1
|
Lin YC, Wu T, Wu CL. The Neural Correlations of Olfactory Associative Reward Memories in Drosophila. Cells 2024; 13:1716. [PMID: 39451234 PMCID: PMC11506542 DOI: 10.3390/cells13201716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Advancing treatment to resolve human cognitive disorders requires a comprehensive understanding of the molecular signaling pathways underlying learning and memory. While most organ systems evolved to maintain homeostasis, the brain developed the capacity to perceive and adapt to environmental stimuli through the continuous modification of interactions within a gene network functioning within a broader neural network. This distinctive characteristic enables significant neural plasticity, but complicates experimental investigations. A thorough examination of the mechanisms underlying behavioral plasticity must integrate multiple levels of biological organization, encompassing genetic pathways within individual neurons, interactions among neural networks providing feedback on gene expression, and observable phenotypic behaviors. Model organisms, such as Drosophila melanogaster, which possess more simple and manipulable nervous systems and genomes than mammals, facilitate such investigations. The evolutionary conservation of behavioral phenotypes and the associated genetics and neural systems indicates that insights gained from flies are pertinent to understanding human cognition. Rather than providing a comprehensive review of the entire field of Drosophila memory research, we focus on olfactory associative reward memories and their related neural circuitry in fly brains, with the objective of elucidating the underlying neural mechanisms, thereby advancing our understanding of brain mechanisms linked to cognitive systems.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
2
|
Egan JM. Physiological Integration of Taste and Metabolism. N Engl J Med 2024; 390:1699-1710. [PMID: 38718360 DOI: 10.1056/nejmra2304578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Affiliation(s)
- Josephine M Egan
- From the Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore
| |
Collapse
|
3
|
Larnerd C, Kachewar N, Wolf FW. Drosophila learning and memory centers and the actions of drugs of abuse. Learn Mem 2024; 31:a053815. [PMID: 38862166 PMCID: PMC11199947 DOI: 10.1101/lm.053815.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
Drug addiction and the circuitry for learning and memory are intimately intertwined. Drugs of abuse create strong, inappropriate, and lasting memories that contribute to many of their destructive properties, such as continued use despite negative consequences and exceptionally high rates of relapse. Studies in Drosophila melanogaster are helping us understand how drugs of abuse, especially alcohol, create memories at the level of individual neurons and in the circuits where they function. Drosophila is a premier organism for identifying the mechanisms of learning and memory. Drosophila also respond to drugs of abuse in ways that remarkably parallel humans and rodent models. An emerging consensus is that, for alcohol, the mushroom bodies participate in the circuits that control acute drug sensitivity, not explicitly associative forms of plasticity such as tolerance, and classical associative memories of their rewarding and aversive properties. Moreover, it is becoming clear that drugs of abuse use the mushroom body circuitry differently from other behaviors, potentially providing a basis for their addictive properties.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California 95343, USA
| | - Neha Kachewar
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
- Health Sciences Research Institute, University of California, Merced, California 95343, USA
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California 95343, USA
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
| |
Collapse
|
4
|
Alessandrini M, Vezzoli A, Mrakic-Sposta S, Malacrida S, Micarelli A. Commentary: Is obesity associated with taste alterations? a systematic review. Front Endocrinol (Lausanne) 2024; 14:1282276. [PMID: 38313840 PMCID: PMC10834745 DOI: 10.3389/fendo.2023.1282276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 02/06/2024] Open
Affiliation(s)
- Marco Alessandrini
- Department of Clinical Sciences and Translational Medicine, Ear-Nose-Throat (ENT) Unit, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | | | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Alessandro Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| |
Collapse
|
5
|
Glendinning JI, Williams N. Chronic sugar exposure increases daily intake of sugars but decreases avidity for sweeteners in mice. Appetite 2023; 191:107077. [PMID: 37813162 DOI: 10.1016/j.appet.2023.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Little is known about how chronic sugar consumption impacts avidity for and daily intake of sugars. This issue is topical because modern humans exhibit high daily intakes of sugar. Here, we exposed sugar-naïve C57BL/6 mice (across two 28-day exposure periods, EP1 and EP2) to a control (chow and water) or experimental (chow, water and a 11 or 34% sugar solution) diet. The sugar solutions contained sucrose, glucose syrups, or high-fructose syrups. We used brief-access tests to measure appetitive responses to sucralose and sucrose solutions at three time points: baseline (before EP1), after EP1, and after EP2. We used lick rates to infer palatability, and number of trials initiated/test to infer motivation. Exposure to the control diet had no impact on lick rates or number of trials initiated for sucralose and sucrose. In contrast, exposure to the experimental diets reduced licking for the sweeteners to varying degrees. Lick rates were reduced by exposure to sugar solutions containing the 11% glucose syrups, 34% sucrose, 34% glucose syrups and 34% high-fructose syrups. The number of trials initiated was reduced by exposure to all of the sugar solutions. Despite the exposure-induced reductions in avidity for the sweetener solutions, daily intakes of virtually all of the sugar solutions increased across the exposure periods. We conclude that (i) chronic consumption of sugar solutions reduced avidity for the sweetened solutions, (ii) the extent of this effect depended on the concentration and type of sugar, and (iii) avidity for sweet-tasting solutions could not explain the persistently high daily intake of sugar solutions in mice.
