1
|
Gao Y, Shonai D, Trn M, Zhao J, Soderblom EJ, Garcia-Moreno SA, Gersbach CA, Wetsel WC, Dawson G, Velmeshev D, Jiang YH, Sloofman LG, Buxbaum JD, Soderling SH. Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions. Nat Commun 2024; 15:6801. [PMID: 39122707 PMCID: PMC11316102 DOI: 10.1038/s41467-024-51037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
One of the main drivers of autism spectrum disorder is risk alleles within hundreds of genes, which may interact within shared but unknown protein complexes. Here we develop a scalable genome-editing-mediated approach to target 14 high-confidence autism risk genes within the mouse brain for proximity-based endogenous proteomics, achieving the identification of high-specificity spatial proteomes. The resulting native proximity proteomes are enriched for human genes dysregulated in the brain of autistic individuals, and reveal proximity interactions between proteins from high-confidence risk genes with those of lower-confidence that may provide new avenues to prioritize genetic risk. Importantly, the datasets are enriched for shared cellular functions and genetic interactions that may underlie the condition. We test this notion by spatial proteomics and CRISPR-based regulation of expression in two autism models, demonstrating functional interactions that modulate mechanisms of their dysregulation. Together, these results reveal native proteome networks in vivo relevant to autism, providing new inroads for understanding and manipulating the cellular drivers underpinning its etiology.
Collapse
Affiliation(s)
- Yudong Gao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Daichi Shonai
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Matthew Trn
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jieqing Zhao
- Department of Biology, Duke University, Durham, NC, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, USA
| | | | - Charles A Gersbach
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Geraldine Dawson
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Dmitry Velmeshev
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Laura G Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Alashkar Alhamwe B, Ponath V, Alhamdan F, Dörsam B, Landwehr C, Linder M, Pauck K, Miethe S, Garn H, Finkernagel F, Brichkina A, Lauth M, Tiwari DK, Buchholz M, Bachurski D, Elmshäuser S, Nist A, Stiewe T, Pogge von Strandmann L, Szymański W, Beutgen V, Graumann J, Teply-Szymanski J, Keber C, Denkert C, Jacob R, Preußer C, Pogge von Strandmann E. BAG6 restricts pancreatic cancer progression by suppressing the release of IL33-presenting extracellular vesicles and the activation of mast cells. Cell Mol Immunol 2024; 21:918-931. [PMID: 38942797 PMCID: PMC11291976 DOI: 10.1038/s41423-024-01195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024] Open
Abstract
Recent studies reveal a critical role of tumor cell-released extracellular vesicles (EVs) in pancreatic cancer (PC) progression. However, driver genes that direct EV function, the EV-recipient cells, and their cellular response to EV uptake remain to be identified. Therefore, we studied the role of Bcl-2-associated-anthanogene 6 (BAG6), a regulator of EV biogenesis for cancer progression. We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment (TME) changes in mouse models for pancreatic ductal adenocarcinoma (PDAC) in a Bag6 pro- or deficient background. In vivo data were validated using mouse and human organoids and patient samples. Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release. Mechanistically, this was attributed to mast cell (MC) activation via EV-associated IL33. Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration. Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73. Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance. The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC. Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth. MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration. EVs derived from BAG6-deficient pancreatic cancer cells induce MC activation via IL33/Il1rl1. The secretome of activated MCs induces tumor proliferation and changes in the TME, particularly shifting fibroblasts into an inflammatory cancer-associated fibroblast (iCAF) phenotype. Blocking EVs or depleting MCs restricts tumor growth.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Fahd Alhamdan
- Department of Anesthesiology, Critical Care, and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, USA
- Department of Immunology and Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Bastian Dörsam
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Clara Landwehr
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Manuel Linder
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Kim Pauck
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Florian Finkernagel
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Bioinformatics, Philipps-University, 35043, Marburg, Germany
| | - Anna Brichkina
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
- Institute of Systems Immunology, Philipps-University, 35043, Marburg, Germany
| | - Matthias Lauth
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Dinesh Kumar Tiwari
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
| | - Andrea Nist
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
- Institute of Lung Health, Justus Liebig University, 35392, Giessen, Germany
| | - Lisa Pogge von Strandmann
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Witold Szymański
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Vanessa Beutgen
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Corinna Keber
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University, 35043, Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany.
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany.
| |
Collapse
|
3
|
Wang D, Zhao X, Wang P, Liu JJ. SNX32 Regulates Sorting and Trafficking of Activated EGFR to the Lysosomal Degradation Pathway. Traffic 2024; 25:e12952. [PMID: 39073202 DOI: 10.1111/tra.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
SNX32 is a member of the evolutionarily conserved Phox (PX) homology domain- and Bin/Amphiphysin/Rvs (BAR) domain- containing sorting nexin (SNX-BAR) family of proteins, which play important roles in sorting and membrane trafficking of endosomal cargoes. Although SNX32 shares the highest amino acid sequence homology with SNX6, and has been believed to function redundantly with SNX5 and SNX6 in retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), its role(s) in intracellular protein trafficking remains largely unexplored. Here, we report that it functions in parallel with SNX1 in mediating epidermal growth factor (EGF)-stimulated postendocytic trafficking of the epidermal growth factor receptor (EGFR). Moreover, SNX32 interacts directly with EGFR, and recruits SNX5 to promote sorting of EGF-EGFR into multivesicular bodies (MVBs) for lysosomal degradation. Thus, SNX32 functions distinctively from other SNX-BAR proteins to mediate signaling-coupled endolysosomal trafficking of EGFR.
Collapse
Affiliation(s)
- Dou Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Panpan Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Coulter AM, Cortés V, Theodore CJ, Cianciolo RE, Korstanje R, Campellone KG. WHAMM functions in kidney reabsorption and polymerizes actin to promote autophagosomal membrane closure and cargo sequestration. Mol Biol Cell 2024; 35:ar80. [PMID: 38598293 PMCID: PMC11238085 DOI: 10.1091/mbc.e24-01-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display structural abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.
