hAPCs exhibited pronounced responses to insulin and pro-lipolytic stimuli such as isoprenaline, dibutyrul cAMP and tumour necrosis factor alpha. In addition, TERT-hAPCs could be readily cultured in both standard 2D and 3D-cultures and proteomic analyses revealed that the spheroid culture conditions improved adipogenesis. CONCLUSION Through descriptive and functional studies, we demonstrate that immortalization of human CD55+ hAPCs is feasible and results in cells with stable proliferative and adipogenic capacities over multiple passages. As these cells are cryopreservable, they provide the additional advantage over primary cells of allowing repeated studies in both 2D and 3D model systems with the same genetic background. (234/250).
Collapse
Affiliation(s)
- Morgane Couchet
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Felix Klingelhuber
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center forDiabetes Research, Neuherberg, Germany
| | - Jutta Jalkanen
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | | | | | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center forDiabetes Research, Neuherberg, Germany
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Brotman SM, Oravilahti A, Rosen JD, Alvarez M, Heinonen S, van der Kolk BW, Fernandes Silva L, Perrin HJ, Vadlamudi S, Pylant C, Deochand S, Basta PV, Valone JM, Narain MN, Stringham HM, Boehnke M, Kuusisto J, Love MI, Pietiläinen KH, Pajukanta P, Laakso M, Mohlke KL. Cell-Type Composition Affects Adipose Gene Expression Associations With Cardiometabolic Traits. Diabetes 2023; 72:1707-1718. [PMID: 37647564 PMCID: PMC10588284 DOI: 10.2337/db23-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Understanding differences in adipose gene expression between individuals with different levels of clinical traits may reveal the genes and mechanisms leading to cardiometabolic diseases. However, adipose is a heterogeneous tissue. To account for cell-type heterogeneity, we estimated cell-type proportions in 859 subcutaneous adipose tissue samples with bulk RNA sequencing (RNA-seq) using a reference single-nuclear RNA-seq data set. Cell-type proportions were associated with cardiometabolic traits; for example, higher macrophage and adipocyte proportions were associated with higher and lower BMI, respectively. We evaluated cell-type proportions and BMI as covariates in tests of association between >25,000 gene expression levels and 22 cardiometabolic traits. For >95% of genes, the optimal, or best-fit, models included BMI as a covariate, and for 79% of associations, the optimal models also included cell type. After adjusting for the optimal covariates, we identified 2,664 significant associations (P ≤ 2e-6) for 1,252 genes and 14 traits. Among genes proposed to affect cardiometabolic traits based on colocalized genome-wide association study and adipose expression quantitative trait locus signals, 25 showed a corresponding association between trait and gene expression levels. Overall, these results suggest the importance of modeling cell-type proportion when identifying gene expression associations with cardiometabolic traits. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah M. Brotman
- Department of Genetics, The University of North Carolina, Chapel Hill, NC
| | - Anniina Oravilahti
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jonathan D. Rosen
- Department of Genetics, The University of North Carolina, Chapel Hill, NC
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Birgitta W. van der Kolk
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Hannah J. Perrin
- Department of Genetics, The University of North Carolina, Chapel Hill, NC
| | | | - Cortney Pylant
- Department of Epidemiology, The University of North Carolina, Chapel Hill, NC
| | - Sonia Deochand
- Department of Epidemiology, The University of North Carolina, Chapel Hill, NC
| | - Patricia V. Basta
- Department of Epidemiology, The University of North Carolina, Chapel Hill, NC
| | - Jordan M. Valone
- Department of Genetics, The University of North Carolina, Chapel Hill, NC
- UNC Neuroscience Center, The University of North Carolina, Chapel Hill, NC
| | - Morgan N. Narain
- Department of Genetics, The University of North Carolina, Chapel Hill, NC
- Curriculum of Toxicology and Environmental Medicine, The University of North Carolina, Chapel Hill, NC
| | - Heather M. Stringham
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Michael I. Love
- Department of Genetics, The University of North Carolina, Chapel Hill, NC
- Department of Biostatistics, The University of North Carolina, Chapel Hill, NC
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA
- Institute for Precision Health, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Karen L. Mohlke
