1
|
Li J, He Z, Chai W, Tian M, Yu H, He X, Zhu X. Dip2a regulates stress susceptibility in the basolateral amygdala. Neural Regen Res 2025; 20:1735-1748. [PMID: 39104112 PMCID: PMC11688567 DOI: 10.4103/nrr.nrr-d-23-01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00025/figure1/v/2024-08-05T133530Z/r/image-tiff Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post-traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A (Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid-associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Zixuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Weitai Chai
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Meng Tian
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Huali Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaoxiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Niitani K, Nishida R, Futami Y, Nishitani N, Deyama S, Kaneda K. Activation of ventral pallidum-projecting neurons in the nucleus accumbens via 5-HT 2C receptor stimulation regulates motivation for wheel running in male mice. Neuropharmacology 2024; 261:110181. [PMID: 39393590 DOI: 10.1016/j.neuropharm.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Rodents have a strong motivation for wheel running; however, the neural mechanisms that regulate their motivation remain unknown. We investigated the possible involvement of serotonin (5-HT) systems in regulating motivation for wheel running in male mice. Systemic administration of a 5-HT1A receptor antagonist (WAY100635) increased the number of wheel rotations, whereas administration of a 5-HT2A or 5-HT2C receptor antagonist (volinanserin or SB242084, respectively) decreased it. In the open field test, neither WAY100635 nor volinanserin affected locomotor activity, whereas SB242084 increased locomotor activity. To identify the brain regions on which these antagonists act, we locally injected these into the motivational circuitry, including the nucleus accumbens (NAc), dorsomedial striatum (DM-Str), and medial prefrontal cortex (mPFC). Injection of SB242084 into the NAc, but not the DM-Str or mPFC, reduced the number of wheel rotations without altering locomotor activity. The local administration of WAY100635 or volinanserin to these brain regions did not affect the number of wheel rotations. Immunohistochemical analyses revealed that wheel running increased the number of c-Fos-positive cells in the NAc medial shell (NAc-MS), which was reduced by systemic SB242084 administration. In vitro slice whole-cell recordings showed that bath application of the 5-HT2C receptor agonist lorcaserin increased the frequency of spontaneous excitatory and inhibitory postsynaptic currents in the ventral tegmental area (VTA)-projecting neurons, whereas it only increased the frequency of spontaneous excitatory postsynaptic currents in ventral pallidum (VP)-projecting neurons in the NAc-MS. These findings suggest that the activation of VP-projecting NAc-MS neurons via 5-HT2C receptor stimulation regulates motivation for wheel running.
Collapse
Affiliation(s)
- Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ryoma Nishida
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yusaku Futami
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Colonna M, Konopka G, Liddelow SA, Nowakowski T, Awatramani R, Bateup HS, Cadwell CR, Caglayan E, Chen JL, Gillis J, Kampmann M, Krienen F, Marsh SE, Monje M, O'Dea MR, Patani R, Pollen AA, Quintana FJ, Scavuzzo M, Schmitz M, Sloan SA, Tesar PJ, Tollkuhn J, Tosches MA, Urbanek ME, Werner JM, Bayraktar OA, Gokce O, Habib N. Implementation and validation of single-cell genomics experiments in neuroscience. Nat Neurosci 2024; 27:2310-2325. [PMID: 39627589 DOI: 10.1038/s41593-024-01814-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/15/2024] [Indexed: 12/13/2024]
Abstract
Single-cell or single-nucleus transcriptomics is a powerful tool for identifying cell types and cell states. However, hypotheses derived from these assays, including gene expression information, require validation, and their functional relevance needs to be established. The choice of validation depends on numerous factors. Here, we present types of orthogonal and functional validation experiment to strengthen preliminary findings obtained using single-cell and single-nucleus transcriptomics as well as the challenges and limitations of these approaches.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Genevieve Konopka
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Tomasz Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| | - Rajeshwar Awatramani
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| | - Helen S Bateup
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Emre Caglayan
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Neurophotonics, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jesse Gillis
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Fenna Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marissa Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
- Institute for Glial Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew Schmitz
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
- Institute for Glial Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - Madeleine E Urbanek
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan M Werner
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Ozgun Gokce
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Murakawa T, Kogure L, Hata K, Hasunuma K, Takenawa S, Sano K, Ogawa S. Estrous Cycle-Dependent Modulation of Sexual Receptivity in Female Mice by Estrogen Receptor Beta-Expressing Cells in the Dorsal Raphe Nucleus. J Neurosci 2024; 44:e1137242024. [PMID: 39299803 PMCID: PMC11604141 DOI: 10.1523/jneurosci.1137-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The sexual receptivity of female mice, shown as lordosis response, is mainly regulated by estradiol action on estrogen receptor alpha (ERα) and beta (ERβ), depending on the day of the estrous cycle. Previous studies revealed that ERα in the ventromedial nucleus of the hypothalamus (VMH) plays an essential role in the induction of lordosis on the day of estrus (Day 1). However, the mechanisms of the transition to nonreceptive states on the day after estrus (Day 2) are not completely understood. In the present study, we investigated the possible role of ERβ, which is highly expressed in the dorsal raphe nucleus (DRN), in lordosis expression. We found that ERβ-Cre female mice, which were ovariectomized and primed with estradiol and progesterone to mimic the estrous cycle, showed high levels of lordosis on Day 2 when ERβ-expressing DRN (DRN-ERβ+) neuronal activity was chemogenetically suppressed. This finding suggests that excitation of DRN-ERβ+ neurons is necessary for the decline of lordosis on Day 2. Fiber photometry recordings during female-male behavioral interactions revealed that DRN-ERβ+ neuronal activation in response to male intromission was significantly more prolonged on Day 2 compared with Day 1. Chemogenetic overstimulation of DRN-ERβ+ neurons induced c-Fos expression in brain areas known to be inhibitory for lordosis expression, even though they did not express anterogradely labeled fibers of DRN-ERβ+ cells. These findings collectively suggest that DRN-ERβ+ neuronal excitation serves as an inhibitory modulator and is responsible for the decline in receptivity during nonestrus phases.
Collapse
Affiliation(s)
- Tomoaki Murakawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Lisa Kogure
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Kakuma Hata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Kansuke Hasunuma
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Satoshi Takenawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Kazuhiro Sano
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, 305-8577, Japan
| |
Collapse
|
5
|
Kolling LJ, Chimenti MS, Marcinkiewcz CA. Spatial differences in gene expression across the dorsal raphe nucleus in a model of early Alzheimer's disease. J Alzheimers Dis 2024:13872877241299119. [PMID: 39584353 DOI: 10.1177/13872877241299119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Persons with Alzheimer's disease (AD) present with changes in mood, sleep, and arousal that may precede the clinical manifestation of cognitive decline. These early symptoms can be driven by changes in the serotonergic (5-HT) nuclei of the brainstem, particularly the dorsal raphe nucleus (DRN). It is unclear why all 5-HT neurons do not simultaneously develop AD pathology that progresses at the same rate. OBJECTIVE We sought to identify any underlying genetic components associated with susceptibility or resistance of 5-HT neurons to AD pathology. METHODS The Visium Spatial Gene Expression platform was used to identify transcriptomic changes across the DRN in a preclinical model of early AD, human tau-overexpressing mice (htau mice). We further used RNAscope and immunohistochemical assessment to validate findings of primary interest. RESULTS We find that the DRN of htau mice differentially expresses AD-related genes, including those related to kinase binding, ion channel activity, ligand-receptor interactions, and regulation of serine/threonine kinases. We further find that computational sub-clustering of the DRN is consistent with previous circuitry-driven characterizations, allowing for spatial bounding of distinct subregions within the DRN. Of these, we find the dorsolateral DRN is preferentially impacted by 5-HT neuron loss and development of tau pathology, which coincides with increased expression of the long noncoding RNA Map2k3os. CONCLUSIONS Map2k3os may serve regulatory roles relevant for tau phosphorylation and warrants further investigation to characterize its interactions. Overall, this report demonstrates the power of large-scale spatial transcriptomics technologies, while underscoring the need for convergent-data validation to overcome their limitations.
Collapse
Affiliation(s)
- Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics Bioinformatics Division, University of Iowa, IA City, IA, USA
| | | |
Collapse
|
6
|
Chen X. Reimagining Cortical Connectivity by Deconstructing Its Molecular Logic into Building Blocks. Cold Spring Harb Perspect Biol 2024; 16:a041509. [PMID: 38621822 PMCID: PMC11529856 DOI: 10.1101/cshperspect.a041509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Comprehensive maps of neuronal connectivity provide a foundation for understanding the structure of neural circuits. In a circuit, neurons are diverse in morphology, electrophysiology, gene expression, activity, and other neuronal properties. Thus, constructing a comprehensive connectivity map requires associating various properties of neurons, including their connectivity, at cellular resolution. A commonly used approach is to use the gene expression profiles as an anchor to which all other neuronal properties are associated. Recent advances in genomics and anatomical techniques dramatically improved the ability to determine and associate the long-range projections of neurons with their gene expression profiles. These studies revealed unprecedented details of the gene-projection relationship, but also highlighted conceptual challenges in understanding this relationship. In this article, I delve into the findings and the challenges revealed by recent studies using state-of-the-art neuroanatomical and transcriptomic techniques. Building upon these insights, I propose an approach that focuses on understanding the gene-projection relationship through basic features in gene expression profiles and projections, respectively, that associate with underlying cellular processes. I then discuss how the developmental trajectories of projections and gene expression profiles create additional challenges and necessitate interrogating the gene-projection relationship across time. Finally, I explore complementary strategies that, together, can provide a comprehensive view of the gene-projection relationship.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| |
Collapse
|
7
|
Butt A, Van Damme S, Santiago E, Olson A, Beets I, Koelle MR. Neuropeptide and serotonin co-transmission sets the activity pattern in the C. elegans egg-laying circuit. Curr Biol 2024; 34:4704-4714.e5. [PMID: 39395419 DOI: 10.1016/j.cub.2024.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 10/14/2024]
Abstract
Neurons typically release both a neurotransmitter and one or more neuropeptides, but how these signals are integrated within neural circuits to generate and tune behaviors remains poorly understood. We studied how the two hermaphrodite-specific neurons (HSNs) activate the egg-laying circuit of Caenorhabditis elegans by releasing both the neurotransmitter serotonin and NLP-3 neuropeptides. Egg laying occurs in a temporal pattern with approximately 2-min active phases, during which eggs are laid, separated by approximately 20-min inactive phases, during which no eggs are laid. To understand how serotonin and NLP-3 neuropeptides together help produce this behavior pattern, we identified the G-protein-coupled receptor neuropeptide receptor 36 (NPR-36) as an NLP-3 neuropeptide receptor using genetic and molecular experiments. We found that NPR-36 is expressed in, and promotes egg laying within, the egg-laying muscle cells, the same cells where two serotonin receptors also promote egg laying. During the active phase, when HSN activity is high, we found that serotonin and NLP-3 neuropeptides each have a different effect on the timing of egg laying. During the inactive phase, HSN activity is low, which may result in release of only serotonin, yet mutants lacking either serotonin or nlp-3 signaling have longer inactive phases. This suggests that NLP-3 peptide signaling may persist through the inactive phase to help serotonin signaling terminate the inactive phase. We propose a model for neural circuit function in which multiple signals with short- and long-lasting effects compete to generate and terminate persistent internal states, thus patterning a behavior over tens of minutes.
