1
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2025; 62:1-17. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
2
|
Chen X, Zhu X. Lactate: Beyond a mere fuel in the epileptic brain. Neuropharmacology 2024; 266:110273. [PMID: 39719259 DOI: 10.1016/j.neuropharm.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the astrocyte-neuron lactate shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression. Additionally, the roles of lactate metabolism in microglia and oligodendrocytes are considered, aiming to supplement our understanding of neuro-glial metabolic interactions as extensions of the ANLS model. Additionally, lactate modulates neuronal excitability via its interaction with hydroxycarboxylic acid receptor 1 (HCAR1), alongside additional mechanisms involving acid-sensing ion channels (ASICs) and ATP-sensitive potassium (KATP) channels, which contribute as secondary modulatory pathways. In conclusion, we propose that lactate functions as more than a mere fuel source in the epileptic brain, offering potential insights into new therapeutic targets for seizure control.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Burkart ME, Kurzke J, Jacobi R, Vera J, Ashcroft FM, Eilers J, Lippmann K. KATP channel mutation disrupts hippocampal network activity and nocturnal gamma shifts. Brain 2024; 147:4200-4212. [PMID: 38748482 DOI: 10.1093/brain/awae157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/31/2024] [Accepted: 05/02/2024] [Indexed: 12/14/2024] Open
Abstract
ATP-sensitive potassium (KATP) channels couple cell metabolism to cellular electrical activity. Humans affected by severe activating mutations in KATP channels suffer from developmental delay, epilepsy and neonatal diabetes (DEND syndrome). While the aetiology of diabetes in DEND syndrome is well understood, the pathophysiology of the neurological symptoms remains unclear. We hypothesized that impaired activity of parvalbumin-positive interneurons (PV-INs) may result in seizures and cognitive problems. We found, by performing electrophysiological experiments, that expressing the DEND mutation Kir6.2-V59M selectively in mouse PV-INs reduced intrinsic gamma frequency preference and short-term depression as well as disturbed cognition-associated gamma oscillations and hippocampal sharp waves. Furthermore, the risk of seizures was increased and the day-night shift in gamma activity disrupted. Blocking KATP channels with tolbutamide partially rescued the network oscillations. The non-reversible part may, to some extent, result from observed altered PV-IN dendritic branching and PV-IN arrangement within CA1. In summary, PV-INs play a key role in DEND syndrome, and this provides a framework for establishing treatment options.
Collapse
Affiliation(s)
- Marie-Elisabeth Burkart
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Josephine Kurzke
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Robert Jacobi
- Department for Neurophysiology, Institute for Physiology, Julius-Maximilians-University Würzburg, Würzburg 97070, Germany
| | - Jorge Vera
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Kristina Lippmann
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
4
|
Pham C, Komaki Y, Deàs-Just A, Le Gac B, Mouffle C, Franco C, Chaperon A, Vialou V, Tsurugizawa T, Cauli B, Li D. Astrocyte aquaporin mediates a tonic water efflux maintaining brain homeostasis. eLife 2024; 13:RP95873. [PMID: 39508543 PMCID: PMC11542920 DOI: 10.7554/elife.95873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Brain water homeostasis not only provides a physical protection, but also determines the diffusion of chemical molecules key for information processing and metabolic stability. As a major type of glia in brain parenchyma, astrocytes are the dominant cell type expressing aquaporin water channel. How astrocyte aquaporin contributes to brain water homeostasis in basal physiology remains to be understood. We report that astrocyte aquaporin 4 (AQP4) mediates a tonic water efflux in basal conditions. Acute inhibition of astrocyte AQP4 leads to intracellular water accumulation as optically resolved by fluorescence-translated imaging in acute brain slices, and in vivo by fiber photometry in mobile mice. We then show that aquaporin-mediated constant water efflux maintains astrocyte volume and osmotic equilibrium, astrocyte and neuron Ca2+ signaling, and extracellular space remodeling during optogenetically induced cortical spreading depression. Using diffusion-weighted magnetic resonance imaging (DW-MRI), we observed that in vivo inhibition of AQP4 water efflux heterogeneously disturbs brain water homeostasis in a region-dependent manner. Our data suggest that astrocyte aquaporin, though bidirectional in nature, mediates a tonic water outflow to sustain cellular and environmental equilibrium in brain parenchyma.
Collapse
Affiliation(s)
- Cuong Pham
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Yuji Komaki
- Central Institute for Experimental Medicine and Life ScienceKawasakiJapan
| | - Anna Deàs-Just
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Benjamin Le Gac
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Christine Mouffle
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Clara Franco
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Agnès Chaperon
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Vincent Vialou
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Faculty of Engineering, University of TsukubaTsukubaJapan
| | - Bruno Cauli
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Dongdong Li
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| |
Collapse
|
5
|
Qiao L, Yang G, Wang P, Xu C. The potential role of mitochondria in the microbiota-gut-brain axis: Implications for brain health. Pharmacol Res 2024; 209:107434. [PMID: 39332752 DOI: 10.1016/j.phrs.2024.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Mitochondria are crucial organelles that regulate cellular energy metabolism, calcium homeostasis, and oxidative stress responses, playing pivotal roles in brain development and neurodegeneration. Concurrently, the gut microbiota has emerged as a key modulator of brain physiology and pathology through the microbiota-gut-brain axis. Recent evidence suggests an intricate crosstalk between the gut microbiota and mitochondrial function, mediated by microbial metabolites that can influence mitochondrial activities in the brain. This review aims to provide a comprehensive overview of the emerging role of mitochondria as critical mediators in the microbiota-gut-brain axis, shaping brain health and neurological disease pathogenesis. We discuss how gut microbial metabolites such as short-chain fatty acids, secondary bile acids, tryptophan metabolites, and trimethylamine N-oxide can traverse the blood-brain barrier and modulate mitochondrial processes including energy production, calcium regulation, mitophagy, and oxidative stress in neurons and glial cells. Additionally, we proposed targeting the mitochondria through diet, prebiotics, probiotics, or microbial metabolites as a promising potential therapeutic approach to maintain brain health by optimizing mitochondrial fitness. Overall, further investigations into how the gut microbiota and its metabolites regulate mitochondrial bioenergetics, dynamics, and stress responses will provide valuable insights into the microbiota-gut-brain axis in both health and disease states.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ge Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Department of Psychiatry, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
6
|
Kyllo T, Allocco D, Hei LV, Wulff H, Erickson JD. Riluzole attenuates acute neural injury and reactive gliosis, hippocampal-dependent cognitive impairments and spontaneous recurrent generalized seizures in a rat model of temporal lobe epilepsy. Front Pharmacol 2024; 15:1466953. [PMID: 39539628 PMCID: PMC11558044 DOI: 10.3389/fphar.2024.1466953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Background Riluzole exhibits neuroprotective and therapeutic effects in several neurological disease models associated with excessive synaptic glutamate (Glu) release. We recently showed riluzole prevents acute excitotoxic hippocampal neural injury at 3 days in the kainic acid (KA) model of temporal lobe epilepsy (TLE). Currently, it is unknown if preventing acute neural injury and the neuroinflammatory response is sufficient to suppress epileptogenesis. Methods The KA rat model of TLE was used to determine if riluzole attenuates acute hippocampal neural injury and reactive gliosis. KA was administered to adult male Sprague-Dawley (250 g) rats at 5 mg/kg/hr until status epilepticus (SE) was observed, and riluzole was administered at 10 mg/kg 1 h and 4 h after SE and once per day for the next 2 days. Immunostaining was used to assess neural injury (FJC and NeuN), microglial activation (Iba1 and ED-1/CD68) and astrogliosis (GFAP and vimentin) at day 7 and day 14 after KA-induced SE. Learning and memory tests (Y-maze, Novel object recognition test, Barnes maze), behavioral hyperexcitability tests, and spontaneous generalized recurrent seizure (SRS) activity (24-hour video monitoring) were assessed at 11-15 weeks. Results Here we show that KA-induced hippocampal neural injury precedes the neuroimmune response and that riluzole attenuates acute neural injury, microglial activation, and astrogliosis at 7 and 14 days. We find that reducing acute hippocampal injury and the associated neuroimmune response following KA-induced SE by riluzole attenuates hippocampal-dependent cognitive impairment, behavioral hyperexcitability, and tonic/clonic generalized SRS activity after 3 months. We also show that riluzole attenuates SE-associated body weight loss during the first week after KA-induced SE. Discussion Riluzole acts on multiple targets that are involved to prevent excessive synaptic Glu transmission and excitotoxic neuronal injury. Attenuating KA-induced neural injury and subsequent microglia/astrocyte activation in the hippocampus and extralimbic regions with riluzole reduces TLE-associated cognitive deficits and generalized SRS and suggests that riluzole could be a potential antiepileptogenic drug.