Collapse
Affiliation(s)
- Alyssa M. Coulter
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | | | - Corey J. Theodore
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | | | | | - Kenneth G. Campellone
- Department of Molecular & Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
- Center on Aging, UConn Health, Farmington, CT 06030
| |
Collapse
|
5
|
Irala D, Wang S, Sakers K, Nagendren L, Ulloa Severino FP, Bindu DS, Savage JT, Eroglu C. Astrocyte-secreted neurocan controls inhibitory synapse formation and function. Neuron 2024; 112:1657-1675.e10. [PMID: 38574730 PMCID: PMC11098688 DOI: 10.1016/j.neuron.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. Several astrocyte-secreted synaptogenic proteins controlling excitatory synapse development were identified; however, those that induce inhibitory synaptogenesis remain elusive. Here, we identify neurocan as an astrocyte-secreted inhibitory synaptogenic protein. After secretion from astrocytes, neurocan is cleaved into N- and C-terminal fragments. We found that these fragments have distinct localizations in the extracellular matrix. The neurocan C-terminal fragment localizes to synapses and controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic domain have reduced inhibitory synapse numbers and function. Through super-resolution microscopy, in vivo proximity labeling by secreted TurboID, and astrocyte-specific rescue approaches, we discovered that the synaptogenic domain of neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Collapse
Affiliation(s)
- Dolores Irala
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Shiyi Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Leykashree Nagendren
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Instituto Cajal, CSIC 28002 Madrid, Spain
| | | | - Justin T Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Cerdán-Vélez D, Tress ML. The T2T-CHM13 reference assembly uncovers essential WASH1 and GPRIN2 paralogues. BIOINFORMATICS ADVANCES 2024; 4:vbae029. [PMID: 38464973 PMCID: PMC10924726 DOI: 10.1093/bioadv/vbae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Summary The recently published T2T-CHM13 reference assembly completed the annotation of the final 8% of the human genome. It introduced 1956 genes, close to 100 of which are predicted to be coding because they have a protein coding parent gene. Here, we confirm the coding status and functional relevance of two of these genes, paralogues of WASHC1 and GPRIN2. We find that LOC124908094, one of four novel subtelomeric WASH1 genes uncovered in the new assembly, produces the WASH1 protein that forms part of the vital actin-regulatory WASH complex. Its coding status is supported by abundant proteomics, conservation, and cDNA evidence. It was previously assumed that gene WASHC1 produced the functional WASH1 protein, but new evidence shows that WASHC1 is a human-derived duplication and likely to be one of 12 WASH1 pseudogenes in the human gene set. We also find that the T2T-CHM13 assembly has added a functionally important copy of GPRIN2 to the human gene set. We demonstrate that uniquely mapping peptides from proteomics databases support the novel LOC124900631 rather than the GRCh38 assembly GPRIN2 gene. These new additions to the set of human coding genes underlines the importance of the new T2T-CHM13 assembly. Availability and implementation None.
Collapse
Affiliation(s)
- Daniel Cerdán-Vélez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Michael Liam Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| |
Collapse
|
7
|
Coulter AM, Cortés V, Theodore CJ, Cianciolo RE, Korstanje R, Campellone KG. WHAMM functions in kidney reabsorption and polymerizes actin to promote autophagosomal membrane closure and cargo sequestration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576497. [PMID: 38328079 PMCID: PMC10849548 DOI: 10.1101/2024.01.22.576497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.
Collapse
Affiliation(s)
- Alyssa M Coulter
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | | | - Corey J Theodore
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
| | | | | | - Kenneth G Campellone
- Department of Molecular & Cell Biology, Institute for Systems Genomics; University of Connecticut, Storrs CT, USA
- Center on Aging; UConn Health, Farmington CT, USA
| |
Collapse
|
8
|
Gao X, Zhou S, Liu Z, Ruan D, Wu J, Quan J, Zheng E, Yang J, Cai G, Wu Z, Yang M. Genome-Wide Association Study for Somatic Skeletal Traits in Duroc × (Landrace × Yorkshire) Pigs. Animals (Basel) 2023; 14:37. [PMID: 38200769 PMCID: PMC10778498 DOI: 10.3390/ani14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The pig bone weight trait holds significant economic importance in southern China. To expedite the selection of the pig bone weight trait in pig breeding, we conducted molecular genetic research on these specific traits. These traits encompass the bone weight of the scapula (SW), front leg bone weight (including humerus and ulna) (FLBW), hind leg bone weight (including femur and tibia) (HLBW), and spine bone weight (SBW). Up until now, the genetic structure related to these traits has not been thoroughly explored, primarily due to challenges associated with obtaining the phenotype data. In this study, we utilized genome-wide association studies (GWAS) to discern single nucleotide polymorphisms (SNPs) and genes associated with four bone weight traits within a population comprising 571 Duroc × (Landrace × Yorkshire) hybrid pigs (DLY). In the analyses, we employed a mixed linear model, and for the correction of multiple tests, both the false discovery rate and Bonferroni methods were utilized. Following functional annotation, candidate genes were identified based on their proximity to the candidate sites and their association with the bone weight traits. This study represents the inaugural application of GWAS for the identification of SNPs associated with individual bone weight in DLY pigs. Our analysis unveiled 26 SNPs and identified 12 promising candidate genes (OPRM1, SLC44A5, WASHC4, NOPCHAP1, RHOT1, GLP1R, TGFB3, PLCB1, TLR4, KCNJ2, ABCA6, and ABCA9) associated with the four bone weight traits. Furthermore, our findings on the genetic mechanisms influencing pig bone weight offer valuable insights as a reference for the genetic enhancement of pig bone traits.