Collapse
Affiliation(s)
- Allison Butt
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA
| | | | - Emerson Santiago
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Andrew Olson
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
8
|
Schoofs A, Miroschnikow A, Schlegel P, Zinke I, Schneider-Mizell CM, Cardona A, Pankratz MJ. Serotonergic modulation of swallowing in a complete fly vagus nerve connectome. Curr Biol 2024; 34:4495-4512.e6. [PMID: 39270641 PMCID: PMC7616834 DOI: 10.1016/j.cub.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
How the body interacts with the brain to perform vital life functions, such as feeding, is a fundamental issue in physiology and neuroscience. Here, we use a whole-animal scanning transmission electron microscopy volume of Drosophila to map the neuronal circuits that connect the entire enteric nervous system to the brain via the insect vagus nerve at synaptic resolution. We identify a gut-brain feedback loop in which Piezo-expressing mechanosensory neurons in the esophagus convey food passage information to a cluster of six serotonergic neurons in the brain. Together with information on food value, these central serotonergic neurons enhance the activity of serotonin receptor 7-expressing motor neurons that drive swallowing. This elemental circuit architecture includes an axo-axonic synaptic connection from the glutamatergic motor neurons innervating the esophageal muscles onto the mechanosensory neurons that signal to the serotonergic neurons. Our analysis elucidates a neuromodulatory sensory-motor system in which ongoing motor activity is strengthened through serotonin upon completion of a biologically meaningful action, and it may represent an ancient form of motor learning.
Collapse
Affiliation(s)
- Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 TN1, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Ingo Zinke
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | | | - Albert Cardona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK; Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Place, Cambridge CB2 3EL, UK
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany.
| |
Collapse
|
9
|
Mondoloni S, Molina P, Lecca S, Wu CH, Michel L, Osypenko D, Cachin F, Flanigan M, Congiu M, Lalive AL, Kash T, Deng F, Li Y, Mameli M. Serotonin release in the habenula during emotional contagion promotes resilience. Science 2024; 385:1081-1086. [PMID: 39236168 DOI: 10.1126/science.adp3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024]
Abstract
Negative emotional contagion-witnessing others in distress-affects an individual's emotional responsivity. However, whether it shapes coping strategies when facing future threats remains unknown. We found that mice that briefly observe a conspecific being harmed become resilient, withstanding behavioral despair after an adverse experience. Photometric recordings during negative emotional contagion revealed increased serotonin (5-HT) release in the lateral habenula. Whereas 5-HT and emotional contagion reduced habenular burst firing, limiting 5-HT synthesis prevented burst plasticity. Enhancing raphe-to-habenula 5-HT was sufficient to recapitulate resilience. In contrast, reducing 5-HT release in the habenula made witnessing a conspecific in distress ineffective to promote the resilient phenotype after adversity. These findings reveal that 5-HT supports vicarious emotions and leads to resilience by tuning definite patterns of habenular neuronal activity.
Collapse
Affiliation(s)
- Sarah Mondoloni
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Patricia Molina
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Cheng-Hsi Wu
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Léo Michel
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Denys Osypenko
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Fanchon Cachin
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Meghan Flanigan
- The Bowles Center for Alcohol Studies, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Mauro Congiu
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Arnaud L Lalive
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Thomas Kash
- The Bowles Center for Alcohol Studies, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
- Inserm, UMR-S 839, 75005 Paris, France
| |
Collapse
|
10
|
Natsubori A, Kwon S, Honda Y, Kojima T, Karashima A, Masamoto K, Honda M. Serotonergic regulation of cortical neurovascular coupling and hemodynamics upon awakening from sleep in mice. J Cereb Blood Flow Metab 2024; 44:1591-1607. [PMID: 38477254 PMCID: PMC11418750 DOI: 10.1177/0271678x241238843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Neurovascular coupling (NVC) is the functional hyperemia of the brain responding to local neuronal activity. It is mediated by astrocytes and affected by subcortical ascending pathways in the cortex that convey information, such as sensory stimuli and the animal condition. Here, we investigate the influence of the raphe serotonergic system, a subcortical ascending arousal system in animals, on the modulation of cortical NVC and cerebral blood flow (CBF). Raphe serotonergic neurons were optogenically activated for 30 s, which immediately awakened the mice from non-rapid eye movement sleep. This caused a biphasic cortical hemodynamic change: a transient increase for a few seconds immediately after photostimulation onset, followed by a large progressive decrease during the stimulation period. Serotonergic neuron activation increased intracellular Ca2+ levels in cortical pyramidal neurons and astrocytes, demonstrating its effect on the NVC components. Pharmacological inhibition of cortical neuronal firing activity and astrocyte metabolic activity had small hypovolemic effects on serotonin-induced biphasic CBF changes, while blocking 5-HT1B receptors expressed primarily in cerebral vasculature attenuated the decreasing CBF phase. This suggests that serotonergic neuron activation leading to animal awakening could allow the NVC to exert a hyperemic function during a biphasic CBF response, with a predominant decrease in the cortex.
Collapse
Affiliation(s)
- Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soojin Kwon
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshiko Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Kojima
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akihiro Karashima
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Kazuto Masamoto
- Dept. Mechanical and Intelligent Systems Engineering, Univ. of Electro-Communications, Tokyo, Japan
| | - Makoto Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
11
|
Park I, Choi M, Kim J, Jang S, Kim D, Kim J, Choe Y, Geum D, Yu SW, Choi JW, Moon C, Choe HK, Son GH, Kim K. Role of the circadian nuclear receptor REV-ERBα in dorsal raphe serotonin synthesis in mood regulation. Commun Biol 2024; 7:998. [PMID: 39147805 PMCID: PMC11327353 DOI: 10.1038/s42003-024-06647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Affective disorders are frequently associated with disrupted circadian rhythms. The existence of rhythmic secretion of central serotonin (5-hydroxytryptamine, 5-HT) pattern has been reported; however, the functional mechanism underlying the circadian control of 5-HTergic mood regulation remains largely unknown. Here, we investigate the role of the circadian nuclear receptor REV-ERBα in regulating tryptophan hydroxylase 2 (Tph2), the rate-limiting enzyme of 5-HT synthesis. We demonstrate that the REV-ERBα expressed in dorsal raphe (DR) 5-HTergic neurons functionally competes with PET-1-a nuclear activator crucial for 5-HTergic neuron development. In mice, genetic ablation of DR 5-HTergic REV-ERBα increases Tph2 expression, leading to elevated DR 5-HT levels and reduced depression-like behaviors at dusk. Further, pharmacological manipulation of the mice DR REV-ERBα activity increases DR 5-HT levels and affects despair-related behaviors. Our findings provide valuable insights into the molecular and cellular link between the circadian rhythm and the mood-controlling DR 5-HTergic systems.
Collapse
Affiliation(s)
- Inah Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Mijung Choi
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jeongah Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sangwon Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Doyeon Kim
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jihoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Dongho Geum
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Cheil Moon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Legal Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kyungjin Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
12
|
Ramkumar R, Edge-Partington M, Terstege DJ, Adigun K, Ren Y, Khan NS, Rouhi N, Jamani NF, Tsutsui M, Epp JR, Sargin D. Long-Term Impact of Early-Life Stress on Serotonin Connectivity. Biol Psychiatry 2024; 96:287-299. [PMID: 38316332 DOI: 10.1016/j.biopsych.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Chronic childhood stress is a prominent risk factor for developing affective disorders, yet mechanisms underlying this association remain unclear. Maintenance of optimal serotonin (5-HT) levels during early postnatal development is critical for the maturation of brain circuits. Understanding the long-lasting effects of early-life stress (ELS) on serotonin-modulated brain connectivity is crucial to develop treatments for affective disorders arising from childhood stress. METHODS Using a mouse model of chronic developmental stress, we determined the long-lasting consequences of ELS on 5-HT circuits and behavior in females and males. Using FosTRAP mice, we cross-correlated regional c-Fos density to determine brain-wide functional connectivity of the raphe nucleus. We next performed in vivo fiber photometry to establish ELS-induced deficits in 5-HT dynamics and optogenetics to stimulate 5-HT release to improve behavior. RESULTS Adult female and male mice exposed to ELS showed heightened anxiety-like behavior. ELS further enhanced susceptibility to acute stress by disrupting the brain-wide functional connectivity of the raphe nucleus and the activity of 5-HT neuron population, in conjunction with increased orbitofrontal cortex (OFC) activity and disrupted 5-HT release in medial OFC. Optogenetic stimulation of 5-HT terminals in the medial OFC elicited an anxiolytic effect in ELS mice in a sex-dependent manner. CONCLUSIONS These findings suggest a significant disruption in 5-HT-modulated brain connectivity in response to ELS, with implications for sex-dependent vulnerability. The anxiolytic effect of the raphe-medial OFC circuit stimulation has potential implications for developing targeted stimulation-based treatments for affective disorders that arise from early life adversities.