Collapse
Affiliation(s)
- Thomas Kyllo
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Dominic Allocco
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Laine Vande Hei
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, CA, United States
| | - Jeffrey D. Erickson
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| |
Collapse
|
7
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
8
|
Liu J, Zhao F, Qu Y. Lactylation: A Novel Post-Translational Modification with Clinical Implications in CNS Diseases. Biomolecules 2024; 14:1175. [PMID: 39334941 PMCID: PMC11430557 DOI: 10.3390/biom14091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lactate, an important metabolic product, provides energy to neural cells during energy depletion or high demand and acts as a signaling molecule in the central nervous system. Recent studies revealed that lactate-mediated protein lactylation regulates gene transcription and influences cell fate, metabolic processes, inflammation, and immune responses. This review comprehensively examines the regulatory roles and mechanisms of lactylation in neurodevelopment, neuropsychiatric disorders, brain tumors, and cerebrovascular diseases. This analysis indicates that lactylation has multifaceted effects on central nervous system function and pathology, particularly in hypoxia-induced brain damage. Highlighting its potential as a novel therapeutic target, lactylation may play a significant role in treating neurological diseases. By summarizing current findings, this review aims to provide insights and guide future research and clinical strategies for central nervous system disorders.
Collapse
Affiliation(s)
- Junyan Liu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Neonatal Intensive Care Unit, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Fengyan Zhao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Green ZD, John CS, Kueck PJ, Blankenship AE, Kemna RE, Johnson CN, Yoksh LE, Best SR, Donald JS, Mahnken JD, Burns JM, Vidoni ED, Morris JK. Acute exercise alters brain glucose metabolism in aging and Alzheimer's disease. J Physiol 2024. [PMID: 39258961 DOI: 10.1113/jp286923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
There is evidence that aerobic exercise improves brain health. Benefits may be modulated by acute physiological responses to exercise, but this has not been well characterized in older or cognitively impaired adults. The randomized controlled trial 'AEROBIC' (NCT04299308) enrolled 60 older adults who were cognitively healthy (n = 30) or cognitively impaired (n = 30) to characterize the acute brain responses to moderate [45-55% heart rate reserve (HRR)] and higher (65-75% HRR) intensity acute exercise. Each participant received two fluorodeoxyglucose positron emission tomography (FDG-PET) scans, one at rest and one following acute exercise. Change in cerebral glucose metabolism from rest to exercise was the primary outcome. Blood biomarker responses were also characterized as secondary outcomes. Whole grey matter FDG-PET standardized uptake value ratio (SUVR) differed between exercise (1.045 ± 0.082) and rest (0.985 ± 0.077) across subjects [Diff = -0.060, t(58) = 13.8, P < 0.001] regardless of diagnosis. Exercise increased lactate area under the curve (AUC) [F(1,56) = 161.99, P < 0.001] more in the higher intensity group [mean difference (MD) = 97.0 ± 50.8] than the moderate intensity group (MD = 40.3 ± 27.5; t = -5.252, P < 0.001). Change in lactate AUC and FDG-PET SUVR correlated significantly (R2 = 0.179, P < 0.001). Acute exercise decreased whole grey matter cerebral glucose metabolism. This effect tracked with the systemic lactate response, suggesting that lactate may serve as a key brain fuel during exercise. Direct measurements of brain lactate metabolism in response to exercise are warranted. KEY POINTS: Acute exercise is associated with a drop in global brain glucose metabolism in both cognitively healthy older adults and those with Alzheimer's disease. Blood lactate levels increase following acute exercise. Change in brain metabolism tracks with blood lactate, suggesting it may be an important brain fuel. Acute exercise stimulates changes in brain-derived neurotrophic factor and other blood biomarkers.
Collapse
Affiliation(s)
- Zachary D Green
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Casey S John
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paul J Kueck
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anneka E Blankenship
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Riley E Kemna
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Chelsea N Johnson
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lauren E Yoksh
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shaun R Best
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Joseph S Donald
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jill K Morris
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
Clairis N, Barakat A, Brochard J, Xin L, Sandi C. A neurometabolic mechanism involving dmPFC/dACC lactate in physical effort-based decision-making. Mol Psychiatry 2024:10.1038/s41380-024-02726-y. [PMID: 39215184 DOI: 10.1038/s41380-024-02726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Motivation levels vary across individuals, yet the underlying mechanisms driving these differences remain elusive. The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) and the anterior insula (aIns) play crucial roles in effort-based decision-making. Here, we investigate the influence of lactate, a key metabolite involved in energy metabolism and signaling, on decisions involving both physical and mental effort, as well as its effects on neural activation. Using proton magnetic resonance spectroscopy and functional MRI in 63 participants, we find that higher lactate levels in the dmPFC/dACC are associated with reduced motivation for physical effort, a relationship mediated by neural activity within this region. Additionally, plasma and dmPFC/dACC lactate levels correlate, suggesting a systemic influence on brain metabolism. Supported by path analysis, our results highlight lactate's role as a modulator of dmPFC/dACC activity, hinting at a neurometabolic mechanism that integrates both peripheral and central metabolic states with brain function in effort-based decision-making.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Arthur Barakat
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jules Brochard
- Transdisciplinary Research Areas, Life and Health, University of Bonn, Bonn, Germany
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
11
|
Späte E, Zhou B, Sun T, Kusch K, Asadollahi E, Siems SB, Depp C, Werner HB, Saher G, Hirrlinger J, Möbius W, Nave KA, Goebbels S. Downregulated expression of lactate dehydrogenase in adult oligodendrocytes and its implication for the transfer of glycolysis products to axons. Glia 2024; 72:1374-1391. [PMID: 38587131 DOI: 10.1002/glia.24533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Oligodendrocytes and astrocytes are metabolically coupled to neuronal compartments. Pyruvate and lactate can shuttle between glial cells and axons via monocarboxylate transporters. However, lactate can only be synthesized or used in metabolic reactions with the help of lactate dehydrogenase (LDH), a tetramer of LDHA and LDHB subunits in varying compositions. Here we show that mice with a cell type-specific disruption of both Ldha and Ldhb genes in oligodendrocytes lack a pathological phenotype that would be indicative of oligodendroglial dysfunctions or lack of axonal metabolic support. Indeed, when combining immunohistochemical, electron microscopical, and in situ hybridization analyses in adult mice, we found that the vast majority of mature oligodendrocytes lack detectable expression of LDH. Even in neurodegenerative disease models and in mice under metabolic stress LDH was not increased. In contrast, at early development and in the remyelinating brain, LDHA was readily detectable in immature oligodendrocytes. Interestingly, by immunoelectron microscopy LDHA was particularly enriched at gap junctions formed between adjacent astrocytes and at junctions between astrocytes and oligodendrocytes. Our data suggest that oligodendrocytes metabolize lactate during development and remyelination. In contrast, for metabolic support of axons mature oligodendrocytes may export their own glycolysis products as pyruvate rather than lactate. Lacking LDH, these oligodendrocytes can also "funnel" lactate through their "myelinic" channels between gap junction-coupled astrocytes and axons without metabolizing it. We suggest a working model, in which the unequal cellular distribution of LDH in white matter tracts facilitates a rapid and efficient transport of glycolysis products among glial and axonal compartments.
Collapse
Affiliation(s)
- Erik Späte
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Baoyu Zhou
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ebrahim Asadollahi
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constanze Depp
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
12
|
Frame AK, Sinka JL, Courchesne M, Muhammad RA, Grahovac-Nemeth S, Bernards MA, Bartha R, Cumming RC. Altered neuronal lactate dehydrogenase A expression affects cognition in a sex- and age-dependent manner. iScience 2024; 27:110342. [PMID: 39055955 PMCID: PMC11269950 DOI: 10.1016/j.isci.2024.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The astrocyte-neuron lactate shuttle (ANLS) model posits that astrocyte-generated lactate is transported to neurons to fuel memory processes. However, neurons express high levels of lactate dehydrogenase A (LDHA), the rate-limiting enzyme of lactate production, suggesting a cognitive role for neuronally generated lactate. It was hypothesized that lactate metabolism in neurons is critical for learning and memory. Here transgenic mice were generated to conditionally induce or knockout (KO) the Ldha gene in CNS neurons of adult mice. High pattern separation memory was enhanced by neuronal Ldha induction in young females, and by neuronal Ldha KO in aged females. In older mice, Ldha induction caused cognitive deficits whereas Ldha KO caused cognitive improvements. Genotype-associated cognitive changes were often only observed in one sex or oppositely in males and females. Thus, neuronal-generated lactate has sex-specific cognitive effects, is largely indispensable at young age, and may be detrimental to learning and memory with aging.
Collapse
Affiliation(s)
- Ariel K. Frame
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Jessica L. Sinka
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Marc Courchesne
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | | | | | - Mark A. Bernards
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Robert C. Cumming
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
13
|
Braga A, Chiacchiaretta M, Pellerin L, Kong D, Haydon PG. Astrocytic metabolic control of orexinergic activity in the lateral hypothalamus regulates sleep and wake architecture. Nat Commun 2024; 15:5979. [PMID: 39013907 PMCID: PMC11252394 DOI: 10.1038/s41467-024-50166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Neuronal activity undergoes significant changes during vigilance states, accompanied by an accommodation of energy demands. While the astrocyte-neuron lactate shuttle has shown that lactate is the primary energy substrate for sustaining neuronal activity in multiple brain regions, its role in regulating sleep/wake architecture is not fully understood. Here we investigated the involvement of astrocytic lactate supply in maintaining consolidated wakefulness by downregulating, in a cell-specific manner, the expression of monocarboxylate transporters (MCTs) in the lateral hypothalamus of transgenic mice. Our results demonstrate that reduced expression of MCT4 in astrocytes disrupts lactate supply to wake-promoting orexin neurons, impairing wakefulness stability. Additionally, we show that MCT2-mediated lactate uptake is necessary for maintaining tonic firing of orexin neurons and stabilizing wakefulness. Our findings provide both in vivo and in vitro evidence supporting the role of astrocyte-to-orexinergic neuron lactate shuttle in regulating proper sleep/wake stability.