Collapse
Affiliation(s)
- John I Glendinning
- Departments of Biology and Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA.
| | - Niki Williams
- Departments of Biology and Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| |
Collapse
|
6
|
Zhao Y, Johansson E, Duan J, Han Z, Alenius M. Fat- and sugar-induced signals regulate sweet and fat taste perception in Drosophila. Cell Rep 2023; 42:113387. [PMID: 37934669 PMCID: PMC11212107 DOI: 10.1016/j.celrep.2023.113387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
In this study, we investigate the interplay between taste perception and macronutrients. While sugar's and protein's self-regulation of taste perception is known, the role of fat remains unclear. We reveal that in Drosophila, fat overconsumption reduces fatty acid taste in favor of sweet perception. Conversely, sugar intake increases fatty acid perception and suppresses sweet taste. Genetic investigations show that the sugar signal, gut-secreted Hedgehog, suppresses sugar taste and enhances fatty acid perception. Fat overconsumption induces unpaired 2 (Upd2) secretion from adipose tissue to the hemolymph. We reveal taste neurons take up Upd2, which triggers Domeless suppression of fatty acid perception. We further show that the downstream JAK/STAT signaling enhances sweet perception and, via Socs36E, fine-tunes Domeless activity and the fatty acid taste perception. Together, our results show that sugar regulates Hedgehog signaling and fat induces Upd2 signaling to balance nutrient intake and to regulate sweet and fat taste perception.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Jianli Duan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
7
|
Jovanoski KD, Duquenoy L, Mitchell J, Kapoor I, Treiber CD, Croset V, Dempsey G, Parepalli S, Cognigni P, Otto N, Felsenberg J, Waddell S. Dopaminergic systems create reward seeking despite adverse consequences. Nature 2023; 623:356-365. [PMID: 37880370 PMCID: PMC10632144 DOI: 10.1038/s41586-023-06671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Resource-seeking behaviours are ordinarily constrained by physiological needs and threats of danger, and the loss of these controls is associated with pathological reward seeking1. Although dysfunction of the dopaminergic valuation system of the brain is known to contribute towards unconstrained reward seeking2,3, the underlying reasons for this behaviour are unclear. Here we describe dopaminergic neural mechanisms that produce reward seeking despite adverse consequences in Drosophila melanogaster. Odours paired with optogenetic activation of a defined subset of reward-encoding dopaminergic neurons become cues that starved flies seek while neglecting food and enduring electric shock punishment. Unconstrained seeking of reward is not observed after learning with sugar or synthetic engagement of other dopaminergic neuron populations. Antagonism between reward-encoding and punishment-encoding dopaminergic neurons accounts for the perseverance of reward seeking despite punishment, whereas synthetic engagement of the reward-encoding dopaminergic neurons also impairs the ordinary need-dependent dopaminergic valuation of available food. Connectome analyses reveal that the population of reward-encoding dopaminergic neurons receives highly heterogeneous input, consistent with parallel representation of diverse rewards, and recordings demonstrate state-specific gating and satiety-related signals. We propose that a similar dopaminergic valuation system dysfunction is likely to contribute to maladaptive seeking of rewards by mammals.
Collapse
Affiliation(s)
| | - Lucille Duquenoy
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Jessica Mitchell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ishaan Kapoor
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | | | - Vincent Croset
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Department of Biosciences, Durham University, Durham, UK
| | - Georgia Dempsey
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Sai Parepalli
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Paola Cognigni
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Northern Medical Physics and Clinical Engineering, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Nils Otto
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Johannes Felsenberg
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Yang R, Zhang Y, Deng Y, Yang Y, Zhong W, Zhu L. 2-Ethylhexyl Diphenyl Phosphate Causes Obesity in Zebrafish by Stimulating Overeating via Inhibition of Dopamine Receptor D2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14162-14172. [PMID: 37704188 DOI: 10.1021/acs.est.3c04070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Obesity is a popular public health problem worldwide and is mainly caused by overeating, but little is known about the impacts of synthetic chemicals on obesity. Herein, we evaluated the obesogenic effect caused by 2-ethylhexyl diphenyl phosphate (EHDPHP) on zebrafish. Adult zebrafish were exposed to 5, 35, and 245 μg/L of EHDPHP for 21 days. Results showed that EHDPHP exposure significantly promoted the feeding behavior of zebrafish, as evidenced by shorter reaction time, increased average food intake, feeding rate, and intake frequency (p < 0.05). Transcriptomic, real-time quantitative PCR, and neurotransmitter analyses revealed that the dopamine (DA) receptor D2 (DRD2) was inhibited, which interfered with the DA neural reward regulation system, thus stimulating food addiction to zebrafish. This was further verified by the restored DRD2 after 7 days of Halo (a DRD2 agonist) treatment. A strong interaction between EHDPHP and DRD2 was identified via molecular docking. As a consequence of the abnormal feeding behavior, the exposed fish exhibited significant obesity evidenced by increased body weight, body mass index, plasma total cholesterol, triglyceride, and body fat content. Additionally, the pathways linked to Parkinson's disease, alcoholism, and cocaine addiction were also disrupted, implying that EHDPHP might cause other neurological disorders via the disrupted DA system.
Collapse
Affiliation(s)
- Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yuan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yun Deng
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Woelber JP, Gebhardt D, Hujoel PP. Free sugars and gingival inflammation: A systematic review and meta-analysis. J Clin Periodontol 2023; 50:1188-1201. [PMID: 37246336 DOI: 10.1111/jcpe.13831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
AIM Consumption of free sugars has been associated with chronic non-communicable diseases. The aim of the study was to investigate the effect of free-sugar consumption on gingival inflammation using a systematic review and meta-analysis based on the PICO question 'What impact does the restriction of free sugars have on the inflammation of gingival tissue?' MATERIALS AND METHODS Literature review and analyses were based on the Cochrane Handbook for Systematic Reviews of Interventions. Controlled clinical studies reporting on free-sugar interventions and gingival inflammation were included. Risk of bias was performed with ROBINS-I and ROB-2, and effect sizes were estimated with robust variance meta-regressions. RESULTS Of the 1777 primarily identified studies, 1768 were excluded, and 9 studies with 209 participants with gingival inflammation measures were included. Six of these studies reported on the dental plaque scores of 113 participants. Restriction of free sugars, when compared with no such restriction, was associated with statistically significantly improved gingival health scores (standard mean difference [SMD] = -0.92; 95% confidence interval [CI]: -1.43 to -0.42, p < .004; I2 [heterogeneity] = 46.8) and a trend towards lower dental plaque scores (SMD = -0.61; 95% CI: -1.28 to 0.05, p < .07; I2 = 41.3). The observed improvement of gingival inflammation scores with restricted consumption of free sugar was robust against various statistical imputations. No meta-regression models were feasible because of the limited number of studies. The median publication year was 1982. Risk-of-bias analysis showed a moderate risk in all studies. CONCLUSION Restriction of free sugar was shown to be associated with reduced gingival inflammation. The systematic review was registered at PROSPERO (CRD 42020157914).