Collapse
Affiliation(s)
- Raksha Ramkumar
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Moriah Edge-Partington
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dylan J Terstege
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kabirat Adigun
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yi Ren
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nazmus S Khan
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nahid Rouhi
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Naila F Jamani
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mio Tsutsui
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan R Epp
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derya Sargin
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Zhao S, Gu ZL, Yue YN, Zhang X, Dong Y. Cannabinoids and monoaminergic system: implications for learning and memory. Front Neurosci 2024; 18:1425532. [PMID: 39206116 PMCID: PMC11349573 DOI: 10.3389/fnins.2024.1425532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cannabinoids and the endocannabinoid system (ECS) have been intensively studied for their neuroregulatory roles in the central nervous system (CNS), especially in regulating learning and memory. However, many experimental and clinical studies obtained conflicting results indicating a complex network of interaction underlying the regulation of learning and memory by different cannabinoids and the ECS. The ECS influences neuronal synaptic communications, and therefore may exert different regulation via their different impact on other neurotransmitters. The monoaminergic system includes a variety of neurotransmitters, such as dopamine, norepinephrine, and serotonin, which play important roles in regulating mood, cognition, and reward. The interaction among cannabinoids, ECS and the monoaminergic system has drawn particular attention, especially their contributions to learning and memory. In this review, we summarized the current understanding of how cannabinoids, ECS and the monoaminergic system contribute to the process of learning and memory, and discussed the influences of monoaminergic neurotransmission by cannabinoids and ECS during this process.
Collapse
Affiliation(s)
- Sha Zhao
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhao-Liang Gu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ya-Nan Yue
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Shibayama K, Nakajo H, Tanimoto Y, Kakinuma H, Shiraki T, Tsuboi T, Okamoto H. The serotonergic neurons derived from rhombomere 2 are localized in the median raphe and project to the dorsal pallium in zebrafish. Neurosci Res 2024; 205:27-33. [PMID: 38447890 DOI: 10.1016/j.neures.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
The serotonergic neurons in the raphe nucleus are implicated in various cognitive functions such as learning and emotion. In vertebrates, the raphe nucleus is divided into the dorsal raphe and the median raphe. In contrast to the abundance of knowledge on the functions of the dorsal raphe, the roles of the serotonergic neurons in the median raphe are relatively unknown. The studies using zebrafish revealed that the median raphe serotonergic neurons receive input from the two distinct pathways from the habenula and the IPN. The use of zebrafish may reveal the function of the Hb-IPN-median raphe pathway. To clarify the functions of the median raphe serotonergic neurons, it is necessary to distinguish them from those in the dorsal raphe. Most median raphe serotonergic neurons originate from rhombomere 2 in mice, and we generated the transgenic zebrafish which can label the serotonergic neurons derived from rhombomere 2. In this study, we found the serotonergic neurons derived from rhombomere 2 are localized in the median raphe and project axons to the rostral dorsal pallium in zebrafish. This study suggests that this transgenic system has the potential to specifically reveal the function and information processing of the Hb-IPN-raphe-telencephalon circuit in learning.
Collapse
Affiliation(s)
- Kotaro Shibayama
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan
| | - Haruna Nakajo
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan
| | - Yuki Tanimoto
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hisaya Kakinuma
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Toshiyuki Shiraki
- Research Resources Division, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan; Lead contact.
| |
Collapse
|
15
|
Maddaloni G, Chang YJ, Senft RA, Dymecki SM. Adaptation to photoperiod via dynamic neurotransmitter segregation. Nature 2024; 632:147-156. [PMID: 39020173 DOI: 10.1038/s41586-024-07692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/07/2024] [Indexed: 07/19/2024]
Abstract
Changes in the amount of daylight (photoperiod) alter physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms-dysregulation associates with disease, including affective disorders3 and metabolic syndromes4. The circadian rhythm circuitry is implicated in such responses5,6, yet little is known about the precise cellular substrates that underlie phase synchronization to photoperiod change. Here we identify a brain circuit and system of axon branch-specific and reversible neurotransmitter deployment that are critical for behavioural and sleep adaptation to photoperiod. A type of neuron called mrEn1-Pet17 in the mouse brainstem median raphe nucleus segregates serotonin from VGLUT3 (also known as SLC17A8, a proxy for glutamate) to different axonal branches that innervate specific brain regions involved in circadian rhythm and sleep-wake timing8,9. This branch-specific neurotransmitter deployment did not distinguish between daylight and dark phase; however, it reorganized with change in photoperiod. Axonal boutons, but not cell soma, changed neurochemical phenotype upon a shift away from equinox light/dark conditions, and these changes were reversed upon return to equinox conditions. When we genetically disabled Vglut3 in mrEn1-Pet1 neurons, sleep-wake periods, voluntary activity and clock gene expression did not synchronize to the new photoperiod or were delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing, we delineated a preoptic area-to-mrEn1Pet1 connection that was responsible for decoding the photoperiodic inputs, driving the neurotransmitter reorganization and promoting behavioural synchronization. Our results reveal a brain circuit and periodic, branch-specific neurotransmitter deployment that regulates organismal adaptation to photoperiod change.
Collapse
Affiliation(s)
- G Maddaloni
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Y J Chang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - R A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - S M Dymecki
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Randolph AB, Zheng H, Rinaman L. Populations of Hindbrain Glucagon-Like Peptide 1 (GLP1) Neurons That Innervate the Hypothalamic PVH, Thalamic PVT, or Limbic Forebrain BST Have Axon Collaterals That Reach All Central Regions Innervated by GLP1 Neurons. J Neurosci 2024; 44:e2063232024. [PMID: 38811166 PMCID: PMC11293452 DOI: 10.1523/jneurosci.2063-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt) that express the glucagon gene (Gcg) give rise to glucagon-like peptide 1 (GLP1)-immunopositive axons in the spinal cord and many subcortical brain regions. Central GLP1 receptor signaling contributes to motivated behavior and stress responses in rats and mice, in which hindbrain GLP1 neurons are activated to express c-Fos in a metabolic state-dependent manner. The present study examined whether GLP1 inputs to distinct brain regions arise from distinct subsets of Gcg-expressing neurons, and mapped the distribution of axon collaterals arising from projection-defined GLP1 neural populations. Using our Gcg-Cre knock-in rat model, Cre-dependent adeno-associated virus (AAV) tracing was conducted in adult male and female rats to compare axonal projections of IRt versus cNTS GLP1 neurons. Overlapping projections were observed in all brain regions that receive GLP1 input, with the caveat that cNTS injections produced Cre-dependent labeling of some IRt neurons, and vice versa. In additional experiments, specific diencephalic or limbic forebrain nuclei were microinjected with Cre-dependent retrograde AAVs (AAVrg) that expressed reporters to fully label the axon collaterals of transduced GLP1 neurons. AAVrg injected into each forebrain site labeled Gcg-expressing neurons in both the cNTS and IRt. The collective axon collaterals of labeled neurons entered the spinal cord and every brain region previously reported to contain GLP1-positive axons. These results indicate that the axons of GLP1 neural populations that innervate the thalamic paraventricular nucleus, paraventricular nucleus of the hypothalamus, and/or bed nucleus of the stria terminalis collectively innervate all central regions that receive GLP1 axonal input.
Collapse
Affiliation(s)
- Abigail B Randolph
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Huiyuan Zheng
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
17
|
Schwalbe DC, Stornetta DS, Abraham-Fan RJ, Souza GMPR, Jalil M, Crook ME, Campbell JN, Abbott SBG. Molecular Organization of Autonomic, Respiratory, and Spinally-Projecting Neurons in the Mouse Ventrolateral Medulla. J Neurosci 2024; 44:e2211232024. [PMID: 38918066 PMCID: PMC11293450 DOI: 10.1523/jneurosci.2211-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The ventrolateral medulla (VLM) is a crucial region in the brain for visceral and somatic control, serving as a significant source of synaptic input to the spinal cord. Experimental studies have shown that gene expression in individual VLM neurons is predictive of their function. However, the molecular and cellular organization of the VLM has remained uncertain. This study aimed to create a comprehensive dataset of VLM cells using single-cell RNA sequencing in male and female mice. The dataset was enriched with targeted sequencing of spinally-projecting and adrenergic/noradrenergic VLM neurons. Based on differentially expressed genes, the resulting dataset of 114,805 VLM cells identifies 23 subtypes of neurons, excluding those in the inferior olive, and five subtypes of astrocytes. Spinally-projecting neurons were found to be abundant in seven subtypes of neurons, which were validated through in situ hybridization. These subtypes included adrenergic/noradrenergic neurons, serotonergic neurons, and neurons expressing gene markers associated with premotor neurons in the ventromedial medulla. Further analysis of adrenergic/noradrenergic neurons and serotonergic neurons identified nine and six subtypes, respectively, within each class of monoaminergic neurons. Marker genes that identify the neural network responsible for breathing were concentrated in two subtypes of neurons, delineated from each other by markers for excitatory and inhibitory neurons. These datasets are available for public download and for analysis with a user-friendly interface. Collectively, this study provides a fine-scale molecular identification of cells in the VLM, forming the foundation for a better understanding of the VLM's role in vital functions and motor control.
Collapse
Affiliation(s)
- Dana C Schwalbe
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | | | | | | - Maira Jalil
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Maisie E Crook
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - John N Campbell
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | |
Collapse
|
18
|
Fardous RS, Alshmmari S, Tawfik E, Khadra I, Ramadan Q, Zourob M. An Integrated and Modular Compartmentalized Microfluidic System with Tunable Electrospun Porous Membranes for Epithelialized Organs-on-a-Chip. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39047263 DOI: 10.1021/acsami.4c08864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A modular and 3D compartmentalized microfluidic system with electrospun porous membranes (PMs) for epithelialized organ-on-a-chip systems is presented. Our novel approach involves direct deposition of polymer nanofibers onto a patterned poly(methyl methacrylate) (PMMA) substrate using electrospinning, resulting in an integrated PM within the microfluidic chip. The in situ deposition of the PM eliminates the need for additional assembly processes. To demonstrate the high throughput membrane integration capability of our approach, we successfully deposited nanofibers onto various chip designs with complex microfluidic planar structures and expanded dimensions. We characterized and tested the fully PMMA chip by growing an epithelial monolayer using the Caco-2 cell line to study drug permeability. A comprehensive analysis of the bulk and surface properties of the membrane's fibers made of PMMA and polystyrene (PS) was conducted to determine the polymer with the best performance for cell culture and drug transport applications. The PMMA-based membrane, with a PMMA/PVP ratio of 5:1, allowed for the fabrication of a uniform membrane structure along the aligned nanofibers. By modulating the fiber diameter and total thickness of the membrane, we could adjust the membrane's porosity for specific cell culture applications. The PMMA-PVP nanofibers exhibited a low polydispersity index value, indicating monodispersed nanofibers and a more homogeneous and uniform fiber network. Both types of membranes demonstrated excellent mechanical integrity under medium perfusion flow rates. However, the PMMA-PVP composition offered a tailored porous structure with modulable porosity based on the fiber diameter and thickness. Our developed platform enables dynamic in vitro modeling of the epithelial barrier and has applications in drug transport and in vitro microphysiological systems.