Collapse
Affiliation(s)
- Xin Gao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.G.); (S.Z.); (Z.L.)
| | - Shenping Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.G.); (S.Z.); (Z.L.)
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhihong Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.G.); (S.Z.); (Z.L.)
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.G.); (S.Z.); (Z.L.)
| |
Collapse
|
9
|
Matsushita N, Kato S, Nishizawa K, Sugawara M, Takeuchi K, Miyasaka Y, Mashimo T, Kobayashi K. Protocol for highly selective transgene expression through the flip-excision switch system by using a unilateral spacer sequence in rodents. STAR Protoc 2023; 4:102667. [PMID: 37906596 PMCID: PMC10622305 DOI: 10.1016/j.xpro.2023.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
We present a protocol to induce Cre-dependent transgene expression in specific cell types in the rat brain, suppressing a leak expression in off-target cells, by using a flip-excision switch system with a unilateral spacer sequence. We describe steps for construction of transfer plasmids, preparation of adeno-associated viral vectors, intracranial injection, and detection of transgene expression. Our protocol provides a useful strategy for a better understanding of the structure and function of specific cell types in the complex neural circuit. For complete details on the use and execution of this protocol, please refer to Matsushita et al.1.
Collapse
Affiliation(s)
- Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, Aichi 480-1195, Japan.
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Masateru Sugawara
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kosei Takeuchi
- Department of Medical Cell Biology, Aichi Medical University School of Medicine, Aichi 480-1195, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, Suita 565-0871, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| |
Collapse
|
10
|
Zhang X, Ma S, Naz SI, Jain V, Soderblom EJ, Aliferis C, Kraus VB. Comprehensive characterization of pathogenic synovial fluid extracellular vesicles from knee osteoarthritis. Clin Immunol 2023; 257:109812. [PMID: 37866785 PMCID: PMC10735321 DOI: 10.1016/j.clim.2023.109812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Synovial fluid (SF) extracellular vesicles (EVs) play a pathogenic role in osteoarthritis (OA). However, the surface markers, cell and tissue origins, and effectors of these EVs are largely unknown. We found that SF EVs contained 692 peptides that were positively associated with knee radiographic OA severity; 57.4% of these pathogenic peptides were from 46 proteins of the immune system, predominantly the innate immune system. CSPG4, BGN, NRP1, and CD109 are the major surface markers of pathogenic SF EVs. Genes encoding surface marker CSPG4 and CD109 were highly expressed by chondrocytes from damaged cartilage, while VISG4, MARCO, CD163 and NRP1 were enriched in the synovial immune cells. The frequency of CSPG4+ and VSIG4+ EV subpopulations in OA SF was high. We conclude that pathogenic SF EVs carry knee OA severity-associated proteins and specific surface markers, which could be developed as a new source of diagnostic biomarkers or therapeutic targets in OA.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, USA.
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Syeda Iffat Naz
- Institute for Health Informatics, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, USA; Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Rao A, Chen N, Kim MJ, Blumenfeld J, Yip O, Hao Y, Liang Z, Nelson MR, Koutsodendris N, Grone B, Ding L, Yoon SY, Arriola P, Huang Y. Microglia Depletion Reduces Human Neuronal APOE4-Driven Pathologies in a Chimeric Alzheimer's Disease Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566510. [PMID: 38014339 PMCID: PMC10680610 DOI: 10.1101/2023.11.10.566510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite strong evidence supporting the involvement of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's Disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-driven AD pathogenesis remain elusive. Here, we examined such effects utilizing microglial depletion in a chimeric model with human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) induced pluripotent stem cell (iPSC)-derived human neurons into the hippocampus of human APOE3 or APOE4 knock-in mice, and depleted microglia in half the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aβ and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA-sequencing analysis identified two pro-inflammatory microglial subtypes with high MHC-II gene expression that are enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis. HIGHLIGHTS Transplanted human APOE4 neurons generate Aβ and p-tau aggregates in APOE4-KI mouse hippocampus.Human neuronal APOE4 promotes the formation of dense-core Aβ plaques and p-tau aggregates.Microglia is required for human neuronal APOE4-driven formation of p-tau aggregates.scRNA-seq reveals enrichment of MHC-II microglia in mice with human APOE4 neuron transplants.
Collapse
|
12
|
Gao SY, Liu YX, Dong Y, Fan LL, Ding Q, Liu L. Case report: A novel WASHC5 variant altering mRNA splicing causes spastic paraplegia in a patient. Front Genet 2023; 14:1205052. [PMID: 38028608 PMCID: PMC10644772 DOI: 10.3389/fgene.2023.1205052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Hereditary spastic paraplegia (HSP) is a progressive upper-motor neurodegenerative disease. Mutations in the WASHC5 gene are associated with autosomal dominant HSP, spastic paraplegia 8 (SPG8). However, due to the small number of reported cases, the exact mechanism remains unclear. Method: We report a Chinese family with HSP. The proband was referred to our hospital due to restless leg syndrome and insomnia. The preliminary clinical diagnosis of the proband was spastic paraplegia. Whole-exome sequencing (WES) and RNA splicing analysis were conducted to evaluate the genetic cause of the disease in this family. Results: A novel splice-altering variant (c.712-2A>G) in the WASHC5 gene was detected and further verified by RNA splicing analysis and Sanger sequencing. Real-time qPCR analysis showed that the expression of genes involved in the Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex and endosomal and lysosomal systems was altered due to this variant. Conclusion: A novel heterozygous splice-altering variant (c.712-2A>G) in the WASHC5 gene was detected in a Chinese family with HSP. Our study provided data for genetic counseling to this family and offered evidence that this splicing variant in the WASHC5 gene is significant in causing HSP.
