1
|
Ripley DM, Garner T, Stevens A. Developing the 'omic toolkit of comparative physiologists. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101287. [PMID: 38972179 DOI: 10.1016/j.cbd.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
Typical 'omic analyses reduce complex biological systems to simple lists of supposedly independent variables, failing to account for changes in the wider transcriptional landscape. In this commentary, we discuss the utility of network approaches for incorporating this wider context into the study of physiological phenomena. We highlight opportunities to build on traditional network tools by utilising cutting-edge techniques to account for higher order interactions (i.e. beyond pairwise associations) within datasets, allowing for more accurate models of complex 'omic systems. Finally, we show examples of previous works utilising network approaches to gain additional insight into their organisms of interest. As 'omics grow in both their popularity and breadth of application, so does the requirement for flexible analytical tools capable of interpreting and synthesising complex datasets.
Collapse
Affiliation(s)
- Daniel M Ripley
- Marine Biology Laboratory, Division of Science, New York University Abu Dhabi, United Arab Emirates. https://twitter.com/@ElasmoDan
| | - Terence Garner
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Clarke SA, Eng PC, Comninos AN, Lazarus K, Choudhury S, Tsang C, Meeran K, Tan TM, Dhillo WS, Abbara A. Current Challenges and Future Directions in the Assessment of Glucocorticoid Status. Endocr Rev 2024; 45:795-817. [PMID: 38795365 PMCID: PMC11581704 DOI: 10.1210/endrev/bnae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Abstract
Glucocorticoid (GC) hormones are secreted in a circadian and ultradian rhythm and play a critical role in maintaining physiological homeostasis, with both excess and insufficient GC associated with adverse effects on health. Current assessment of GC status is primarily clinical, often in conjunction with serum cortisol values, which may be stimulated or suppressed depending on the GC disturbance being assessed. In the setting of extreme perturbations in cortisol levels ie, markedly low or high levels, symptoms and signs of GC dysfunction may be overt. However, when disturbances in cortisol GC status values are less extreme, such as when assessing optimization of a GC replacement regimen, signs and symptoms can be more subtle or nonspecific. Current tools for assessing GC status are best suited to identifying profound disturbances but may lack sensitivity for confirming optimal GC status. Moreover, single cortisol values do not necessarily reflect an individual's GC status, as they are subject to inter- and intraindividual variation and do not take into account the pulsatile nature of cortisol secretion, variation in binding proteins, or local tissue concentrations as dictated by 11beta-hydroxysteroid dehydrogenase activity, as well as GC receptor sensitivity. In the present review, we evaluate possible alternative methods for the assessment of GC status that do not solely rely on the measurement of circulating cortisol levels. We discuss the potential of changes in metabolomic profiles, micro RNA, gene expression, and epigenetic and other novel biomarkers such as growth differentiating factor 15 and osteocalcin, which could in the future aid in the objective classification of GC status.
Collapse
Affiliation(s)
- Sophie A Clarke
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Pei Chia Eng
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
- Department of Endocrinology, National University of Singapore, Singapore
| | - Alexander N Comninos
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Katharine Lazarus
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Sirazum Choudhury
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Christie Tsang
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
| | - Karim Meeran
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Tricia M Tan
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Ali Abbara
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| |
Collapse
|
3
|
Maiwall R, Kulkarni AV, Arab JP, Piano S. Acute liver failure. Lancet 2024; 404:789-802. [PMID: 39098320 DOI: 10.1016/s0140-6736(24)00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 08/06/2024]
Abstract
Acute liver failure (ALF) is a life-threatening disorder characterised by rapid deterioration of liver function, coagulopathy, and hepatic encephalopathy in the absence of pre-existing liver disease. The cause of ALF varies across the world. Common causes of ALF in adults include drug toxicity, hepatotropic and non-hepatotropic viruses, herbal and dietary supplements, antituberculosis drugs, and autoimmune hepatitis. The cause of liver failure affects the management and prognosis, and therefore extensive investigation for cause is strongly suggested. Sepsis with multiorgan failure and cerebral oedema remain the leading causes of death in patients with ALF and early identification and appropriate management can alter the course of ALF. Liver transplantation is the best current therapy, although the role of artificial liver support systems, particularly therapeutic plasma exchange, can be useful for patients with ALF, especially in non-transplant centres. In this Seminar, we discuss the cause, prognostic models, and management of ALF.