Collapse
Affiliation(s)
- Roa S Fardous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, U.K
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | - Sultan Alshmmari
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | - Essam Tawfik
- Advanced Diagnostics & Therapeutics Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Kingdome Saudi Arabia
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, U.K
| | - Qasem Ramadan
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | | |
Collapse
|
19
|
Liu H, Qu N, Gonzalez NV, Palma MA, Chen H, Xiong J, Choubey A, Li Y, Li X, Yu M, Liu H, Tu L, Zhang N, Yin N, Conde KM, Wang M, Bean JC, Han J, Scarcelli NA, Yang Y, Saito K, Cui H, Tong Q, Sun Z, Wang C, Cai X, Lu L, He Y, Xu Y. A Light-Responsive Neural Circuit Suppresses Feeding. J Neurosci 2024; 44:e2192232024. [PMID: 38897723 PMCID: PMC11270527 DOI: 10.1523/jneurosci.2192-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Light plays an essential role in a variety of physiological processes, including vision, mood, and glucose homeostasis. However, the intricate relationship between light and an animal's feeding behavior has remained elusive. Here, we found that light exposure suppresses food intake, whereas darkness amplifies it in male mice. Interestingly, this phenomenon extends its reach to diurnal male Nile grass rats and healthy humans. We further show that lateral habenula (LHb) neurons in mice respond to light exposure, which in turn activates 5-HT neurons in the dorsal Raphe nucleus (DRN). Activation of the LHb→5-HTDRN circuit in mice blunts darkness-induced hyperphagia, while inhibition of the circuit prevents light-induced anorexia. Together, we discovered a light-responsive neural circuit that relays the environmental light signals to regulate feeding behavior in mice.
Collapse
Affiliation(s)
- Hailan Liu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030 .
| | - Na Qu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan 430012, China .
- Wuhan Hospital for Psychotherapy, Wuhan 430012, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430012, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan 430012, China
- Affiliated Wuhan Mental Health Center, Jianghan University, Wuhan 430012, China
| | | | - Marco A Palma
- Human Behavior Laboratory, Texas A&M University, College Station, Texas 77843
| | - Huamin Chen
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan 430012, China
- Wuhan Hospital for Psychotherapy, Wuhan 430012, China
- Affiliated Wuhan Mental Health Center, Jianghan University, Wuhan 430012, China
| | - Jiani Xiong
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan 430012, China
- Wuhan Hospital for Psychotherapy, Wuhan 430012, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan 430012, China
| | - Abhinav Choubey
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, Texas 77030
| | - Yongxiang Li
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Xin Li
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, Texas 77030
| | - Meng Yu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Hesong Liu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Longlong Tu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Nan Zhang
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Na Yin
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Kristine Marie Conde
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Mengjie Wang
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan Carter Bean
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Junying Han
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Nikolas Anthony Scarcelli
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Yongjie Yang
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Kenji Saito
- Department of Pharmacology and Neuroscience, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Huxing Cui
- Department of Pharmacology and Neuroscience, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
- F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Zheng Sun
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, Texas 77030
| | - Chunmei Wang
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Xing Cai
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Li Lu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yang He
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Yong Xu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030 .
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
20
|
Henderson F, Dumas S, Gangarossa G, Bernard V, Pujol M, Poirel O, Pietrancosta N, El Mestikawy S, Daumas S, Fabre V. Regulation of stress-induced sleep perturbations by dorsal raphe VGLUT3 neurons in male mice. Cell Rep 2024; 43:114411. [PMID: 38944834 DOI: 10.1016/j.celrep.2024.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Exposure to stressors has profound effects on sleep that have been linked to serotonin (5-HT) neurons of the dorsal raphe nucleus (DR). However, the DR also comprises glutamatergic neurons expressing vesicular glutamate transporter type 3 (DRVGLUT3), leading us to examine their role. Cell-type-specific tracing revealed that DRVGLUT3 neurons project to brain areas regulating arousal and stress. We found that chemogenetic activation of DRVGLUT3 neurons mimics stress-induced sleep perturbations. Furthermore, deleting VGLUT3 in the DR attenuated stress-induced sleep perturbations, especially after social defeat stress. In the DR, VGLUT3 is found in subsets of 5-HT and non-5-HT neurons. We observed that both populations are activated by acute stress, including those projecting to the ventral tegmental area. However, deleting VGLUT3 in 5-HT neurons minimally affected sleep regulation. These findings suggest that VGLUT3 expression in the DR drives stress-induced sleep perturbations, possibly involving non-5-HT DRVGLUT3 neurons.
Collapse
Affiliation(s)
- Fiona Henderson
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | | | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; Institut Universitaire de France (IUF), Paris, France
| | - Véronique Bernard
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Marine Pujol
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Odile Poirel
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Sorbonne Université, CNRS UMR 7203, Laboratoire des BioMolécules, 75005 Paris, France
| | - Salah El Mestikawy
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC H4H 1R3, Canada
| | - Stéphanie Daumas
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Véronique Fabre
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| |
Collapse
|
21
|
Sancho-Alonso M, Sarriés-Serrano U, Miquel-Rio L, Yanes Castilla C, Paz V, Meana JJ, Perello M, Bortolozzi A. New insights into the effects of serotonin on Parkinson's disease and depression through its role in the gastrointestinal tract. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00039-5. [PMID: 38992345 DOI: 10.1016/j.sjpmh.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Neuropsychiatric and neurodegenerative disorders are frequently associated with gastrointestinal (GI) co-pathologies. Although the central and enteric nervous systems (CNS and ENS, respectively) have been studied separately, there is increasing interest in factors that may contribute to conditions affecting both systems. There is compelling evidence that serotonin (5-HT) may play an important role in several gut-brain disorders. It is well known that 5-HT is essential for the development and functioning of the CNS. However, most of the body's 5-HT is produced in the GI tract. A deeper understanding of the specific effects of enteric 5-HT on gut-brain disorders may provide the basis for the development of new therapeutic targets. This review summarizes current data focusing on the important role of 5-HT in ENS development and motility, with particular emphasis on novel aspects of 5-HT signaling in conditions where CNS and ENS comorbidities are common, such as Parkinson's disease and depressive disorders.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Anatomy and Human Embryology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Claudia Yanes Castilla
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
22
|
Hughes AC, Pittman BG, Xu B, Gammons JW, Webb CM, Nolen HG, Chapman P, Bikoff JB, Schwarz LA. A single-vector intersectional AAV strategy for interrogating cellular diversity and brain function. Nat Neurosci 2024; 27:1400-1410. [PMID: 38802592 DOI: 10.1038/s41593-024-01659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
As discovery of cellular diversity in the brain accelerates, so does the need for tools that target cells based on multiple features. Here we developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), an adeno-associated virus-based, single-construct, intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches to deliver molecular cargo to specific neuronal subtypes. ConVERGD offers benefits over existing intersectional expression platforms, such as expanded intersectional targeting with up to five recombinase-based features, accommodation of larger and more complex payloads and a vector that is easy to modify for rapid toolkit expansion. In the present report we employed ConVERGD to characterize an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus that co-express the endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ locus coeruleus neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C Hughes
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Human Cell Types, Allen Institute for Brain Science, Seattle, WA, USA
| | - Brittany G Pittman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jesse W Gammons
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charis M Webb
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hunter G Nolen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay A Schwarz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
23
|
Chen R, Nie P, Wang J, Wang GZ. Deciphering brain cellular and behavioral mechanisms: Insights from single-cell and spatial RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1865. [PMID: 38972934 DOI: 10.1002/wrna.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
The brain is a complex computing system composed of a multitude of interacting neurons. The computational outputs of this system determine the behavior and perception of every individual. Each brain cell expresses thousands of genes that dictate the cell's function and physiological properties. Therefore, deciphering the molecular expression of each cell is of great significance for understanding its characteristics and role in brain function. Additionally, the positional information of each cell can provide crucial insights into their involvement in local brain circuits. In this review, we briefly overview the principles of single-cell RNA sequencing and spatial transcriptomics, the potential issues and challenges in their data processing, and their applications in brain research. We further outline several promising directions in neuroscience that could be integrated with single-cell RNA sequencing, including neurodevelopment, the identification of novel brain microstructures, cognition and behavior, neuronal cell positioning, molecules and cells related to advanced brain functions, sleep-wake cycles/circadian rhythms, and computational modeling of brain function. We believe that the deep integration of these directions with single-cell and spatial RNA sequencing can contribute significantly to understanding the roles of individual cells or cell types in these specific functions, thereby making important contributions to addressing critical questions in those fields. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Development RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Renrui Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengxing Nie
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
25
|
Zheng X, Wu B, Liu Y, Simmons SK, Kim K, Clarke GS, Ashiq A, Park J, Li J, Wang Z, Tong L, Wang Q, Rajamani KT, Muñoz-Castañeda R, Mu S, Qi T, Zhang Y, Ngiam ZC, Ohte N, Hanashima C, Wu Z, Xu X, Levin JZ, Jin X. Massively parallel in vivo Perturb-seq reveals cell-type-specific transcriptional networks in cortical development. Cell 2024; 187:3236-3248.e21. [PMID: 38772369 PMCID: PMC11193654 DOI: 10.1016/j.cell.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.