Collapse
Affiliation(s)
- Shan-Yu Gao
- Department of Neurology, Changshu No. 2 People’s Hospital, Changshu, China
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Xing Liu
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
- Department of Nephrology, Xiangya Hospital Central South University, Changsha, China
| | - Yi Dong
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Qi Ding
- Department of Neurology, Changshu No. 2 People’s Hospital, Changshu, China
| | - Lv Liu
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Huang T, Staniak M, da Veiga Leprevost F, Figueroa-Navedo AM, Ivanov AR, Nesvizhskii AI, Choi M, Vitek O. Statistical Detection of Differentially Abundant Proteins in Experiments with Repeated Measures Designs and Isobaric Labeling. J Proteome Res 2023; 22:2641-2659. [PMID: 37467362 PMCID: PMC11090052 DOI: 10.1021/acs.jproteome.3c00155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Repeated measures experimental designs, which quantify proteins in biological subjects repeatedly over multiple experimental conditions or times, are commonly used in mass spectrometry-based proteomics. Such designs distinguish the biological variation within and between the subjects and increase the statistical power of detecting within-subject changes in protein abundance. Meanwhile, proteomics experiments increasingly incorporate tandem mass tag (TMT) labeling, a multiplexing strategy that gains both relative protein quantification accuracy and sample throughput. However, combining repeated measures and TMT multiplexing in a large-scale investigation presents statistical challenges due to unique interplays of between-mixture, within-mixture, between-subject, and within-subject variation. This manuscript proposes a family of linear mixed-effects models for differential analysis of proteomics experiments with repeated measures and TMT multiplexing. These models decompose the variation in the data into the contributions from its sources as appropriate for the specifics of each experiment, enable statistical inference of differential protein abundance, and recognize a difference in the uncertainty of between-subject versus within-subject comparisons. The proposed family of models is implemented in the R/Bioconductor package MSstatsTMT v2.2.0. Evaluations of four simulated datasets and four investigations answering diverse biological questions demonstrated the value of this approach as compared to the existing general-purpose approaches and implementations.
Collapse
Affiliation(s)
- Ting Huang
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Mateusz Staniak
- Institute of Mathematics, University of Wrocław, Wrocław, Poland
| | | | - Amanda M. Figueroa-Navedo
- Department of Chemistry and Chemical Biology, Barnett Institute of Biological and Chemical Analysis, Northeastern University, Boston, MA, USA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Biological and Chemical Analysis, Northeastern University, Boston, MA, USA
| | | | - Meena Choi
- Departments of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Olga Vitek
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
14
|
Cerdán-Vélez D, Tress ML. Lost in the WASH. The functional human WASH complex 1 gene is on chromosome 20. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544951. [PMID: 37398104 PMCID: PMC10312774 DOI: 10.1101/2023.06.14.544951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The WASH1 gene produces a protein that forms part of the developmentally important WASH complex. The WASH complex activates the Arp2/3 complex to initiate branched actin networks at the surface of endosomes. As a curiosity, the human reference gene set includes nine WASH1 genes. How many of these are pseudogenes and how many are bona fide coding genes is not clear. Eight of the nine WASH1 genes reside in rearrangement and duplication-prone subtelomeric regions. Many of these subtelomeric regions had gaps in the GRCh38 human genome assembly, but the recently published T2T-CHM13 assembly from the Telomere to Telomere (T2T) Consortium has filled in the gaps. As a result, the T2T Consortium has added four new WASH1 paralogues in previously unannotated subtelomeric regions. Here we show that one of these four novel WASH1 genes, LOC124908094, is the gene most likely to produce the functional WASH1 protein. We also demonstrate that the other twelve WASH1 genes derived from a single WASH8P pseudogene on chromosome 12. These 12 genes include WASHC1, the gene currently annotated as the functional WASH1 gene. We propose LOC124908094 should be annotated as a coding gene and all functional information relating to the WASHC1 gene on chromosome 9 should be transferred to LOC124908094. The remaining WASH1 genes, including WASHC1. should be annotated as pseudogenes. This work confirms that the T2T assembly has added at least one functionally relevant coding gene to the human reference set. It remains to be seen whether other important coding genes are missing from the GRCh38 reference assembly.
Collapse
Affiliation(s)
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO)
| |
Collapse
|
15
|
Dostál V, Humhalová T, Beránková P, Pácalt O, Libusová L. SWIP mediates retromer-independent membrane recruitment of the WASH complex. Traffic 2023; 24:216-230. [PMID: 36995008 DOI: 10.1111/tra.12884] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The pentameric WASH complex facilitates endosomal protein sorting by activating Arp2/3, which in turn leads to the formation of F-actin patches specifically on the endosomal surface. It is generally accepted that WASH complex attaches to the endosomal membrane via the interaction of its subunit FAM21 with the retromer subunit VPS35. However, we observe the WASH complex and F-actin present on endosomes even in the absence of VPS35. We show that the WASH complex binds to the endosomal surface in both a retromer-dependent and a retromer-independent manner. The retromer-independent membrane anchor is directly mediated by the subunit SWIP. Furthermore, SWIP can interact with a number of phosphoinositide species. Of those, our data suggest that the interaction with phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2 ) is crucial to the endosomal binding of SWIP. Overall, this study reveals a new role of the WASH complex subunit SWIP and highlights the WASH complex as an independent, self-sufficient trafficking regulator.