Collapse
Affiliation(s)
- Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Juan Pablo Arab
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine, University and Hospital of Padova, Padova, Italy
| |
Collapse
|
4
|
Shao X, Yu R, Zhao H, Wu J, Wu Q, Shu P. Causal relationship between genetically determined plasma metabolites and skin cancer: a two-sample Mendelian randomization study. Arch Dermatol Res 2024; 316:214. [PMID: 38787420 DOI: 10.1007/s00403-024-03011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
We aimed to unveil the underlying pathogenic mechanisms of skin cancer in relation to metabolic factors and pathway mechanisms. This study utilized the TwoSample Mendelian randomization (MR) method to investigate the causal relationship between 1400 plasma metabolites and skin cancer. The primary method employed was the inverse variance weighting (IVW). Through IVW analysis, we found 105 plasma metabolites associated with Basal Cell Carcinoma (BCC), with the highest association observed for Prolylglycine levels (OR [95% CI]: 1.1902 [1.0274, 1.3788]). For Malignant Melanoma of Skin (MSS), 68 plasma metabolites were linked, with the highest causal relationship seen for 3-Hydroxybutyrate levels (OR [95% CI]: 1.0030 [1.0013, 1.0048]). Regarding actinic keratosis (AK), and the highest association observed for Hexadecadienoate (16:2n6) levels (OR [95% CI]: 1.3302 [1.0333, 1.7125]). Glycerol to palmitoylcarnitine (16: n6) levels (OR [95% CI]: 1.3302 [1.0333, 1.125]) were found to be significant for BCC and AK. Palmitoylcarnitine (C16) had the most positive causal effect for BCC (OR [95% CI]: 1.1777 [1.0493, 1.3218]), while 5-hydroxy-2-methylpyridine sulfate levels had the highest effect for AK (OR [95% CI]: 1.1788 [1.0295, 1.3498]). And 4-guanidinobutanoate levels had the largest positive causal effect (OR [95% CI]: 1.0857 [1.0417, 1.1317]) for BCC, and X-11880 levels for MSS (OR [95% CI]: 1.0013 [1.0000, 1.0025]). The study revealed a positive association between hereditary Glycerol to palmitoylcarnitine (C16) and 5-hydroxy-2-methylpyridine sulfate levels with the risk of developing BCC and AK. Additionally, 4-guanidinobutanoate levels and X 11880 levels were found to be positively associated with the risk of BCC and MMS.
Collapse
Affiliation(s)
- Xia Shao
- Department of Dermatology, Beilun People's Hospital, District of Beilun, Ningbo, 315800, Zhejiang, China
| | - Rikao Yu
- Department of Urology, Beilun District People's Hospital, Ningbo, Zhejiang, China
| | - Honglei Zhao
- Department of Dermatology, Beilun People's Hospital, District of Beilun, Ningbo, 315800, Zhejiang, China
| | - Ji Wu
- Department of Dermatology, Beilun People's Hospital, District of Beilun, Ningbo, 315800, Zhejiang, China
| | - Qianqian Wu
- Department of Dermatology, Beilun People's Hospital, District of Beilun, Ningbo, 315800, Zhejiang, China
| | - Peng Shu
- Precision Medicine Research Center, Beilun District People's Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
5
|
Peel A, Rushworth RL, Torpy DJ. Novel agents to treat adrenal insufficiency: findings of preclinical and early clinical trials. Expert Opin Investig Drugs 2024; 33:115-126. [PMID: 38284211 DOI: 10.1080/13543784.2024.2311207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Adrenal insufficiency currently affects over 300/million population, with higher morbidity and mortality compared to the general population. Current glucocorticoid replacement therapy is limited by a lack of reliable biomarkers to guide dosing, inter-patient variation in metabolism and narrow therapeutic window. Increased morbidity and mortality may relate to unappreciated under- or over-exposure to glucocorticoids and impaired cortisol circadian rhythm. New agents are required to emulate physiological cortisol secretion and individualize glucocorticoid dosing. AREAS COVERED History of glucocorticoid therapy, current limitations, and novel chronotherapeutic glucocorticoid delivery mechanisms. Literature search incorporated searches of PubMed and Embase utilizing terms such as adrenal insufficiency, Chronocort, Plenadren, continuous subcutaneous hydrocortisone infusion (CHSI), and glucocorticoid receptor modulator. EXPERT OPINION Glucocorticoid chronotherapy is necessary to optimize glucocorticoid exposure and minimize complications. Current oral chronotherapeutics provide improved dosing functionality, but are modifiable only in specific increments and cannot accommodate ultradian cortisol variation. Current data show improvement in quality of life but not morbidity or mortality outcomes. CHSI has significant potential for individualized glucocorticoid dosing, but would require a suitable biomarker of glucocorticoid adequacy to be implementable. Avenues for future research include determining a glucocorticoid sufficiency biomarker, development of interstitial or systemic cortisol monitoring, or development of glucocorticoid receptor modulators.
