1
|
Arumugam MK, Paal MC, Donohue TM, Ganesan M, Osna NA, Kharbanda KK. Beneficial Effects of Betaine: A Comprehensive Review. BIOLOGY 2021; 10:456. [PMID: 34067313 PMCID: PMC8224793 DOI: 10.3390/biology10060456] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] [Imported: 08/29/2023]
Abstract
Medicinal herbs and many food ingredients possess favorable biological properties that contribute to their therapeutic activities. One such natural product is betaine, a stable, nontoxic natural substance that is present in animals, plants, and microorganisms. Betaine is also endogenously synthesized through the metabolism of choline or exogenously consumed through dietary intake. Betaine mainly functions as (i) an osmolyte and (ii) a methyl-group donor. This review describes the major physiological effects of betaine in whole-body health and its ability to protect against both liver- as well as non-liver-related diseases and conditions. Betaine's role in preventing/attenuating both alcohol-induced and metabolic-associated liver diseases has been well studied and is extensively reviewed here. Several studies show that betaine protects against the development of alcohol-induced hepatic steatosis, apoptosis, and accumulation of damaged proteins. Additionally, it can significantly prevent/attenuate progressive liver injury by preserving gut integrity and adipose function. The protective effects are primarily associated with the regulation of methionine metabolism through removing homocysteine and maintaining cellular SAM:SAH ratios. Similarly, betaine prevents metabolic-associated fatty liver disease and its progression. In addition, betaine has a neuroprotective role, preserves myocardial function, and prevents pancreatic steatosis. Betaine also attenuates oxidant stress, endoplasmic reticulum stress, inflammation, and cancer development. To conclude, betaine exerts significant therapeutic and biological effects that are potentially beneficial for alleviating a diverse number of human diseases and conditions.
Collapse
|
Review |
4 |
110 |
2
|
Balu M, Sangeetha P, Murali G, Panneerselvam C. Age‐related oxidative protein damages in central nervous system of rats: modulatory role of grape seed extract. Int J Dev Neurosci 2005; 23:501-7. [PMID: 16009524 DOI: 10.1016/j.ijdevneu.2005.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 12/18/2022] [Imported: 04/16/2025] Open
Abstract
Oxidative stress has been shown to play a major role in aging and in neurodegenerative disorders. Protein modification is one of the important consequences of oxidative stress. In the present study, we evaluated the role of grape seed extract on memory, reactive oxygen species production, protein carbonyls (PCO), and thiol status in discrete regions of central nervous system of young and aged rats. Male albino rats of Wistar strain were divided into four groups: Group I--control young rats, Group II--young rats treated with grape seed extract (100 mg/kg BW) for 30 days, Group III--aged control rats and Group IV-aged rats supplemented with grape seed extract (100 mg/kg BW) for 30 days. Memory loss was observed in the aged rats. Age associated increase in reactive oxygen species production and protein oxidation was observed in the spinal cord; cerebral cortex, striatum and the hippocampus regions of aged rats (Group III). The levels of total thiol, non-protein thiol, protein thiols were found to be significantly decreased in spinal cord and all the brain regions studied in aged rats when compared to young rats. Supplementation of aged rats with grape seed extract showed increased memory performance and declined reactive oxygen species production, decreased protein carbonyl levels and improved thiol levels. These findings demonstrated that grape seed extract enhanced the antioxidant status and decreased the incidence of free radical induced protein oxidation in aged rats thereby protecting the central nervous system from the reactive oxygen species.