Collapse
Affiliation(s)
- Alice Braga
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Martina Chiacchiaretta
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - Luc Pellerin
- Inserm U1313, University and CHU of Poitiers, 86021, Poitiers, France
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
14
|
Pandya VA, Patani R. The role of glial cells in amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:381-450. [PMID: 38802179 DOI: 10.1016/bs.irn.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.
Collapse
Affiliation(s)
- Virenkumar A Pandya
- University College London Medical School, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| | - Rickie Patani
- The Francis Crick Institute, London, United Kingdom; Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
15
|
van Nieuwenhuizen H, Chesebro AG, Polizu C, Clarke K, Strey HH, Weistuch C, Mujica-Parodi LR. Ketosis regulates K + ion channels, strengthening brain-wide signaling disrupted by age. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00163. [PMID: 39664914 PMCID: PMC11633768 DOI: 10.1162/imag_a_00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Aging is associated with impaired signaling between brain regions when measured using resting-state fMRI. This age-related destabilization and desynchronization of brain networks reverses itself when the brain switches from metabolizing glucose to ketones. Here, we probe the mechanistic basis for these effects. First, we confirmed their robustness across measurement modalities using two datasets acquired from resting-state EEG (Lifespan: standard diet, 20-80 years, N = 201; Metabolic: individually weight-dosed and calorically-matched glucose and ketone ester challenge,μ a g e = 26.9 ± 11.2 years , N = 36). Then, using a multiscale conductance-based neural mass model, we identified the unique set of mechanistic parameters consistent with our clinical data. Together, our results implicate potassium (K+) gradient dysregulation as a mechanism for age-related neural desynchronization and its reversal with ketosis, the latter finding of which is consistent with direct measurement of ion channels. As such, the approach facilitates the connection between macroscopic brain activity and cellular-level mechanisms.
Collapse
Affiliation(s)
- Helena van Nieuwenhuizen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11790, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Anthony G. Chesebro
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11790, USA
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Claire Polizu
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Kieran Clarke
- Department of Physiology, Oxford University, Oxford OX1 3PT, UK
| | - Helmut H. Strey
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11790, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lilianne R. Mujica-Parodi
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11790, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11790, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11790, USA
| |
Collapse
|
16
|
Kann O. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. J Neurochem 2024; 168:608-631. [PMID: 37309602 DOI: 10.1111/jnc.15867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023]
Abstract
Lactate shuttled from the blood circulation, astrocytes, oligodendrocytes or even activated microglia (resident macrophages) to neurons has been hypothesized to represent a major source of pyruvate compared to what is normally produced endogenously by neuronal glucose metabolism. However, the role of lactate oxidation in fueling neuronal signaling associated with complex cortex function, such as perception, motor activity, and memory formation, is widely unclear. This issue has been experimentally addressed using electrophysiology in hippocampal slice preparations (ex vivo) that permit the induction of different neural network activation states by electrical stimulation, optogenetic tools or receptor ligand application. Collectively, these studies suggest that lactate in the absence of glucose (lactate only) impairs gamma (30-70 Hz) and theta-gamma oscillations, which feature high energy demand revealed by the cerebral metabolic rate of oxygen (CMRO2, set to 100%). The impairment comprises oscillation attenuation or moderate neural bursts (excitation-inhibition imbalance). The bursting is suppressed by elevating the glucose fraction in energy substrate supply. By contrast, lactate can retain certain electric stimulus-induced neural population responses and intermittent sharp wave-ripple activity that features lower energy expenditure (CMRO2 of about 65%). Lactate utilization increases the oxygen consumption by about 9% during sharp wave-ripples reflecting enhanced adenosine-5'-triphosphate (ATP) synthesis by oxidative phosphorylation in mitochondria. Moreover, lactate attenuates neurotransmission in glutamatergic pyramidal cells and fast-spiking, γ-aminobutyric acid (GABA)ergic interneurons by reducing neurotransmitter release from presynaptic terminals. By contrast, the generation and propagation of action potentials in the axon is regular. In conclusion, lactate is less effective than glucose and potentially detrimental during neural network rhythms featuring high energetic costs, likely through the lack of some obligatory ATP synthesis by aerobic glycolysis at excitatory and inhibitory synapses. High lactate/glucose ratios might contribute to central fatigue, cognitive impairment, and epileptic seizures partially seen, for instance, during exhaustive physical exercise, hypoglycemia and neuroinflammation.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Suematsu N, Vazquez AL, Kozai TDY. Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. J Neural Eng 2024; 21:026033. [PMID: 38537268 PMCID: PMC11002944 DOI: 10.1088/1741-2552/ad3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Objective. Intracortical microstimulation (ICMS) can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site.Approach. Different microstimulation frequencies were investigatedin vivoon Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging.Main results. Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies.Significance. These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by ICMS and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.
Collapse
Affiliation(s)
- Naofumi Suematsu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Alberto L Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
18
|
Bhinderwala F, Roth HE, Filipi M, Jack S, Powers R. Potential Metabolite Biomarkers of Multiple Sclerosis from Multiple Biofluids. ACS Chem Neurosci 2024; 15:1110-1124. [PMID: 38420772 PMCID: PMC11586083 DOI: 10.1021/acschemneuro.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic and progressive neurological disorder without a cure, but early intervention can slow disease progression and improve the quality of life for MS patients. Obtaining an accurate diagnosis for MS is an arduous and error-prone task that requires a combination of a detailed medical history, a comprehensive neurological exam, clinical tests such as magnetic resonance imaging, and the exclusion of other possible diseases. A simple and definitive biofluid test for MS does not exist, but is highly desirable. To address this need, we employed NMR-based metabolomics to identify potentially unique metabolite biomarkers of MS from a cohort of age and sex-matched samples of cerebrospinal fluid (CSF), serum, and urine from 206 progressive MS (PMS) patients, 46 relapsing-remitting MS (RRMS) patients, and 99 healthy volunteers without a MS diagnosis. We identified 32 metabolites in CSF that varied between the control and PMS patients. Utilizing patient-matched serum samples, we were able to further identify 31 serum metabolites that may serve as biomarkers for PMS patients. Lastly, we identified 14 urine metabolites associated with PMS. All potential biomarkers are associated with metabolic processes linked to the pathology of MS, such as demyelination and neuronal damage. Four metabolites with identical profiles across all three biofluids were discovered, which demonstrate their potential value as cross-biofluid markers of PMS. We further present a case for using metabolic profiles from PMS patients to delineate biomarkers of RRMS. Specifically, three metabolites exhibited a variation from healthy volunteers without MS through RRMS and PMS patients. The consistency of metabolite changes across multiple biofluids, combined with the reliability of a receiver operating characteristic classification, may provide a rapid diagnostic test for MS.
Collapse
Affiliation(s)
- Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Current Affiliation - University of Pittsburgh School of Medicine, Department of Structural Biology, Pittsburgh, PA 15213
| | - Heidi E. Roth
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Mary Filipi
- Multiple Sclerosis Clinic, Saunders Medical Center, Wahoo, NE 68066
| | - Samantha Jack
- Multiple Sclerosis Clinic, Saunders Medical Center, Wahoo, NE 68066
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| |
Collapse
|
19
|
Sonkodi B. Progressive Irreversible Proprioceptive Piezo2 Channelopathy-Induced Lost Forced Peripheral Oscillatory Synchronization to the Hippocampal Oscillator May Explain the Onset of Amyotrophic Lateral Sclerosis Pathomechanism. Cells 2024; 13:492. [PMID: 38534336 DOI: 10.3390/cells13060492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a mysterious lethal multisystem neurodegenerative disease that gradually leads to the progressive loss of motor neurons. A recent non-contact dying-back injury mechanism theory for ALS proposed that the primary damage is an acquired irreversible intrafusal proprioceptive terminal Piezo2 channelopathy with underlying genetic and environmental risk factors. Underpinning this is the theory that excessively prolonged proprioceptive mechanotransduction under allostasis may induce dysfunctionality in mitochondria, leading to Piezo2 channelopathy. This microinjury is suggested to provide one gateway from physiology to pathophysiology. The chronic, but not irreversible, form of this Piezo2 channelopathy is implicated in many diseases with unknown etiology. Dry eye disease is one of them where replenishing synthetic proteoglycans promote nerve regeneration. Syndecans, especially syndecan-3, are proposed as the first critical link in this hierarchical ordered depletory pathomechanism as proton-collecting/distributing antennas; hence, they may play a role in ALS pathomechanism onset. Even more importantly, the shedding or charge-altering variants of Syndecan-3 may contribute to the Piezo2 channelopathy-induced disruption of the Piezo2-initiated proton-based ultrafast long-range signaling through VGLUT1 and VGLUT2. Thus, these alterations may not only cause disruption to ultrafast signaling to the hippocampus in conscious proprioception, but could disrupt the ultrafast proprioceptive signaling feedback to the motoneurons. Correspondingly, an inert Piezo2-initiated proton-based ultrafast signaled proprioceptive skeletal system is coming to light that is suggested to be progressively lost in ALS. In addition, the lost functional link of the MyoD family of inhibitor proteins, as auxiliary subunits of Piezo2, may not only contribute to the theorized acquired Piezo2 channelopathy, but may explain how these microinjured ion channels evolve to be principal transcription activators.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
20
|
Chamaa F, Magistretti PJ, Fiumelli H. Astrocyte-derived lactate in stress disorders. Neurobiol Dis 2024; 192:106417. [PMID: 38296112 DOI: 10.1016/j.nbd.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Stress disorders are psychiatric disorders arising following stressful or traumatic events. They could deleteriously affect an individual's health because they often co-occur with mental illnesses. Considerable attention has been focused on neurons when considering the neurobiology of stress disorders. However, like other mental health conditions, recent studies have highlighted the importance of astrocytes in the pathophysiology of stress-related disorders. In addition to their structural and homeostatic support role, astrocytes actively serve several functions in regulating synaptic transmission and plasticity, protecting neurons from toxic compounds, and providing metabolic support for neurons. The astrocyte-neuron lactate shuttle model sets forth the importance of astrocytes in providing lactate for the metabolic supply of neurons under intense activity. Lactate also plays a role as a signaling molecule and has been recently studied regarding its antidepressant activity. This review discusses the involvement of astrocytes and brain energy metabolism in stress and further reflects on the importance of lactate as an energy supply in the brain and its emerging antidepressant role in stress-related disorders.