Collapse
Affiliation(s)
- Andrew Peel
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - R Louise Rushworth
- School of Medicine, Sydney, The University of Notre Dame, Australia, Sydney, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
6
|
Hung CM, Zeng BY, Zeng BS, Sun CK, Cheng YS, Su KP, Wu YC, Chen TY, Lin PY, Liang CS, Hsu CW, Chu CS, Chen YW, Yeh PY, Wu MK, Tseng PT, Matsuoka YJ. Cancer related fatigue-light therapy: updated meta-analysis of randomised controlled trials. BMJ Support Palliat Care 2023; 13:e437-e445. [PMID: 34266911 DOI: 10.1136/bmjspcare-2021-003135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Moderate-to-severe cancer related fatigue occurs in 45% of patients with cancer and interferes with many aspects of quality of life. Although physical exercise has level 1 evidence for improvement of cancer related fatigue, it has a relatively high behavioural demand compared with other non-pharmacological interventions. The aim of this updated meta-analysis was to address the efficacy of light therapy in improving cancer related fatigue in patients with cancer. METHODS We included randomised controlled trials investigating the efficacy of bright white light (BWL) therapy in ameliorating cancer related fatigue in patients with cancer. This meta-analysis was conducted using a random-effects model. The target outcomes were changes in cancer related fatigue associated with BWL or dim red light (DRL). RESULTS There were 9 articles with 231 participants included. The main results revealed that daily morning BWL for 30 min was associated with significantly better improvement in fatigue severity compared with DRL (k=5, Hedges' g=-0.414, 95% CI -0.740 to -0.087, p=0.013). The subgroup without psychiatric comorbidities (k=4, Hedges' g=-0.479, 95% CI -0.801 to -0.156, p=0.004) was associated with significantly better improvement in fatigue severity with BWL than with DRL. In contrary, BWL was not associated with significantly different changes in depression severity or quality of life compared with DRL. Finally, BWL was associated with similar acceptability (ie, dropout rate) and safety profile (ie, any discomfort) as those of DRL. CONCLUSIONS This meta-analysis provides an updated evidence on the rationale for application of BWL in ameliorating cancer related fatigue in patients with different types of cancer. TRIAL REGISTRATION NUMBER INPLASY202140090.
Collapse
Affiliation(s)
- Chao-Ming Hung
- Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Yan Zeng
- Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Bing-Syuan Zeng
- Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
| | - Pin-Yang Yeh
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Ming-Kung Wu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yutaka J Matsuoka
- Research and Development Division, Health Policy Bureau, Ministry of Health, Labour and Welfare, Tokyo, Japan
| |
Collapse
|
7
|
Sikorski P, Li Y, Cheema M, Wolfe GI, Kusner LL, Aban I, Kaminski HJ. Serum metabolomics of treatment response in myasthenia gravis. PLoS One 2023; 18:e0287654. [PMID: 37816000 PMCID: PMC10564178 DOI: 10.1371/journal.pone.0287654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/09/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE High-dose prednisone use, lasting several months or longer, is the primary initial therapy for myasthenia gravis (MG). Upwards of a third of patients do not respond to treatment. Currently no biomarkers can predict clinical responsiveness to corticosteroid treatment. We conducted a discovery-based study to identify treatment responsive biomarkers in MG using sera obtained at study entry to the thymectomy clinical trial (MGTX), an NIH-sponsored randomized, controlled study of thymectomy plus prednisone versus prednisone alone. METHODS We applied ultra-performance liquid chromatography coupled with electro-spray quadrupole time of flight mass spectrometry to obtain comparative serum metabolomic and lipidomic profiles at study entry to correlate with treatment response at 6 months. Treatment response was assessed using validated outcome measures of minimal manifestation status (MMS), MG-Activities of Daily Living (MG-ADL), Quantitative MG (QMG) score, or a strictly defined composite measure of response. RESULTS Increased serum levels of phospholipids were associated with treatment response as assessed by QMG, MMS, and the Responders classification, but all measures showed limited overlap in metabolomic profiles, in particular the MG-ADL. A panel including histidine, free fatty acid (13:0), γ-cholestenol and guanosine was highly predictive of the strictly defined treatment response measure. The AUC in Responders' prediction for these markers was 0.90 irrespective of gender, age, thymectomy or baseline prednisone use. Pathway analysis suggests that xenobiotic metabolism could play a major role in treatment resistance. There was no association with outcome and gender, age, thymectomy or baseline prednisone use. INTERPRETATION We have defined a metabolomic and lipidomic profile that can now undergo validation as a treatment predictive marker for MG patients undergoing corticosteroid therapy. Metabolomic profiles of outcome measures had limited overlap consistent with their assessing distinct aspects of treatment response and supporting unique biological underpinning for each outcome measure. Interindividual variation in prednisone metabolism may be a determinate of how well patients respond to treatment.
Collapse
Affiliation(s)
- Patricia Sikorski
- Department of Neurology & Rehabilitation Medicine, George Washington University, Washington, DC, United States of America
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, United States of America
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Mehar Cheema
- Department of Neurology & Rehabilitation Medicine, George Washington University, Washington, DC, United States of America
| | - Gil I. Wolfe
- Department of Neurology, University at Buffalo/SUNY, Buffalo, New York, United States of America
| | - Linda L. Kusner
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, United States of America
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Henry J. Kaminski
- Department of Neurology & Rehabilitation Medicine, George Washington University, Washington, DC, United States of America
| |
Collapse
|
8
|
Maiarù M, Acton RJ, Woźniak EL, Mein CA, Bell CG, Géranton SM. A DNA methylation signature in the stress driver gene Fkbp5 indicates a neuropathic component in chronic pain. Clin Epigenetics 2023; 15:155. [PMID: 37777763 PMCID: PMC10543848 DOI: 10.1186/s13148-023-01569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Epigenetic changes can bring insight into gene regulatory mechanisms associated with disease pathogenicity, including chronicity and increased vulnerability. To date, we are yet to identify genes sensitive to epigenetic regulation that contribute to the maintenance of chronic pain and with an epigenetic landscape indicative of the susceptibility to persistent pain. Such genes would provide a novel opportunity for better pain management, as their epigenetic profile could be targeted for the treatment of chronic pain or used as an indication of vulnerability for prevention strategies. Here, we investigated the epigenetic profile of the gene Fkbp5 for this potential, using targeted bisulphite sequencing in rodent pre-clinical models of chronic and latent hypersensitive states. RESULTS The Fkbp5 promoter DNA methylation (DNAm) signature in the CNS was significantly different between models of persistent pain, and there was a significant correlation between CNS and peripheral blood Fkbp5 DNAm, indicating that further exploration of Fkbp5 promoter DNAm as an indicator of chronic pain pathogenic origin is warranted. We also found that maternal separation, which promotes the persistency of inflammatory pain in adulthood, was accompanied by long-lasting reduction in Fkbp5 DNAm, suggesting that Fkbp5 DNAm profile may indicate the increased vulnerability to chronic pain in individuals exposed to trauma in early life. CONCLUSIONS Overall, our data demonstrate that the Fkbp5 promoter DNAm landscape brings novel insight into the differing pathogenic origins of chronic pain, may be able to stratify patients and predict the susceptibility to chronic pain.