Collapse
Affiliation(s)
- Vojtěch Dostál
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Tereza Humhalová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Pavla Beránková
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Ondřej Pácalt
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Lenka Libusová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|
16
|
Irala D, Wang S, Sakers K, Nagendren L, Ulloa-Severino FP, Bindu DS, Eroglu C. Astrocyte-Secreted Neurocan Controls Inhibitory Synapse Formation and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535448. [PMID: 37066164 PMCID: PMC10104008 DOI: 10.1101/2023.04.03.535448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. To date, several astrocyte-secreted synaptogenic proteins controlling different stages of excitatory synapse development have been identified. However, the identities of astrocytic signals that induce inhibitory synapse formation remain elusive. Here, through a combination of in vitro and in vivo experiments, we identified Neurocan as an astrocyte-secreted inhibitory synaptogenic protein. Neurocan is a chondroitin sulfate proteoglycan that is best known as a protein localized to the perineuronal nets. However, Neurocan is cleaved into two after secretion from astrocytes. We found that the resulting N- and C-terminal fragments have distinct localizations in the extracellular matrix. While the N-terminal fragment remains associated with perineuronal nets, the Neurocan C-terminal fragment localizes to synapses and specifically controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic region have reduced inhibitory synapse numbers and function. Through super-resolution microscopy and in vivo proximity labeling by secreted TurboID, we discovered that the synaptogenic domain of Neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Collapse
|
17
|
Kulkarni R, Kasani SK, Tsai CY, Tung SY, Yeh KH, Yu CHA, Chang W. FAM21 is critical for TLR2/CLEC4E-mediated dendritic cell function against Candida albicans. Life Sci Alliance 2023; 6:e202201414. [PMID: 36717248 PMCID: PMC9888482 DOI: 10.26508/lsa.202201414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
FAM21 (family with sequence similarity 21) is a component of the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) protein complex that mediates actin polymerization at endosomal membranes to facilitate sorting of cargo-containing vesicles out of endosomes. To study the function of FAM21 in vivo, we generated conditional knockout (cKO) mice in the C57BL/6 background in which FAM21 was specifically knocked out of CD11c-positive dendritic cells. BMDCs from those mice displayed enlarged early endosomes, and altered cell migration and morphology relative to WT cells. FAM21-cKO cells were less competent in phagocytosis and protein antigen presentation in vitro, though peptide antigen presentation was not affected. More importantly, we identified the TLR2/CLEC4E signaling pathway as being down-regulated in FAM21-cKO BMDCs when challenged with its specific ligand Candida albicans Moreover, FAM21-cKO mice were more susceptible to C. albicans infection than WT mice. Reconstitution of WT BMDCs in FAM21-cKO mice rescued them from lethal C. albicans infection. Thus, our study highlights the importance of FAM21 in a host immune response against a significant pathogen.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Siti Khadijah Kasani
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Striepen JF, Voeltz GK. Endosome biogenesis is controlled by ER and the cytoskeleton at tripartite junctions. Curr Opin Cell Biol 2023; 80:102155. [PMID: 36848759 DOI: 10.1016/j.ceb.2023.102155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/27/2023]
Abstract
The plasma membrane (PM) and its associated cargo are internalized into small vesicles via endocytosis funneling cargo into endosomes. The endosomal system must efficiently deliver cargos, as well as recycle cargo receptors and membrane to maintain homeostasis. In animal cells, endosome trafficking, maturation, and cargo recycling rely on the actin and microtubule cytoskeleton. Microtubules and their associated motor proteins provide the roads on which endosomes move and fuse during cargo sorting and delivery. In addition, highly dynamic assemblies of actin adjust the shape of the endosomal membrane to promote cargo segregation into budding domains allowing for receptor recycling. Recent work has revealed that the endoplasmic reticulum (ER) frequently acts as an intermediary between endosomes and their cytoskeletal regulators via membrane contact sites (MCSs). This review will discuss the factors which form these tripartite junction between the ER, endosomes, and the cytoskeleton as well as their function.
Collapse
Affiliation(s)
- Jonathan F Striepen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA; Howard Hughes Medical Institute, USA
| | - Gia K Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
19
|
Kim YE, Kim S, Kim IH. Neural circuit-specific gene manipulation in mouse brain in vivo using split-intein-mediated split-Cre system. STAR Protoc 2022; 3:101807. [PMID: 36386891 PMCID: PMC9641071 DOI: 10.1016/j.xpro.2022.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural network studies require efficient genetic tools to analyze individual neural circuit functions in vivo. Thus, we developed an advanced circuit-selective gene manipulating tool utilizing anterograde and retrograde adeno-associated viruses (AAVs) encoding split-intein-mediated split-Cre. This strategy can be applied to visualize a specific neural circuit as well as manipulate multiple genes in the circuit neurons. Here, we describe the production and purification of the AAVs, viral injection to the mouse brain, and imaging analysis for a specific neural circuit. For complete details on the use and execution of this protocol, please refer to Kim et al. (2022).