Collapse
Affiliation(s)
- Farah Chamaa
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
21
|
Marty-Lombardi S, Lu S, Ambroziak W, Schrenk-Siemens K, Wang J, DePaoli-Roach AA, Hagenston AM, Wende H, Tappe-Theodor A, Simonetti M, Bading H, Okun JG, Kuner R, Fleming T, Siemens J. Neuron-astrocyte metabolic coupling facilitates spinal plasticity and maintenance of inflammatory pain. Nat Metab 2024; 6:494-513. [PMID: 38443593 DOI: 10.1038/s42255-024-01001-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Long-lasting pain stimuli can trigger maladaptive changes in the spinal cord, reminiscent of plasticity associated with memory formation. Metabolic coupling between astrocytes and neurons has been implicated in neuronal plasticity and memory formation in the central nervous system, but neither its involvement in pathological pain nor in spinal plasticity has been tested. Here we report a form of neuroglia signalling involving spinal astrocytic glycogen dynamics triggered by persistent noxious stimulation via upregulation of the Protein Targeting to Glycogen (PTG) in spinal astrocytes. PTG drove glycogen build-up in astrocytes, and blunting glycogen accumulation and turnover by Ptg gene deletion reduced pain-related behaviours and promoted faster recovery by shortening pain maintenance in mice. Furthermore, mechanistic analyses revealed that glycogen dynamics is a critically required process for maintenance of pain by facilitating neuronal plasticity in spinal lamina 1 neurons. In summary, our study describes a previously unappreciated mechanism of astrocyte-neuron metabolic communication through glycogen breakdown in the spinal cord that fuels spinal neuron hyperexcitability.
Collapse
Affiliation(s)
| | - Shiying Lu
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Oliver Wyman GmbH, Munich, Germany
| | - Wojciech Ambroziak
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | | | - Jialin Wang
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Hagen Wende
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Taconic Biosciences, Leverkusen, Germany
| | | | - Manuela Simonetti
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Jürgen G Okun
- Dietmar-Hopp-Metabolic Center, Division of Neuropaediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thomas Fleming
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Jan Siemens
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
22
|
Constantino NJ, Carroll CM, Williams HC, Yuede CM, Sheehan PW, Andy Snipes J, Musiek ES, Johnson LA, Macauley SL. Kir6.2-K ATP channels alter glycolytic flux to modulate cortical activity, arousal, and sleep-wake homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581817. [PMID: 38464274 PMCID: PMC10925108 DOI: 10.1101/2024.02.23.581817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Metabolism plays an important role in the maintenance of vigilance states (e.g. wake, NREM, and REM). Brain lactate fluctuations are a biomarker of sleep. Increased interstitial fluid (ISF) lactate levels are necessary for arousal and wake-associated behaviors, while decreased ISF lactate is required for sleep. ATP-sensitive potassium (K ATP ) channels couple glucose-lactate metabolism with neuronal excitability. Therefore, we explored how deletion of neuronal K ATP channel activity (Kir6.2-/- mice) affected the relationship between glycolytic flux, neuronal activity, and sleep/wake homeostasis. Kir6.2-/- mice shunt glucose towards glycolysis, reduce neurotransmitter synthesis, dampen cortical EEG activity, and decrease arousal. Kir6.2-/- mice spent more time awake at the onset of the light period due to altered ISF lactate dynamics. Together, we show that Kir6.2-K ATP channels act as metabolic sensors to gate arousal by maintaining the metabolic stability of each vigilance state and providing the metabolic flexibility to transition between states. Highlights Glycolytic flux is necessary for neurotransmitter synthesis. In its absence, neuronal activity is compromised causing changes in arousal and vigilance states despite sufficient energy availability. With Kir6.2-K ATP channel deficiency, the ability to both maintain and shift between different vigilance states is compromised due to changes in glucose utilization. Kir6.2-K ATP channels are metabolic sensors under circadian control that gate arousal and sleep/wake transitions.
Collapse
|
23
|
Price MS, Moore TI, Venkatachalam K. Intracellular Lactate Dynamics Reveal the Metabolic Diversity of Drosophila Glutamatergic Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582095. [PMID: 38464270 PMCID: PMC10925175 DOI: 10.1101/2024.02.26.582095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Lactate, an intermediary between glycolysis and mitochondrial oxidative phosphorylation, reflects the metabolic state of neurons. Here, we utilized a genetically-encoded lactate FRET biosensor to uncover subpopulations of distinct metabolic states among Drosophila glutamatergic neurons. Neurons within specific subpopulations exhibited correlated lactate flux patterns that stemmed from inherent cellular properties rather than neuronal interconnectivity. Further, individual neurons exhibited consistent patterns of lactate flux over time such that stimulus-evoked changes in lactate were correlated with pre-treatment fluctuations. Leveraging these temporal autocorrelations, deep-learning models accurately predicted post-stimulus responses from pre-stimulus fluctuations. These findings point to the existence of distinct neuronal subpopulations, each characterized by unique lactate dynamics, and raise the possibility that neurons with correlated metabolic activities might synchronize across different neural circuits. Such synchronization, rooted in neuronal metabolic states, could influence information processing in the brain.
Collapse
Affiliation(s)
- Matthew S. Price
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Molecular and Translational Biology Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| | - Travis I. Moore
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Molecular and Translational Biology Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Molecular and Translational Biology Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| |
Collapse
|
24
|
Longden TA, Lederer WJ. Electro-metabolic signaling. J Gen Physiol 2024; 156:e202313451. [PMID: 38197953 PMCID: PMC10783436 DOI: 10.1085/jgp.202313451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Precise matching of energy substrate delivery to local metabolic needs is essential for the health and function of all tissues. Here, we outline a mechanistic framework for understanding this critical process, which we refer to as electro-metabolic signaling (EMS). All tissues exhibit changes in metabolism over varying spatiotemporal scales and have widely varying energetic needs and reserves. We propose that across tissues, common signatures of elevated metabolism or increases in energy substrate usage that exceed key local thresholds rapidly engage mechanisms that generate hyperpolarizing electrical signals in capillaries that then relax contractile elements throughout the vasculature to quickly adjust blood flow to meet changing needs. The attendant increase in energy substrate delivery serves to meet local metabolic requirements and thus avoids a mismatch in supply and demand and prevents metabolic stress. We discuss in detail key examples of EMS that our laboratories have discovered in the brain and the heart, and we outline potential further EMS mechanisms operating in tissues such as skeletal muscle, pancreas, and kidney. We suggest that the energy imbalance evoked by EMS uncoupling may be central to cellular dysfunction from which the hallmarks of aging and metabolic diseases emerge and may lead to generalized organ failure states-such as diverse flavors of heart failure and dementia. Understanding and manipulating EMS may be key to preventing or reversing these dysfunctions.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W. Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Kita A, Araki R, Yabe T. Chronic Corticosterone Treatment Decreases Extracellular pH and Increases Lactate Release via PDK4 Upregulation in Cultured Astrocytes. Biol Pharm Bull 2024; 47:1542-1549. [PMID: 39313390 DOI: 10.1248/bpb.b24-00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The pathogenesis of stress-related disorders involves aberrant glucocorticoid secretion, and decreased pH and increased lactate in the brain are common phenotypes in several psychiatric disorders. Mice treated with glucocorticoids develop these phenotypes, but it is unclear how glucocorticoids affect brain pH. Therefore, we investigated the effect of corticosterone (CORT), the main glucocorticoid in rodents, on extracellular pH and lactate release in cultured astrocytes, which are the main glial cells that produce lactate in the brain. CORT treatment for one week decreased the extracellular pH and increased the extracellular lactate level via glucocorticoid receptors. CORT also increased the intracellular pyruvate level and upregulated pyruvate dehydrogenase kinase 4 (PDK4), while PDK4 overexpression increased extracellular lactate and decreased the extracellular pH. Furthermore, PDK4 inhibition suppressed the increase in extracellular lactate and the decrease in extracellular pH induced by CORT. These results suggest that increased lactate release via accumulation of intracellular pyruvate in astrocytes by chronic glucocorticoid exposure contributes to decreased brain pH.