Collapse
Affiliation(s)
- Xinhe Zheng
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Boli Wu
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Yuejia Liu
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kwanho Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Grace S Clarke
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Abdullah Ashiq
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Joshua Park
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Jiwen Li
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Zhilin Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Liqi Tong
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92617, USA
| | - Qizhao Wang
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92617, USA
| | - Keerthi T Rajamani
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Rodrigo Muñoz-Castañeda
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Shang Mu
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tianbo Qi
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Yunxiao Zhang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Zi Chao Ngiam
- Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan
| | - Naoto Ohte
- Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan
| | - Carina Hanashima
- Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan
| | - Zhuhao Wu
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiangmin Xu
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92617, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xin Jin
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Miquel-Rio L, Sarriés-Serrano U, Sancho-Alonso M, Florensa-Zanuy E, Paz V, Ruiz-Bronchal E, Manashirov S, Campa L, Pilar-Cuéllar F, Bortolozzi A. ER stress in mouse serotonin neurons triggers a depressive phenotype alleviated by ketamine targeting eIF2α signaling. iScience 2024; 27:109787. [PMID: 38711453 PMCID: PMC11070602 DOI: 10.1016/j.isci.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Depression is a devastating mood disorder that causes significant disability worldwide. Current knowledge of its pathophysiology remains modest and clear biological markers are lacking. Emerging evidence from human and animal models reveals persistent alterations in endoplasmic reticulum (ER) homeostasis, suggesting that ER stress-related signaling pathways may be targets for prevention and treatment. However, the neurobiological basis linking the pathways involved in depression-related ER stress remains unknown. Here, we report that an induced model of ER stress in mouse serotonin (5-HT) neurons is associated with reduced Egr1-dependent 5-HT cellular activity and 5-HT neurotransmission, resulting in neuroplasticity deficits in forebrain regions and a depressive-like phenotype. Ketamine administration engages downstream eIF2α signaling to trigger rapid neuroplasticity events that rescue the depressive-like effects. Collectively, these data identify ER stress in 5-HT neurons as a cellular pathway involved in the pathophysiology of depression and show that eIF2α is critical in eliciting ketamine's fast antidepressant effects.
Collapse
Affiliation(s)
- Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- University of Barcelona (UB), 08036 Barcelona, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eva Florensa-Zanuy
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Molecular and Cellular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Esther Ruiz-Bronchal
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sharon Manashirov
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- miCure Therapeutics LTD., Tel-Aviv 6423902, Israel
| | - Leticia Campa
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fuencisla Pilar-Cuéllar
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Molecular and Cellular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
27
|
Hamada HT, Abe Y, Takata N, Taira M, Tanaka KF, Doya K. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation. Nat Commun 2024; 15:4152. [PMID: 38755120 PMCID: PMC11099070 DOI: 10.1038/s41467-024-48489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.
Collapse
Affiliation(s)
- Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Research & Development Department, Araya Inc, Tokyo, Japan.
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
28
|
Gourisankar S, Krokhotin A, Wenderski W, Crabtree GR. Context-specific functions of chromatin remodellers in development and disease. Nat Rev Genet 2024; 25:340-361. [PMID: 38001317 DOI: 10.1038/s41576-023-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/26/2023]
Abstract
Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
29
|
Castle ME, Flanigan ME. The role of brain serotonin signaling in excessive alcohol consumption and withdrawal: A call for more research in females. Neurobiol Stress 2024; 30:100618. [PMID: 38433994 PMCID: PMC10907856 DOI: 10.1016/j.ynstr.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a leading cause of death and disability worldwide, but current treatments are insufficient in fully addressing the symptoms that often lead to relapses in alcohol consumption. The brain's serotonin system has been implicated in AUD for decades and is a major regulator of stress-related behaviors associated with increased alcohol consumption. This review will discuss the current literature on the association between neurobiological adaptations in serotonin systems and AUD in humans as well as the effectiveness of serotonin receptor manipulations on alcohol-related behaviors like consumption and withdrawal. We will further discuss how these findings in humans relate to findings in animal models, including a comparison of systemic pharmacological manipulations modulating alcohol consumption. We next provide a detailed overview of brain region-specific roles for serotonin and serotonin receptor signaling in alcohol-related behaviors in preclinical animal models, highlighting the complexity of forming a cohesive model of serotonin function in AUD and providing possible avenues for more effective therapeutic intervention. Throughout the review, we discuss what is known about sex differences in the sequelae of AUD and the role of serotonin in these sequelae. We stress a critical need for additional studies in women and female animals so that we may build a clearer path to elucidating sex-specific serotonergic mechanisms and develop better treatments.
Collapse
Affiliation(s)
- Megan E. Castle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
30
|
Arakawa H, Tokashiki M, Higuchi Y, Konno T. Adolescent social isolation disrupts developmental tuning of neuropeptide circuits in the hypothalamus to amygdala regulating social and defensive behavior. Peptides 2024; 175:171178. [PMID: 38368908 DOI: 10.1016/j.peptides.2024.171178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Engaging in positive social (i.e., prosocial) interactions during adolescence acts to modulate neural circuits that determine adult adaptive behavior. While accumulating evidence indicates that a strong craving for prosocial behavior contributes to sustaining neural development, the consequences of social deprivation during adolescence on social neural circuits, including those involving oxytocin (OXT) and vasopressin (AVP), are poorly characterized. We evaluated adaptive behaviors in socially isolated mice, including anxiety-like, social, and defensive behaviors, along with OXT and AVP neural profiles in relevant brain regions. Social isolation from postnatal day (P-)22 to P-48 induced enhanced defensive and exploratory behaviors, in nonsocial and social contexts. Unlike OXT neurons, AVP+ cell density in the paraventricular nucleus of the hypothalamus increases with age in males. Social isolation also modulated gene expression in the medial amygdala (MeA), including the upregulation of OXT receptors in males and the downregulation of AVP1a receptors in both sexes. Socially isolated mice showed an enhanced defensive, anogenital approach toward a novel adult female during direct social interactions. Subsequent c-Fos mapping revealed diminished neural activity in restricted brain areas, including the MeA, lateral septum, and posterior intralaminar nucleus of the thalamus, in socially isolated mice. These data indicate that neural signals arising from daily social interactions invoke region-specific modification of neuropeptide expression that coordinates with altered defensiveness and neural responsivities, including OXT- and AVP-projecting regions. The present findings indicate an involvement of OXT and AVP circuits in adolescent neural and behavioral plasticity that is tuned by daily social interaction.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Department of Pharmacology, University of Michigan School of Medicine, MI, USA.
| | - Mana Tokashiki
- Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yuki Higuchi
- Department of Systems Physiology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Toshihiro Konno
- Department of Subtropical Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
31
|
Oka A, Hadano S, Ueda MT, Nakagawa S, Komaki G, Ando T. Rare CRHR2 and GRM8 variants identified as candidate factors associated with eating disorders in Japanese patients by whole exome sequencing. Heliyon 2024; 10:e28643. [PMID: 38644811 PMCID: PMC11031761 DOI: 10.1016/j.heliyon.2024.e28643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Eating disorders (EDs) are a type of psychiatric disorder characterized by pathological eating and related behavior and considered to be highly heritable. The purpose of this study was to explore rare variants expected to display biological functions associated with the etiology of EDs. We performed whole exome sequencing (WES) of affected sib-pairs corresponding to disease subtype through their lifetime and their parents. From those results, rare single nucleotide variants (SNVs) concordant with sib-pairs were extracted and estimated to be most deleterious in the examined families. Two non-synonymous SNVs located on corticotropin-releasing hormone receptor 2 (CRHR2) and glutamate metabotropic receptor 8 (GRM8) were identified as candidate disease susceptibility factors. The SNV of CRHR2 was included within the cholesterol binding motif of the transmembrane helix region, while the SNV of GRM8 was found to contribute to hydrogen bonds for an α-helix structure. CRHR2 plays important roles in the serotoninergic system of dorsal raphe nuclei, which is involved with feeding and stress-coping behavior, whereas GRM8 modulates glutamatergic neurotransmission. Moreover, GRM8 modulates glutamatergic neurotransmission, and is also considered to have effects on dopaminergic and adrenergic neurotransmission. Thus, identification of rare and deleterious variants in this study is expected to increase understanding and treatment of affected individuals. Further investigation regarding the biological function of these variants may provide an opportunity to elucidate the pathogenesis of EDs.
Collapse
Affiliation(s)
- Akira Oka
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Shinji Hadano
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - So Nakagawa
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Gen Komaki
- Faculty of Medical Science, Fukuoka International University of Health and Welfare, Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan
| | - Tetsuya Ando
- Department of Psychosomatic Medicine, Faculty of Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8553, Japan
| |
Collapse
|
32
|
Mitsui K, Takahashi A. Aggression modulator: Understanding the multifaceted role of the dorsal raphe nucleus. Bioessays 2024; 46:e2300213. [PMID: 38314963 DOI: 10.1002/bies.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Aggressive behavior is instinctively driven behavior that helps animals to survive and reproduce and is closely related to multiple behavioral and physiological processes. The dorsal raphe nucleus (DRN) is an evolutionarily conserved midbrain structure that regulates aggressive behavior by integrating diverse brain inputs. The DRN consists predominantly of serotonergic (5-HT:5-hydroxytryptamine) neurons and decreased 5-HT activity was classically thought to increase aggression. However, recent studies challenge this 5-HT deficiency model, revealing a more complex role for the DRN 5-HT system in aggression. Furthermore, emerging evidence has shown that non-5-HT populations in the DRN and specific neural circuits contribute to the escalation of aggressive behavior. This review argues that the DRN serves as a multifaceted modulator of aggression, acting not only via 5-HT but also via other neurotransmitters and neural pathways, as well as different subsets of 5-HT neurons. In addition, we discuss the contribution of DRN neurons in the behavioral and physiological aspects implicated in aggressive behavior, such as arousal, reward, and impulsivity, to further our understanding of DRN-mediated aggression modulation.