Collapse
Affiliation(s)
- J P Woelber
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - D Gebhardt
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P P Hujoel
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Steele TJ, Lanz AJ, Nagel KI. Olfactory navigation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:467-488. [PMID: 36658447 PMCID: PMC10354148 DOI: 10.1007/s00359-022-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023]
Abstract
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
Collapse
Affiliation(s)
- Theresa J Steele
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
11
|
Hidalgo S, Chiu JC. CRUMB: a shiny-based app to analyze rhythmic feeding in Drosophila using the FLIC system. F1000Res 2023; 12:374. [PMID: 37396048 PMCID: PMC10314183 DOI: 10.12688/f1000research.132587.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
Rhythmic feeding activity has become an important research area for circadian biologists as it is now clear that metabolic input is critical for regulating circadian rhythms, and chrononutrition has been shown to promote health span. In contrast to locomotor activity rhythm, studies conducting high throughput analysis of Drosophila rhythmic food intake have been limited and few monitoring system options are available. One monitoring system, the Fly Liquid-Food Interaction Counter (FLIC) has become popular, but there is a lack of efficient analysis toolkits to facilitate scalability and ensure reproducibility by using unified parameters for data analysis. Here, we developed Circadian Rhythm Using Mealtime Behavior (CRUMB), a user-friendly Shiny app to analyze data collected using the FLIC system. CRUMB leverages the 'plotly' and 'DT' packages to enable interactive raw data review as well as the generation of easily manipulable graphs and data tables. We used the main features of the FLIC master code provided with the system to retrieve feeding events and provide a simplified pipeline to conduct circadian analysis. We also replaced the use of base functions in time-consuming processes such as 'rle' and 'read.csv' with faster versions available from other packages to optimize computing time. We expect CRUMB to facilitate analysis of feeding-fasting rhythm as a robust output of the circadian clock.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, University of California Davis, Davis, California, 94534, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California Davis, Davis, California, 94534, USA
| |
Collapse
|
12
|
Weaver KJ, Raju S, Rucker RA, Chakraborty T, Holt RA, Pletcher SD. Behavioral dissection of hunger states in Drosophila. eLife 2023; 12:RP84537. [PMID: 37326496 DOI: 10.7554/elife.84537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Hunger is a motivational drive that promotes feeding, and it can be generated by the physiological need to consume nutrients as well as the hedonic properties of food. Brain circuits and mechanisms that regulate feeding have been described, but which of these contribute to the generation of motive forces that drive feeding is unclear. Here, we describe our first efforts at behaviorally and neuronally distinguishing hedonic from homeostatic hunger states in Drosophila melanogaster and propose that this system can be used as a model to dissect the molecular mechanisms that underlie feeding motivation. We visually identify and quantify behaviors exhibited by hungry flies and find that increased feeding duration is a behavioral signature of hedonic feeding motivation. Using a genetically encoded marker of neuronal activity, we find that the mushroom body (MB) lobes are activated by hedonic food environments, and we use optogenetic inhibition to implicate a dopaminergic neuron cluster (protocerebral anterior medial [PAM]) to α'/β' MB circuit in hedonic feeding motivation. The identification of discrete hunger states in flies and the development of behavioral assays to measure them offers a framework to begin dissecting the molecular and circuit mechanisms that generate motivational states in the brain.
Collapse
Affiliation(s)
- Kristina J Weaver
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| | - Sonakshi Raju
- College of Literature, Science, and the Arts, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| | - Rachel A Rucker
- Neuroscience Graduate Program, University of Michigan, University of Michigan, Ann Arbor, United States
| | - Tuhin Chakraborty
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| | - Robert A Holt
- College of Literature, Science, and the Arts, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| |
Collapse
|
13
|
Sung H, Vaziri A, Wilinski D, Woerner RKR, Freddolino PL, Dus M. Nutrigenomic regulation of sensory plasticity. eLife 2023; 12:e83979. [PMID: 36951889 PMCID: PMC10036121 DOI: 10.7554/elife.83979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Diet profoundly influences brain physiology, but how metabolic information is transmuted into neural activity and behavior changes remains elusive. Here, we show that the metabolic enzyme O-GlcNAc Transferase (OGT) moonlights on the chromatin of the D. melanogaster gustatory neurons to instruct changes in chromatin accessibility and transcription that underlie sensory adaptations to a high-sugar diet. OGT works synergistically with the Mitogen Activated Kinase/Extracellular signal Regulated Kinase (MAPK/ERK) rolled and its effector stripe (also known as EGR2 or Krox20) to integrate activity information. OGT also cooperates with the epigenetic silencer Polycomb Repressive Complex 2.1 (PRC2.1) to decrease chromatin accessibility and repress transcription in the high-sugar diet. This integration of nutritional and activity information changes the taste neurons' responses to sugar and the flies' ability to sense sweetness. Our findings reveal how nutrigenomic signaling generates neural activity and behavior in response to dietary changes in the sensory neurons.