Collapse
Affiliation(s)
- Maria Maiarù
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
- Department of Pharmacology, School of Pharmacy, University of Reading, Reading, UK
| | - Richard J Acton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Charterhouse Square, Queen Mary University of London, London, EC1M 6BQ, UK
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eva L Woźniak
- Genome Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charles A Mein
- Genome Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Charterhouse Square, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sandrine M Géranton
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Kleeman SO, Thakir TM, Demestichas B, Mourikis N, Loiero D, Ferrer M, Bankier S, Riazat-Kesh YJ, Lee H, Chantzichristos D, Regan C, Preall J, Sinha S, Rosin N, Yipp B, de Almeida LG, Biernaskie J, Dufour A, Tober-Lau P, Ruusalepp A, Bjorkegren JL, Ralser M, Kurth F, Demichev V, Heywood T, Gao Q, Johannsson G, Koelzer VH, Walker BR, Meyer HV, Janowitz T. Cystatin C is glucocorticoid responsive, directs recruitment of Trem2+ macrophages, and predicts failure of cancer immunotherapy. CELL GENOMICS 2023; 3:100347. [PMID: 37601967 PMCID: PMC10435381 DOI: 10.1016/j.xgen.2023.100347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/23/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023]
Abstract
Cystatin C (CyC), a secreted cysteine protease inhibitor, has unclear biological functions. Many patients exhibit elevated plasma CyC levels, particularly during glucocorticoid (GC) treatment. This study links GCs with CyC's systemic regulation by utilizing genome-wide association and structural equation modeling to determine CyC production genetics in the UK Biobank. Both CyC production and a polygenic score (PGS) capturing predisposition to CyC production were associated with increased all-cause and cancer-specific mortality. We found that the GC receptor directly targets CyC, leading to GC-responsive CyC secretion in macrophages and cancer cells. CyC-knockout tumors displayed significantly reduced growth and diminished recruitment of TREM2+ macrophages, which have been connected to cancer immunotherapy failure. Furthermore, the CyC-production PGS predicted checkpoint immunotherapy failure in 685 patients with metastatic cancer from combined clinical trial cohorts. In conclusion, CyC may act as a GC effector pathway via TREM2+ macrophage recruitment and may be a potential target for combination cancer immunotherapy.
Collapse
Affiliation(s)
- Sam O. Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | - Dominik Loiero
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sean Bankier
- BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | | | - Hassal Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Dimitrios Chantzichristos
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology Diabetes and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Claire Regan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan Yipp
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luiz G.N. de Almeida
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
| | - Johan L.M. Bjorkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Todd Heywood
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Qing Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gudmundur Johannsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology Diabetes and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Viktor H. Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Oncology and Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Brian R. Walker
- BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cancer Institute, Northwell Health, New Hyde Park, NY, USA
| |
Collapse
|
10
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 173.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
11
|
Zeid D, Gould TJ. Chronic nicotine exposure alters sperm small RNA content in C57BL/6J mouse model. Dev Psychobiol 2023; 65:e22367. [PMID: 36811365 PMCID: PMC9978956 DOI: 10.1002/dev.22367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Multigenerational inheritance is a nongenomic form of heritability characterized by altered phenotypes in the first generation born from the exposed parent. Multigenerational factors may account for inconsistencies and gaps in heritable nicotine addiction vulnerability. Our lab previously found that F1 offspring of male C57BL/6J mice chronically exposed to nicotine exhibited altered hippocampus functioning and related learning, nicotine-seeking, nicotine metabolism, and basal stress hormones. In an effort to identify germline mechanisms underlying these multigenerational phenotypes, the current study sequenced small RNA extracted from sperm of males chronically administered nicotine using our previously established exposure model. We identified 16 miRNAs whose expression in sperm was dysregulated by nicotine exposure. A literature review of previous research on these transcripts suggested an enrichment for regulation of psychological stress and learning. mRNAs predicted to be regulated by differentially expressed sperm small RNAs were further analyzed using exploratory enrichment analysis, which suggested potential modulation of pathways related to learning, estrogen signaling, and hepatic disease, among other findings. Overall, our findings point to links between nicotine-exposed F0 sperm miRNA and altered F1 phenotypes in this multigenerational inheritance model, particularly F1 memory, stress, and nicotine metabolism. These findings provide a valuable foundation for future functional validation of these hypotheses and characterization of mechanisms underlying male-line multigenerational inheritance.
