1
|
Cabalo DG, DeKraker J, Royer J, Xie K, Tavakol S, Rodríguez-Cruces R, Bernasconi A, Bernasconi N, Weil A, Pana R, Frauscher B, Caciagli L, Jefferies E, Smallwood J, Bernhardt BC. Differential reorganization of episodic and semantic memory systems in epilepsy-related mesiotemporal pathology. Brain 2024; 147:3918-3932. [PMID: 39054915 DOI: 10.1093/brain/awae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE and 60 age- and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient-mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, in both the MTL and neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, in contrast, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, whereas hippocampal functional topographies were unaffected. Furthermore, leveraging MRI proxies of MTL pathology, we observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic memory, but again not in semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, whereas episodic processes are supported by a network involving both the hippocampus and the neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.
Collapse
Affiliation(s)
- Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Weil
- Research Centre, CHU St Justine, Montreal, QC H3T 1C5, Canada
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
2
|
Bastuji H, Daoud M, Magnin M, Garcia-Larrea L. REM sleep remains paradoxical: sub-states determined by thalamo-cortical and cortico-cortical functional connectivity. J Physiol 2024; 602:5269-5287. [PMID: 39315951 DOI: 10.1113/jp286074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
During paradoxical sleep (PS, aka REM sleep) the cerebral cortex displays rapid electroencephalographic activity similar to that of wakefulness, whereas in the posterior associative thalamus, rapid activity is interrupted by frequent periods of slow-wave (delta) oscillations at 2-3 Hz, thereby dissociating the intrinsic frequency in thalamus and cortex. Here we studied the functional consequences of such a dissociation using intrathalamic and intracortical recordings in 21 epileptic patients, applying coherence analysis to examine changes in functional connectivity between the posterior thalamus (mainly medial pulvinar) and six cortical functional networks, and also between each cortical network with respect to the others. Periods of slow-wave thalamic activity ('delta PS') were more prevalent than phases of 'rapid PS,' and the delta/rapid thalamic alternance did not overlap with the classical tonic/phasic dichotomy based on rapid eye movements. Thalamo-cortical and cortico-cortical functional connectivity significantly decreased during delta PS, relative to both rapid PS periods and to wakefulness. The fact that delta thalamic activity and low thalamo-cortical binding coincided with a suppression of cortico-cortical connectivity supports a crucial role for the posterior associative thalamus, and particularly the medial pulvinar, in ensuring trans-thalamic communication between distant cortical areas. Disruption of such a trans-thalamic communication during delta PS compromises the functional binding between cortical areas, and consequently might contribute to the alteration of perceptual experiences commonly reported during dreams. KEY POINTS: During paradoxical, or REM, sleep (PS), rapid thalamic activity is interrupted by frequent periods of slow delta waves at 2-3 Hz. During these periods of thalamic delta activity there was a drastic drop of functional connectivity between associative thalamus and cortex, and also among different cortical networks. The delta/rapid alternance did not overlap with the classically defined 'tonic/phasic' periods and therefore suggests a distinct dichotomy of functional states in PS. Recurrent decrease in thalamo-cortical and cortico-cortical functional connectivity during PS may compromise the spatio-temporal binding between cortical areas, which in turn could hinder the formation of coherent mental content during dreams.
Collapse
Affiliation(s)
- Hélène Bastuji
- Central Integration of Pain (NeuroPain) Lab - Lyon Neuroscience Research Center, INSERM U1028; CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre du Sommeil, Hospices Civils de Lyon, Lyon, France
| | - Maëva Daoud
- Central Integration of Pain (NeuroPain) Lab - Lyon Neuroscience Research Center, INSERM U1028; CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Michel Magnin
- Central Integration of Pain (NeuroPain) Lab - Lyon Neuroscience Research Center, INSERM U1028; CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab - Lyon Neuroscience Research Center, INSERM U1028; CNRS, UMR5292, Université Claude Bernard, Bron, France
| |
Collapse
|
3
|
Qu J, Zhu R, Wu Y, Xu G, Wang D. Abnormal structural‒functional coupling patterning in progressive supranuclear palsy is associated with diverse gradients and histological features. Commun Biol 2024; 7:1195. [PMID: 39341965 PMCID: PMC11439051 DOI: 10.1038/s42003-024-06877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The anatomy of the brain supports inherent processes, fostering mental abilities and eventually facilitating adaptive behavior. Recent studies have shown that progressive supranuclear palsy (PSP) is accompanied by alterations in functional and structural networks. However, how the structure and function of PSP coordinates change is not clear, and the relationships between structural‒functional coupling (SFC) and the gradient of hierarchical structure and cellular histology remain largely unknown. Here, we use neuroimaging data from two independent cohorts and a public histological dataset to investigate the relationships among the cellular histology, hierarchical structure, and SFC of PSP patients. We find that the SFC of the entire cortex in PSP is severely disrupted, with higher coupling in the visual network (VN). Moreover, coupling differences in PSP follow a macroscopic organizational principle from unimodal to transmodal gradients. Finally, we elucidate greater laminar differentiation in VN regions sensitive to SFC changes in PSP, which is related mainly to the higher cellular density and smaller size of the internal-granular layer. In conclusion, our findings provide an interpretable framework for understanding SFC changes in PSP and provide new insights into the consistency of structural and functional changes in PSP regarding hierarchical structure and cellular histology.
Collapse
Affiliation(s)
- Junyu Qu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Rui Zhu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Yongsheng Wu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Guihua Xu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China.
- Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Jinan, China.