Collapse
Affiliation(s)
- Hayeon Sung
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
| | - Anoumid Vaziri
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of MichiganAnn ArborUnited States
| | - Daniel Wilinski
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
| | - Riley KR Woerner
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
| | - Peter L Freddolino
- Department of Biological Chemistry, The University of Michigan Medical SchoolAnn ArborUnited States
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical SchoolAnn ArborUnited States
| | - Monica Dus
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of MichiganAnn ArborUnited States
- The Michigan Neuroscience InstituteAnn ArborUnited States
| |
Collapse
|
14
|
Huang M, Coral D, Ardalani H, Spegel P, Saadat A, Claussnitzer M, Mulder H, Franks PW, Kalamajski S. Identification of a weight loss-associated causal eQTL in MTIF3 and the effects of MTIF3 deficiency on human adipocyte function. eLife 2023; 12:84168. [PMID: 36876906 PMCID: PMC10023155 DOI: 10.7554/elife.84168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/05/2023] [Indexed: 03/07/2023] Open
Abstract
Genetic variation at the MTIF3 (Mitochondrial Translational Initiation Factor 3) locus has been robustly associated with obesity in humans, but the functional basis behind this association is not known. Here, we applied luciferase reporter assay to map potential functional variants in the haplotype block tagged by rs1885988 and used CRISPR-Cas9 to edit the potential functional variants to confirm the regulatory effects on MTIF3 expression. We further conducted functional studies on MTIF3-deficient differentiated human white adipocyte cell line (hWAs-iCas9), generated through inducible expression of CRISPR-Cas9 combined with delivery of synthetic MTIF3-targeting guide RNA. We demonstrate that rs67785913-centered DNA fragment (in LD with rs1885988, r2 > 0.8) enhances transcription in a luciferase reporter assay, and CRISPR-Cas9-edited rs67785913 CTCT cells show significantly higher MTIF3 expression than rs67785913 CT cells. Perturbed MTIF3 expression led to reduced mitochondrial respiration and endogenous fatty acid oxidation, as well as altered expression of mitochondrial DNA-encoded genes and proteins, and disturbed mitochondrial OXPHOS complex assembly. Furthermore, after glucose restriction, the MTIF3 knockout cells retained more triglycerides than control cells. This study demonstrates an adipocyte function-specific role of MTIF3, which originates in the maintenance of mitochondrial function, providing potential explanations for why MTIF3 genetic variation at rs67785913 is associated with body corpulence and response to weight loss interventions.
Collapse
Affiliation(s)
- Mi Huang
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Clinical Research Centre, Lund UniversityMalmöSweden
| | - Daniel Coral
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Clinical Research Centre, Lund UniversityMalmöSweden
| | - Hamidreza Ardalani
- Department of Chemistry, Centre for Analysis and Synthesis, Lund UniversityLundSweden
| | - Peter Spegel
- Department of Chemistry, Centre for Analysis and Synthesis, Lund UniversityLundSweden
| | - Alham Saadat
- Metabolism Program, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Melina Claussnitzer
- Metabolism Program, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Department of Clinical Sciences, Clinical Research Centre, Lund UniversityMalmöSweden
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Clinical Research Centre, Lund UniversityMalmöSweden
- Department of Nutrition, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Sebastian Kalamajski
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Clinical Research Centre, Lund UniversityMalmöSweden
| |
Collapse
|
15
|
Yapici N. Eating regulation: How diet impacts food cognition. Curr Biol 2023; 33:R153-R156. [PMID: 36854275 DOI: 10.1016/j.cub.2022.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
How diet alters brain physiology and impacts cognitive functions is poorly understood in any species. A new study has shown that a high-sugar diet disrupts the formation of food-odor associations in the brain of the fly Drosophila melanogaster in a manner that leads to increased food intake.
Collapse
Affiliation(s)
- Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Micarelli A, Vezzoli A, Malacrida S, Micarelli B, Misici I, Carbini V, Iennaco I, Caputo S, Mrakic-Sposta S, Alessandrini M. Taste Function in Adult Humans from Lean Condition to Stage II Obesity: Interactions with Biochemical Regulators, Dietary Habits, and Clinical Aspects. Nutrients 2023; 15:nu15051114. [PMID: 36904115 PMCID: PMC10005537 DOI: 10.3390/nu15051114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Differences in gustatory sensitivity, nutritional habits, circulating levels of modulators, anthropometric measures, and metabolic assays may be involved in overweight (OW) development. The present study aimed at evaluating the differences in these aspects between 39 OW (19 female; mean age = 53.51 ± 11.17), 18 stage I (11 female; mean age = 54.3 ± 13.1 years), and 20 II (10 female; mean age = 54.5 ± 11.9) obesity participants when compared with 60 lean subjects (LS; 29 female; mean age = 54.04 ± 10.27). Participants were evaluated based on taste function scores, nutritional habits, levels of modulators (leptin, insulin, ghrelin, and glucose), and bioelectrical impedance analysis measurements. Significant reductions in total and subtests taste scores were found between LS and stage I and II obesity participants. Significant reductions in total and all subtests taste scores were found between OW and stage II obesity participants. Together with the progressive increase in plasmatic leptin levels, insulin, and serum glucose, decrease in plasmatic ghrelin levels, and changes in anthropometric measures and nutritional habits along with body mass index, these data for the first time demonstrated that taste sensitivity, biochemical regulators, and food habits play a parallel, concurring role along the stages evolving to obesity.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, 02032 Rome, Italy
- Correspondence:
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy
| | - Beatrice Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, 02032 Rome, Italy
| | - Ilaria Misici
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, 02032 Rome, Italy
| | - Valentina Carbini
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, 02032 Rome, Italy
| | - Ilaria Iennaco
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, 02032 Rome, Italy
| | | | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Marco Alessandrini
- ENT Unit, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
17
|
Li AQ, Li SS, Zhang RX, Zhao XY, Liu ZY, Hu Y, Wang B, Neely GG, Simpson SJ, Wang QP. Nutritional geometry framework of sucrose taste in Drosophila. J Genet Genomics 2023; 50:233-240. [PMID: 36773723 DOI: 10.1016/j.jgg.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Dietary protein (P) and carbohydrate (C) have a major impact on sweet taste sensation. However, it remains unclear whether the balance of P and C influences sweet taste sensitivity. Here, we use the nutritional geometry framework (NGF) to address the interaction of protein and carbohydrates and on sweet taste using Drosophila as a model. Our results reveal that high-protein, low-carbohydrate (HPLC) diets sensitize to sweet taste and low-protein, high-carbohydrate (LPHC) diets desensitize sweet taste in both male and female flies. We further investigate the underlying mechanisms of these two diets' effect on sweet taste using RNA sequencing. When compared to the LPHC diet, the mRNA expression of genes involved in the metabolism of glycine, serine, and threonine is significantly upregulated in the HPLC diet, suggesting these amino acids may mediate sweet taste perception. We further find that sweet sensitization occurs in flies fed with the LPHC diet supplemented with serine and threonine. Our study demonstrates that sucrose taste sensitivity is affected by the balance of dietary protein and carbohydrates possibly through changes in serine and threonine.