Collapse
|
|
20 |
65 |
3
|
Muthuswamy AD, Vedagiri K, Ganesan M, Chinnakannu P. Oxidative stress-mediated macromolecular damage and dwindle in antioxidant status in aged rat brain regions: Role of l-carnitine and dl-α-lipoic acid. Clin Chim Acta 2006; 368:84-92. [PMID: 16480704 DOI: 10.1016/j.cca.2005.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 12/04/2005] [Accepted: 12/12/2005] [Indexed: 11/15/2022] [Imported: 04/16/2025]
Abstract
BACKGROUND The free radical theory of aging has significant relevance in a number of age-related neurological disorders. Too many free radicals create cellular pollution that shuts down energy levels. They have also been implicated in the loss of physiological functioning associated with the aging of post mitotic cells such as the brain. The activities of enzymatic antioxidative defenses decrease in rat brain may be possible causes of age-associated increase in oxidative damage to macromolecules. METHODS We determined whether DL-alpha-lipoic acid (100 mg/kg body weight/day), and L-carnitine (300 mg/kg body weight/day) together when administered for 30 days declines the rate of oxidative stress-mediated macromolecular damages such as lipid peroxidation (LPO), protein carbonyl (PCO) and DNA protein cross-links in different anatomic regions (cortex, striatum and hippocampus). The activities of antioxidant enzymes in programmed aging were evaluated in the cortex, striatum and hippocampus of young and aged rat brain regions. RESULTS Aged rats elicited a significant decline in the antioxidant status and increase in LPO, PCO and DNA protein cross-links as compared to young rats in all the 3 brain regions. The increase in LPO, PCO and DNA protein cross-links were (35.8%, 35.6%, 43.5%) in cortex, (32.5%, 40.3%, 29.8%) in striatum and (62.7%, 42.4%, 34.9%) in hippocampus, respectively, in aged rats as compared to young rats. Co-supplementation of carnitine and lipoic acid was found to be effective in reducing brain regional LPO, PCO and DNA protein cross-links and in increasing the activities of enzymatic antioxidants in aged rats to near normalcy. CONCLUSION The combination of l-carnitine and lipoic acid overcame the oxidative stress induced rate of lipid peroxidation, protein carbonyl formation, accumulation of DNA protein cross-links and deficits in antioxidant enzyme activities in various brain regions of aged rats.
Collapse
|
|
19 |
55 |
4
|
Balu M, Sangeetha P, Murali G, Panneerselvam C. Modulatory role of grape seed extract on age-related oxidative DNA damage in central nervous system of rats. Brain Res Bull 2005; 68:469-73. [PMID: 16459205 DOI: 10.1016/j.brainresbull.2005.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/10/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022] [Imported: 04/16/2025]
Abstract
Aging is the accumulation of diverse deleterious changes in the cells and tissues leading to increased risk of diseases. Oxidative stress is considered as a major risk factor and contributes to age related increase in DNA oxidation and DNA protein cross-links in central nervous system during aging. In the present study, we have evaluated the salubrious role of grape seed extract on accumulation of oxidative DNA damage products such as 8-OHdG and DNA protein cross-links in aged rats. Male albino rats of Wistar strain were divided into four groups: Group I, young control rats; Group II, young rats treated with grape seed extract (100 mg/kg b.wt.) for 30 days; Group III, aged control rats; Group IV, aged rats supplemented with grape seed extract (100 mg/kg b.wt.) for 30 days. Our results, thus, revealed that grape seed extract has inhibiting effect on the accumulation of age-related oxidative DNA damages in spinal cord and in various brain regions such as cerebral cortex, striatum and hippocampus.