Collapse
Affiliation(s)
- Yong-Eun Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sunwhi Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Il Hwan Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
Tang Q, Li X, Wang J. Tubulin deacetylase NDST3 modulates lysosomal acidification: Implications in neurological diseases. Bioessays 2022; 44:e2200110. [PMID: 36135988 PMCID: PMC9829454 DOI: 10.1002/bies.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Neurological diseases (NDs), featured by progressive dysfunctions of the nervous system, have become a growing burden for the aging populations. N-Deacetylase and N-sulfotransferase 3 (NDST3) is known to catalyze deacetylation and N-sulfation on disaccharide substrates. Recently, NDST3 is identified as a novel deacetylase for tubulin, and its newly recognized role in modulating microtubule acetylation and lysosomal acidification provides fresh insights into ND therapeutic approaches using NDST3 as a target. Microtubule acetylation and lysosomal acidification have been reported to be critical for activities in neurons, implying that the regulators of these two biological processes, such as the previously known microtubule deacetylases, histone deacetylase 6 (HDAC6) and sirtuin 2 (SIRT2), could play important roles in various NDs. Aberrant NDST3 expression or tubulin acetylation has been observed in an increasing number of NDs, including amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), schizophrenia and bipolar disorder, Alzheimer's disease (AD), and Parkinson's disease (PD), suggesting that NDST3 is a key player in the pathogenesis of NDs and may serve as a target for development of new treatment of NDs.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiangning Li
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Tao M, Wan Y, Zheng X, Qian K, Merchant A, Xu B, Zhang Y, Zhou X, Wu Q. Tomato spotted wilt orthotospovirus shifts sex ratio toward males in the western flower thrips, Frankliniella occidentalis, by down-regulating a FSCB-like gene. PEST MANAGEMENT SCIENCE 2022; 78:5014-5023. [PMID: 36054039 DOI: 10.1002/ps.7125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plant viruses can facilitate their transmission by modulating the sex ratios of their insect vectors. Previously, we found that exposure to tomato spotted wilt orthotospovirus (TSWV) in the western flower thrips, Frankliniella occidentalis, led to a male-biased sex ratio in the offspring. TSWV, a generalist pathogen with a broad host range, is transmitted primarily by F. occidentalis in a circulative-propagative manner. Here, we integrated proteomic tools with RNAi to comprehensively investigate the genetic basis underlying the shift in vector sex ratio induced by the virus. RESULTS Proteomic analysis exhibited 104 differentially expressed proteins between F. occidentalis adult males with and without TSWV. The expression of the fiber sheath CABYR-binding-like (FSCB) protein, namely FoFSCB-like, a sperm-specific protein associated with sperm capacitation and motility, was decreased by 46%. The predicted FoFSCB-like protein includes 10 classic Pro-X-X-Pro motifs and 42 phosphorylation sites, which are key features for sperm capacitation. FoFSCB-like expression was gradually increased during the development and peaked at the pupal stage. After exposure to TSWV, FoFSCB-like expression was substantially down-regulated. Nanoparticle-mediated RNAi substantially suppressed FoFSCB-like expression and led to a significant male bias in the offspring. CONCLUSION These combined results suggest that down-regulation of FoFSCB-like in virus-exposed thrips leads to a male-biased sex ratio in the offspring. This study not only advances our understanding of virus-vector interactions, but also identifies a potential target for the genetic management of F. occidentalis, the primary vector of TSWV, by manipulating male fertility. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanghua Qian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Genome wide association study identifies novel candidate genes for growth and body conformation traits in goats. Sci Rep 2022; 12:9891. [PMID: 35701479 PMCID: PMC9197946 DOI: 10.1038/s41598-022-14018-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Pakistan is third largest country in term of goat population with distinct characteristics of breeds and estimated population of 78.2 million. Punjab province has 37% of country's total population with seven important documented goat breeds namely Beetal, Daira Din Pannah, Nachi, Barbari, Teddi, Pahari and Pothwari. There is paucity of literature on GWAS for economically important traits i.e., body weight and morphometric measurements. Therefore, we performed GWAS using 50 K SNP Chip for growth in term of age adjusted body weight and morphometric measurements in order to identify genomic regions influencing these traits among Punjab goat breeds. Blood samples were collected from 879 unrelated animals of seven goat breeds along with data for body weight and morphometric measurements including body length, body height, pubic bone length, heart girth and chest length. Genomic DNA was extracted and genotyped using 50 K SNP bead chip. Association of genotypic data with the phenotypic data was performed using Plink 1.9 software. Linear mixed model was used for the association study. Genes were annotated from Capra hircus genome using assembly ARS1. We have identified a number of highly significant SNPs and respective candidate genes associated with growth and body conformation traits. The functional aspects of these candidate genes suggested their potential role in body growth. Moreover, pleiotropic effects were observed for some SNPs for body weight and conformation traits. The results of current study contributed to a better understanding of genes influencing growth and body conformation traits in goat.
Collapse
|
23
|
Kandigian SE, Ethier EC, Kitchen RR, Lam TT, Arnold SE, Carlyle BC. Proteomic characterization of post-mortem human brain tissue following ultracentrifugation-based subcellular fractionation. Brain Commun 2022; 4:fcac103. [PMID: 35611312 PMCID: PMC9123841 DOI: 10.1093/braincomms/fcac103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/27/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Proteomic characterization of human brain tissue is increasingly utilized to identify potential novel biomarker and drug targets for a variety of neurological diseases. In whole tissue studies, results may be driven by changes in the proportion of the largest and most abundant organelles or tissue cell-type composition. Spatial proteomics approaches enhance our knowledge of disease mechanisms and changing signaling pathways at the subcellular level by taking into account the importance of cellular localization, which critically influences protein function. Density gradient-based ultracentrifugation methods allow for subcellular fractionation and have been utilized in cell lines, mouse, and human brain tissue to quantify thousands of proteins in specific enriched organelles such as the pre- and post-synapse. Serial ultra-centrifugation methods allow for the analysis of multiple cellular organelles from the same biological sample, and to our knowledge have not been previously applied to frozen post-mortem human brain tissue. The use of frozen human tissue for tissue fractionation faces two major challenges, the post-mortem interval, during which proteins may leach from their usual location into the cytosol, and freezing, which results in membrane breakdown. Despite these challenges, in this proof-of-concept study, we show that the majority of proteins segregate reproducibly into crude density-based centrifugation fractions, that the fractions are enriched for the appropriate organellar markers, and that significant differences in protein localization can be observed between tissue from individuals with Alzheimer’s Disease and control individuals.