Collapse
Affiliation(s)
- An-Qi Li
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Sha-Sha Li
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ruo-Xin Zhang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Ying Liu
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yun Hu
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bei Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
18
|
Pardo-Garcia TR, Gu K, Woerner RKR, Dus M. Food memory circuits regulate eating and energy balance. Curr Biol 2023; 33:215-227.e3. [PMID: 36528025 PMCID: PMC9877168 DOI: 10.1016/j.cub.2022.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
In mammals, learning circuits play an essential role in energy balance by creating associations between sensory cues and the rewarding qualities of food. This process is altered by diet-induced obesity, but the causes and mechanisms are poorly understood. Here, we exploited the relative simplicity and wealth of knowledge about the D. melanogaster reinforcement learning network, the mushroom body, in order to study the relationship between the dietary environment, dopamine-induced plasticity, and food associations. We show flies that are fed a high-sugar diet cannot make associations between sensory cues and the rewarding properties of sugar. This deficit was caused by diet exposure, not fat accumulation, and specifically by lower dopamine-induced plasticity onto mushroom body output neurons (MBONs) during learning. Importantly, food memories dynamically tune the output of MBONs during eating, which instead remains fixed in sugar-diet animals. Interestingly, manipulating the activity of MBONs influenced eating and fat mass, depending on the diet. Altogether, this work advances our fundamental understanding of the mechanisms, causes, and consequences of the dietary environment on reinforcement learning and ingestive behavior.
Collapse
Affiliation(s)
- Thibaut R Pardo-Garcia
- The Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; The Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen Gu
- The Undergraduate Program in Neuroscience, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Riley K R Woerner
- The Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica Dus
- The Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; The Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA; The Undergraduate Program in Neuroscience, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Hedgehog-mediated gut-taste neuron axis controls sweet perception in Drosophila. Nat Commun 2022; 13:7810. [PMID: 36535958 PMCID: PMC9763350 DOI: 10.1038/s41467-022-35527-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Dietary composition affects food preference in animals. High sugar intake suppresses sweet sensation from insects to humans, but the molecular basis of this suppression is largely unknown. Here, we reveal that sugar intake in Drosophila induces the gut to express and secrete Hedgehog (Hh) into the circulation. We show that the midgut secreted Hh localize to taste sensilla and suppresses sweet sensation, perception, and preference. We further find that the midgut Hh inhibits Hh signalling in the sweet taste neurons. Our electrophysiology studies demonstrate that the midgut Hh signal also suppresses bitter taste and some odour responses, affecting overall food perception and preference. We further show that the level of sugar intake during a critical window early in life, sets the adult gut Hh expression and sugar perception. Our results together reveal a bottom-up feedback mechanism involving a "gut-taste neuron axis" that regulates food sensation and preference.
Collapse
|
20
|
Sung H, Vesela I, Driks H, Ferrario CR, Mistretta CM, Bradley RM, Dus M. High-sucrose diet exposure is associated with selective and reversible alterations in the rat peripheral taste system. Curr Biol 2022; 32:4103-4113.e4. [PMID: 35977546 PMCID: PMC9561051 DOI: 10.1016/j.cub.2022.07.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
Elevated sugar consumption is associated with an increased risk for metabolic diseases. Whereas evidence from humans, rodents, and insects suggests that dietary sucrose modifies sweet taste sensation, understanding of peripheral nerve or taste bud alterations is sparse. To address this, male rats were given access to 30% liquid sucrose for 4 weeks (sucrose rats). Neurophysiological responses of the chorda tympani (CT) nerve to lingual stimulation with sugars, other taste qualities, touch, and cold were then compared with controls (access to water only). Morphological and immunohistochemical analyses of fungiform papillae and taste buds were also conducted. Sucrose rats had substantially decreased CT responses to 0.15-2.0 M sucrose compared with controls. In contrast, effects were not observed for glucose, fructose, maltose, Na saccharin, NaCl, organic acid, or umami, touch, or cold stimuli. Whereas taste bud number, size, and innervation volume were unaffected, the number of PLCβ2+ taste bud cells in the fungiform papilla was reduced in sucrose rats. Notably, the replacement of sucrose with water resulted in a complete recovery of all phenotypes over 4 weeks. The work reveals the selective and modality-specific effects of sucrose consumption on peripheral taste nerve responses and taste bud cells, with implications for nutrition and metabolic disease risk. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hayeon Sung
- Department of Molecular, Cellular, and Developmental Biology, The College of Literature, Arts, and Science, The University of Michigan, Ann Arbor, MI, USA
| | - Iva Vesela
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Hannah Driks
- Department of Molecular, Cellular, and Developmental Biology, The College of Literature, Arts, and Science, The University of Michigan, Ann Arbor, MI, USA
| | - Carrie R Ferrario
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI, USA; Department of Psychology (Biopsychology), College of Literature, Arts, and Science, The University of Michigan, Ann Arbor, MI, USA
| | - Charlotte M Mistretta
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Robert M Bradley