Collapse
Affiliation(s)
- Ayami Kita
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Takeshi Yabe
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
26
|
Suematsu N, Vazquez AL, Kozai TD. Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573814. [PMID: 38260671 PMCID: PMC10802282 DOI: 10.1101/2024.01.01.573814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Objective . Intracortical microstimulation can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site. Approach . Different microstimulation frequencies were investigated in vivo on Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging. Main results . Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies. Significance . These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by intracortical microstimulation and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.
Collapse
|
27
|
Doan KV, Tran LT, Yang DJ, Ha TTA, Mai TD, Kim SK, DePinho RA, Shin DM, Choi YH, Kim KW. Astrocytic FoxO1 in the hypothalamus regulates metabolic homeostasis by coordinating neuropeptide Y neuron activity. Glia 2023; 71:2735-2752. [PMID: 37655904 DOI: 10.1002/glia.24448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
The forkhead box transcription factor O1 (FoxO1) is expressed ubiquitously throughout the central nervous system, including in astrocytes, the most prevalent glial cell type in the brain. While the role of FoxO1 in hypothalamic neurons in controlling food intake and energy balance is well-established, the contribution of astrocytic FoxO1 in regulating energy homeostasis has not yet been determined. In the current study, we demonstrate the essential role of hypothalamic astrocytic FoxO1 in maintaining normal neuronal activity in the hypothalamus and whole-body glucose metabolism. Inhibition of FoxO1 function in hypothalamic astrocytes shifts the cellular metabolism from glycolysis to oxidative phosphorylation, enhancing astrocyte ATP production and release meanwhile decreasing astrocytic export of lactate. As a result, specific deletion of astrocytic FoxO1, particularly in the hypothalamus, causes a hyperactivation of hypothalamic neuropeptide Y neurons, which leads to an increase in acute feeding and impaired glucose regulation and ultimately results in diet-induced obesity and systemic glucose dyshomeostasis.
Collapse
Affiliation(s)
- Khanh Van Doan
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Le Trung Tran
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Dong Joo Yang
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Thu Thi Anh Ha
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Thi Dang Mai
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Seul Ki Kim
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dong-Min Shin
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yun-Hee Choi
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ki Woo Kim
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
28
|
McAfee D, Moyer M, Queen J, Mortazavi A, Boddeti U, Bachani M, Zaghloul K, Ksendzovsky A. Differential metabolic alterations in IDH1 mutant vs. wildtype glioma cells promote epileptogenesis through distinctive mechanisms. Front Cell Neurosci 2023; 17:1288918. [PMID: 38026690 PMCID: PMC10680369 DOI: 10.3389/fncel.2023.1288918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma-related epilepsy (GRE) is a hallmark clinical presentation of gliomas with significant impacts on patient quality of life. The current standard of care for seizure management is comprised of anti-seizure medications (ASMs) and surgical resection. Seizures in glioma patients are often drug-resistant and can often recur after surgery despite total tumor resection. Therefore, current research is focused on the pro-epileptic pathological changes occurring in tumor cells and the peritumoral environment. One important contribution to seizures in GRE patients is metabolic reprogramming in tumor and surrounding cells. This is most evident by the significantly heightened seizure rate in patients with isocitrate dehydrogenase mutated (IDHmut) tumors compared to patients with IDH wildtype (IDHwt) gliomas. To gain further insight into glioma metabolism in epileptogenesis, this review compares the metabolic changes inherent to IDHmut vs. IDHwt tumors and describes the pro-epileptic effects these changes have on both the tumor cells and the peritumoral environment. Understanding alterations in glioma metabolism can help to uncover novel therapeutic interventions for seizure management in GRE patients.
Collapse
Affiliation(s)
- Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jaden Queen
- The College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kareem Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Chen W, Zhang Y, Liang J, Zhang Z, Zhang L, Huang E, Zhang G, Lu L, Han Y, Shi J. Disrupting astrocyte-neuron lactate transport prevents cocaine seeking after prolonged withdrawal. SCIENCE ADVANCES 2023; 9:eadi4462. [PMID: 37878699 PMCID: PMC10599624 DOI: 10.1126/sciadv.adi4462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
Energy supply, especially the transfer of lactate from astrocytes to neurons, is critical for neuronal plasticity. However, its role in the incubation of cocaine craving remains largely unknown. Using an extended-access self-administration model and in vivo 1H-magnetic resonance spectroscopy, we found that lactate synthesis in the central amygdala (CeA) is required for the intensified cocaine craving after prolonged withdrawal. Furthermore, incubated cocaine seeking was associated with a selective increase in monocarboxylate transporter 2 (MCT2) and MCT4 expression levels. Down-regulation of astrocytic MCT4 or neuronal MCT2 using targeted antisense oligonucleotides or cell type-specific shRNA attenuated cocaine craving and reduced the expression of plasticity-related proteins and excitatory synaptic transmission. Meanwhile, lactate administration rescued MCT4 but not MCT2 disruption-induced behavioral changes due to the inability of lactate to be transported into neurons. Together, our study highlights the critical role of astrocyte-neuron lactate transport in the CeA in the incubation of cocaine craving and suggests a potential therapeutic target for drug addiction.
Collapse
Affiliation(s)
- Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jie Liang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Zhongyu Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Enze Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guipeng Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, 100191, China
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| |
Collapse
|
30
|
Kolotyeva NA, Gilmiyarova FN, Averchuk AS, Baranich TI, Rozanova NA, Kukla MV, Tregub PP, Salmina AB. Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models. Int J Mol Sci 2023; 24:14709. [PMID: 37834155 PMCID: PMC10572431 DOI: 10.3390/ijms241914709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The development of brain in vitro models requires the application of novel biocompatible materials and biopolymers as scaffolds for controllable and effective cell growth and functioning. The "ideal" brain in vitro model should demonstrate the principal features of brain plasticity like synaptic transmission and remodeling, neurogenesis and angiogenesis, and changes in the metabolism associated with the establishment of new intercellular connections. Therefore, the extracellular scaffolds that are helpful in the establishment and maintenance of local microenvironments supporting brain plasticity mechanisms are of critical importance. In this review, we will focus on some carbohydrate metabolites-lactate, pyruvate, oxaloacetate, malate-that greatly contribute to the regulation of cell-to-cell communications and metabolic plasticity of brain cells and on some resorbable biopolymers that may reproduce the local microenvironment enriched in particular cell metabolites.
Collapse
Affiliation(s)
| | - Frida N. Gilmiyarova
- Department of Fundamental and Clinical Biochemistry with Laboratory Diagnostics, Samara State Medical University, 443099 Samara, Russia
| | - Anton S. Averchuk
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | - Tatiana I. Baranich
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | | | - Maria V. Kukla
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | - Pavel P. Tregub
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| |
Collapse
|
31
|
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, Mameli M, Paolicelli RC. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun 2023; 14:5749. [PMID: 37717033 PMCID: PMC10505217 DOI: 10.1038/s41467-023-41502-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Microglia, the innate immune cells of the central nervous system, actively participate in brain development by supporting neuronal maturation and refining synaptic connections. These cells are emerging as highly metabolically flexible, able to oxidize different energetic substrates to meet their energy demand. Lactate is particularly abundant in the brain, but whether microglia use it as a metabolic fuel has been poorly explored. Here we show that microglia can import lactate, and this is coupled with increased lysosomal acidification. In vitro, loss of the monocarboxylate transporter MCT4 in microglia prevents lactate-induced lysosomal modulation and leads to defective cargo degradation. Microglial depletion of MCT4 in vivo leads to impaired synaptic pruning, associated with increased excitation in hippocampal neurons, enhanced AMPA/GABA ratio, vulnerability to seizures and anxiety-like phenotype. Overall, these findings show that selective disruption of the MCT4 transporter in microglia is sufficient to alter synapse refinement and to induce defects in mouse brain development and adult behavior.
Collapse
Affiliation(s)
- Katia Monsorno
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Kyllian Ginggen
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - An Buckinx
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Arnaud L Lalive
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Anna Tchenio
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Sam Benson
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Marc Vendrell
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Denver, CO, USA
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luc Pellerin
- Inserm U1313, University of Poitiers and CHU of Poitiers, Poitiers Cedex, France
| | - Manuel Mameli
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
32
|
Kotchetkov P, Blakeley N, Lacoste B. Involvement of brain metabolism in neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:67-113. [PMID: 37993180 DOI: 10.1016/bs.irn.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Neurodevelopmental disorders (NDDs) affect a significant portion of the global population and have a substantial social and economic impact worldwide. Most NDDs manifest in early childhood and are characterized by deficits in cognition, communication, social interaction and motor control. Due to a limited understanding of the etiology of NDDs, current treatment options primarily focus on symptom management rather than on curative solutions. Moreover, research on NDDs is problematic due to its reliance on a neurocentric approach. However, recent studies are broadening the scope of research on NDDs, to include dysregulations within a diverse network of brain cell types, including vascular and glial cells. This review aims to summarize studies from the past few decades on potential new contributions to the etiology of NDDs, with a special focus on metabolic signatures of various brain cells. In particular, we aim to convey how the metabolic functions are intimately linked to the onset and/or progression of common NDDs such as autism spectrum disorders, fragile X syndrome, Rett syndrome and Down syndrome.