Collapse
Affiliation(s)
- Koshiro Mitsui
- Laboratory of Behavioral Neurobiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aki Takahashi
- Laboratory of Behavioral Neurobiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
33
|
Wang H, Sun Y, Wang W, Wang X, Zhang J, Bai Y, Wang K, Luan L, Yan J, Qin L. Mapping the 5-HTergic neural pathways in perimenopausal mice and elucidating the role of oestrogen receptors in 5-HT neurotransmission. Heliyon 2024; 10:e27976. [PMID: 38510058 PMCID: PMC10951590 DOI: 10.1016/j.heliyon.2024.e27976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Perimenopausal syndrome (PMS) encompasses neuropsychiatric symptoms, such as hot flashes and depression, which are associated with alterations in the 5-HTergic neural pathway in the brain. However, the specific changes and mechanisms underlying these alterations remain unclear. In this study, ovariectomized mice were used to successfully establish a perimenopause model, and the changes in the expression of 5-HT and its receptors (5-HT1AR and 5-HT2AR) across 72 brain regions in these ovariectomized mice were assessed by immunohistochemistry. Although both 5-HT and 5-HT1AR were widely expressed throughout the brain, only a limited number of regions expressed 5-HT2AR. Notably, decreased expression of 5-HT was observed across almost all brain regions in the ovariectomy (OVX) group compared with the Sham group. Altered expression of both receptors was found within areas related to hot flashes (the preoptic area) or mood disorders (the amygdala). Additionally, reduced oestrogen receptor (ER)α/β expression was detected in cells in the raphe nucleus (RN), an area known to regulate body temperature. Results showed that ERα/β positively regulate the transcriptional activity of the enzymes TPH2/MAOA, which are involved in serotonin metabolism during perimenopause. This study revealed the changes in 5-HT neuropathways (5-HT, 5-HT1AR and 5-HT2AR) in perimenopausal mice, mainly in brain regions related to regulation of the body temperature, mood, sleep and memory. This study clarified that the expression of oestrogen receptor decreased in perimenopause, which regulated the transcription levels of TPH2 and MAOA, and ultimately led to the reduction of 5-HT content, providing a new target for clinical diagnosis and treatment of perimenopausal diseases.
Collapse
Affiliation(s)
- Hanfei Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanrong Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wenjuan Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiangqiu Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jinglin Zhang
- Department of Dental Medicine, School of Dental Medicine, Yuncheng Vocational Nursing College, Yuncheng, 044000, China
| | - Yu Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ke Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liju Luan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Junhao Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lihua Qin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
34
|
Ren S, Zhang C, Yue F, Tang J, Zhang W, Zheng Y, Fang Y, Wang N, Song Z, Zhang Z, Zhang X, Qin H, Wang Y, Xia J, Jiang C, He C, Luo F, Hu Z. A midbrain GABAergic circuit constrains wakefulness in a mouse model of stress. Nat Commun 2024; 15:2722. [PMID: 38548744 PMCID: PMC10978901 DOI: 10.1038/s41467-024-46707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Enhancement of wakefulness is a prerequisite for adaptive behaviors to cope with acute stress, but hyperarousal is associated with impaired behavioral performance. Although the neural circuitries promoting wakefulness in acute stress conditions have been extensively identified, less is known about the circuit mechanisms constraining wakefulness to prevent hyperarousal. Here, we found that chemogenetic or optogenetic activation of GAD2-positive GABAergic neurons in the midbrain dorsal raphe nucleus (DRNGAD2) decreased wakefulness, while inhibition or ablation of these neurons produced an increase in wakefulness along with hyperactivity. Surprisingly, DRNGAD2 neurons were paradoxically wakefulness-active and were further activated by acute stress. Bidirectional manipulations revealed that DRNGAD2 neurons constrained the increase of wakefulness and arousal level in a mouse model of stress. Circuit-specific investigations demonstrated that DRNGAD2 neurons constrained wakefulness via inhibition of the wakefulness-promoting paraventricular thalamus. Therefore, the present study identified a wakefulness-constraining role DRNGAD2 neurons in acute stress conditions.
Collapse
Affiliation(s)
- Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
- No. 953 Army Hospital, Shigatse, Tibet Autonomous Region, 857000, China.
| | - Cai Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Faguo Yue
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Jinxiang Tang
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yue Zheng
- Department of Anesthesiology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Na Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaolong Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Han Qin
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Chenggang Jiang
- Psychology Department, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
35
|
Zhao Y, Huang CX, Gu Y, Zhao Y, Ren W, Wang Y, Chen J, Guan NN, Song J. Serotonergic modulation of vigilance states in zebrafish and mice. Nat Commun 2024; 15:2596. [PMID: 38519480 PMCID: PMC10959952 DOI: 10.1038/s41467-024-47021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Vigilance refers to being alertly watchful or paying sustained attention to avoid potential threats. Animals in vigilance states reduce locomotion and have an enhanced sensitivity to aversive stimuli so as to react quickly to dangers. Here we report that an unconventional 5-HT driven mechanism operating at neural circuit level which shapes the internal state underlying vigilance behavior in zebrafish and male mice. The neural signature of internal vigilance state was characterized by persistent low-frequency high-amplitude neuronal synchrony in zebrafish dorsal pallium and mice prefrontal cortex. The neuronal synchronization underlying vigilance was dependent on intense release of 5-HT induced by persistent activation of either DRN 5-HT neuron or local 5-HT axon terminals in related brain regions via activation of 5-HTR7. Thus, we identify a mechanism of vigilance behavior across species that illustrates the interplay between neuromodulators and neural circuits necessary to shape behavior states.
Collapse
Affiliation(s)
- Yang Zhao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Chun-Xiao Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Yiming Gu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Yacong Zhao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Wenjie Ren
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Yutong Wang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Jinjin Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Na N Guan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China.
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China.
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Jianren Song
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China.
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China.
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
36
|
Qiu S, Hu Y, Huang Y, Gao T, Wang X, Wang D, Ren B, Shi X, Chen Y, Wang X, Wang D, Han L, Liang Y, Liu D, Liu Q, Deng L, Chen Z, Zhan L, Chen T, Huang Y, Wu Q, Xie T, Qian L, Jin C, Huang J, Deng W, Jiang T, Li X, Jia X, Yuan J, Li A, Yan J, Xu N, Xu L, Luo Q, Poo MM, Sun Y, Li CT, Yao H, Gong H, Sun YG, Xu C. Whole-brain spatial organization of hippocampal single-neuron projectomes. Science 2024; 383:eadj9198. [PMID: 38300992 DOI: 10.1126/science.adj9198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mapping single-neuron projections is essential for understanding brain-wide connectivity and diverse functions of the hippocampus (HIP). Here, we reconstructed 10,100 single-neuron projectomes of mouse HIP and classified 43 projectome subtypes with distinct projection patterns. The number of projection targets and axon-tip distribution depended on the soma location along HIP longitudinal and transverse axes. Many projectome subtypes were enriched in specific HIP subdomains defined by spatial transcriptomic profiles. Furthermore, we delineated comprehensive wiring diagrams for HIP neurons projecting exclusively within the HIP formation (HPF) and for those projecting to both intra- and extra-HPF targets. Bihemispheric projecting neurons generally projected to one pair of homologous targets with ipsilateral preference. These organization principles of single-neuron projectomes provide a structural basis for understanding the function of HIP neurons.
Collapse
Affiliation(s)
- Shou Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yachuang Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Taosha Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Danying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luyao Han
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yikai Liang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingxu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoqin Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lijie Zhan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tianzhi Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuzhe Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingge Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liuqin Qian
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenxi Jin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiawen Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Xiangning Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Jing Yuan
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ninglong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu T Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Bonaldo B, Casile A, Ostuni MT, Bettarelli M, Nasini S, Marraudino M, Panzica G, Gotti S. Perinatal exposure to bisphenol A or S: Effects on anxiety-related behaviors and serotonergic system. CHEMOSPHERE 2024; 349:140827. [PMID: 38042429 DOI: 10.1016/j.chemosphere.2023.140827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Bisphenols, synthetic organic compounds used in the production of plastics, are an extremely abundant class of Endocrine Disrupting Chemicals, i.e., exogenous chemicals or mixtures of chemicals that can interfere with any aspect of hormone action. Exposure to BPs can lead to a wide range of effects, and it is especially dangerous if it occurs during specific critical periods of life. Focusing on the perinatal exposure to BPA or its largely used substitute BPS, we investigated the effects on anxiety-related behaviors and the serotonergic system, which is highly involved in controlling these behaviors, in adult mice. We treated C57BL/6J dams orally with a dose of 4 μg/kg body weight/day (i.e., EFSA TDI) of BPA or BPS dissolved in corn oil or with vehicle alone, at the onset of mating and continued treatment until the offspring were weaned. Adult offspring of both sexes performed the elevated plus maze and the open field tests. Then, we analyzed the serotonergic system in dorsal (DR) and median (MnR) raphe nuclei by immunohistochemical techniques. Behavioral tests highlighted alterations in BPA- and BPS-treated mice, suggesting different effects of the bisphenols exposure on anxiety-related behavior in males (anxiolytic) and females (anxiogenic). The analysis of the serotonergic system highlighted a sex dimorphism in the DR only, with control females showing higher values of serotonin immunoreactivity (5-HT-ir) than control males. BPA-treated males displayed a significant increase of 5-HT-ir in all analyzed nuclei, whereas BPS-treated males showed an increase in ventral DR only. In females, both bisphenols-treated groups showed a significant increase of 5-HT-ir in dorsal DR compared to the controls, and BPA-treated females also showed a significant increase in MnR.These results provide evidence that exposure during the early phases of life to BPA or BPS alters anxiety and the raphe serotonergic neurons in a sex-dependent manner.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Marialaura Teresa Ostuni
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, 35131, Padua, PD, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
38
|
Weber LM, Divecha HR, Tran MN, Kwon SH, Spangler A, Montgomery KD, Tippani M, Bharadwaj R, Kleinman JE, Page SC, Hyde TM, Collado-Torres L, Maynard KR, Martinowich K, Hicks SC. The gene expression landscape of the human locus coeruleus revealed by single-nucleus and spatially-resolved transcriptomics. eLife 2024; 12:RP84628. [PMID: 38266073 PMCID: PMC10945708 DOI: 10.7554/elife.84628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Norepinephrine (NE) neurons in the locus coeruleus (LC) make long-range projections throughout the central nervous system, playing critical roles in arousal and mood, as well as various components of cognition including attention, learning, and memory. The LC-NE system is also implicated in multiple neurological and neuropsychiatric disorders. Importantly, LC-NE neurons are highly sensitive to degeneration in both Alzheimer's and Parkinson's disease. Despite the clinical importance of the brain region and the prominent role of LC-NE neurons in a variety of brain and behavioral functions, a detailed molecular characterization of the LC is lacking. Here, we used a combination of spatially-resolved transcriptomics and single-nucleus RNA-sequencing to characterize the molecular landscape of the LC region and the transcriptomic profile of LC-NE neurons in the human brain. We provide a freely accessible resource of these data in web-accessible and downloadable formats.