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, The College of Literature, Arts, and Science, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol (Lausanne) 2022; 13:943576. [PMID: 36111295 PMCID: PMC9468787 DOI: 10.3389/fendo.2022.943576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although traditionally considered a glucose metabolism-associated modification, the O-linked β-N-Acetylglucosamine (O-GlcNAc) regulatory system interacts extensively with lipids and is required to maintain lipid homeostasis. The enzymes of O-GlcNAc cycling have molecular properties consistent with those expected of broad-spectrum environmental sensors. By direct protein-protein interactions and catalytic modification, O-GlcNAc cycling enzymes may provide both acute and long-term adaptation to stress and other environmental stimuli such as nutrient availability. Depending on the cell type, hyperlipidemia potentiates or depresses O-GlcNAc levels, sometimes biphasically, through a diversity of unique mechanisms that target UDP-GlcNAc synthesis and the availability, activity and substrate selectivity of the glycosylation enzymes, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA). At the same time, OGT activity in multiple tissues has been implicated in the homeostatic regulation of systemic lipid uptake, storage and release. Hyperlipidemic patterns of O-GlcNAcylation in these cells are consistent with both transient physiological adaptation and feedback uninhibited obesogenic and metabolic dysregulation. In this review, we summarize the numerous interconnections between lipid and O-GlcNAc metabolism. These links provide insights into how the O-GlcNAc regulatory system may contribute to lipid-associated diseases including obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Amber Lockridge
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
23
|
Interplay between metabolic energy regulation and memory pathways in Drosophila. Trends Neurosci 2022; 45:539-549. [PMID: 35597687 DOI: 10.1016/j.tins.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022]
Abstract
Regulating energy metabolism is critical to maintain homeostasis of cellular and systemic functions. In the brain, specialised centres for energy storage regulation finely communicate with the periphery and integrate signals about internal states. As a result, the behavioural responses can be directly adjusted accordingly to the energetic demands. In the fruit fly Drosophila melanogaster, one of these regulatory centres is the mushroom bodies (MBs), a brain region involved in olfactory memory. The integration of metabolic cues by the MBs has a crucial impact on learned behaviour. In this review, we explore recent advances supporting the interplay between energy metabolism and memory establishment, as well as the instructive role of energy during the switch between memory phases.
Collapse
|
24
|
Gkanias E, McCurdy LY, Nitabach MN, Webb B. An incentive circuit for memory dynamics in the mushroom body of Drosophila melanogaster. eLife 2022; 11:e75611. [PMID: 35363138 PMCID: PMC8975552 DOI: 10.7554/elife.75611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Insects adapt their response to stimuli, such as odours, according to their pairing with positive or negative reinforcements, such as sugar or shock. Recent electrophysiological and imaging findings in Drosophila melanogaster allow detailed examination of the neural mechanisms supporting the acquisition, forgetting, and assimilation of memories. We propose that this data can be explained by the combination of a dopaminergic plasticity rule that supports a variety of synaptic strength change phenomena, and a circuit structure (derived from neuroanatomy) between dopaminergic and output neurons that creates different roles for specific neurons. Computational modelling shows that this circuit allows for rapid memory acquisition, transfer from short term to long term, and exploration/exploitation trade-off. The model can reproduce the observed changes in the activity of each of the identified neurons in conditioning paradigms and can be used for flexible behavioural control.
Collapse
Affiliation(s)
- Evripidis Gkanias
- Institute of Perception Action and Behaviour, School of Informatics, University of EdinburghEdinburghUnited Kingdom
| | - Li Yan McCurdy
- Department of Cellular and Molecular Physiology, Yale UniversityNew HavenUnited States
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Barbara Webb
- Institute of Perception Action and Behaviour, School of Informatics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
25
|
Church JS, Renzelman ML, Schwartzer JJ. Ten-week high fat and high sugar diets in mice alter gut-brain axis cytokines in a sex-dependent manner. J Nutr Biochem 2022; 100:108903. [PMID: 34748922 PMCID: PMC8761169 DOI: 10.1016/j.jnutbio.2021.108903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 02/03/2023]
Abstract
Diets high in fat and sugar induce inflammation throughout the body, particularly along the gut-brain axis; however, the way these changes in immune signaling mediate one another remains unknown. We investigated cytokine changes in the brain and colon following prolonged high fat or sugar diet in female and male adult C57BL/6 mice. Ten weeks of high fat diet increased levels of TNFα, IL-1β, IL-6, IFNγ, and IL-10 in the female hippocampus and altered cytokines in the frontal cortex of both sexes. High sugar diet increased hippocampal cytokines and decreased cytokines in the diencephalon and frontal cortex. In the colon, high fat diet changed cytokine expression in both sexes, while high sugar diet only increased TNFα in males. Causal mediation analysis confirmed that colon IL-10 and IL-6 mediate high fat diet-induced neuroimmune changes in the female hippocampus and male frontal cortex. Additionally, high fat diet increased food consumption and weight gain in both sexes, while high sugar diet decreased male weight gain. These findings reveal a novel causal link between gut and brain inflammation specific to prolonged consumption of high fat, not high sugar, diet. Importantly, this work includes females which have been under-represented in diet research, and demonstrates that diet-induced neuroinflammation varies by brain region between sexes. Furthermore, our data suggest female brains are more vulnerable than males to inflammatory changes following excessive fat and sugar consumption, which may help explain the increased risk of inflammation-associated psychiatric conditions in women who eat a Western Diet rich in both dietary components.