- Department of Genetics, The University of North Carolina, Chapel Hill, NC
| |
Collapse
|
40
|
Kim K, Wann J, Kim HG, So J, Rosen ED, Roh HC. Uncoupling protein 1-driven Cre ( Ucp1-Cre) is expressed in the epithelial cells of mammary glands and various non-adipose tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563175. [PMID: 37905088 PMCID: PMC10614976 DOI: 10.1101/2023.10.19.563175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Objective Uncoupling protein 1 (UCP1), a mitochondrial protein responsible for nonshivering thermogenesis in adipose tissue, serves as a distinct marker for thermogenic brown and beige adipocytes. Ucp1-Cre mice are thus widely used to genetically manipulate these thermogenic adipocytes. However, evidence suggests that UCP1 may also be expressed in non-adipocyte cell types. In this study, we investigated the presence of UCP1 expression in different mouse tissues that have not been previously reported. Methods We employed Ucp1-Cre mice crossed with Cre-inducible transgenic reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP) mice, to investigate Ucp1-Cre expression in various tissues of adult female mice and developing embryos. Tamoxifen-inducible Ucp1-CreERT2 mice crossed with NuTRAP mice were used to assess active UCP1 expression. Immunostaining, RNA analysis, and single-cell/nucleus RNA-seq (sc/snRNA-seq) data analysis were performed to determine the expression of endogenous UCP1 and Ucp1-Cre-driven reporter expression. We also investigated the impact of UCP1 deficiency on mammary gland development and function using Ucp1-knockout (KO) mice. Results Ucp1-Cre expression was observed in the mammary glands within the inguinal white adipose tissue of female Ucp1-Cre; NuTRAP mice. However, endogenous Ucp1 was not actively expressed as Ucp1-CreERT2 failed to induce the reporter expression in the mammary glands. Ucp1-Cre was activated during embryonic development in various tissues, including mammary glands, as well as in the brain, kidneys, eyes, and ears, specifically in epithelial cells in these organs. While sc/snRNA-seq data suggest potential expression of UCP1 in mammary epithelial cells in adult mice and humans, Ucp1-KO female mice displayed normal mammary gland development and function. Conclusions Our findings reveal widespread Ucp1-Cre expression in various non-adipose tissue types, starting during early development. These results highlight the importance of exercising caution when interpreting data and devising experiments involving Ucp1-Cre mice.
Collapse
Affiliation(s)
- Kyungchan Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie Wann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jisun So
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
41
|
Ford H, Liu Q, Fu X, Strieder-Barboza C. White Adipose Tissue Heterogeneity in the Single-Cell Era: From Mice and Humans to Cattle. BIOLOGY 2023; 12:1289. [PMID: 37886999 PMCID: PMC10604679 DOI: 10.3390/biology12101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Adipose tissue is a major modulator of metabolic function by regulating energy storage and by acting as an endocrine organ through the secretion of adipokines. With the advantage of next-generation sequencing-based single-cell technologies, adipose tissue has been studied at single-cell resolution, thus providing unbiased insight into its molecular composition. Recent single-cell RNA sequencing studies in human and mouse models have dissected the transcriptional cellular heterogeneity of subcutaneous (SAT), visceral (VAT), and intramuscular (IMAT) white adipose tissue depots and revealed unique populations of adipose tissue progenitor cells, mature adipocytes, immune cell, vascular cells, and mesothelial cells that play direct roles on adipose tissue function and the development of metabolic disorders. In livestock species, especially in bovine, significant gaps of knowledge remain in elucidating the roles of adipose tissue cell types and depots on driving the pathogenesis of metabolic disorders and the distinct fat deposition in VAT, SAT, and IMAT in meat animals. This review summarizes the current knowledge on the transcriptional and functional cellular diversity of white adipose tissue revealed by single-cell approaches and highlights the depot-specific function of adipose tissue in different mammalian species, with a particular focus on recent findings and future implications in cattle.
Collapse
Affiliation(s)
- Hunter Ford
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA;
| | - Qianglin Liu
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA; (Q.L.); (X.F.)
| | - Xing Fu
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA; (Q.L.); (X.F.)