Collapse
|
Journal Article |
20 |
52 |
5
|
Neuman MG, French SW, French BA, Seitz HK, Cohen LB, Mueller S, Osna NA, Kharbanda KK, Seth D, Bautista A, Thompson KJ, McKillop IH, Kirpich IA, McClain CJ, Bataller R, Nanau RM, Voiculescu M, Opris M, Shen H, Tillman B, Li J, Liu H, Thomes PG, Ganesan M, Malnick S. Alcoholic and non-alcoholic steatohepatitis. Exp Mol Pathol 2014; 97:492-510. [PMID: 25217800 PMCID: PMC4696068 DOI: 10.1016/j.yexmp.2014.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 02/08/2023] [Imported: 04/16/2025]
Abstract
This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
48 |
6
|
Murali G, Desouza CV, Clevenger ME, Ramalingam R, Saraswathi V. Differential effects of eicosapentaenoic acid and docosahexaenoic acid in promoting the differentiation of 3T3-L1 preadipocytes. Prostaglandins Leukot Essent Fatty Acids 2014; 90:13-21. [PMID: 24332315 DOI: 10.1016/j.plefa.2013.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/01/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022] [Imported: 04/16/2025]
Abstract
The objective of this study was to determine the effects of enrichment with n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the differentiation of 3T3-L1 preadipocytes. Enrichment with DHA but not EPA significantly increased the differentiation markers compared to control differentiated cells. DHA compared to EPA treatment led to a greater increase in adiponectin secretion and, conditioned media collected from DHA treated cells inhibited monocyte migration. Moreover, DHA treatment resulted in inhibition of pro-inflammatory signaling pathways. DHA treated cells predominantly accumulated DHA in phospholipids whereas EPA treatment led to accumulation of both EPA and its elongation product docosapentaenoic acid (DPA), an n-3 fatty acid. Of note, adding DPA to DHA inhibited DHA-induced differentiation. The differential effects of EPA and DHA on preadipocyte differentiation may be due, in part, to differences in their intracellular modification which could impact the type of n-3 fatty acids incorporated into the cells.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
46 |
7
|
Ganesan M, Poluektova LY, Kharbanda KK, Osna NA. Liver as a target of human immunodeficiency virus infection. World J Gastroenterol 2018; 24:4728-4737. [PMID: 30479460 PMCID: PMC6235802 DOI: 10.3748/wjg.v24.i42.4728] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/10/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Liver injury is a characteristic feature of human immunodeficiency virus (HIV) infection, which is the second most common cause of mortality in HIV-infected patients. Now it is recognized that liver plays a key role in HIV infection pathogenesis. Antiretroviral therapy (ART), which suppresses HIV infection in permissive immune cells, is less effective in hepatocytes, thereby making these cells a silent reservoir of HIV infection. In addition to direct hepatotoxic effects of HIV, certain ART treatment modalities provide hepatotoxic effects. The exact mechanisms of HIV-triggered chronic hepatitis progression are not elucidated, but the liver is adversely affected by HIV-infection and liver cells are prominently involved in HIV-elicited injury. These effects are potentiated by second hits like alcohol. Here, we will focus on the incidence of HIV, clinical evidence of HIV-related liver damage, interactions between HIV and liver cells and the role of alcohol and co-infection with hepatotropic viruses in liver inflammation and fibrosis progression.
Collapse
|
Review |
7 |
37 |
8
|
Ganesan M, Poluektova LY, Tuma DJ, Kharbanda KK, Osna NA. Acetaldehyde Disrupts Interferon Alpha Signaling in Hepatitis C Virus-Infected Liver Cells by Up-Regulating USP18. Alcohol Clin Exp Res 2016; 40:2329-2338. [PMID: 27716962 PMCID: PMC6800117 DOI: 10.1111/acer.13226] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/30/2016] [Indexed: 02/05/2023] [Imported: 04/16/2025]
Abstract
BACKGROUND Alcohol consumption exacerbates the pathogenesis of hepatitis C virus (HCV) infection and worsens disease outcomes. The exact reasons are not clear yet, but they might be partially attributed to the ability of alcohol to further suppress the innate immunity. Innate immunity is known to be already decreased by HCV in liver cells. METHODS In this study, we aimed to explore the mechanisms of how alcohol metabolism dysregulates IFNα signaling (STAT1 phosphorylation) in HCV+ hepatoma cells. To this end, CYP2E1+ Huh7.5 cells were infected with HCV and exposed to the acetaldehyde (Ach) generating system (AGS). RESULTS Continuously produced Ach suppressed IFNα-induced STAT1 phosphorylation, but increased the level of a protease, USP18 (both measured by Western blot), which interferes with IFNα signaling. Induction of USP18 by Ach was confirmed in primary human hepatocyte cultures and in livers of ethanol-fed HCV transgenic mice. Silencing of USP18 by specific siRNA attenuated the pSTAT1 suppression by Ach. The mechanism by which Ach down-regulates pSTAT1 is related to an enhanced interaction between IFNαR2 and USP18 that finally dysregulates the cross talk between the IFN receptor on the cell surface and STAT1. Furthermore, Ach decreases ISGylation of STAT1 (protein conjugation of a small ubiquitin-like modifier, ISG15, Western blot), which preserves STAT1 activation. Suppressed ISGylation leads to an increase in STAT1 K48 polyubiquitination which allows pSTAT1 degrading by proteasome. CONCLUSIONS We conclude that Ach disrupts IFNα-induced STAT1 phosphorylation by the up-regulation of USP18 to block the innate immunity protection in HCV-infected liver cells, thereby contributing to HCV-alcohol pathogenesis. This, in part, may explain the mechanism of HCV-infection exacerbation/progression in alcohol-abusing patients.