Collapse
Affiliation(s)
- Jamie S. Church
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Margaret L. Renzelman
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Jared J. Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| |
Collapse
|
26
|
Cook AP, Nusbaum MP. Feeding state-dependent modulation of feeding-related motor patterns. J Neurophysiol 2021; 126:1903-1924. [PMID: 34669505 PMCID: PMC8715047 DOI: 10.1152/jn.00387.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
Studies elucidating modulation of microcircuit activity in isolated nervous systems have revealed numerous insights regarding neural circuit flexibility, but this approach limits the link between experimental results and behavioral context. To bridge this gap, we studied feeding behavior-linked modulation of microcircuit activity in the isolated stomatogastric nervous system (STNS) of male Cancer borealis crabs. Specifically, we removed hemolymph from a crab that was unfed for ≥24 h ("unfed" hemolymph) or fed 15 min to 2 h before hemolymph removal ("fed" hemolymph). After feeding, the first significant foregut emptying occurred >1 h later and complete emptying required ≥6 h. We applied the unfed or fed hemolymph to the stomatogastric ganglion (STG) in an isolated STNS preparation from a separate, unfed crab to determine its influence on the VCN (ventral cardiac neuron)-triggered gastric mill (chewing) and pyloric (filtering of chewed food) rhythms. Unfed hemolymph had little influence on these rhythms, but fed hemolymph from each examined time-point (15 min, 1 h, or 2 h after feeding) slowed one or both rhythms without weakening circuit neuron activity. There were also distinct parameter changes associated with each time-point. One change unique to the 1-h time-point (i.e., reduced activity of one circuit neuron during the transition from the gastric mill retraction to protraction phase) suggested that the fed hemolymph also enhanced the influence of a projection neuron that innervates the STG from a ganglion isolated from the applied hemolymph. Hemolymph thus provides a feeding state-dependent modulation of the two feeding-related motor patterns in the C. borealis STG.NEW & NOTEWORTHY Little is known about behavior-linked modulation of microcircuit activity. We show that the VCN-triggered gastric mill (chewing) and pyloric (food filtering) rhythms in the isolated crab Cancer borealis stomatogastric nervous system were changed by applying hemolymph from recently fed but not unfed crabs. This included some distinct parameter changes during each examined post-fed hemolymph time-point. These results suggest the presence of feeding-related changes in circulating hormones that regulate consummatory microcircuit activity.
Collapse
Affiliation(s)
- Aaron P Cook
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Doğan C, Güney G, Güzel KK, Can A, Hegedus DD, Toprak U. What You Eat Matters: Nutrient Inputs Alter the Metabolism and Neuropeptide Expression in Egyptian Cotton Leaf Worm, Spodoptera littoralis (Lepidoptera: Noctuidae). Front Physiol 2021; 12:773688. [PMID: 34803746 PMCID: PMC8600137 DOI: 10.3389/fphys.2021.773688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Lipids and carbohydrates are the two primary energy sources for both animals and insects. Energy homeostasis is under strict control by the neuroendocrine system, and disruption of energy homeostasis leads to the development of various disorders, such as obesity, diabetes, fatty liver syndrome, and cardiac dysfunction. One critical factor in this respect is feeding habits and diet composition. Insects are good models to study the physiological and biochemical background of the effect of diet on energy homeostasis and related disorders; however, most studies are based on a single model species, Drosophila melanogaster. In the current study, we examined the effects of four different diets, high fat (HFD), high sugar (HSD), calcium-rich (CRD), and a plant-based (PBD) on energy homeostasis in younger (third instar) and older (fifth instar) larvae of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae) in comparison to a regular artificial bean diet. Both HSD and HFD led to weight gain, while CRD had the opposite effect and PBD had no effect in fifth instar larvae and pupae. The pattern was the same for HSD and CRD in third instar larvae while a reduction in weight was detected with HFD and PBD. Larval development was shortest with the HSD, while HFD, CRD, and PBD led to retardation compared to the control. Triglyceride (TG) levels were higher with HFD, HSD, and PBD, with larger lipid droplet sizes, while CRD led to a reduction of TG levels and lipid droplet size. Trehalose levels were highest with HSD, while CRD led to a reduction at third instar larvae, and HFD and PBD had no effect. Fifth instar larvae had similar levels of trehalose with all diets. There was no difference in the expression of the genes encoding neuropeptides SpoliAKH and SpoliILP1-2 with different diets in third instar larvae, while all three genes were expressed primarily with HSD, and SpolisNPF was primarily expressed with HFD in fifth instar larvae. In summary, different diet treatments alter the development of insects, and energy and metabolic pathways through the regulation of peptide hormones.
Collapse
Affiliation(s)
- Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Kardelen K Güzel
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Alp Can
- Laboratory for Stem Cells and Reproductive Cell Biology, Department of Histology and Embryology, School of Medicine, Ankara University, Ankara, Turkey
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
28
|
Wat LW, Chowdhury ZS, Millington JW, Biswas P, Rideout EJ. Sex determination gene transformer regulates the male-female difference in Drosophila fat storage via the adipokinetic hormone pathway. eLife 2021; 10:e72350. [PMID: 34672260 PMCID: PMC8594944 DOI: 10.7554/elife.72350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.
Collapse
Affiliation(s)
- Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Zahid S Chowdhury
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Jason W Millington
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| |
Collapse
|
29
|
Sarangi M, Dus M. Crème de la Créature: Dietary Influences on Behavior in Animal Models. Front Behav Neurosci 2021; 15:746299. [PMID: 34658807 PMCID: PMC8511460 DOI: 10.3389/fnbeh.2021.746299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
In humans, alterations in cognitive, motivated, and affective behaviors have been described with consumption of processed diets high in refined sugars and saturated fats and with high body mass index, but the causes, mechanisms, and consequences of these changes remain poorly understood. Animal models have provided an opportunity to answer these questions and illuminate the ways in which diet composition, especially high-levels of added sugar and saturated fats, contribute to brain physiology, plasticity, and behavior. Here we review findings from invertebrate (flies) and vertebrate models (rodents, zebrafish) that implicate these diets with changes in multiple behaviors, including eating, learning and memory, and motivation, and discuss limitations, open questions, and future opportunities.