Collapse
Affiliation(s)
- Dana Zeid
- Department of Psychology, Temple University, Philadelphia PA, USA
| | - Thomas J. Gould
- Department of Biobehavioral Health, Penn State University, University Park PA, USA
| |
Collapse
|
12
|
Sultana N, Islam R. Modulation of the dynamics and cellularity of adipose tissues in different fat depots in broilers by dietary dexamethasone. J Adv Vet Anim Res 2022; 9:583-590. [PMID: 36714508 PMCID: PMC9868779 DOI: 10.5455/javar.2022.i627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 01/15/2023] Open
Abstract
Objective The objective of this investigation was to determine the effects of dexamethasone (DEX) on the weight and cellularity of abdominal and subcutaneous fat depots. Materials and Methods The study was conducted on four broiler chicks (20 chicks per group) fed commercial feed and water ad libitum. The DEX was supplied with feed at 0 mg/kg (non-DEX), 3 mg/kg (DEX-1), 5 mg/kg (DEX-2), and 7 mg/kg (DEX-3) from day 0 to day 28. The entire abdominal and subcutaneous fat depots were collected and weighed after sacrificing five birds from each group on days 14 and 28. Results The DEX groups had considerably lower (p < 0.05) fat depot weights with dose-related variation noted among the DEX groups. The histological findings revealed the presence of unilocular, round to oval-shaped adipocytes. The DEX-1 and DEX-2 had way lower (p < 0.05) numbers of adipocytes while the DEX-3 had considerably higher (p < 0.05) numbers of adipocytes than the non-DEX. DEX-1 and DEX-2 had larger (p < 0.05) adipocytes whereas DEX-3 had smaller adipocytes than the non-DEX. Adipocyte sizes and fat depot weights were found to have very strong negative relationships. Conclusion Dietary DEX affects the growth and distribution of abdominal and subcutaneous fat depots and adipocyte cellularity subjected to both dose and duration of DEX treatment.
Collapse
Affiliation(s)
- Nasrin Sultana
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rafiqul Islam
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
13
|
Chifu I, Weng AM, Burger-Stritt S, Bley TA, Christa M, Köstler H, Hahner S. Non-invasive assessment of tissue sodium content in patients with primary adrenal insufficiency. Eur J Endocrinol 2022; 187:383-390. [PMID: 35895687 PMCID: PMC9346263 DOI: 10.1530/eje-22-0396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Replacement therapy in primary adrenal insufficiency (PAI) with corticosteroids modulates sodium homeostasis. Serum sodium is, however, prone to osmotic shifts induced by several additional factors besides corticosteroids and does not always reliably reflect treatment quality. Non-osmotic tissue storage can be visualized by sodium MRI (23Na-MRI) and might better reflect corticosteroid activity. DESIGN Longitudinal study of 8 patients with newly diagnosed PAI and cross-sectional study in 22 patients with chronic PAI is reported here. Comparison was made with matched healthy controls. METHODS Using a 23Na-MRI protocol on a 3T scanner, relative sodium signal intensities (rSSI) to signal intensities of the reference vial with 100 mmol/L of sodium were determined in the muscle and skin of the lower calf. RESULTS In newly diagnosed patients, tissue rSSI (median, range) were reduced and significantly increased after treatment initiation reaching levels similar to healthy controls (muscle: from 0.15 (0.08, 0.18) to 0.18 (0.14, 0.27), P = 0.02; skin: from 0.12 (0.09, 0.18) to 0.18 (0.14, 0.28), P < 0.01). Muscle rSSI was significantly higher in patients with chronic PAI compared to controls (0.19 (0.14, 0.27) vs 0.16 (0.12, 0.20), P < 0.01). In chronic PAI, skin rSSI significantly correlated with plasma renin concentration. CONCLUSION 23Na-MRI provides an additional insight into sodium homeostasis, and thus the quality of replacement therapy in PAI, as tissue sodium significantly changes once therapy is initiated. The increased tissue sodium in patients with chronic PAI might be an indication of over-replacement.