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Jinan, China.
| |
Collapse
|
4
|
Valk SL, Engert V, Puhlmann L, Linz R, Caldairou B, Bernasconi A, Bernasconi N, Bernhardt BC, Singer T. Differential increase of hippocampal subfield volume after socio-affective mental training relates to reductions in diurnal cortisol. eLife 2024; 12:RP87634. [PMID: 39196261 DOI: 10.7554/elife.87634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
The hippocampus is a central modulator of the HPA-axis, impacting the regulation of stress on brain structure, function, and behavior. The current study assessed whether three different types of 3 months mental Training Modules geared towards nurturing (a) attention-based mindfulness, (b) socio-affective, or (c) socio-cognitive skills may impact hippocampal organization by reducing stress. We evaluated mental training-induced changes in hippocampal subfield volume and intrinsic functional connectivity, by combining longitudinal structural and resting-state fMRI connectivity analysis in 332 healthy adults. We related these changes to changes in diurnal and chronic cortisol levels. We observed increases in bilateral cornu ammonis volume (CA1-3) following the 3 months compassion-based module targeting socio-affective skills (Affect module), as compared to socio-cognitive skills (Perspective module) or a waitlist cohort with no training intervention. Structural changes were paralleled by relative increases in functional connectivity of CA1-3 when fostering socio-affective as compared to socio-cognitive skills. Furthermore, training-induced changes in CA1-3 structure and function consistently correlated with reductions in cortisol output. Notably, using a multivariate approach, we found that other subfields that did not show group-level changes also contributed to changes in cortisol levels. Overall, we provide a link between a socio-emotional behavioural intervention, changes in hippocampal subfield structure and function, and reductions in cortisol in healthy adults.
Collapse
Affiliation(s)
- Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- INM-7, FZ Jülich, Jülich, Germany
- Institute for System Neurosciences, Heinrich Heine University, Düsseldorf, Germany
| | - Veronika Engert
- Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lara Puhlmann
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Roman Linz
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Benoit Caldairou
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Tania Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| |
Collapse
|
5
|
Küchenhoff S, Bayrak Ş, Zsido RG, Saberi A, Bernhardt BC, Weis S, Schaare HL, Sacher J, Eickhoff S, Valk SL. Relating sex-bias in human cortical and hippocampal microstructure to sex hormones. Nat Commun 2024; 15:7279. [PMID: 39179555 PMCID: PMC11344136 DOI: 10.1038/s41467-024-51459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
Determining sex-bias in brain structure is of great societal interest to improve diagnostics and treatment of brain-related disorders. So far, studies on sex-bias in brain structure predominantly focus on macro-scale measures, and often ignore factors determining this bias. Here we study sex-bias in cortical and hippocampal microstructure in relation to sex hormones. Investigating quantitative intracortical profiling in-vivo using the T1w/T2w ratio in 1093 healthy females and males of the cross-sectional Human Connectome Project young adult sample, we find that regional cortical and hippocampal microstructure differs between males and females and that the effect size of this sex-bias varies depending on self-reported hormonal status in females. Microstructural sex-bias and expression of sex hormone genes, based on an independent post-mortem sample, are spatially coupled. Lastly, sex-bias is most pronounced in paralimbic areas, with low laminar complexity, which are predicted to be most plastic based on their cytoarchitectural properties. Albeit correlative, our study underscores the importance of incorporating sex hormone variables into the investigation of brain structure and plasticity.
Collapse
Affiliation(s)
- Svenja Küchenhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany.
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Şeyma Bayrak
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rachel G Zsido
- Cognitive Neuroendocrinology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amin Saberi
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Susanne Weis
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - H Lina Schaare
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Julia Sacher
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Leipzig, Germany
| | - Simon Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany.
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
6
|
Eichert N, DeKraker J, Howard AFD, Huszar IN, Zhu S, Sallet J, Miller KL, Mars RB, Jbabdi S, Bernhardt BC. Hippocampal connectivity patterns echo macroscale cortical evolution in the primate brain. Nat Commun 2024; 15:5963. [PMID: 39013855 PMCID: PMC11252401 DOI: 10.1038/s41467-024-49823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques. However, while functional organisation in both species followed an anterior-posterior axis, we observed a marked reconfiguration in the latter across species, which mirrors a rudimentary integration of the default-mode-network in non-human primates. Here we show that microstructurally preserved regions like the hippocampus may still undergo functional reconfiguration in primate evolution, due to their embedding within heteromodal association networks.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Jordan DeKraker
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Amy F D Howard
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Istvan N Huszar
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Silei Zhu
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- INSERM U1208 Stem Cell and Brain Research Institute, Univ Lyon, Bron, France
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Boris C Bernhardt
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Iwata T, Yanagisawa T, Ikegaya Y, Smallwood J, Fukuma R, Oshino S, Tani N, Khoo HM, Kishima H. Hippocampal sharp-wave ripples correlate with periods of naturally occurring self-generated thoughts in humans. Nat Commun 2024; 15:4078. [PMID: 38778048 PMCID: PMC11111804 DOI: 10.1038/s41467-024-48367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Core features of human cognition highlight the importance of the capacity to focus on information distinct from events in the here and now, such as mind wandering. However, the brain mechanisms that underpin these self-generated states remain unclear. An emerging hypothesis is that self-generated states depend on the process of memory replay, which is linked to sharp-wave ripples (SWRs), which are transient high-frequency oscillations originating in the hippocampus. Local field potentials were recorded from the hippocampus of 10 patients with epilepsy for up to 15 days, and experience sampling was used to describe their association with ongoing thought patterns. The SWR rates were higher during extended periods of time when participants' ongoing thoughts were more vivid, less desirable, had more imaginable properties, and exhibited fewer correlations with an external task. These data suggest a role for SWR in the patterns of ongoing thoughts that humans experience in daily life.
Collapse
Affiliation(s)
- Takamitsu Iwata
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 565-0871, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Ryohei Fukuma
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Naoki Tani
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
9
|
DeKraker J, Palomero-Gallagher N, Kedo O, Ladbon-Bernasconi N, Muenzing SEA, Axer M, Amunts K, Khan AR, Bernhardt BC, Evans AC. Evaluation of surface-based hippocampal registration using ground-truth subfield definitions. eLife 2023; 12:RP88404. [PMID: 37956092 PMCID: PMC10642966 DOI: 10.7554/elife.88404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
The hippocampus is an archicortical structure, consisting of subfields with unique circuits. Understanding its microstructure, as proxied by these subfields, can improve our mechanistic understanding of learning and memory and has clinical potential for several neurological disorders. One prominent issue is how to parcellate, register, or retrieve homologous points between two hippocampi with grossly different morphologies. Here, we present a surface-based registration method that solves this issue in a contrast-agnostic, topology-preserving manner. Specifically, the entire hippocampus is first analytically unfolded, and then samples are registered in 2D unfolded space based on thickness, curvature, and gyrification. We demonstrate this method in seven 3D histology samples and show superior alignment with respect to subfields using this method over more conventional registration approaches.