Collapse
Affiliation(s)
- Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
33
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
34
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
35
|
Cauli B, Dusart I, Li D. Lactate as a determinant of neuronal excitability, neuroenergetics and beyond. Neurobiol Dis 2023:106207. [PMID: 37331530 DOI: 10.1016/j.nbd.2023.106207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
Over the last decades, lactate has emerged as important energy substrate for the brain fueling of neurons. A growing body of evidence now indicates that it is also a signaling molecule modulating neuronal excitability and activity as well as brain functions. In this review, we will briefly summarize how different cell types produce and release lactate. We will further describe different signaling mechanisms allowing lactate to fine-tune neuronal excitability and activity, and will finally discuss how these mechanisms could cooperate to modulate neuroenergetics and higher order brain functions both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France.
| | - Isabelle Dusart
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
36
|
Sabbir MG, Swanson M, Albensi BC. Loss of cholinergic receptor muscarinic 1 impairs cortical mitochondrial structure and function: implications in Alzheimer's disease. Front Cell Dev Biol 2023; 11:1158604. [PMID: 37274741 PMCID: PMC10233041 DOI: 10.3389/fcell.2023.1158604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction: Cholinergic Receptor Muscarinic 1 (CHRM1) is a G protein-coupled acetylcholine (ACh) receptor predominantly expressed in the cerebral cortex. In a retrospective postmortem brain tissues-based study, we demonstrated that severely (≥50% decrease) reduced CHRM1 proteins in the temporal cortex of Alzheimer's patients significantly correlated with poor patient outcomes. The G protein-mediated CHRM1 signal transduction cannot sufficiently explain the mechanistic link between cortical CHRM1 loss and the appearance of hallmark Alzheimer's pathophysiologies, particularly mitochondrial structural and functional abnormalities. Therefore, the objective of this study was to analyze the molecular, ultrastructural, and functional properties of cortical mitochondria using CHRM1 knockout (Chrm1-/-) and wild-type mice to identify mitochondrial abnormalities. Methods: Isolated and enriched cortical mitochondrial fractions derived from wild-type and Chrm1-/- mice were assessed for respiratory deficits (oxygen consumption) following the addition of different substrates. The supramolecular assembly of mitochondrial oxidative phosphorylation (OXPHOS)-associated protein complexes (complex I-V) and cortical mitochondrial ultrastructure were investigated by blue native polyacrylamide gel electrophoresis and transmission electron microscopy (TEM), respectively. A cocktail of antibodies, specific to Ndufb8, Sdhb, Uqcrc2, Mtco1, and Atp5a proteins representing different subunits of complexes I-V, respectively was used to characterize different OXPHOS-associated protein complexes. Results: Loss of Chrm1 led to a significant reduction in cortical mitochondrial respiration (oxygen consumption) concomitantly associated with reduced oligomerization of ATP synthase (complex V) and supramolecular assembly of complexes I-IV (Respirasome). Overexpression of Chrm1 in transformed cells (lacking native Chrm1) significantly increased complex V oligomerization and respirasome assembly leading to enhanced respiration. TEM analysis revealed that Chrm1 loss led to mitochondrial ultrastructural defects and alteration in the tinctorial properties of cortical neurons causing a significant increase in the abundance of dark cortical neurons (Chrm1-/- 85% versus wild-type 2%). Discussion: Our findings indicate a hitherto unknown effect of Chrm1 deletion in cortical neurons affecting mitochondrial function by altering multiple interdependent factors including ATP synthase oligomerization, respirasome assembly, and mitochondrial ultrastructure. The appearance of dark neurons in Chrm1-/- cortices implies potentially enhanced glutamatergic signaling in pyramidal neurons under Chrm1 loss condition. The findings provide novel mechanistic insights into Chrm1 loss with the appearance of mitochondrial pathophysiological deficits in Alzheimer's disease.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Alzo Biosciences Inc, SanDiego, CA, United States
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Mamiko Swanson
- Alzo Biosciences Inc, SanDiego, CA, United States
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
37
|
Béland-Millar A, Kirby A, Truong Y, Ouellette J, Yandiev S, Bouyakdan K, Pileggi C, Naz S, Yin M, Carrier M, Kotchetkov P, St-Pierre MK, Tremblay MÈ, Courchet J, Harper ME, Alquier T, Messier C, Shuhendler AJ, Lacoste B. 16p11.2 haploinsufficiency reduces mitochondrial biogenesis in brain endothelial cells and alters brain metabolism in adult mice. Cell Rep 2023; 42:112485. [PMID: 37149866 DOI: 10.1016/j.celrep.2023.112485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/20/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023] Open
Abstract
Neurovascular abnormalities in mouse models of 16p11.2 deletion autism syndrome are reminiscent of alterations reported in murine models of glucose transporter deficiency, including reduced brain angiogenesis and behavioral alterations. Yet, whether cerebrovascular alterations in 16p11.2df/+ mice affect brain metabolism is unknown. Here, we report that anesthetized 16p11.2df/+ mice display elevated brain glucose uptake, a phenomenon recapitulated in mice with endothelial-specific 16p11.2 haplodeficiency. Awake 16p11.2df/+ mice display attenuated relative fluctuations of extracellular brain glucose following systemic glucose administration. Targeted metabolomics on cerebral cortex extracts reveals enhanced metabolic responses to systemic glucose in 16p11.2df/+ mice that also display reduced mitochondria number in brain endothelial cells. This is not associated with changes in mitochondria fusion or fission proteins, but 16p11.2df/+ brain endothelial cells lack the splice variant NT-PGC-1α, suggesting defective mitochondrial biogenesis. We propose that altered brain metabolism in 16p11.2df/+ mice is compensatory to endothelial dysfunction, shedding light on previously unknown adaptative responses.
Collapse
Affiliation(s)
- Alexandria Béland-Millar
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Alexia Kirby
- Faculty of Science, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Yen Truong
- Faculty of Science, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Julie Ouellette
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sozerko Yandiev
- University Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine Université de Montréal, Montreal, QC, Canada
| | - Chantal Pileggi
- Faculty of Medicine, Department of Biochemistry Microbiology and Immunology, Ottawa, ON, Canada
| | - Shama Naz
- University of Ottawa Metabolomics Core Facility, Faculty of Medicine, Ottawa, ON, Canada
| | - Melissa Yin
- FUJIFILM VisualSonics, Inc, Toronto, ON, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Pavel Kotchetkov
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Julien Courchet
- University Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Mary-Ellen Harper
- Faculty of Medicine, Department of Biochemistry Microbiology and Immunology, Ottawa, ON, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine Université de Montréal, Montreal, QC, Canada
| | - Claude Messier
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Adam J Shuhendler
- Faculty of Science, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
38
|
Scariot PPM, Papoti M, Polisel EEC, Orsi JB, Van Ginkel PR, Prolla TA, Manchado-Gobatto FB, Gobatto CA. Living high - training low model applied to C57BL/6J mice: Effects on physiological parameters related to aerobic fitness and acid-base balance. Life Sci 2023; 317:121443. [PMID: 36709910 DOI: 10.1016/j.lfs.2023.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
There is a scarcity of data regarding the acclimation to high altitude (hypoxic environment) accompanied by training at low altitude (normoxic conditions), the so-called "living high-training low" (LHTL) model in rodents. We aimed to investigate the effects of aerobic training on C57BL/6J mice living in normoxic (NOR) or hypoxic (HYP) environments on several parameters, including critical velocity (CV), a parameter regarded as a measure of aerobic capacity, on monocarboxylate transporters (MCTs) in muscles and hypothalamus, as well as on hematological parameters and body temperature. In each environment, mice were divided into non-trained (N) and trained (T). Forty rodents were distributed into the following experimental groups (N-NOR; T-NOR; N-HYP and T-HYP). HYP groups were in a normobaric tent where oxygen-depleted air was pumped from a hypoxia generator set an inspired oxygen fraction [FiO2] of 14.5 %. The HYP-groups were kept (18 h per day) in a normobaric tent for consecutive 8-weeks. Training sessions were conducted in normoxic conditions ([FiO2] = 19.5 %), 5 times per week (40 min per session) at intensity equivalent to 80 % of CV. In summary, eight weeks of LHTL did not promote a greater improvement in the CV, protein expression of MCTs in different tissues when compared to the application of training alone. The LHTL model increased red blood cells count, but reduced hemoglobin per erythrocyte was found in mice exposed to LHTL. Although the LHTL did not have a major effect on thermographic records, exercise-induced hyperthermia (in the head) was attenuated in HYP groups when compared to NOR groups.
Collapse
Affiliation(s)
- Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | - Juan Bordon Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Paul R Van Ginkel
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | - Tomas A Prolla
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | | | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.
| |
Collapse
|
39
|
Tao F, Kitamura K, Hanada S, Sugimoto K, Furihata T, Kojima N. Rapid and Stable Formation Method of Human Astrocyte Spheroid in a High Viscous Methylcellulose Medium and Its Functional Advantages. Bioengineering (Basel) 2023; 10:bioengineering10030349. [PMID: 36978740 PMCID: PMC10045153 DOI: 10.3390/bioengineering10030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Astrocytes, a type of glial cell in the brain, are thought to be functionally and morphologically diverse cells that regulate brain homeostasis. Cell immortalization is a promising technique for the propagation of primary human astrocytes. The immortalized cells retain their astrocytic marker mRNA expression at lower levels than the primary cells. Therefore, improvement of the differentiation status is required. The use of a 3D formation technique to mimic structural tissue is a good strategy for reflecting physiological cell–cell interactions. Previously, we developed a spheroid formation method using highly viscous methyl cellulose (MC) medium. In this study, we applied this formation method to the well-established immortalized human astrocyte cell line HASTR/ci35. Stable HASTR/ci35 spheroids were successfully formed in MC medium, and laminin deposition was detected inside of the spheroids. Their functional markers were enhanced compared to conventional spheroids formed in U-bottom plates. The inflammatory response was moderately sensitive, and the ability to support neurite growth was confirmed. The HASTR/ci35 spheroid in the MC medium demonstrated the differentiation phenotype and could serve as a potent in vitro model for matured astrocytes.