Collapse
Affiliation(s)
- Irina Chifu
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital of Würzburg, University of Würzburg, Würzburg, Germany
- Correspondence should be addressed to I Chifu;
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Stephanie Burger-Stritt
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital of Würzburg, University of Würzburg, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Martin Christa
- Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Stefanie Hahner
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital of Würzburg, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Metabolomic Abnormalities in Serum from Untreated and Treated Dogs with Hyper- and Hypoadrenocorticism. Metabolites 2022; 12:metabo12040339. [PMID: 35448526 PMCID: PMC9028761 DOI: 10.3390/metabo12040339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The adrenal glands play a major role in metabolic processes, and both excess and insufficient serum cortisol concentrations can lead to serious metabolic consequences. Hyper- and hypoadrenocorticism represent a diagnostic and therapeutic challenge. Serum samples from dogs with untreated hyperadrenocorticism (n = 27), hyperadrenocorticism undergoing treatment (n = 28), as well as with untreated (n = 35) and treated hypoadrenocorticism (n = 23) were analyzed and compared to apparently healthy dogs (n = 40). A validated targeted proton nuclear magnetic resonance (1H NMR) platform was used to quantify 123 parameters. Principal component analysis separated the untreated endocrinopathies. The serum samples of dogs with untreated endocrinopathies showed various metabolic abnormalities with often contrasting results particularly in serum concentrations of fatty acids, and high- and low-density lipoproteins and their constituents, which were predominantly increased in hyperadrenocorticism and decreased in hypoadrenocorticism, while amino acid concentrations changed in various directions. Many observed serum metabolic abnormalities tended to normalize with medical treatment, but normalization was incomplete when compared to levels in apparently healthy dogs. Application of machine learning models based on the metabolomics data showed good classification, with misclassifications primarily observed in treated groups. Characterization of metabolic changes enhances our understanding of these endocrinopathies. Further assessment of the recognized incomplete reversal of metabolic alterations during medical treatment may improve disease management.
Collapse
|
15
|
Monocarboxylate Transporters Are Involved in Extracellular Matrix Remodelling in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14051298. [PMID: 35267606 PMCID: PMC8909080 DOI: 10.3390/cancers14051298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a five-year survival rate of <8%. PDAC is characterised by desmoplasia with an abundant extracellular matrix (ECM) rendering current therapies ineffective. Monocarboxylate transporters (MCTs) are key regulators of cellular metabolism and are upregulated in different cancers; however, their role in PDAC desmoplasia is little understood. Here, we investigated MCT and ECM gene expression in primary PDAC patient biopsies using RNA-sequencing data obtained from Gene Expression Omnibus. We generated a hypernetwork model from these data to investigate whether a causal relationship exists between MCTs and ECMs. Our analysis of stromal and epithelial tissues (n = 189) revealed nine differentially expressed MCTs, including the upregulation of SLC16A2/6/10 and the non-coding SLC16A1-AS1, and 502 ECMs, including collagens, laminins, and ECM remodelling enzymes (false discovery rate < 0.05). A causal hypernetwork analysis demonstrated a bidirectional relationship between MCTs and ECMs; four MCT and 255 ECM-related transcripts correlated with 90% of the differentially expressed ECMs (n = 376) and MCTs (n = 7), respectively. The hypernetwork model was robust, established by iterated sampling, direct path analysis, validation by an independent dataset, and random forests. This transcriptomic analysis highlights the role of MCTs in PDAC desmoplasia via associations with ECMs, opening novel treatment pathways to improve patient survival.
Collapse
|
16
|
Sarsenbayeva A, Pereira MJ, Nandi Jui B, Ahmed F, Dipta P, Fanni G, Almby K, Kristófi R, Hetty S, Eriksson JW. Excess glucocorticoid exposure contributes to adipose tissue fibrosis which involves macrophage interaction with adipose precursor cells. Biochem Pharmacol 2022; 198:114976. [PMID: 35202577 DOI: 10.1016/j.bcp.2022.114976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Chronic exposure to elevated glucocorticoid levels, as seen in patients with Cushing's syndrome, can induce adipose tissue fibrosis. Macrophages play a pivotal role in adipose tissue remodelling. We used the synthetic glucocorticoid analogue dexamethasone to address glucocorticoid effects on adipose tissue fibrosis, in particular involving macrophage to preadipocyte communication. We analysed the direct effects of dexamethasone at a supra-physiological level, 0.3 µM, on gene expression of pro-fibrotic markers in human subcutaneous adipose tissue. The effects of dexamethasone on the differentiation of human SGBS preadipocytes were assessed in the presence or absence of THP1-macrophages or macrophage-conditioned medium. We measured the expression of different pro-fibrotic factors, including α-smooth muscle actin gene (ACTA2) and protein (α-SMA). Dexamethasone increased the expression of pro-fibrotic genes, e.g. CTGF, COL6A3, FN1, in adipose tissue. Macrophages abolished preadipocyte differentiation and increased the expression of the ACTA2 gene and α-SMA protein in preadipocytes after differentiation. Exposure to dexamethasone during differentiation reduced adipogenesis in preadipocytes, and elevated the expression of pro-fibrotic genes. Moreover, dexamethasone added together with macrophages further increased ACTA2 and α-SMA expression in preadipocytes, making them more myofibroblast-like. Cells differentiated in the presence of conditioned media from macrophages pretreated with or without dexamethasone had a higher expression of profibrotic genes compared to control cells. Our data suggest that macrophages promote adipose tissue fibrosis by directly interfering with preadipocyte differentiation and stimulating gene expression of pro-fibrotic factors. Excess glucocorticoid exposure also has pro-fibrotic effect on adipose tissue, but this requires the presence of macrophages.