Collapse
|
research-article |
9 |
36 |
9
|
Ganesan M, Zhang J, Bronich T, Poluektova LI, Donohue TM, Tuma DJ, Kharbanda KK, Osna NA. Acetaldehyde accelerates HCV-induced impairment of innate immunity by suppressing methylation reactions in liver cells. Am J Physiol Gastrointest Liver Physiol 2015; 309:G566-77. [PMID: 26251470 PMCID: PMC6842870 DOI: 10.1152/ajpgi.00183.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/04/2015] [Indexed: 02/08/2023] [Imported: 04/16/2025]
Abstract
Alcohol exposure worsens the course and outcomes of hepatitis C virus (HCV) infection. Activation of protective antiviral genes is induced by IFN-α signaling, which is altered in liver cells by either HCV or ethanol exposure. However, the mechanisms of the combined effects of HCV and ethanol metabolism in IFN-α signaling modulation are not well elucidated. Here, we explored a possibility that ethanol metabolism potentiates HCV-mediated dysregulation of IFN-α signaling in liver cells via impairment of methylation reactions. HCV-infected Huh7.5 CYP2E1(+) cells and human hepatocytes were exposed to acetaldehyde (Ach)-generating system (AGS) and stimulated with IFN-α to activate IFN-sensitive genes (ISG) via the Jak-STAT-1 pathway. We observed significant suppression of signaling events by Ach. Ach exposure decreased STAT-1 methylation via activation of protein phosphatase 2A and increased the protein inhibitor of activated STAT-1 (PIAS-1)-STAT-1 complex formation in both HCV(+) and HCV(-) cells, preventing ISG activation. Treatment with a promethylating agent, betaine, attenuated all examined Ach-induced defects. Ethanol metabolism-induced changes in ISGs are methylation related and confirmed by in vivo studies on HCV(+) transgenic mice. HCV- and Ach-induced impairment of IFN signaling temporarily increased HCV RNA levels followed by apoptosis of heavily infected cells. We concluded that Ach potentiates the suppressive effects of HCV on activation of ISGs attributable to methylation-dependent dysregulation of IFN-α signaling. A temporary increase in HCV RNA sensitizes the liver cells to Ach-induced apoptosis. Betaine reverses the inhibitory effects of Ach on IFN signaling and thus can be used for treatment of HCV(+) alcohol-abusing patients.