Collapse
Affiliation(s)
- Fumiya Tao
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Keita Kitamura
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0355, Japan
| | - Sanshiro Hanada
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Kazuyuki Sugimoto
- Yokogawa Electric Corp., 2-3, Hokuyodai, Kanazawa, Ishikawa 920-0177, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0355, Japan
| | - Nobuhiko Kojima
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
- Correspondence:
| |
Collapse
|
40
|
Roumes H, Pellerin L, Bouzier-Sore AK. Astrocytes as metabolic suppliers to support neuronal activity and brain functions. Essays Biochem 2023; 67:27-37. [PMID: 36504117 PMCID: PMC10011397 DOI: 10.1042/ebc20220080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Energy metabolism is essential for brain function. In recent years, lactate shuttling between astrocytes and neurons has become a fundamental concept of neuroenergetics. However, it remains unclear to what extent this process is critical for different aspects of cognition, their underlying mechanisms, as well as for the signals used to monitor brain activation.
Collapse
Affiliation(s)
- Hélène Roumes
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - Luc Pellerin
- Univ. Poitiers and CHU Poitiers, IRMETIST, INSERM U1313, F-86021 Poitiers, France
| | | |
Collapse
|
41
|
Aging and memory are altered by genetically manipulating lactate dehydrogenase in the neurons or glia of flies. Aging (Albany NY) 2023; 15:947-981. [PMID: 36849157 PMCID: PMC10008500 DOI: 10.18632/aging.204565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
The astrocyte-neuron lactate shuttle hypothesis posits that glial-generated lactate is transported to neurons to fuel metabolic processes required for long-term memory. Although studies in vertebrates have revealed that lactate shuttling is important for cognitive function, it is uncertain if this form of metabolic coupling is conserved in invertebrates or is influenced by age. Lactate dehydrogenase (Ldh) is a rate limiting enzyme that interconverts lactate and pyruvate. Here we genetically manipulated expression of Drosophila melanogaster lactate dehydrogenase (dLdh) in neurons or glia to assess the impact of altered lactate metabolism on invertebrate aging and long-term courtship memory at different ages. We also assessed survival, negative geotaxis, brain neutral lipids (the core component of lipid droplets) and brain metabolites. Both upregulation and downregulation of dLdh in neurons resulted in decreased survival and memory impairment with age. Glial downregulation of dLdh expression caused age-related memory impairment without altering survival, while upregulated glial dLdh expression lowered survival without disrupting memory. Both neuronal and glial dLdh upregulation increased neutral lipid accumulation. We provide evidence that altered lactate metabolism with age affects the tricarboxylic acid (TCA) cycle, 2-hydroxyglutarate (2HG), and neutral lipid accumulation. Collectively, our findings indicate that the direct alteration of lactate metabolism in either glia or neurons affects memory and survival but only in an age-dependent manner.
Collapse
|
42
|
Barros LF, Ruminot I, Sotelo-Hitschfeld T, Lerchundi R, Fernández-Moncada I. Metabolic Recruitment in Brain Tissue. Annu Rev Physiol 2023; 85:115-135. [PMID: 36270291 DOI: 10.1146/annurev-physiol-021422-091035] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Information processing imposes urgent metabolic demands on neurons, which have negligible energy stores and restricted access to fuel. Here, we discuss metabolic recruitment, the tissue-level phenomenon whereby active neurons harvest resources from their surroundings. The primary event is the neuronal release of K+ that mirrors workload. Astrocytes sense K+ in exquisite fashion thanks to their unique coexpression of NBCe1 and α2β2 Na+/K+ ATPase, and within seconds switch to Crabtree metabolism, involving GLUT1, aerobic glycolysis, transient suppression of mitochondrial respiration, and lactate export. The lactate surge serves as a secondary recruiter by inhibiting glucose consumption in distant cells. Additional recruiters are glutamate, nitric oxide, and ammonium, which signal over different spatiotemporal domains. The net outcome of these events is that more glucose, lactate, and oxygen are made available. Metabolic recruitment works alongside neurovascular coupling and various averaging strategies to support the inordinate dynamic range of individual neurons.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile;
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile;
| | - T Sotelo-Hitschfeld
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - R Lerchundi
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, Fontenay-aux-Roses, France
| | - I Fernández-Moncada
- NeuroCentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| |
Collapse
|
43
|
Yao S, Xu MD, Wang Y, Zhao ST, Wang J, Chen GF, Chen WB, Liu J, Huang GB, Sun WJ, Zhang YY, Hou HL, Li L, Sun XD. Astrocytic lactate dehydrogenase A regulates neuronal excitability and depressive-like behaviors through lactate homeostasis in mice. Nat Commun 2023; 14:729. [PMID: 36759610 PMCID: PMC9911790 DOI: 10.1038/s41467-023-36209-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Alterations in energy metabolism are associated with depression. However, the role of glycolysis in the pathogenesis of depression and the underlying molecular mechanisms remain unexplored. Through an unbiased proteomic screen coupled with biochemical verifications, we show that the levels of glycolysis and lactate dehydrogenase A (LDHA), a glycolytic enzyme that catalyzes L-lactate production, are reduced in the dorsomedial prefrontal cortex (dmPFC) of stress-susceptible mice in chronic social defeat stress (CSDS) model. Conditional knockout of LDHA from the brain promotes depressive-like behaviors in both male and female mice, accompanied with reduced L-lactate levels and decreased neuronal excitability in the dmPFC. Moreover, these phenotypes could be duplicated by knockdown of LDHA in the dmPFC or specifically in astrocytes. In contrast, overexpression of LDHA reverses these phenotypic changes in CSDS-susceptible mice. Mechanistic studies demonstrate that L-lactate promotes neuronal excitability through monocarboxylic acid transporter 2 (MCT2) and by inhibiting large-conductance Ca2+-activated potassium (BK) channel. Together, these results reveal a role of LDHA in maintaining neuronal excitability to prevent depressive-like behaviors.
Collapse
Affiliation(s)
- Shan Yao
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Min-Dong Xu
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Ying Wang
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shen-Ting Zhao
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jin Wang
- Department of Physiology, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Gui-Fu Chen
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen-Bing Chen
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jian Liu
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Guo-Bin Huang
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen-Juan Sun
- Department of Physiology, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Yan Zhang
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Huan-Li Hou
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiang-Dong Sun
- Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
44
|
Hariharan A, Robertson CD, Garcia DCG, Longden TA. Brain capillary pericytes are metabolic sentinels that control blood flow through a K ATP channel-dependent energy switch. Cell Rep 2022; 41:111872. [PMID: 36577387 PMCID: PMC10187957 DOI: 10.1016/j.celrep.2022.111872] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the abundance of capillary thin-strand pericytes and their proximity to neurons and glia, little is known of the contributions of these cells to the control of brain hemodynamics. We demonstrate that the pharmacological activation of thin-strand pericyte KATP channels profoundly hyperpolarizes these cells, dilates upstream penetrating arterioles and arteriole-proximate capillaries, and increases capillary blood flow. Focal stimulation of pericytes with a KATP channel agonist is sufficient to evoke this response, mediated via KIR2.1 channel-dependent retrograde propagation of hyperpolarizing signals, whereas genetic inactivation of pericyte KATP channels eliminates these effects. Critically, we show that decreasing extracellular glucose to less than 1 mM or inhibiting glucose uptake by blocking GLUT1 transporters in vivo flips a mechanistic energy switch driving rapid KATP-mediated pericyte hyperpolarization to increase local blood flow. Together, our findings recast capillary pericytes as metabolic sentinels that respond to local energy deficits by increasing blood flow to neurons to prevent energetic shortfalls.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA; Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Colin D Robertson
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Daniela C G Garcia
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA; Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA; Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
45
|
Dembitskaya Y, Piette C, Perez S, Berry H, Magistretti PJ, Venance L. Lactate supply overtakes glucose when neural computational and cognitive loads scale up. Proc Natl Acad Sci U S A 2022; 119:e2212004119. [PMID: 36375086 PMCID: PMC9704697 DOI: 10.1073/pnas.2212004119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 07/23/2023] Open
Abstract
Neural computational power is determined by neuroenergetics, but how and which energy substrates are allocated to various forms of memory engram is unclear. To solve this question, we asked whether neuronal fueling by glucose or lactate scales differently upon increasing neural computation and cognitive loads. Here, using electrophysiology, two-photon imaging, cognitive tasks, and mathematical modeling, we show that both glucose and lactate are involved in engram formation, with lactate supporting long-term synaptic plasticity evoked by high-stimulation load activity patterns and high attentional load in cognitive tasks and glucose being sufficient for less demanding neural computation and learning tasks. Indeed, we show that lactate is mandatory for demanding neural computation, such as theta-burst stimulation, while glucose is sufficient for lighter forms of activity-dependent long-term potentiation (LTP), such as spike timing-dependent plasticity (STDP). We find that subtle variations of spike number or frequency in STDP are sufficient to shift the on-demand fueling from glucose to lactate. Finally, we demonstrate that lactate is necessary for a cognitive task requiring high attentional load, such as the object-in-place task, and for the corresponding in vivo hippocampal LTP expression but is not needed for a less demanding task, such as a simple novel object recognition. Overall, these results demonstrate that glucose and lactate metabolism are differentially engaged in neuronal fueling depending on the complexity of the activity-dependent plasticity and behavior.