Collapse
Affiliation(s)
- Jordan DeKraker
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Olga Kedo
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | | | - Sascha EA Muenzing
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Markus Axer
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Ali R Khan
- Robarts Research Institute, University of Western OntarioLondonCanada
| | - Boris C Bernhardt
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Alan C Evans
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
10
|
Saberi A, Paquola C, Wagstyl K, Hettwer MD, Bernhardt BC, Eickhoff SB, Valk SL. The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity. PLoS Biol 2023; 21:e3002365. [PMID: 37943873 PMCID: PMC10684102 DOI: 10.1371/journal.pbio.3002365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.
Collapse
Affiliation(s)
- Amin Saberi
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Meike D. Hettwer
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Simon B. Eickhoff
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L. Valk
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Wan B, Hong SJ, Bethlehem RAI, Floris DL, Bernhardt BC, Valk SL. Diverging asymmetry of intrinsic functional organization in autism. Mol Psychiatry 2023; 28:4331-4341. [PMID: 37587246 PMCID: PMC10827663 DOI: 10.1038/s41380-023-02220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Seok-Jun Hong
- Centre for Neuroscience Imaging Research, Institute for Basic Science, Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | | | - Dorothea L Floris
- Department of Psychology, University of Zürich, Zürich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
12
|
Zhang F, Liu B, Shao Y, Tan Y, Niu Q, Wang X, Zhang H. Evaluation of the default mode network using nonnegative matrix factorization in patients with cognitive impairment induced by occupational aluminum exposure. Cereb Cortex 2023; 33:9815-9821. [PMID: 37415087 DOI: 10.1093/cercor/bhad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023] Open
Abstract
Aluminum (Al) is an important environmental pathogenic factor for neurodegenerative diseases, especially mild cognitive impairment (MCI). The aim of this study was to evaluate the gray matter volume of structural covariance network alterations in patients with Al-induced MCI. Male subjects who had been exposed to Al for >10 years were included in the present study. The plasma Al concentration, Montreal cognitive assessment (MoCA) score, and verbal memory assessed by the Rey auditory verbal learning test (AVLT) score were collected from each participant. Nonnegative matrix factorization was used to identify the structural covariance network. The neural structural basis for patients with Al-induced MCI was investigated using correlation analysis and group comparison. Plasma Al concentration was inversely related to MoCA scores, particularly AVLT scores. In patients with Al-induced MCI, the gray matter volume of the default mode network (DMN) was considerably lower than that in controls. Positive correlations were discovered between the DMN and MoCA scores as well as between the DMN and AVLT scores. In sum, long-term occupational Al exposure has a negative impact on cognition, primarily by affecting delayed recognition. The reduced gray matter volume of the DMN may be the neural mechanism of Al-induced MCI.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, P.R. China
- Department of Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Bo Liu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, P.R. China
- Department of Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
- Department of College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Yinbo Shao
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, P.R. China
- Department of College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Yan Tan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, P.R. China
- Department of Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province 030001, P.R. China
| | - Xiaochun Wang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, P.R. China
- Department of Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, P.R. China
- Department of Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| |
Collapse
|
13
|
Lee HM, Hong SJ, Gill R, Caldairou B, Wang I, Zhang JG, Deleo F, Schrader D, Bartolomei F, Guye M, Cho KH, Barba C, Sisodiya S, Jackson G, Hogan RE, Wong-Kisiel L, Cascino GD, Schulze-Bonhage A, Lopes-Cendes I, Cendes F, Guerrini R, Bernhardt B, Bernasconi N, Bernasconi A. Multimodal mapping of regional brain vulnerability to focal cortical dysplasia. Brain 2023; 146:3404-3415. [PMID: 36852571 PMCID: PMC10393418 DOI: 10.1093/brain/awad060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD. We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then determined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organization. FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal component related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a postnatal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with structural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques. Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development to FCD epileptogenicity.
Collapse
Affiliation(s)
- Hyo M Lee
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
- Center for Neuroscience Imaging, Research Institute for Basic Science, Department of Global Biomedical Engineering, SungKyunKwan University, Suwon, KoreaSuwon, Korea
| | - Ravnoor Gill
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Irene Wang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jian-guo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Francesco Deleo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Dewi Schrader
- Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, Canada
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, 13005, France
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM UMR 7339, Marseille, France
| | - Kyoo Ho Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Carmen Barba
- Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, 50121 Florence, Italy
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Graeme Jackson
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Victoria, Australia
| | - R Edward Hogan
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP) and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas SP, Brazil
| | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas SP, Brazil
| | - Renzo Guerrini
- Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, 50121 Florence, Italy
| | - Boris Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
14
|
Katsumi Y, Zhang J, Chen D, Kamona N, Bunce JG, Hutchinson JB, Yarossi M, Tunik E, Dickerson BC, Quigley KS, Barrett LF. Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Commun Biol 2023; 6:401. [PMID: 37046050 PMCID: PMC10097701 DOI: 10.1038/s42003-023-04796-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Gradient mapping is an important technique to summarize high dimensional biological features as low dimensional manifold representations in exploring brain structure-function relationships at various levels of the cerebral cortex. While recent studies have characterized the major gradients of functional connectivity in several brain structures using this technique, very few have systematically examined the correspondence of such gradients across structures under a common systems-level framework. Using resting-state functional magnetic resonance imaging, here we show that the organizing principles of the isocortex, and those of the cerebellum and hippocampus in relation to the isocortex, can be described using two common functional gradients. We suggest that the similarity in functional connectivity gradients across these structures can be meaningfully interpreted within a common computational framework based on the principles of predictive processing. The present results, and the specific hypotheses that they suggest, represent an important step toward an integrative account of brain function.