Collapse
Affiliation(s)
- Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Bipasha Nandi Jui
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Priya Dipta
- Department of Pharmacology, Faculty of Medicine, Hadassah Medical Centre, Jerusalem, Israel
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Kristina Almby
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Ruane PT, Garner T, Parsons L, Babbington PA, Wangsaputra I, Kimber SJ, Stevens A, Westwood M, Brison DR, Aplin JD. Trophectoderm differentiation to invasive syncytiotrophoblast is promoted by endometrial epithelial cells during human embryo implantation. Hum Reprod 2022; 37:777-792. [PMID: 35079788 PMCID: PMC9398450 DOI: 10.1093/humrep/deac008] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/24/2021] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTION How does the human embryo breach the endometrial epithelium at implantation? SUMMARY ANSWER Embryo attachment to the endometrial epithelium promotes the formation of multinuclear syncytiotrophoblast from trophectoderm, which goes on to breach the epithelial layer. WHAT IS KNOWN ALREADY A significant proportion of natural conceptions and assisted reproduction treatments fail due to unsuccessful implantation. The trophectoderm lineage of the embryo attaches to the endometrial epithelium before breaching this barrier to implant into the endometrium. Trophectoderm-derived syncytiotrophoblast has been observed in recent in vitro cultures of peri-implantation embryos, and historical histology has shown invasive syncytiotrophoblast in embryos that have invaded beyond the epithelium, but the cell type mediating invasion of the epithelial layer at implantation is unknown. STUDY DESIGN, SIZE, DURATION Fresh and frozen human blastocyst-stage embryos (n = 46) or human trophoblast stem cell (TSC) spheroids were co-cultured with confluent monolayers of the Ishikawa endometrial epithelial cell line to model the epithelial phase of implantation in vitro. Systems biology approaches with published transcriptomic datasets were used to model the epithelial phase of implantation in silico. PARTICIPANTS/MATERIALS, SETTING, METHODS Human embryos surplus to treatment requirements were consented for research. Day 6 blastocysts were co-cultured with Ishikawa cell layers until Day 8, and human TSC spheroids modelling blastocyst trophectoderm were co-cultured with Ishikawa cell layers for 48 h. Embryo and TSC morphology was assessed by immunofluorescence microscopy, and TSC differentiation by real-time quantitative PCR (RT-qPCR) and ELISA. Single-cell human blastocyst transcriptomes, and bulk transcriptomes of TSC and primary human endometrial epithelium were used to model the trophectoderm-epithelium interaction in silico. Hypernetworks, pathway analysis, random forest machine learning and RNA velocity were employed to identify gene networks associated with implantation. MAIN RESULTS AND THE ROLE OF CHANCE The majority of embryos co-cultured with Ishikawa cell layers from Day 6 to 8 breached the epithelial layer (37/46), and syncytiotrophoblast was seen in all of these. Syncytiotrophoblast was observed at the embryo-epithelium interface before breaching, and syncytiotrophoblast mediated all pioneering breaching events observed (7/7 events). Multiple independent syncytiotrophoblast regions were seen in 26/46 embryos, suggesting derivation from different regions of trophectoderm. Human TSC spheroids co-cultured with Ishikawa layers also exhibited syncytiotrophoblast formation upon invasion into the epithelium. RT-qPCR comparison of TSC spheroids in isolated culture and co-culture demonstrated epithelium-induced upregulation of syncytiotrophoblast genes CGB (P = 0.03) and SDC1 (P = 0.008), and ELISA revealed the induction of hCGβ secretion (P = 0.03). Secretory-phase primary endometrial epithelium surface transcriptomes were used to identify trophectoderm surface binding partners to model the embryo-epithelium interface. Hypernetwork analysis established a group of 25 epithelium-interacting trophectoderm genes that were highly connected to the rest of the trophectoderm transcriptome, and epithelium-coupled gene networks in cells of the polar region of the trophectoderm exhibited greater connectivity (P < 0.001) and more organized connections (P < 0.0001) than those in the mural region. Pathway analysis revealed a striking similarity with syncytiotrophoblast differentiation, as 4/6 most highly activated pathways upon TSC-syncytiotrophoblast differentiation (false discovery rate (FDR < 0.026)) were represented in the most enriched pathways of epithelium-coupled gene networks in both polar and mural trophectoderm (FDR < 0.001). Random forest machine learning also showed that 80% of the endometrial epithelium-interacting trophectoderm genes identified in the hypernetwork could be quantified as classifiers of TSC-syncytiotrophoblast differentiation. This multi-model approach suggests that invasive syncytiotrophoblast formation from both polar and mural trophectoderm is promoted by attachment to the endometrial epithelium to enable embryonic invasion. LARGE SCALE DATA No omics datasets were generated in this study, and those used from previously published studies are cited. LIMITATIONS, REASONS FOR CAUTION In vitro and in silico models may not recapitulate the dynamic embryo-endometrial interactions that occur in vivo. The influence of other cellular compartments in the endometrium, including decidual stromal cells and leukocytes, was not represented in these models. WIDER IMPLICATIONS OF THE FINDINGS Understanding the mechanism of human embryo breaching of the epithelium and the gene networks involved is crucial to improve implantation success rates after assisted reproduction. Moreover, early trophoblast lineages arising at the epithelial phase of implantation form the blueprint for the placenta and thus underpin foetal growth trajectories, pregnancy health and offspring health. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by grants from Wellbeing of Women, Diabetes UK, the NIHR Local Comprehensive Research Network and Manchester Clinical Research Facility, and the Department of Health Scientist Practitioner Training Scheme. None of the authors has any conflict of interest to declare.