Collapse
Affiliation(s)
- Savannah E. Kandigian
- Harvard Medical School, Massachusetts General Hospital Department of Neurology, Charlestown, Boston, MA, 02129, USA
| | - Elizabeth C. Ethier
- Harvard Medical School, Massachusetts General Hospital Department of Neurology, Charlestown, Boston, MA, 02129, USA
| | - Robert R. Kitchen
- Harvard Medical School Department of Medicine, Charlestown, Boston, MA, 02129, USA
| | - Tukiet T. Lam
- Yale University School of Medicine, Keck MS & Proteomics Resource, New Haven, CT, 06511, USA
- Yale University School of Medicine, Dept. of Molecular Biophysics and Biochemistry, New Haven, CT, 06511, USA
| | - Steven E. Arnold
- Harvard Medical School, Massachusetts General Hospital Department of Neurology, Charlestown, Boston, MA, 02129, USA
| | - Becky C. Carlyle
- Harvard Medical School, Massachusetts General Hospital Department of Neurology, Charlestown, Boston, MA, 02129, USA
- University of Oxford, Department of Physiology, Anatomy & Genetics, South Parks Rd, Oxford, OX1 3QU, UK
| |
Collapse
|
24
|
Small but Mighty-Exosomes, Novel Intercellular Messengers in Neurodegeneration. BIOLOGY 2022; 11:biology11030413. [PMID: 35336787 PMCID: PMC8945199 DOI: 10.3390/biology11030413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Exosomes are biological nanoparticles recently recognized as intercellular messengers. They contain a cargo of lipids, proteins, and RNA. They can transfer their content to not only cells in the vicinity but also to cells at a distance. This unique ability empowers them to modulate the physiology of recipient cells. In brain, exosomes play a role in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease and amyotrophic lateral sclerosis. Abstract Exosomes of endosomal origin are one class of extracellular vesicles that are important in intercellular communication. Exosomes are released by all cells in our body and their cargo consisting of lipids, proteins and nucleic acids has a footprint reflective of their parental origin. The exosomal cargo has the power to modulate the physiology of recipient cells in the vicinity of the releasing cells or cells at a distance. Harnessing the potential of exosomes relies upon the purity of exosome preparation. Hence, many methods for isolation have been developed and we provide a succinct summary of several methods. In spite of the seclusion imposed by the blood–brain barrier, cells in the CNS are not immune from exosomal intrusive influences. Both neurons and glia release exosomes, often in an activity-dependent manner. A brief description of exosomes released by different cells in the brain and their role in maintaining CNS homeostasis is provided. The hallmark of several neurodegenerative diseases is the accumulation of protein aggregates. Recent studies implicate exosomes’ intercellular communicator role in the spread of misfolded proteins aiding the propagation of pathology. In this review, we discuss the potential contributions made by exosomes in progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Understanding contributions made by exosomes in pathogenesis of neurodegeneration opens the field for employing exosomes as therapeutic agents for drug delivery to brain since exosomes do cross the blood–brain barrier.
Collapse
|
25
|
Popescu C. WASHC5 mutation extends the genotypic heterogeneity in early-onset Parkinson’s disease. FUTURE NEUROLOGY 2022. [DOI: 10.2217/fnl-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Materials & methods: Herein, we are reporting a 31-year-old man diagnosed with Parkinson’s disease (PD) without evidence of family co-segregation. Analysis across the PD loci was carried out followed by whole-exome sequencing. Results: We identified a novel heterozygous WASHC5 variant, c.775T >C p. (Tyr259His) segregating with PD. WASHC5 or strumpellin has previously been identified in autosomal dominant disorder hereditary spastic paraplegia type 8 (HSP8). Conclusion: We present clinical, genetic and physiopathological data supporting a relevant role of c.775T >C p. (Tyr259His) variant in early-onset PD. One can hypothesizes a model wherein the clinical continuum of strumpellin-associated neurological syndromes share common pathways based on endo-lysosomal trafficking dysfunction. This novel mutation extends the spectrum of WASHC5 gene mutations and supports the allelic heterogeneity of PD.
Collapse
|
26
|
Greco TM, Secker C, Ramos ES, Federspiel JD, Liu JP, Perez AM, Al-Ramahi I, Cantle JP, Carroll JB, Botas J, Zeitlin SO, Wanker EE, Cristea IM. Dynamics of huntingtin protein interactions in the striatum identifies candidate modifiers of Huntington disease. Cell Syst 2022; 13:304-320.e5. [PMID: 35148841 PMCID: PMC9317655 DOI: 10.1016/j.cels.2022.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a monogenic neurodegenerative disorder with one causative gene, huntingtin (HTT). Yet, HD pathobiology is multifactorial, suggesting that cellular factors influence disease progression. Here, we define HTT protein-protein interactions (PPIs) perturbed by the mutant protein with expanded polyglutamine in the mouse striatum, a brain region with selective HD vulnerability. Using metabolically labeled tissues and immunoaffinity purification-mass spectrometry, we establish that polyglutamine-dependent modulation of HTT PPI abundances and relative stability starts at an early stage of pathogenesis in a Q140 HD mouse model. We identify direct and indirect PPIs that are also genetic disease modifiers using in-cell two-hybrid and behavioral assays in HD human cell and Drosophila models, respectively. Validated, disease-relevant mHTT-dependent interactions encompass mediators of synaptic neurotransmission (SNAREs and glutamate receptors) and lysosomal acidification (V-ATPase). Our study provides a resource for understanding mHTT-dependent dysfunction in cortico-striatal cellular networks, partly through impaired synaptic communication and endosomal-lysosomal system. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA
| | - Christopher Secker
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Joel D Federspiel
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alma M Perez
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey P Cantle
- Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Jeffrey B Carroll
- Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Scott O Zeitlin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA.
| |
Collapse
|
27
|
Fan Y, Han J, Zhao L, Wu C, Wu P, Huang Z, Hao X, Ji Y, Chen D, Zhu M. Experimental Models of Cognitive Impairment for Use in Parkinson's Disease Research: The Distance Between Reality and Ideal. Front Aging Neurosci 2021; 13:745438. [PMID: 34912207 PMCID: PMC8667076 DOI: 10.3389/fnagi.2021.745438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Cognitive impairment is one of the key non-motor symptoms of PD, affecting both mortality and quality of life. However, there are few experimental studies on the pathology and treatments of PD with mild cognitive impairment (PD-MCI) and PD dementia (PDD) due to the lack of representative models. To identify new strategies for developing representative models, we systematically summarized previous studies on PD-MCI and PDD and compared differences between existing models and diseases. Our initial search identified 5432 articles, of which 738 were duplicates. A total of 227 articles met our inclusion criteria and were included in the analysis. Models fell into three categories based on model design: neurotoxin-induced, transgenic, and combined. Although the neurotoxin-induced experimental model was the most common type that was used during every time period, transgenic and combined experimental models have gained significant recent attention. Unfortunately, there remains a big gap between ideal and actual experimental models. While each model has its own disadvantages, there have been tremendous advances in the development of PD models of cognitive impairment, and almost every model can verify a hypothesis about PD-MCI or PDD. Finally, our proposed strategies for developing novel models are as follows: a set of plans that integrate symptoms, biochemistry, neuroimaging, and other objective indicators to judge and identify that the novel model plays a key role in new strategies for developing representative models; novel models should simulate different clinical features of PD-MCI or PDD; inducible α-Syn overexpression and SH-SY5Y-A53T cellular models are good candidate models of PD-MCI or PDD.