Collapse
Affiliation(s)
- Yuta Katsumi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Nada Kamona
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Jamie G Bunce
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | | | - Mathew Yarossi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Physical Therapy, Movement, and Rehabilitation Science, Northeastern University, Boston, MA, 02115, USA
| | - Eugene Tunik
- Department of Physical Therapy, Movement, and Rehabilitation Science, Northeastern University, Boston, MA, 02115, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Karen S Quigley
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
15
|
Functional re-organization of hippocampal-cortical gradients during naturalistic memory processes. Neuroimage 2023; 271:119996. [PMID: 36863548 DOI: 10.1016/j.neuroimage.2023.119996] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
The functional organization of the hippocampus mirrors that of the cortex, changing smoothly along connectivity gradients and abruptly at inter-areal boundaries. Hippocampal-dependent cognitive processes require flexible integration of these hippocampal gradients into functionally related cortical networks. To understand the cognitive relevance of this functional embedding, we acquired fMRI data while participants viewed brief news clips, either containing or lacking recently familiarized cues. Participants were 188 healthy mid-life adults and 31 adults with mild cognitive impairment (MCI) or Alzheimer's disease (AD). We employed a recently developed technique - connectivity gradientography - to study gradually changing patterns of voxel to whole brain functional connectivity and their sudden transitions. We observed that functional connectivity gradients of the anterior hippocampus map onto connectivity gradients across the default mode network during these naturalistic stimuli. The presence of familiar cues in the news clips accentuates a stepwise transition across the boundary from the anterior to the posterior hippocampus. This functional transition is shifted in the posterior direction in the left hippocampus of individuals with MCI or AD. These findings shed new light on the functional integration of hippocampal connectivity gradients into large-scale cortical networks, how these adapt with memory context and how these change in the presence of neurodegenerative disease.
Collapse
|
16
|
Wang Y, Royer J, Park BY, Vos de Wael R, Larivière S, Tavakol S, Rodriguez-Cruces R, Paquola C, Hong SJ, Margulies DS, Smallwood J, Valk SL, Evans AC, Bernhardt BC. Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain. Cereb Cortex 2023; 33:1782-1798. [PMID: 35596951 PMCID: PMC9977370 DOI: 10.1093/cercor/bhac172] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. METHODS We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. RESULTS Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. CONCLUSIONS By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.
Collapse
Affiliation(s)
- Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Department of Data Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Integrative Neuroscience and Cognition Centre, University of Paris and CRNS, INCC - UMR 8002, Rue des Saint-Pères 75006, Paris
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, 62 Arch Street, Humphrey Hall, Room 232 Kingston, Ontario K7L 3N6, Canada
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A. Leipzig D-04103, Germany.,Institute of Systems Neuroscience, Heinrich Heine University, Moorenstr. 5, Düsseldorf 40225, Germany
| | - Alan C Evans
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| |
Collapse
|
17
|
Bayrak Ş, de Wael RV, Schaare HL, Hettwer MD, Caldairou B, Bernasconi A, Bernasconi N, Bernhardt BC, Valk SL. Heritability of hippocampal functional and microstructural organisation. Neuroimage 2022; 264:119656. [PMID: 36183945 DOI: 10.1016/j.neuroimage.2022.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 01/07/2023] Open
Abstract
The hippocampus is a uniquely infolded allocortical structure in the medial temporal lobe that consists of the microstructurally and functionally distinct subregions: subiculum, cornu ammonis, and dentate gyrus. The hippocampus is a remarkably plastic region that is implicated in learning and memory. At the same time it has been shown that hippocampal subregion volumes are heritable, and that genetic expression varies along a posterior to anterior axis. Here, we studied how a heritable, stable, hippocampal organisation may support its flexible function in healthy adults. Leveraging the twin set-up of the Human Connectome Project with multimodal neuroimaging, we observed that the functional connectivity between hippocampus and cortex was heritable and that microstructure of the hippocampus genetically correlated with cortical microstructure. Moreover, both functional and microstructural organisation could be consistently captured by anterior-to-posterior and medial-to-lateral axes across individuals. However, heritability of functional, relative to microstructural, organisation was found reduced, suggesting individual variation in functional organisation may be explained by experience-driven factors. Last, we demonstrate that structure and function couple along an inherited macroscale organisation, suggesting an interplay of stability and plasticity within the hippocampus. Our study provides new insights on the heritability of the hippocampal of the structure and function within the hippocampal organisation.
Collapse
Affiliation(s)
- Şeyma Bayrak
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - H Lina Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Meike D Hettwer
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Max Planck School of Cognition, Max Planck Institute of Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
18
|
Grande X, Sauvage MM, Becke A, Düzel E, Berron D. Transversal functional connectivity and scene-specific processing in the human entorhinal-hippocampal circuitry. eLife 2022; 11:e76479. [PMID: 36222669 PMCID: PMC9651961 DOI: 10.7554/elife.76479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Scene and object information reach the entorhinal-hippocampal circuitry in partly segregated cortical processing streams. Converging evidence suggests that such information-specific streams organize the cortical - entorhinal interaction and the circuitry's inner communication along the transversal axis of hippocampal subiculum and CA1. Here, we leveraged ultra-high field functional imaging and advance Maass et al., 2015 who report two functional routes segregating the entorhinal cortex (EC) and the subiculum. We identify entorhinal subregions based on preferential functional connectivity with perirhinal Area 35 and 36, parahippocampal and retrosplenial cortical sources (referred to as ECArea35-based, ECArea36-based, ECPHC-based, ECRSC-based, respectively). Our data show specific scene processing in the functionally connected ECPHC-based and distal subiculum. Another route, that functionally connects the ECArea35-based and a newly identified ECRSC-based with the subiculum/CA1 border, however, shows no selectivity between object and scene conditions. Our results are consistent with transversal information-specific pathways in the human entorhinal-hippocampal circuitry, with anatomically organized convergence of cortical processing streams and a unique route for scene information. Our study thus further characterizes the functional organization of this circuitry and its information-specific role in memory function.