Collapse
Affiliation(s)
- Yulia Dembitskaya
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Charlotte Piette
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sylvie Perez
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Hugues Berry
- AIStroSight Lab, INRIA, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69603 Villeurbanne, France
- University of Lyon, LIRIS UMR5205, 69622 Villeurbanne, France
| | - Pierre J. Magistretti
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
46
|
Whole-brain neuronal MCT2 lactate transporter expression links metabolism to human brain structure and function. Proc Natl Acad Sci U S A 2022; 119:e2204619119. [PMID: 35939682 PMCID: PMC9388117 DOI: 10.1073/pnas.2204619119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain activity is constrained by local availability of chemical energy, which is generated through compartmentalized metabolic processes. By analyzing data of whole human brain gene expression, we characterize the spatial distribution of seven glucose and monocarboxylate membrane transporters that mediate astrocyte–neuron lactate shuttle transfer of energy. We found that the gene coding for neuronal MCT2 is the only gene enriched in cerebral cortex where its abundance is inversely correlated with cortical thickness. Coexpression network analysis revealed that MCT2 was the only gene participating in an organized gene cluster enriched in K+ dynamics. Indeed, the expression of KATP subunits, which mediate lactate increases with spiking activity, is spatially coupled to MCT2 distribution. Notably, MCT2 expression correlated with fluorodeoxyglucose positron emission tomography task-dependent glucose utilization. Finally, the MCT2 messenger RNA gradient closely overlaps with functional MRI brain regions associated with attention, arousal, and stress. Our results highlight neuronal MCT2 lactate transporter as a key component of the cross-talk between astrocytes and neurons and a link between metabolism, cortical structure, and state-dependent brain function.
Collapse
|
47
|
Monocarboxylate transporters (MCTs) in skeletal muscle and hypothalamus of less or more physically active mice exposed to aerobic training. Life Sci 2022; 307:120872. [PMID: 35948119 DOI: 10.1016/j.lfs.2022.120872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
AIMS The synthesis of monocarboxylate transporters (MCTs) can be stimulated by aerobic training, but few is known about this effect associated or not with non-voluntary daily activities. We examined the effect of eight weeks of aerobic training in MCTs on the skeletal muscle and hypothalamus of less or more physically active mice, which can be achieved by keeping them in two different housing models, a small cage (SC) and a large cage (LC). MAIN METHODS Forty male C57BL/6J mice were divided into four groups. In each housing condition, mice were divided into untrained (N) and trained (T). For 8 weeks, the trained animals ran on a treadmill with an intensity equivalent to 80 % of the individual critical velocity (CV), considered aerobic capacity, 40 min/day, 5 times/week. Protein expression of MCTs was determined with fluorescence Western Blot. KEY FINDINGS T groups had higher hypothalamic MCT2 than N groups (ANOVA, P = 0.032). Significant correlations were detected between hypothalamic MCT2 and CV. There was a difference between the SC and LC groups in relation to MCT4 in the hypothalamus (LC > SC, P = 0.044). Trained mice housed in LC (but not SC-T) exhibited a reduction in MCT4 muscle (P < 0.001). SIGNIFICANCE Our findings indicate that aerobically trained mice increased the expression of MCT2 protein in the hypothalamus, which has been related to the uptake of lactate in neurons. Changes in energy metabolism in physically active mice (kept in LC) may be related to upregulation of hypothalamic MCT4, probably participating in the regulation of satiety.
Collapse
|
48
|
GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells 2022; 11:cells11132023. [PMID: 35805109 PMCID: PMC9265397 DOI: 10.3390/cells11132023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Defects in brain energy metabolism and proteopathic stress are implicated in age-related degenerative neuronopathies, exemplified by Alzheimer’s disease (AD) and Parkinson’s disease (PD). As the currently available drug regimens largely aim to mitigate cognitive decline and/or motor symptoms, there is a dire need for mechanism-based therapies that can be used to improve neuronal function and potentially slow down the underlying disease processes. In this context, a new class of pharmacological agents that achieve improved glycaemic control via the glucagon-like peptide 1 (GLP-1) receptor has attracted significant attention as putative neuroprotective agents. The experimental evidence supporting their potential therapeutic value, mainly derived from cellular and animal models of AD and PD, has been discussed in several research reports and review opinions recently. In this review article, we discuss the pathological relevance of derangements in the neurovascular unit and the significance of neuron–glia metabolic coupling in AD and PD. With this context, we also discuss some unresolved questions with regard to the potential benefits of GLP-1 agonists on the neurovascular unit (NVU), and provide examples of novel experimental paradigms that could be useful in improving our understanding regarding the neuroprotective mode of action associated with these agents.
Collapse
|
49
|
Xu Z, Xie W, Feng Y, Wang Y, Li X, Liu J, Xiong Y, He Y, Chen L, Liu G, Wu Q. Positive interaction between GPER and β-alanine in the dorsal root ganglion uncovers potential mechanisms: mediating continuous neuronal sensitization and neuroinflammation responses in neuropathic pain. J Neuroinflammation 2022; 19:164. [PMID: 35729568 PMCID: PMC9215054 DOI: 10.1186/s12974-022-02524-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Background The pathogenesis of neuropathic pain and the reasons for the prolonged unhealing remain unknown. Increasing evidence suggests that sex oestrogen differences play a role in pain sensitivity, but few studies have focused on the oestrogen receptor which may be an important molecular component contributing to peripheral pain transduction. We aimed to investigate the impact of oestrogen receptors on the nociceptive neuronal response in the dorsal root ganglion (DRG) and spinal dorsal horn using a spared nerve injury (SNI) rat model of chronic pain. Methods We intrathecally (i.t.) administered a class of oestrogen receptor antagonists and agonists intrathecal (i.t.) administrated to male rats with SNI or normal rats to identify the main receptor. Moreover, we assessed genes identified through genomic metabolic analysis to determine the key metabolism point and elucidate potential mechanisms mediating continuous neuronal sensitization and neuroinflammatory responses in neuropathic pain. The excitability of DRG neurons was detected using the patch-clamp technique. Primary culture was used to extract microglia and DRG neurons, and siRNA transfection was used to silence receptor protein expression. Immunofluorescence, Western blotting, RT-PCR and behavioural testing were used to assess the expression, cellular distribution, and actions of the main receptor and its related signalling molecules. Results Increasing the expression and function of G protein-coupled oestrogen receptor (GPER), but not oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ), in the DRG neuron and microglia, but not the dorsal spinal cord, contributed to SNI-induced neuronal sensitization. Inhibiting GPER expression in the DRG alleviated SNI-induced pain behaviours and neuroinflammation by simultaneously downregulating iNOS, IL-1β and IL-6 expression and restoring GABAα2 expression. Additionally, the positive interaction between GPER and β-alanine and subsequent β-alanine accumulation enhances pain sensation and promotes chronic pain development. Conclusion GPER activation in the DRG induces a positive association between β-alanine with iNOS, IL-1β and IL-6 expression and represses GABAα2 involved in post-SNI neuropathic pain development. Blocking GPER and eliminating β-alanine in the DRG neurons and microglia may prevent neuropathic pain development. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02524-9.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqi Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Xiong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoyang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
50
|
Aerobic Glycolysis: A DeOxymoron of (Neuro)Biology. Metabolites 2022; 12:metabo12010072. [PMID: 35050194 PMCID: PMC8780167 DOI: 10.3390/metabo12010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
The term ‘aerobic glycolysis’ has been in use ever since Warburg conducted his research on cancer cells’ proliferation and discovered that cells use glycolysis to produce adenosine triphosphate (ATP) rather than the more efficient oxidative phosphorylation (oxphos) pathway, despite an abundance of oxygen. When measurements of glucose and oxygen utilization by activated neural tissue indicated that glucose was consumed without an accompanied oxygen consumption, the investigators who performed those measurements also termed their discovery ‘aerobic glycolysis’. Red blood cells do not contain mitochondria and, therefore, produce their energy needs via glycolysis alone. Other processes within the central nervous system (CNS) and additional organs and tissues (heart, muscle, and so on), such as ion pumps, are also known to utilize glycolysis only for the production of ATP necessary to support their function. Unfortunately, the phenomenon of ‘aerobic glycolysis’ is an enigma wherever it is encountered, thus several hypotheses have been produced in attempts to explain it; that is, whether it occurs in cancer cells, in activated neural tissue, or during postprandial or exercise metabolism. Here, it is argued that, where the phenomenon in neural tissue is concerned, the prefix ‘aerobic’ in the term ‘aerobic glycolysis’ should be removed. Data collected over the past three decades indicate that L-lactate, the end product of the glycolytic pathway, plays an essential role in brain energy metabolism, justifying the elimination of the prefix ‘aerobic’. Similar justification is probably appropriate for other tissues as well.
Collapse
|