Collapse
Affiliation(s)
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Vaziri A, Dus M. Brain on food: The neuroepigenetics of nutrition. Neurochem Int 2021; 149:105099. [PMID: 34133954 DOI: 10.1016/j.neuint.2021.105099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
Humans have known for millennia that nutrition has a profound influence on health and disease, but it is only recently that we have begun mapping the mechanisms via which the dietary environment impacts brain physiology and behavior. Here we review recent evidence on the effects of energy-dense and methionine diets on neural epigenetic marks, gene expression, and behavior in invertebrate and vertebrate model organisms. We also discuss limitations, open questions, and future directions in the emerging field of the neuroepigenetics of nutrition.
Collapse
Affiliation(s)
- Anoumid Vaziri
- Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA
| | - Monica Dus
- Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA.
| |
Collapse
|
31
|
Mahishi D, Triphan T, Hesse R, Huetteroth W. The Panopticon-Assessing the Effect of Starvation on Prolonged Fly Activity and Place Preference. Front Behav Neurosci 2021; 15:640146. [PMID: 33841109 PMCID: PMC8026880 DOI: 10.3389/fnbeh.2021.640146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Animal behaviours are demonstrably governed by sensory stimulation, previous experience and internal states like hunger. With increasing hunger, priorities shift towards foraging and feeding. During foraging, flies are known to employ efficient path integration strategies. However, general long-term activity patterns for both hungry and satiated flies in conditions of foraging remain to be better understood. Similarly, little is known about how permanent contact chemosensory stimulation affects locomotion. To address these questions, we have developed a novel, simplistic fly activity tracking setup—the Panopticon. Using a 3D-printed Petri dish inset, our assay allows recording of walking behaviour, of several flies in parallel, with all arena surfaces covered by a uniform substrate layer. We tested two constellations of providing food: (i) in single patches and (ii) omnipresent within the substrate layer. Fly tracking is done with FIJI, further assessment, analysis and presentation is done with a custom-built MATLAB analysis framework. We find that starvation history leads to a long-lasting reduction in locomotion, as well as a delayed place preference for food patches which seems to be not driven by immediate hunger motivation.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Tilman Triphan
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ricarda Hesse
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Wolf Huetteroth
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
32
|
May CE, Dus M. Confection Confusion: Interplay Between Diet, Taste, and Nutrition. Trends Endocrinol Metab 2021; 32:95-105. [PMID: 33384209 PMCID: PMC8021035 DOI: 10.1016/j.tem.2020.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Although genetics shapes our sense of taste to prefer some foods over others, taste sensation is plastic and changes with age, disease state, and nutrition. We have known for decades that diet composition can influence the way we perceive foods, but many questions remain unanswered, particularly regarding the effects of chemosensory plasticity on feeding behavior. Here, we review recent evidence on the effects of high-nutrient diets, especially high dietary sugar, on sweet taste in vinegar flies, rodents, and humans, and discuss open questions about molecular and neural mechanisms and research priorities. We also consider ways in which diet-dependent chemosensory plasticity may influence food intake and play a role in the etiology of obesity and metabolic disease. Understanding the interplay between nutrition, taste sensation, and feeding will help us define the role of the food environment in mediating chronic disease and design better public health strategies to combat it.
Collapse
Affiliation(s)
- Christina E May
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica Dus
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Sabatini BL, Tian L. Imaging Neurotransmitter and Neuromodulator Dynamics In Vivo with Genetically Encoded Indicators. Neuron 2020; 108:17-32. [PMID: 33058762 DOI: 10.1016/j.neuron.2020.09.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
The actions of neuromodulation are thought to mediate the ability of the mammalian brain to dynamically adjust its functional state in response to changes in the environment. Altered neurotransmitter (NT) and neuromodulator (NM) signaling is central to the pathogenesis or treatment of many human neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, depression, and addiction. To reveal the precise mechanisms by which these neurochemicals regulate healthy and diseased neural circuitry, one needs to measure their spatiotemporal dynamics in the living brain with great precision. Here, we discuss recent development, optimization, and applications of optical approaches to measure the spatial and temporal profiles of NT and NM release in the brain using genetically encoded sensors for in vivo studies.
Collapse
Affiliation(s)
- Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
34
|
Vaziri A, Khabiri M, Genaw BT, May CE, Freddolino PL, Dus M. Persistent epigenetic reprogramming of sweet taste by diet. SCIENCE ADVANCES 2020; 6:6/46/eabc8492. [PMID: 33177090 PMCID: PMC7673743 DOI: 10.1126/sciadv.abc8492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 05/25/2023]
Abstract
Diets rich in sugar, salt, and fat alter taste perception and food preference, contributing to obesity and metabolic disorders, but the molecular mechanisms through which this occurs are unknown. Here, we show that in response to a high sugar diet, the epigenetic regulator Polycomb Repressive Complex 2.1 (PRC2.1) persistently reprograms the sensory neurons of Drosophila melanogaster flies to reduce sweet sensation and promote obesity. In animals fed high sugar, the binding of PRC2.1 to the chromatin of the sweet gustatory neurons is redistributed to repress a developmental transcriptional network that modulates the responsiveness of these cells to sweet stimuli, reducing sweet sensation. Half of these transcriptional changes persist despite returning the animals to a control diet, causing a permanent decrease in sweet taste. Our results uncover a new epigenetic mechanism that, in response to the dietary environment, regulates neural plasticity and feeding behavior to promote obesity.
Collapse
Affiliation(s)
- Anoumid Vaziri
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
| | - Morteza Khabiri
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendan T Genaw
- Program in Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christina E May
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
- The Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica Dus
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA.
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
- Program in Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI, 48109, USA
- The Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
| |
Collapse
|