Collapse
Affiliation(s)
- Xenia Grande
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Magdalena M Sauvage
- Functional Architecture of Memory Department, Leibniz-Institute for NeurobiologyMagdeburgGermany
- Functional Neuroplasticity Department, Otto-von-Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University MagdeburgMagdeburgGermany
| | - Andreas Becke
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - David Berron
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University MagdeburgMagdeburgGermany
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund UniversityLundSweden
| |
Collapse
|
19
|
Katsumi Y, Theriault JE, Quigley KS, Barrett LF. Allostasis as a core feature of hierarchical gradients in the human brain. Netw Neurosci 2022; 6:1010-1031. [PMID: 38800458 PMCID: PMC11117115 DOI: 10.1162/netn_a_00240] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 05/29/2024] Open
Abstract
This paper integrates emerging evidence from two broad streams of scientific literature into one common framework: (a) hierarchical gradients of functional connectivity that reflect the brain's large-scale structural architecture (e.g., a lamination gradient in the cerebral cortex); and (b) approaches to predictive processing and one of its specific instantiations called allostasis (i.e., the predictive regulation of energetic resources in the service of coordinating the body's internal systems). This synthesis begins to sketch a coherent, neurobiologically inspired framework suggesting that predictive energy regulation is at the core of human brain function, and by extension, psychological and behavioral phenomena, providing a shared vocabulary for theory building and knowledge accumulation.
Collapse
Affiliation(s)
- Yuta Katsumi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology. Commun Biol 2022; 5:1024. [PMID: 36168040 PMCID: PMC9515219 DOI: 10.1038/s42003-022-03963-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/07/2022] [Indexed: 02/06/2023] Open
Abstract
It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability.
Collapse
|
21
|
Royer J, Rodríguez-Cruces R, Tavakol S, Larivière S, Herholz P, Li Q, Vos de Wael R, Paquola C, Benkarim O, Park BY, Lowe AJ, Margulies D, Smallwood J, Bernasconi A, Bernasconi N, Frauscher B, Bernhardt BC. An Open MRI Dataset For Multiscale Neuroscience. Sci Data 2022; 9:569. [PMID: 36109562 PMCID: PMC9477866 DOI: 10.1038/s41597-022-01682-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/24/2022] [Indexed: 12/17/2022] Open
Abstract
Multimodal neuroimaging grants a powerful window into the structure and function of the human brain at multiple scales. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends (also referred to as gradients) in brain microstructure and connectivity, offering an integrative framework to study multiscale brain organization. Here, we share a multimodal MRI dataset for Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy adults (23 women; 29.54 ± 5.62 years) who underwent high-resolution T1-weighted MRI, myelin-sensitive quantitative T1 relaxometry, diffusion-weighted MRI, and resting-state functional MRI at 3 Tesla. In addition to raw anonymized MRI data, this release includes brain-wide connectomes derived from (i) resting-state functional imaging, (ii) diffusion tractography, (iii) microstructure covariance analysis, and (iv) geodesic cortical distance, gathered across multiple parcellation scales. Alongside, we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will facilitate future research examining the coupling between brain microstructure, connectivity, and function. MICA-MICs is available on the Canadian Open Neuroscience Platform data portal ( https://portal.conp.ca ) and the Open Science Framework ( https://osf.io/j532r/ ).
Collapse
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada.
- Analytical Neurophysiology (ANPHY) Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada.
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Peer Herholz
- NeuroDataScience - ORIGAMI lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Qiongling Li
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Alexander J Lowe
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Daniel Margulies
- Centre national de la recherche scientifique (CNRS), Institut du Cerveau et de la Moelle Épinière, Paris, France
| | | | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory (NOEL), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory (NOEL), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology (ANPHY) Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
22
|
Shafiei G, Baillet S, Misic B. Human electromagnetic and haemodynamic networks systematically converge in unimodal cortex and diverge in transmodal cortex. PLoS Biol 2022; 20:e3001735. [PMID: 35914002 PMCID: PMC9371256 DOI: 10.1371/journal.pbio.3001735] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/11/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Whole-brain neural communication is typically estimated from statistical associations among electromagnetic or haemodynamic time-series. The relationship between functional network architectures recovered from these 2 types of neural activity remains unknown. Here, we map electromagnetic networks (measured using magnetoencephalography (MEG)) to haemodynamic networks (measured using functional magnetic resonance imaging (fMRI)). We find that the relationship between the 2 modalities is regionally heterogeneous and systematically follows the cortical hierarchy, with close correspondence in unimodal cortex and poor correspondence in transmodal cortex. Comparison with the BigBrain histological atlas reveals that electromagnetic-haemodynamic coupling is driven by laminar differentiation and neuron density, suggesting that the mapping between the 2 modalities can be explained by cytoarchitectural variation. Importantly, haemodynamic connectivity cannot be explained by electromagnetic activity in a single frequency band, but rather arises from the mixing of multiple neurophysiological rhythms. Correspondence between the two is largely driven by MEG functional connectivity at the beta (15 to 29 Hz) frequency band. Collectively, these findings demonstrate highly organized but only partly overlapping patterns of connectivity in MEG and fMRI functional networks, opening fundamentally new avenues for studying the relationship between cortical microarchitecture and multimodal connectivity patterns.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
23
|
Paquola C, Amunts K, Evans A, Smallwood J, Bernhardt B. Closing the mechanistic gap: the value of microarchitecture in understanding cognitive networks. Trends Cogn Sci 2022; 26:873-886. [PMID: 35909021 DOI: 10.1016/j.tics.2022.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
Cognitive neuroscience aims to provide biologically relevant accounts of cognition. Contemporary research linking spatial patterns of neural activity to psychological constructs describes 'where' hypothesised functions occur, but not 'how' these regions contribute to cognition. Technological, empirical, and conceptual advances allow this mechanistic gap to be closed by embedding patterns of functional activity in macro- and microscale descriptions of brain organisation. Recent work on the default mode network (DMN) and the multiple demand network (MDN), for example, highlights a microarchitectural landscape that may explain how activity in these networks integrates varied information, thus providing an anatomical foundation that will help to explain how these networks contribute to many different cognitive states. This perspective highlights emerging insights into how microarchitecture can constrain network accounts of human cognition.
Collapse
Affiliation(s)
- Casey Paquola
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany.