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA;
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
42
|
Reed JN, Huang J, Li Y, Ma L, Banka D, Wabitsch M, Wang T, Ding W, Björkegren JLM, Civelek M. Systems genetics analysis of human body fat distribution genes identifies Wnt signaling and mitochondrial activity in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556534. [PMID: 37732278 PMCID: PMC10508754 DOI: 10.1101/2023.09.06.556534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND Excess fat in the abdomen is a sexually dimorphic risk factor for cardio-metabolic disease. The relative storage between abdominal and lower-body subcutaneous adipose tissue depots is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Genome-wide association studies (GWAS) identified 346 loci near 495 genes associated with WHRadjBMI. Most of these genes have unknown roles in fat distribution, but many are expressed and putatively act in adipose tissue. We aimed to identify novel sex- and depot-specific drivers of WHRadjBMI using a systems genetics approach. METHODS We used two independent cohorts of adipose tissue gene expression with 362 - 444 males and 147 - 219 females, primarily of European ancestry. We constructed sex- and depot- specific Bayesian networks to model the gene-gene interactions from 8,492 adipose tissue genes. Key driver analysis identified genes that, in silico and putatively in vitro, regulate many others, including the 495 WHRadjBMI GWAS genes. Key driver gene function was determined by perturbing their expression in human subcutaneous pre-adipocytes using lenti-virus or siRNA. RESULTS 51 - 119 key drivers in each network were replicated in both cohorts. We used single-cell expression data to select replicated key drivers expressed in adipocyte precursors and mature adipocytes, prioritized genes which have not been previously studied in adipose tissue, and used public human and mouse data to nominate 53 novel key driver genes (10 - 21 from each network) that may regulate fat distribution by altering adipocyte function. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We selected seven genes whose expression is highly correlated with WHRadjBMI to further study their effects on adipogenesis/Wnt signaling (ANAPC2, PSME3, RSPO1, TYRO3) or mitochondrial function (C1QTNF3, MIGA1, PSME3, UBR1).Adipogenesis was inhibited in cells overexpressing ANAPC2 and RSPO1 compared to controls. RSPO1 results are consistent with a positive correlation between gene expression in the subcutaneous depot and WHRadjBMI, therefore lower relative storage in the subcutaneous depot. RSPO1 inhibited adipogenesis by increasing β-catenin activation and Wnt-related transcription, thus repressing PPARG and CEBPA. PSME3 overexpression led to more adipogenesis than controls. In differentiated adipocytes, MIGA1 and UBR1 downregulation led to mitochondrial dysfunction, with lower oxygen consumption than controls; MIGA1 knockdown also lowered UCP1 expression. SUMMARY ANAPC2, MIGA1, PSME3, RSPO1, and UBR1 affect adipocyte function and may drive body fat distribution.
Collapse
|
43
|
Abstract
Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.
Collapse
Affiliation(s)
- Jessica Cannavino
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Rana K Gupta
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, USA
| |
Collapse
|
44
|
Lv Y, Xia F, Yu J, Sheng Y, Jin Y, Li Y, Ding G. Distinct response of adipocyte progenitors to glucocorticoids determines visceral obesity via the TEAD1-miR-27b-PRDM16 axis. Obesity (Silver Spring) 2023; 31:2335-2348. [PMID: 37574723 DOI: 10.1002/oby.23839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE Visceral obesity contributes to obesity-related complications; however, the intrinsic mechanism of depot-specific adipose tissue behavior remains unclear. Despite the pro-adipogenesis role of glucocorticoids (GCs) in adipogenesis, the role of GCs in visceral adiposity rather than in subcutaneous adipose tissue is not established. Because adipocyte progenitors display a striking depot-specific pattern, the regulatory pathways of novel progenitor subtypes within different depots remain unclear. This study describes a cell-specific mechanism underlying visceral adiposity. METHODS A diverse panel of novel depot-specific adipose progenitors was screened in mice and human samples. The transcriptome distinction and various responses of novel progenitor subtypes of GCs were further measured using the GC receptor-chromatin immunoprecipitation assay and RNA sequencing. The mechanism of novel subtypes was identified using transposase-accessible chromatin analysis and bisulfite sequencing and further confirmed using precise editing of CpG methylation. RESULTS Platelet-derived growth factor receptor α (PDGFRα+ ) progenitors, which were dominant in the visceral adipose tissue, were GC-sensitive beige adipose progenitors, whereas CD137+ progenitors, which were dominant in the subcutaneous adipose tissue, were GC-passive beige adipose progenitors. Expression of miR-27b, an inhibitor of adipocyte browning, was significantly increased in PDGFRα+ progenitors treated with GCs. Using transposase-accessible chromatin analysis, bisulfite sequencing, and precise editing of CpG methylation, TEA domain transcription factor 1 (TEAD1) was discovered to be uniquely hypomethylated in PDGFRα+ progenitors. CONCLUSIONS GCs inhibited the PDGFRα+ progenitors' browning process via miR-27b, which was transcriptionally activated by the collaboration of TEAD1 with the GC receptor. These data provide insights into the mechanism of depot-specific variations in high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Yifan Lv
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Xia
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlu Sheng
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jin
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanqiang Li
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guoxian Ding