Collapse
Affiliation(s)
- Lukas M Weber
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Abby Spangler
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Kelsey D Montgomery
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Rahul Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | | | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
- The Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
39
|
Huang S, Wu SJ, Sansone G, Ibrahim LA, Fishell G. Layer 1 neocortex: Gating and integrating multidimensional signals. Neuron 2024; 112:184-200. [PMID: 37913772 PMCID: PMC11180419 DOI: 10.1016/j.neuron.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Layer 1 (L1) of the neocortex acts as a nexus for the collection and processing of widespread information. By integrating ascending inputs with extensive top-down activity, this layer likely provides critical information regulating how the perception of sensory inputs is reconciled with expectation. This is accomplished by sorting, directing, and integrating the complex network of excitatory inputs that converge onto L1. These signals are combined with neuromodulatory afferents and gated by the wealth of inhibitory interneurons that either are embedded within L1 or send axons from other cortical layers. Together, these interactions dynamically calibrate information flow throughout the neocortex. This review will primarily focus on L1 within the primary sensory cortex and will use these insights to understand L1 in other cortical areas.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giulia Sansone
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
40
|
Lentoor AG, Motsamai TB. Neurocognitive Dysfunction and predictors in non-CNS cancer patients: Rationale and methods for the neuro-oncology research at a South African academic hospital. Heliyon 2024; 10:e23007. [PMID: 38148796 PMCID: PMC10750072 DOI: 10.1016/j.heliyon.2023.e23007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/28/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023] Open
Abstract
Background The focus on central nervous system (CNS) malignancies has overshadowed scant but substantial research that suggests non-central nervous cancer patients experience cancer-related cognitive impairment (CRCI), which affects higher-order brain function and influences their quality of life. Despite such evidence of the occurrence of CRCI among non-CNS cancer patients, the factors associated with the CRCIs remain a highly debated issue with discrepancies noted. Whether non-CNS cancer itself can affect the brain independent of cancer treatment is an important question to unpack. This necessitates further research, particularly in the sub-Saharan region where the evidence is limited. Methods This study aims to assess the effect of chemotherapy-associated cognitive and affective changes in non-CNS cancer patients. A non-experimental, time-series, correlational design will be used, in which a battery of computerized neuropsychological tests will be administered, including the e-MoCA, the CNS Vital Signs, the Patient Health Questionnaire-4, the Center for Epidemiologic Studies Depression Scale, the Hamilton Anxiety Rating Scale, the Functional Assessment of Cancer Therapy-Fatigue, and the Semi-structured Interview Schedule. Descriptive and inferential statistical analysis will be conducted, as well as NVivo thematic analysis of the qualitative data. The scope of the neurocognitive issues and risk factors that may be present in cancer patients and survivors in a developing environment could be determined by this study. Implications The study is expected to extend research on the extent at which cancer and cancer treatments are associated with neurocognitive changes among non-CNS cancer patients and their impact on their quality of life in the local context. The results are expected to inform treatment providers to develop treatment guidelines tailored for individuals diagnosed with cancer and who have received cancer treatment, as well as individualized psychosocial interventions aimed at addressing psychological challenges associated with quality of life among cancer survivors.
Collapse
Affiliation(s)
- Antonio G. Lentoor
- Department of Clinical Psychology, School of Medicine, Sefako Makgatho Health Sciences University, Molotlegi St, Ga-Rankuwa, Pretoria, South Africa
| | - Tiro Bright Motsamai
- Department of Clinical Psychology, School of Medicine, Sefako Makgatho Health Sciences University, Molotlegi St, Ga-Rankuwa, Pretoria, South Africa
| |
Collapse
|
41
|
O’Connell CJ, Brown RS, Peach TM, Traubert OD, Schwierling HC, Notorgiacomo GA, Robson MJ. Strain in the Midbrain: Impact of Traumatic Brain Injury on the Central Serotonin System. Brain Sci 2024; 14:51. [PMID: 38248266 PMCID: PMC10813794 DOI: 10.3390/brainsci14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI) is a pervasive public health crisis that severely impacts the quality of life of affected individuals. Like peripheral forms of trauma, TBI results from extraordinarily heterogeneous environmental forces being imparted on the cranial space, resulting in heterogeneous disease pathologies. This has made therapies for TBI notoriously difficult to develop, and currently, there are no FDA-approved pharmacotherapies specifically for the acute or chronic treatment of TBI. TBI is associated with changes in cognition and can precipitate the onset of debilitating psychiatric disorders like major depressive disorder (MDD), generalized anxiety disorder (GAD), and post-traumatic stress disorder (PTSD). Complicating these effects of TBI, FDA-approved pharmacotherapies utilized to treat these disorders often fail to reach the desired level of efficacy in the context of neurotrauma. Although a complicated association, decades of work have linked central serotonin (5-HT) neurotransmission as being involved in the etiology of a myriad of neuropsychiatric disorders, including MDD and GAD. 5-HT is a biogenic monoamine neurotransmitter that is highly conserved across scales of biology. Though the majority of 5-HT is isolated to peripheral sites such as the gastrointestinal (GI) tract, 5-HT neurotransmission within the CNS exerts exquisite control over diverse biological functions, including sleep, appetite and respiration, while simultaneously establishing normal mood, perception, and attention. Although several key studies have begun to elucidate how various forms of neurotrauma impact central 5-HT neurotransmission, a full determination of precisely how TBI disrupts the highly regulated dynamics of 5-HT neuron function and/or 5-HT neurotransmission has yet to be conceptually or experimentally resolved. The purpose of the current review is, therefore, to integrate the disparate bodies of 5-HT and TBI research and synthesize insight into how new combinatorial research regarding 5-HT neurotransmission and TBI may offer an informed perspective into the nature of TBI-induced neuropsychiatric complications.
Collapse
Affiliation(s)
- Christopher J. O’Connell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Ryan S. Brown
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Taylor M. Peach
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Owen D. Traubert
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA;
| | - Hana C. Schwierling
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | | | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
42
|
Nagayasu K. Integrative Research of Neuropharmacology and Informatics Pharmacology for Mental Disorder. Biol Pharm Bull 2024; 47:556-561. [PMID: 38432911 DOI: 10.1248/bpb.b23-00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Mental illness poses a huge social burden, accounting for approximately 14% of all deaths. Depression, a major component of mental illness, affects approximately 300 million people worldwide, mainly in developed countries, and is not only a major social burden but also a cause of suicide. The social burden of depression is estimated to increase further in developing countries, and overcoming it is a pressing issue for all countries, including Japan. Although clinical evidence has demonstrated the efficacy of serotonergic neurotransmission enhancers in the treatment of depression, the full picture of their therapeutic effects has not yet been fully elucidated. In this review, we show that the hyperactivity of serotonin neurons, especially those in the dorsal raphe nucleus, is commonly induced by various antidepressants within a period corresponding to the onset of their clinical efficacy. We established quantitative prediction methods for pharmacological activity using only chemical structures to translate the biological understanding of mental disorders, including major depressive disorders, into clinically effective therapeutics. Our method exhibited better performance than the previously reported methods of quantitative prediction, while targeting a larger number of proteins. Our article suggests the importance of integrative neuropharmacology and informatics-based pharmacology studies to understand the biological basis of mental disorders and facilitate drug development for these disorders.
Collapse
Affiliation(s)
- Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
43
|
Koelle S, Mastrovito D, Whitesell JD, Hirokawa KE, Zeng H, Meila M, Harris JA, Mihalas S. Modeling the cell-type-specific mesoscale murine connectome with anterograde tracing experiments. Netw Neurosci 2023; 7:1497-1512. [PMID: 38144695 PMCID: PMC10745083 DOI: 10.1162/netn_a_00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/10/2023] [Indexed: 12/26/2023] Open
Abstract
The Allen Mouse Brain Connectivity Atlas consists of anterograde tracing experiments targeting diverse structures and classes of projecting neurons. Beyond regional anterograde tracing done in C57BL/6 wild-type mice, a large fraction of experiments are performed using transgenic Cre-lines. This allows access to cell-class-specific whole-brain connectivity information, with class defined by the transgenic lines. However, even though the number of experiments is large, it does not come close to covering all existing cell classes in every area where they exist. Here, we study how much we can fill in these gaps and estimate the cell-class-specific connectivity function given the simplifying assumptions that nearby voxels have smoothly varying projections, but that these projection tensors can change sharply depending on the region and class of the projecting cells. This paper describes the conversion of Cre-line tracer experiments into class-specific connectivity matrices representing the connection strengths between source and target structures. We introduce and validate a novel statistical model for creation of connectivity matrices. We extend the Nadaraya-Watson kernel learning method that we previously used to fill in spatial gaps to also fill in gaps in cell-class connectivity information. To do this, we construct a "cell-class space" based on class-specific averaged regionalized projections and combine smoothing in 3D space as well as in this abstract space to share information between similar neuron classes. Using this method, we construct a set of connectivity matrices using multiple levels of resolution at which discontinuities in connectivity are assumed. We show that the connectivities obtained from this model display expected cell-type- and structure-specific connectivities. We also show that the wild-type connectivity matrix can be factored using a sparse set of factors, and analyze the informativeness of this latent variable model.
Collapse
Affiliation(s)
- Samson Koelle
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Marina Meila
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
44
|
Winter CC, Jacobi A, Su J, Chung L, van Velthoven CTJ, Yao Z, Lee C, Zhang Z, Yu S, Gao K, Duque Salazar G, Kegeles E, Zhang Y, Tomihiro MC, Zhang Y, Yang Z, Zhu J, Tang J, Song X, Donahue RJ, Wang Q, McMillen D, Kunst M, Wang N, Smith KA, Romero GE, Frank MM, Krol A, Kawaguchi R, Geschwind DH, Feng G, Goodrich LV, Liu Y, Tasic B, Zeng H, He Z. A transcriptomic taxonomy of mouse brain-wide spinal projecting neurons. Nature 2023; 624:403-414. [PMID: 38092914 PMCID: PMC10719099 DOI: 10.1038/s41586-023-06817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.