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany; Cécile and Oscar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alan Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | | | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Kiwitz K, Brandstetter A, Schiffer C, Bludau S, Mohlberg H, Omidyeganeh M, Massicotte P, Amunts K. Cytoarchitectonic Maps of the Human Metathalamus in 3D Space. Front Neuroanat 2022; 16:837485. [PMID: 35350721 PMCID: PMC8957853 DOI: 10.3389/fnana.2022.837485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The human metathalamus plays an important role in processing visual and auditory information. Understanding its layers and subdivisions is important to gain insights in its function as a subcortical relay station and involvement in various pathologies. Yet, detailed histological references of the microanatomy in 3D space are still missing. We therefore aim at providing cytoarchitectonic maps of the medial geniculate body (MGB) and its subdivisions in the BigBrain – a high-resolution 3D-reconstructed histological model of the human brain, as well as probabilistic cytoarchitectonic maps of the MGB and lateral geniculate body (LGB). Therefore, histological sections of ten postmortem brains were studied. Three MGB subdivisions (MGBv, MGBd, MGBm) were identified on every 5th BigBrain section, and a deep-learning based tool was applied to map them on every remaining section. The maps were 3D-reconstructed to show the shape and extent of the MGB and its subdivisions with cellular precision. The LGB and MGB were additionally identified in nine other postmortem brains. Probabilistic cytoarchitectonic maps in the MNI “Colin27” and MNI ICBM152 reference spaces were computed which reveal an overall low interindividual variability in topography and extent. The probabilistic maps were included into the Julich-Brain atlas, and are freely available. They can be linked to other 3D data of human brain organization and serve as an anatomical reference for diagnostic, prognostic and therapeutic neuroimaging studies of healthy brains and patients. Furthermore, the high-resolution MGB BigBrain maps provide a basis for data integration, brain modeling and simulation to bridge the larger scale involvement of thalamocortical and local subcortical circuits.
Collapse
Affiliation(s)
- Kai Kiwitz
- Cécile and Oskar Vogt Institute of Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstraße 1a, Leipzig, Germany
- *Correspondence: Kai Kiwitz,
| | - Andrea Brandstetter
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Christian Schiffer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
- Helmholtz AI, Forschungszentrum Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Mona Omidyeganeh
- McGill Centre for Integrative Neuroscience, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- National Research Council of Canada, Ottawa, ON, Canada
| | - Philippe Massicotte
- McGill Centre for Integrative Neuroscience, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute of Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstraße 1a, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
25
|
Bernhardt BC, Smallwood J, Keilholz S, Margulies DS. Gradients in Brain Organization. Neuroimage 2022; 251:118987. [PMID: 35151850 DOI: 10.1016/j.neuroimage.2022.118987] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | | | - Shella Keilholz
- Biomedical Engineering, Emory University / Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| |
Collapse
|
26
|
Lee HM, Fadaie F, Gill R, Caldairou B, Sziklas V, Crane J, Hong SJ, Bernhardt BC, Bernasconi A, Bernasconi N. Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification. Brain 2021; 145:897-908. [PMID: 34849619 DOI: 10.1093/brain/awab425] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/14/2022] Open
Abstract
In drug-resistant temporal lobe epilepsy (TLE), precise predictions of drug response, surgical outcome, and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant "one-size-fits-all" group-level analytical approaches that does not allow parsing inter-individual variations along the disease spectrum. Conversely, analyzing inter-patient heterogeneity is increasingly recognized as a step towards person-centered care. Here, we utilized unsupervised machine learning to estimate latent relations (or disease factors) from 3 T multimodal MRI features (cortical thickness, hippocampal volume, FLAIR, T1/FLAIR, diffusion parameters) representing whole-brain patterns of structural pathology in 82 TLE patients. We assessed the specificity of our approach against age- and sex-matched healthy individuals and a cohort of frontal lobe epilepsy patients with histologically-verified focal cortical dysplasia. We identified four latent disease factors variably co-expressed within each patient and characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and atrophy (Factor-1), bilateral paralimbic and hippocampal gliosis (Factor-2), bilateral neocortical atrophy (Factor-3), bilateral white matter microstructural alterations (Factor-4). Bootstrap analysis and parameter variations supported high stability and robustness of these factors. Moreover, they were not expressed in healthy controls and only negligibly in disease controls, supporting specificity. Supervised classifiers trained on latent disease factors could predict patient-specific drug-response in 76 ± 3% and postsurgical seizure outcome in 88 ± 2%, outperforming classifiers that did not operate on latent factor information. Latent factor models predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40 ± 0.03; memory: r = 0.35 ± 0.03; sequential motor tapping: r = 0.36 ± 0.04), again outperforming baseline learners. Data-driven analysis of disease factors provides a novel appraisal of the continuum of interindividual variability, which is likely determined by multiple interacting pathological processes. Incorporating interindividual variability is likely to improve clinical prognostics.
Collapse
Affiliation(s)
- Hyo Min Lee
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Fatemeh Fadaie
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Ravnoor Gill
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Viviane Sziklas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Joelle Crane
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research Institute for Basic Science, Department of Biomedical Engineering, Sungkyunkwan University Suwon South Korea
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Genon S, Bernhardt BC, La Joie R, Amunts K, Eickhoff SB. The many dimensions of human hippocampal organization and (dys)function. Trends Neurosci 2021; 44:977-989. [PMID: 34756460 DOI: 10.1016/j.tins.2021.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022]
Abstract
The internal organization of hippocampal formation has been studied for more than a century. Although early accounts emphasized its subfields along the medial-lateral axis, findings in recent decades have highlighted also the anterior-to-posterior (i.e., longitudinal) axis as a key contributor to this brain region's functional organization. Hence, understanding of hippocampal function likely demands characterizing both medial-to-lateral and anterior-to-posterior axes, an approach that has been concretized by recent advances in in vivo parcellation and gradient mapping techniques. Following a short historical overview, we review the evidence provided by these approaches in brain-mapping studies, as well as the perspectives they open for addressing the behavioral relevance of the interacting organizational axes in healthy and clinical populations.