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Bailin SS, Kropski JA, Gangula RD, Hannah L, Simmons JD, Mashayekhi M, Ye F, Fan R, Mallal S, Warren CM, Kalams SA, Gabriel CL, Wanjalla CN, Koethe JR. Changes in subcutaneous white adipose tissue cellular composition and molecular programs underlie glucose intolerance in persons with HIV. Front Immunol 2023; 14:1152003. [PMID: 37711619 PMCID: PMC10499182 DOI: 10.3389/fimmu.2023.1152003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Subcutaneous adipose tissue (SAT) is a critical regulator of systemic metabolic homeostasis. Persons with HIV (PWH) have an increased risk of metabolic diseases and significant alterations in the SAT immune environment compared with the general population. Methods We generated a comprehensive single-cell multi-omic SAT atlas to characterize cellular compositional and transcriptional changes in 59 PWH across a spectrum of metabolic health. Results Glucose intolerance was associated with increased lipid-associated macrophages, CD4+ and CD8+ T effector memory cells, and decreased perivascular macrophages. We observed a coordinated intercellular regulatory program which enriched for genes related to inflammation and lipid-processing across multiple cell types as glucose intolerance increased. Increased CD4+ effector memory tissue-resident cells most strongly associated with altered expression of adipocyte genes critical for lipid metabolism and cellular regulation. Intercellular communication analysis demonstrated enhanced pro-inflammatory and pro-fibrotic signaling between immune cells and stromal cells in PWH with glucose intolerance compared with non-diabetic PWH. Lastly, while cell type-specific gene expression among PWH with diabetes was globally similar to HIV-negative individuals with diabetes, we observed substantially divergent intercellular communication pathways. Discussion These findings suggest a central role of tissue-resident immune cells in regulating SAT inflammation among PWH with metabolic disease, and underscore unique mechanisms that may converge to promote metabolic disease.
Collapse
Affiliation(s)
- Samuel S. Bailin
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A. Kropski
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Deparment of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Rama D. Gangula
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - LaToya Hannah
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua D. Simmons
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fei Ye
- Department of Biostatics, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Run Fan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon Mallal
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- Insitute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian M. Warren
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Spyros A. Kalams
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Curtis L. Gabriel
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, TN, United States
| | - Celestine N. Wanjalla
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John R. Koethe
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
46
|
Buras ED, Woo MS, Verma RK, Kondisetti SH, Davis CS, Claflin DR, Baran KC, Michele DE, Brooks SV, Chun TH. Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553733. [PMID: 37645822 PMCID: PMC10462153 DOI: 10.1101/2023.08.17.553733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pulmonary disorders impact 40-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragmatic weakness. Increased intra-diaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs)-mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1 knockout ( Thbs1 -/- ) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGFβ-related expression signatures, and augmentation of a Thy1 -expressing sub-population previously linked to type 2 diabetes. Despite similar weight gain, Thbs1 -/- mice were protected from these transcriptomic changes, and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1 -/- diaphragms maintained normal contractile force and motion after DIO challenge. These findings establish THBS1 as a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition, and potential therapeutic target in obesity-associated respiratory dysfunction.
Collapse
|
47
|
Horwitz A, Birk R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity-The Case of BBS Obesity. Nutrients 2023; 15:3445. [PMID: 37571382 PMCID: PMC10421039 DOI: 10.3390/nu15153445] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a metabolic state generated by the expansion of adipose tissue. Adipose tissue expansion depends on the interplay between hyperplasia and hypertrophy, and is mainly regulated by a complex interaction between genetics and excess energy intake. However, the genetic regulation of adipose tissue expansion is yet to be fully understood. Obesity can be divided into common multifactorial/polygenic obesity and monogenic obesity, non-syndromic and syndromic. Several genes related to obesity were found through studies of monogenic non-syndromic obesity models. However, syndromic obesity, characterized by additional features other than obesity, suggesting a more global role of the mutant genes related to the syndrome and, thus, an additional peripheral influence on the development of obesity, were hardly studied to date in this regard. This review summarizes present knowledge regarding the hyperplasia and hypertrophy of adipocytes in common obesity. Additionally, we highlight the scarce research on syndromic obesity as a model for studying adipocyte hyperplasia and hypertrophy, focusing on Bardet-Biedl syndrome (BBS). BBS obesity involves central and peripheral mechanisms, with molecular and mechanistic alternation in adipocyte hyperplasia and hypertrophy. Thus, we argue that using syndromic obesity models, such as BBS, can further advance our knowledge regarding peripheral adipocyte regulation in obesity.