Collapse
Affiliation(s)
- Carla C Winter
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Anne Jacobi
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
- F. Hoffman-La Roche, pRED, Basel, Switzerland.
| | - Junfeng Su
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Leeyup Chung
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zicong Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shuguang Yu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kun Gao
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Geraldine Duque Salazar
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Evgenii Kegeles
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Yu Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Makenzie C Tomihiro
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yiming Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhiyun Yang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Junjie Zhu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jing Tang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xuan Song
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ryan J Donahue
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qing Wang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Ning Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gabriel E Romero
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Michelle M Frank
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexandra Krol
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Riki Kawaguchi
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Yuanyuan Liu
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| | - Zhigang He
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Cheng H, Lou Q, Lai N, Chen L, Zhang S, Fei F, Gao C, Wu S, Han F, Liu J, Guo Y, Chen Z, Xu C, Wang Y. Projection-defined median raphe Pet + subpopulations are diversely implicated in seizure. Neurobiol Dis 2023; 189:106358. [PMID: 37977434 DOI: 10.1016/j.nbd.2023.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
The raphe nuclei, the primary resource of forebrain 5-HT, play an important but heterogeneous role in regulating subcortical excitabilities. Fundamental circuit organizations of different median raphe (MR) subsystems are far from completely understood. In the present study, using cell-specific viral tracing, Ca2+ fiber photometry and epilepsy model, we map out the forebrain efferent and afferent of different MR Pet+ subpopulations and their divergent roles in epilepsy. We found that PetMR neurons send both collateral and parallel innervations to different downstream regions through different subpopulations. Notably, CA3-projecting PetMR subpopulations are largely distinct from habenula (Hb)-projecting PetMR subpopulations in anatomical distribution and topological organization, while majority of the CA3-projecting PetMR subpopulations are overlapped with the medial septum (MS)-projecting PetMR subpopulations. Further, using Ca2+ fiber photometry, we monitor activities of PetMR neurons in hippocampal-kindling seizure, a classical epilepsy model with pathological mechanisms caused by excitation-inhibition imbalance. We found that soma activities of PetMR neurons are heterogeneous during different periods of generalized seizures. These divergent activities are contributed by different projection-defined PetMR subpopulations, manifesting as increased activities in CA3 but decreased activity in Hb resulting from their upstream differences. Together, our findings provide a novel framework of MR subsystems showing that projection-defined MR Pet+ subpopulations are topologically heterogenous with divergent circuit connections and are diversely implicated in seizures. This may help in the understanding of heterogeneous nature of MR 5-HTergic subsystems and the paradox roles of 5-HTergic systems in epilepsy.
Collapse
Affiliation(s)
- Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiuwen Lou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310003, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenshu Gao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuangshuang Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jinggen Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Guo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310061, China.
| |
Collapse
|
46
|
Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, Lee C, Jung W, Goldy J, Abdelhak A, Aitken M, Baker K, Baker P, Barkan E, Bertagnolli D, Bhandiwad A, Bielstein C, Bishwakarma P, Campos J, Carey D, Casper T, Chakka AB, Chakrabarty R, Chavan S, Chen M, Clark M, Close J, Crichton K, Daniel S, DiValentin P, Dolbeare T, Ellingwood L, Fiabane E, Fliss T, Gee J, Gerstenberger J, Glandon A, Gloe J, Gould J, Gray J, Guilford N, Guzman J, Hirschstein D, Ho W, Hooper M, Huang M, Hupp M, Jin K, Kroll M, Lathia K, Leon A, Li S, Long B, Madigan Z, Malloy J, Malone J, Maltzer Z, Martin N, McCue R, McGinty R, Mei N, Melchor J, Meyerdierks E, Mollenkopf T, Moonsman S, Nguyen TN, Otto S, Pham T, Rimorin C, Ruiz A, Sanchez R, Sawyer L, Shapovalova N, Shepard N, Slaughterbeck C, Sulc J, Tieu M, Torkelson A, Tung H, Valera Cuevas N, Vance S, Wadhwani K, Ward K, Levi B, Farrell C, Young R, Staats B, Wang MQM, Thompson CL, Mufti S, Pagan CM, Kruse L, Dee N, Sunkin SM, Esposito L, Hawrylycz MJ, Waters J, Ng L, Smith K, Tasic B, Zhuang X, Zeng H. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 2023; 624:317-332. [PMID: 38092916 PMCID: PMC10719114 DOI: 10.1038/s41586-023-06812-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.
Collapse
Affiliation(s)
- Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA.
| | | | | | - Meng Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Pamela Baker
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Eliza Barkan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Min Chen
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - James Gee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - James Gray
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Mike Huang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madie Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Arielle Leon
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Su Li
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zach Madigan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ryan McGinty
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nicholas Mei
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jose Melchor
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Sven Otto
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Lane Sawyer
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Noah Shepard
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Shane Vance
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Katelyn Ward
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Rob Young
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
47
|
Zhang M, Pan X, Jung W, Halpern AR, Eichhorn SW, Lei Z, Cohen L, Smith KA, Tasic B, Yao Z, Zeng H, Zhuang X. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 2023; 624:343-354. [PMID: 38092912 PMCID: PMC10719103 DOI: 10.1038/s41586-023-06808-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
In mammalian brains, millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells have impeded our understanding of the molecular and cellular basis of brain function. Recent advances in spatially resolved single-cell transcriptomics have enabled systematic mapping of the spatial organization of molecularly defined cell types in complex tissues1-3, including several brain regions (for example, refs. 1-11). However, a comprehensive cell atlas of the whole brain is still missing. Here we imaged a panel of more than 1,100 genes in approximately 10 million cells across the entire adult mouse brains using multiplexed error-robust fluorescence in situ hybridization12 and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating multiplexed error-robust fluorescence in situ hybridization and single-cell RNA sequencing data. Using this approach, we generated a comprehensive cell atlas of more than 5,000 transcriptionally distinct cell clusters, belonging to more than 300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of this atlas to the mouse brain common coordinate framework allowed systematic quantifications of the cell-type composition and organization in individual brain regions. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes of cells. Finally, this high-resolution spatial map of cells, each with a transcriptome-wide expression profile, allowed us to infer cell-type-specific interactions between hundreds of cell-type pairs and predict molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a foundation for functional investigations of neural circuits and their dysfunction in health and disease.
Collapse
Affiliation(s)
- Meng Zhang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Xingjie Pan
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aaron R Halpern
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Stephen W Eichhorn
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Zhiyun Lei
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Limor Cohen
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
48
|
Xu T, Cao L, Duan J, Li Y, Li Y, Hu Z, Li S, Zhang M, Wang G, Guo F, Lu J. Uncovering the role of FOXA2 in the Development of Human Serotonin Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303884. [PMID: 37679064 PMCID: PMC10646255 DOI: 10.1002/advs.202303884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Directed differentiation of serotonin neurons (SNs) from human pluripotent stem cells (hPSCs) provides a valuable tool for uncovering the mechanism of human SN development and the associated neuropsychiatric disorders. Previous studies report that FOXA2 is expressed by serotonergic progenitors (SNPs) and functioned as a serotonergic fate determinant in mouse. However, in the routine differentiation experiments, it is accidentally found that less SNs and more non-neuronal cells are obtained from SNP stage with higher percentage of FOXA2-positive cells. This phenomenon prompted them to question the role of FOXA2 as an intrinsic fate determinant for human SN differentiation. Herein, by direct differentiation of engineered hPSCs into SNs, it is found that the SNs are not derived from FOXA2-lineage cells; FOXA2-knockout hPSCs can still differentiate into mature and functional SNs with typical serotonergic identity; FOXA2 overexpression suppresses the SN differentiation, indicating that FOXA2 is not intrinsically required for human SN differentiation. Furthermore, repressing FOXA2 expression by retinoic acid (RA) and dynamically modulating Sonic Hedgehog (SHH) signaling pathway promotes human SN differentiation. This study uncovers the role of FOXA2 in human SN development and improves the differentiation efficiency of hPSCs into SNs by repressing FOXA2 expression.
Collapse
Affiliation(s)
- Ting Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Fei Guo
- Key Laboratory of Receptor ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
- Suzhou Institute of Tongji UniversitySuzhou215101China
| |
Collapse
|
49
|
Trofimova I. Anticipatory attractors, functional neurochemistry and "Throw & Catch" mechanisms as illustrations of constructivism. Rev Neurosci 2023; 34:737-762. [PMID: 36584323 DOI: 10.1515/revneuro-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman's experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman's work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry's evidence points to the "Throw & Catch" (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials ("Throw") within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The "Throw" works as an internally generated "flashlight" that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual's individuals' needs and capacities.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada
| |
Collapse
|
50
|
Chiou KL, Huang X, Bohlen MO, Tremblay S, DeCasien AR, O’Day DR, Spurrell CH, Gogate AA, Zintel TM, Andrews MG, Martínez MI, Starita LM, Montague MJ, Platt ML, Shendure J, Snyder-Mackler N. A single-cell multi-omic atlas spanning the adult rhesus macaque brain. SCIENCE ADVANCES 2023; 9:eadh1914. [PMID: 37824616 PMCID: PMC10569716 DOI: 10.1126/sciadv.adh1914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Cataloging the diverse cellular architecture of the primate brain is crucial for understanding cognition, behavior, and disease in humans. Here, we generated a brain-wide single-cell multimodal molecular atlas of the rhesus macaque brain. Together, we profiled 2.58 M transcriptomes and 1.59 M epigenomes from single nuclei sampled from 30 regions across the adult brain. Cell composition differed extensively across the brain, revealing cellular signatures of region-specific functions. We also identified 1.19 M candidate regulatory elements, many previously unidentified, allowing us to explore the landscape of cis-regulatory grammar and neurological disease risk in a cell type-specific manner. Altogether, this multi-omic atlas provides an open resource for investigating the evolution of the human brain and identifying novel targets for disease interventions.
Collapse
Affiliation(s)
- Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Martin O. Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex R. DeCasien
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | - Diana R. O’Day
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Cailyn H. Spurrell
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Aishwarya A. Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Trisha M. Zintel
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Cayo Biobank Research Unit
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Madeline G. Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Melween I. Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Lea M. Starita
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Michael J. Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| |
Collapse
|