Collapse
Affiliation(s)
- Peter T Ruane
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK,Correspondence address. Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, School of Medical Sciences, Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9WL, UK. E-mail: https://orcid.org/0000-0002-1476-1666
| | - Terence Garner
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Lydia Parsons
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Phoebe A Babbington
- Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ivan Wangsaputra
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Susan J Kimber
- Faculty of Biology Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Adam Stevens
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Melissa Westwood
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Daniel R Brison
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK,Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - John D Aplin
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
18
|
Wnt-Signaling Regulated by Glucocorticoid-Induced miRNAs. Int J Mol Sci 2021; 22:ijms222111778. [PMID: 34769207 PMCID: PMC8584097 DOI: 10.3390/ijms222111778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) are pleiotropic hormones which regulate innumerable physiological processes. Their comprehensive effects are due to the diversity of signaling mechanism networks. MiRNAs, small, non-coding RNAs contribute to the fine tuning of signaling pathways and reciprocal regulation between GCs and miRNAs has been suggested. Our aim was to investigate the expressional change and potential function of GC mediated miRNAs. The miRNA expression profile was measured in three models: human adrenocortical adenoma vs. normal tissue, steroid-producing H295R cells and in hormonally inactive HeLa cells before and after dexamethasone treatment. The gene expression profile in 82 control and 57 GC-affected samples was evaluated in GC producing and six different GC target tissue types. Tissue-specific target prediction (TSTP) was applied to identify the most relevant miRNA-mRNA interactions. Glucocorticoid treatment resulted in cell type-dependent miRNA expression changes. However, 19.5% of the influenced signaling pathways were common in all three experiments, of which the Wnt-signaling pathway seemed to be the most affected. Transcriptome data and TSTP showed similar results, as the Wnt pathway was significantly altered in both the GC-producing adrenal gland and all investigated GC target tissue types. In different cell types, different miRNAs led to the regulation of similar pathways. Wnt signaling may be one of the most important signaling pathways affected by hypercortisolism. It is, at least in part, regulated by miRNAs that mediate the glucocorticoid effect. Our findings on GC producing and GC target tissues suggest that the alteration of Wnt signaling (together with other pathways) may be responsible for the leading symptoms observed in Cushing's syndrome.
Collapse
|
19
|
Untargeted Plasma Metabolomics Unravels a Metabolic Signature for Tissue Sensitivity to Glucocorticoids in Healthy Subjects: Its Implications in Dietary Planning for a Healthy Lifestyle. Nutrients 2021; 13:nu13062120. [PMID: 34205537 PMCID: PMC8234096 DOI: 10.3390/nu13062120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
In clinical practice, differences in glucocorticoid sensitivity among healthy subjects may influence the outcome and any adverse effects of glucocorticoid therapy. Thus, a fast and accurate methodology that could enable the classification of individuals based on their tissue glucocorticoid sensitivity would be of value. We investigated the usefulness of untargeted plasma metabolomics in identifying a panel of metabolites to distinguish glucocorticoid-resistant from glucocorticoid-sensitive healthy subjects who do not carry mutations in the human glucocorticoid receptor (NR3C1) gene. Applying a published methodology designed for the study of glucocorticoid sensitivity in healthy adults, 101 healthy subjects were ranked according to their tissue glucocorticoid sensitivity based on 8:00 a.m. serum cortisol concentrations following a very low-dose dexamethasone suppression test. Ten percent of the cohort, i.e., 11 participants, on each side of the ranking, with no NR3C1 mutations or polymorphisms, were selected, respectively, as the most glucocorticoid-sensitive and most glucocorticoid-resistant of the cohort to be analyzed and compared with untargeted blood plasma metabolomics using gas chromatography–mass spectrometry (GC–MS). The acquired metabolic profiles were evaluated using multivariate statistical analysis methods. Nineteen metabolites were identified with significantly lower abundance in the most sensitive compared to the most resistant group of the cohort, including fatty acids, sugar alcohols, and serine/threonine metabolism intermediates. These results, combined with a higher glucose, sorbitol, and lactate abundance, suggest a higher Cori cycle, polyol pathway, and inter-tissue one-carbon metabolism rate and a lower fat mobilization rate at the fasting state in the most sensitive compared to the most resistant group. In fact, this was the first study correlating tissue glucocorticoid sensitivity with serine/threonine metabolism. Overall, the observed metabolic signature in this cohort implies a worse cardiometabolic profile in the most glucocorticoid-sensitive compared to the most glucocorticoid-resistant healthy subjects. These findings offer a metabolic signature that distinguishes most glucocorticoid-sensitive from most glucocorticoid-resistant healthy subjects to be further validated in larger cohorts. Moreover, they support the correlation of tissue glucocorticoid sensitivity with insulin resistance and metabolic syndrome-associated pathways, further emphasizing the need for nutritionists and doctors to consider the tissue glucocorticoid sensitivity in dietary and exercise planning, particularly when these subjects are to be treated with glucocorticoids.
Collapse
|