Collapse
Affiliation(s)
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
48
|
Gupta A, Efthymiou V, Kodani SD, Shamsi F, Patti ME, Tseng YH, Streets A. Mapping the transcriptional landscape of human white and brown adipogenesis using single-nuclei RNA-seq. Mol Metab 2023; 74:101746. [PMID: 37286033 PMCID: PMC10338377 DOI: 10.1016/j.molmet.2023.101746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Adipogenesis is key to maintaining organism-wide energy balance and healthy metabolic phenotype, making it critical to thoroughly comprehend its molecular regulation in humans. By single-nuclei RNA-sequencing (snRNA-seq) of over 20,000 differentiating white and brown preadipocytes, we constructed a high-resolution temporal transcriptional landscape of human white and brown adipogenesis. White and brown preadipocytes were isolated from a single individual's neck region, thereby eliminating inter-subject variability across two distinct lineages. These preadipocytes were also immortalized to allow for controlled, in vitro differentiation, allowing sampling of distinct cellular states across the spectrum of adipogenic progression. Pseudotemporal cellular ordering revealed the dynamics of ECM remodeling during early adipogenesis, and lipogenic/thermogenic response during late white/brown adipogenesis. Comparison with adipogenic regulation in murine models Identified several novel transcription factors as potential targets for adipogenic/thermogenic drivers in humans. Among these novel candidates, we explored the role of TRPS1 in adipocyte differentiation and showed that its knockdown impairs white adipogenesis in vitro. Key adipogenic and lipogenic markers revealed in our analysis were applied to analyze publicly available scRNA-seq datasets; these confirmed unique cell maturation features in recently discovered murine preadipocytes, and revealed inhibition of adipogenic expansion in humans with obesity. Overall, our study presents a comprehensive molecular description of both white and brown adipogenesis in humans and provides an important resource for future studies of adipose tissue development and function in both health and metabolic disease state.
Collapse
Affiliation(s)
- Anushka Gupta
- University of California at Berkeley, University of California at San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - Vissarion Efthymiou
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sean D Kodani
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Mary Elizabeth Patti
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Hua Tseng
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aaron Streets
- University of California at Berkeley, University of California at San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Dewal RS, Wolfrum C. Master of disguise: deconvoluting adipose tissue heterogeneity and its impact on metabolic health. Curr Opin Genet Dev 2023; 81:102085. [PMID: 37421902 DOI: 10.1016/j.gde.2023.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Adipose tissue in its different forms: white, brown, and beige, while essential in day-to-day bodily functions, leads to several disorders when present in overabundance, including obesity and type-2 diabetes. Adipose tissue function/dysfunction is largely mediated by the diversity of its cell composition, within adipocytes and cells in its stromal fraction. Owing to its heterogeneous nature, recent studies have focused on intercalating the effects of cellular diversity with adipose tissue function, particularly by employing sequencing technologies. In this review, we highlight the recent advances in utilizing single-cell and single-nuclei RNA sequencing technologies to discover novel adipose tissue cell types or subtypes, and to determine their role in mediating tissue, as well as whole-body metabolism and function.
Collapse
Affiliation(s)
- Revati S Dewal
- Laboratory of Translational Nutritional Biology, Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland. https://twitter.com/@revadewa3
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
50
|
Sparks L, Whytock K, Divoux A, Sun Y, Pino M, Yu G, Smith S, Walsh M. A single nuclei atlas of aging human abdominal subcutaneous white adipose tissue. RESEARCH SQUARE 2023:rs.3.rs-3097605. [PMID: 37503028 PMCID: PMC10371078 DOI: 10.21203/rs.3.rs-3097605/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
White adipose tissue (WAT) is a robust energy storage and endocrine organ critical for maintaining metabolic health as we age. Our aim was to identify cell-specific transcriptional aberrations that occur in WAT with aging. We leveraged full-length snRNA-Seq to characterize the cellular landscape of human subcutaneous WAT in a prospective cohort of 10 Younger (≤ 30 years) and 10 Older individuals (≥ 65 years) balanced for sex and body mass index (BMI). We highlight that aging WAT is associated with adipocyte hypertrophy, increased proportions of resident macrophages (M2), an upregulated innate immune response and senescence profiles in specific adipocyte populations, highlighting CXCL14 as a biomarker of this process. We also identify novel markers of pre-adipocytes and track their expression levels through pre-adipocyte differentiation. We propose that aging WAT is associated with low-grade inflammation that is managed by a foundation of innate immunity to preserve the metabolic health of the WAT.
Collapse
Affiliation(s)
| | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai
| | - Maria Pino
- Translational Research Institute, AdventHealth
| | - Gongxin Yu
- Translational Research Institute, AdventHealth
| | | | | |
Collapse
|