Collapse
Affiliation(s)
- Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiajun Han
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunxiao Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - YiChun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongfeng Chen
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Gangfuß A, Czech A, Hentschel A, Münchberg U, Horvath R, Töpf A, O'Heir E, Lochmüller H, Stehling F, Kiewert C, Sickmann A, Kuechler A, Kaiser FJ, Kölbel H, Christiansen J, Schara-Schmidt U, Roos A. Homozygous WASHC4 variant in two sisters causes a syndromic phenotype defined by dysmorphisms, intellectual disability, profound developmental disorder, and skeletal muscle involvement. J Pathol 2021; 256:93-107. [PMID: 34599609 DOI: 10.1002/path.5812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022]
Abstract
Recessive variants in WASHC4 are linked to intellectual disability complicated by poor language skills, short stature, and dysmorphic features. The protein encoded by WASHC4 is part of the Wiskott-Aldrich syndrome protein and SCAR homolog family, co-localizes with actin in cells, and promotes Arp2/3-dependent actin polymerization in vitro. Functional studies in a zebrafish model suggested that WASHC4 knockdown may also affect skeletal muscles by perturbing protein clearance. However, skeletal muscle involvement has not been reported so far in patients, and precise biochemical studies allowing a deeper understanding of the molecular etiology of the disease are still lacking. Here, we report two siblings with a homozygous WASHC4 variant expanding the clinical spectrum of the disease and provide a phenotypical comparison with cases reported in the literature. Proteomic profiling of fibroblasts of the WASHC4-deficient patient revealed dysregulation of proteins relevant for the maintenance of the neuromuscular axis. Immunostaining on a muscle biopsy derived from the same patient confirmed dysregulation of proteins relevant for proper muscle function, thus highlighting an affliction of muscle cells upon loss of functional WASHC4. The results of histological and coherent anti-Stokes Raman scattering microscopic studies support the concept of a functional role of the WASHC4 protein in humans by altering protein processing and clearance. The proteomic analysis confirmed key molecular players in vitro and highlighted, for the first time, the involvement of skeletal muscle in patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Artur Czech
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Ute Münchberg
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Emily O'Heir
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Florian Stehling
- Children's Hospital, Department of Pneumology, University Hospital Essen, Essen, Germany
| | - Cordula Kiewert
- Children's Hospital, Department of Endocrinology, University Hospital Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Essener Zentrum für seltene Erkrankungen (EZSE), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Essener Zentrum für seltene Erkrankungen (EZSE), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Jon Christiansen
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
29
|
Young WC, Carpp LN, Chaudhury S, Regules JA, Bergmann-Leitner ES, Ockenhouse C, Wille-Reece U, deCamp AC, Hughes E, Mahoney C, Pallikkuth S, Pahwa S, Dennison SM, Mudrak SV, Alam SM, Seaton KE, Spreng RL, Fallon J, Michell A, Ulloa-Montoya F, Coccia M, Jongert E, Alter G, Tomaras GD, Gottardo R. Comprehensive Data Integration Approach to Assess Immune Responses and Correlates of RTS,S/AS01-Mediated Protection From Malaria Infection in Controlled Human Malaria Infection Trials. Front Big Data 2021; 4:672460. [PMID: 34212134 PMCID: PMC8239149 DOI: 10.3389/fdata.2021.672460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
RTS,S/AS01 (GSK) is the world’s first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit–with this dataset–in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a “quality as well as quantity” hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.
Collapse
Affiliation(s)
- William Chad Young
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Sidhartha Chaudhury
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jason A Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elke S Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | | | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ellis Hughes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Celia Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - S Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Sarah V Mudrak
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - S Munir Alam
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States.,Department of Pathology, Duke University, Durham, NC, United States
| | - Kelly E Seaton
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Rachel L Spreng
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Jon Fallon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Ashlin Michell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
30
|
Tripartite synaptomics: Cell-surface proximity labeling in vivo. Neurosci Res 2021; 173:14-21. [PMID: 34019951 DOI: 10.1016/j.neures.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
The astrocyte is a central glial cell and plays a critical role in the architecture and activity of neuronal circuits and brain functions through forming a tripartite synapse with neurons. Emerging evidence suggests that dysfunction of tripartite synaptic connections contributes to a variety of psychiatric and neurodevelopmental disorders. Furthermore, recent advancements with transcriptome profiling, cell biological and physiological approaches have provided new insights into the molecular mechanisms into how astrocytes control synaptogenesis in the brain. In addition to these findings, we have recently developed in vivo cell-surface proximity-dependent biotinylation (BioID) approaches, TurboID-surface and Split-TurboID, to comprehensively understand the molecular composition between astrocytes and neuronal synapses. These proteomic approaches have discovered a novel molecular framework for understanding the tripartite synaptic cleft that arbitrates neuronal circuit formation and function. Here, this short review highlights novel in vivo cell-surface BioID approaches and recent advances in this rapidly evolving field, emphasizing how astrocytes regulate excitatory and inhibitory synapse formation in vitro and in vivo.
Collapse
|