Collapse
Affiliation(s)
- Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | | | - Renaud La Joie
- Memory and Aging Center, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, Structural and Functional Organisation of the Brain (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Sydnor VJ, Larsen B, Bassett DS, Alexander-Bloch A, Fair DA, Liston C, Mackey AP, Milham MP, Pines A, Roalf DR, Seidlitz J, Xu T, Raznahan A, Satterthwaite TD. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron 2021; 109:2820-2846. [PMID: 34270921 PMCID: PMC8448958 DOI: 10.1016/j.neuron.2021.06.016] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
The human brain undergoes a prolonged period of cortical development that spans multiple decades. During childhood and adolescence, cortical development progresses from lower-order, primary and unimodal cortices with sensory and motor functions to higher-order, transmodal association cortices subserving executive, socioemotional, and mentalizing functions. The spatiotemporal patterning of cortical maturation thus proceeds in a hierarchical manner, conforming to an evolutionarily rooted, sensorimotor-to-association axis of cortical organization. This developmental program has been characterized by data derived from multimodal human neuroimaging and is linked to the hierarchical unfolding of plasticity-related neurobiological events. Critically, this developmental program serves to enhance feature variation between lower-order and higher-order regions, thus endowing the brain's association cortices with unique functional properties. However, accumulating evidence suggests that protracted plasticity within late-maturing association cortices, which represents a defining feature of the human developmental program, also confers risk for diverse developmental psychopathologies.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Aaron Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Allyson P Mackey
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Adam Pines
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jakob Seidlitz
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, NIMH Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Paquola C, Royer J, Lewis LB, Lepage C, Glatard T, Wagstyl K, DeKraker J, Toussaint PJ, Valk SL, Collins L, Khan AR, Amunts K, Evans AC, Dickscheid T, Bernhardt B. The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging. eLife 2021; 10:e70119. [PMID: 34431476 PMCID: PMC8445620 DOI: 10.7554/elife.70119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.
Collapse
Affiliation(s)
- Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Lindsay B Lewis
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Claude Lepage
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Tristan Glatard
- Department of Computer Science and Software Engineering, Concordia UniversityMontrealCanada
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | - Jordan DeKraker
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
- Brain and Mind Institute, University of Western OntarioOntarioCanada
| | - Paule-J Toussaint
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7), Forschungszentrum JülichJülichGermany
| | - Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Ali R Khan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western OntarioLondonCanada
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| |
Collapse
|
30
|
Yang S, Wagstyl K, Meng Y, Zhao X, Li J, Zhong P, Li B, Fan YS, Chen H, Liao W. Cortical patterning of morphometric similarity gradient reveals diverged hierarchical organization in sensory-motor cortices. Cell Rep 2021; 36:109582. [PMID: 34433023 DOI: 10.1016/j.celrep.2021.109582] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022] Open
Abstract
The topological organization of the cerebral cortex provides hierarchical axes, namely gradients, which reveal systematic variations of brain structure and function. However, the hierarchical organization of macroscopic brain morphology and how it constrains cortical function along the organizing axes remains unclear. We map the gradient of cortical morphometric similarity (MS) connectome, combining multiple features conceptualized as a "fingerprint" of an individual's brain. The principal MS gradient is anchored by motor and sensory cortices at two extreme ends, which are reliable and reproducible. Notably, divergences between motor and sensory hierarchies are consistent with the laminar histological thickness gradient but contrary to the canonical functional connectivity (FC) gradient. Moreover, the MS dissociates with FC gradients in the higher-order association cortices. The MS gradient recapitulates fundamental properties of cortical organization, from gene expression and cyto- and myeloarchitecture to evolutionary expansion. Collectively, our findings provide a heuristic hierarchical organization of cortical morphological neuromarkers.
Collapse
Affiliation(s)
- Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Xiaopeng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Peng Zhong
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Bing Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China.
| |
Collapse
|
31
|
The default mode network in cognition: a topographical perspective. Nat Rev Neurosci 2021; 22:503-513. [PMID: 34226715 DOI: 10.1038/s41583-021-00474-4] [Citation(s) in RCA: 330] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The default mode network (DMN) is a set of widely distributed brain regions in the parietal, temporal and frontal cortex. These regions often show reductions in activity during attention-demanding tasks but increase their activity across multiple forms of complex cognition, many of which are linked to memory or abstract thought. Within the cortex, the DMN has been shown to be located in regions furthest away from those contributing to sensory and motor systems. Here, we consider how our knowledge of the topographic characteristics of the DMN can be leveraged to better understand how this network contributes to cognition and behaviour.
Collapse
|
32
|
DeKraker J, Köhler S, Khan AR. Surface-based hippocampal subfield segmentation. Trends Neurosci 2021; 44:856-863. [PMID: 34304910 DOI: 10.1016/j.tins.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
Though it is often termed 'subcortical,' the hippocampus is composed of a folded 'archicortical' sheet contiguous with the neocortex. The human hippocampus varies considerably in its internal folding configuration, creating major challenges in interindividual alignment and parcellation into subfields. In this opinion article, we discuss surface-based methods that aim to explicitly model hippocampal folding, similar to methods used in the neocortex, allowing interindividual alignment in an unfolded or flat-mapped 2D space. Such an approach enables detailed morphological characterization, constrains the problem of subfield segmentation, and provides a way to visualize data without occlusions. We argue that, when applied to magnetic resonance imaging (MRI) data, such methods overcome pitfalls of more conventional manual or registration-based subfield segmentation approaches.
Collapse
Affiliation(s)
- Jordan DeKraker
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| | - Stefan Köhler
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada; Department of Psychology, University of Western Ontario, London, ON, Canada.
| | - Ali R Khan
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; School of Biomedical Engineering, University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
33
|
Kiesow H, Uddin LQ, Bernhardt BC, Kable J, Bzdok D. Dissecting the midlife crisis: disentangling social, personality and demographic determinants in social brain anatomy. Commun Biol 2021; 4:728. [PMID: 34140617 PMCID: PMC8211729 DOI: 10.1038/s42003-021-02206-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
In any stage of life, humans crave connection with other people. In midlife, transitions in social networks can relate to new leadership roles at work or becoming a caregiver for aging parents. Previous neuroimaging studies have pinpointed the medial prefrontal cortex (mPFC) to undergo structural remodelling during midlife. Social behavior, personality predisposition, and demographic profile all have intimate links to the mPFC according in largely disconnected literatures. Here, we explicitly estimated their unique associations with brain structure using a fully Bayesian framework. We weighed against each other a rich collection of 40 UK Biobank traits with their interindividual variation in social brain morphology in ~10,000 middle-aged participants. Household size and daily routines showed several of the largest effects in explaining variation in social brain regions. We also revealed male-biased effects in the dorsal mPFC and amygdala for job income, and a female-biased effect in the ventral mPFC for health satisfaction. Hannah Kiesow et al. combine 40 behavioral indicators and neuroimaging data from the UK Biobank to investigate how the transitions in midlife in the domains of social, personality, and demographic determinants impact brain anatomy. Through Bayesian analyses, the authors were able to disentangle which specific traits, relative to other considered candidate traits, contributed the most to explaining differences in social brain volume.
Collapse
Affiliation(s)
- Hannah Kiesow
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Joseph Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montréal, QC, Canada. .,Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada.
| |
Collapse
|
34
|
Lioi G, Gripon V, Brahim A, Rousseau F, Farrugia N. Gradients of connectivity as graph Fourier bases of brain activity. Netw Neurosci 2021; 5:322-336. [PMID: 34189367 PMCID: PMC8233110 DOI: 10.1162/netn_a_00183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
The application of graph theory to model the complex structure and function of the brain has shed new light on its organization, prompting the emergence of network neuroscience. Despite the tremendous progress that has been achieved in this field, still relatively few methods exploit the topology of brain networks to analyze brain activity. Recent attempts in this direction have leveraged on the one hand graph spectral analysis (to decompose brain connectivity into eigenmodes or gradients) and the other graph signal processing (to decompose brain activity "coupled to" an underlying network in graph Fourier modes). These studies have used a variety of imaging techniques (e.g., fMRI, electroencephalography, diffusion-weighted and myelin-sensitive imaging) and connectivity estimators to model brain networks. Results are promising in terms of interpretability and functional relevance, but methodologies and terminology are variable. The goals of this paper are twofold. First, we summarize recent contributions related to connectivity gradients and graph signal processing, and attempt a clarification of the terminology and methods used in the field, while pointing out current methodological limitations. Second, we discuss the perspective that the functional relevance of connectivity gradients could be fruitfully exploited by considering them as graph Fourier bases of brain activity.
Collapse
Affiliation(s)
| | | | - Abdelbasset Brahim
- INSERM, Laboratoire Traitement du Signal et de l’Image (LTSI) U1099, University of Rennes, Rennes, France
| | | | | |
Collapse
|
35
|
Park BY, Bethlehem RAI, Paquola C, Larivière S, Rodríguez-Cruces R, Vos de Wael R, Bullmore ET, Bernhardt BC. An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization. eLife 2021; 10:e64694. [PMID: 33787489 PMCID: PMC8087442 DOI: 10.7554/elife.64694] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development.
Collapse
Affiliation(s)
- Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Department of Data Science, Inha UniversityIncheonRepublic of Korea
| | - Richard AI Bethlehem
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Raul Rodríguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
36
|
Tavakol S, Li Q, Royer J, Vos de Wael R, Larivière S, Lowe A, Paquola C, Jefferies E, Hartley T, Bernasconi A, Bernasconi N, Smallwood J, Bohbot V, Caciagli L, Bernhardt B. A Structure-Function Substrate of Memory for Spatial Configurations in Medial and Lateral Temporal Cortices. Cereb Cortex 2021; 31:3213-3225. [PMID: 33667310 DOI: 10.1093/cercor/bhab001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
Prior research has shown a role of the medial temporal lobe, particularly the hippocampal-parahippocampal complex, in spatial cognition. Here, we developed a new paradigm, the conformational shift spatial task (CSST), which examines the ability to encode and retrieve spatial relations between unrelated items. This task is short, uses symbolic cues, incorporates two difficulty levels, and can be administered inside the scanner. A cohort of 48 healthy young adults underwent the CSST, together with a set of behavioral measures and multimodal magnetic resonance imaging (MRI). Inter-individual differences in CSST performance correlated with scores on an established spatial memory paradigm, but neither with episodic memory nor mnemonic discrimination, supporting specificity. Analyzing high-resolution structural MRI data, individuals with better spatial memory showed thicker medial and lateral temporal cortices. Functional relevance of these findings was supported by task-based functional MRI analysis in the same participants and ad hoc meta-analysis. Exploratory resting-state functional MRI analyses centered on clusters of morphological effects revealed additional modulation of intrinsic network integration, particularly between lateral and medial temporal structures. Our work presents a novel spatial memory paradigm and supports an integrated structure-function substrate in the human temporal lobe. Task paradigms are programmed in python and made open access.
Collapse
Affiliation(s)
- Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Qiongling Li
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alex Lowe
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | - Andrea Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Neda Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | - Veronique Bohbot
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG London, United Kingdom.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
37
|
Knapen T. Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain. Proc Natl Acad Sci U S A 2021; 118:e2017032118. [PMID: 33372144 PMCID: PMC7812773 DOI: 10.1073/pnas.2017032118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human visual system is organized as a hierarchy of maps that share the topography of the retina. Known retinotopic maps have been identified using simple visual stimuli under strict fixation, conditions different from everyday vision which is active, dynamic, and complex. This means that it remains unknown how much of the brain is truly visually organized. Here I demonstrate widespread stable visual organization beyond the traditional visual system, in default-mode network and hippocampus. Detailed topographic connectivity with primary visual cortex during movie-watching, resting-state, and retinotopic-mapping experiments revealed that visual-spatial representations throughout the brain are warped by cognitive state. Specifically, traditionally visual regions alternate with default-mode network and hippocampus in preferentially representing the center of the visual field. This visual role of default-mode network and hippocampus would allow these regions to interface between abstract memories and concrete sensory impressions. Together, these results indicate that visual-spatial organization is a fundamental coding principle that structures the communication between distant brain regions.
Collapse
Affiliation(s)
- Tomas Knapen
- Spinoza Centre for Neuroimaging, Royal Netherlands Academy of Sciences, Meibergdreef 75, 1105 BK Amsterdam, The Netherlands;
- Cognitive Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|