Collapse
|
research-article |
10 |
35 |
10
|
Osna NA, Rasineni K, Ganesan M, Donohue TM, Kharbanda KK. Pathogenesis of Alcohol-Associated Liver Disease. J Clin Exp Hepatol 2022; 12:1492-1513. [PMID: 36340300 PMCID: PMC9630031 DOI: 10.1016/j.jceh.2022.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] [Imported: 04/16/2025] Open
Abstract
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
Collapse
Key Words
- AA, Arachidonic acid
- ADH, Alcohol dehydrogenase
- AH, Alcoholic hepatitis
- ALD, Alcohol-associated liver disease
- ALDH, Aldehyde dehydrogenase
- ALT, Alanine transaminase
- ASH, Alcohol-associated steatohepatitis
- AST, Aspartate transaminase
- AUD, Alcohol use disorder
- BHMT, Betaine-homocysteine-methyltransferase
- CD, Cluster of differentiation
- COX, Cycloxygenase
- CTLs, Cytotoxic T-lymphocytes
- CYP, Cytochrome P450
- CYP2E1, Cytochrome P450 2E1
- Cu/Zn SOD, Copper/zinc superoxide dismutase
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cells
- EDN1, Endothelin 1
- ER, Endoplasmic reticulum
- ETOH, Ethanol
- EVs, Extracellular vesicles
- FABP4, Fatty acid-binding protein 4
- FAF2, Fas-associated factor family member 2
- FMT, Fecal microbiota transplant
- Fn14, Fibroblast growth factor-inducible 14
- GHS-R1a, Growth hormone secretagogue receptor type 1a
- GI, GOsteopontinastrointestinal tract
- GSH Px, Glutathione peroxidase
- GSSG Rdx, Glutathione reductase
- GST, Glutathione-S-transferase
- GWAS, Genome-wide association studies
- H2O2, Hydrogen peroxide
- HA, Hyaluronan
- HCC, Hepatocellular carcinoma
- HNE, 4-hydroxynonenal
- HPMA, 3-hydroxypropylmercapturic acid
- HSC, Hepatic stellate cells
- HSD17B13, 17 beta hydroxy steroid dehydrogenase 13
- HSP 90, Heat shock protein 90
- IFN, Interferon
- IL, Interleukin
- IRF3, Interferon regulatory factor 3
- JAK, Janus kinase
- KC, Kupffer cells
- LCN2, Lipocalin 2
- M-D, Mallory–Denk
- MAA, Malondialdehyde-acetaldehyde protein adducts
- MAT, Methionine adenosyltransferase
- MCP, Macrophage chemotactic protein
- MDA, Malondialdehyde
- MIF, Macrophage migration inhibitory factor
- Mn SOD, Manganese superoxide dismutase
- Mt, Mitochondrial
- NK, Natural killer
- NKT, Natural killer T-lymphocytes
- OPN, Osteopontin
- PAMP, Pathogen-associated molecular patterns
- PNPLA3, Patatin-like phospholipase domain containing 3
- PUFA, Polyunsaturated fatty acid
- RIG1, Retinoic acid inducible gene 1
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SCD, Stearoyl-CoA desaturase
- STAT, Signal transduction and activator of transcription
- TIMP1, Tissue inhibitor matrix metalloproteinase 1
- TLR, Toll-like receptor
- TNF, Tumor necrosis factor-α
- alcohol
- alcohol-associated liver disease
- ethanol metabolism
- liver
- miRNA, MicroRNA
- p90RSK, 90 kDa ribosomal S6 kinase
Collapse
|
Review |
3 |
32 |
11
|
Ganesan M, Poluektova LY, Kharbanda KK, Osna NA. Human immunodeficiency virus and hepatotropic viruses co-morbidities as the inducers of liver injury progression. World J Gastroenterol 2019; 25:398-410. [PMID: 30700937 PMCID: PMC6350175 DOI: 10.3748/wjg.v25.i4.398] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Hepatotropic viruses induced hepatitis progresses much faster and causes more liver- related health problems in people co-infected with human immunodeficiency virus (HIV). Although treatment with antiretroviral therapy has extended the life expectancy of people with HIV, liver disease induced by hepatitis B virus (HBV) and hepatitis C virus (HCV) causes significant numbers of non-acquired immune deficiency syndrome (AIDS)-related deaths in co-infected patients. In recent years, new insights into the mechanisms of accelerated fibrosis and liver disease progression in HIV/HCV and HIV/HBV co-infections have been reported. In this paper, we review recent studies examining the natural history and pathogenesis of liver disease in HIV-HCV/HBV co-infection in the era of direct acting antivirals (DAA) and antiretroviral therapy (ART). We also review the novel therapeutics for management of HIV/HCV and HIV/HBV co-infected individuals.
Collapse
|
Review |
6 |
32 |
12
|
Neuman MG, Malnick S, Maor Y, Nanau RM, Melzer E, Ferenci P, Seitz HK, Mueller S, Mell H, Samuel D, Cohen LB, Kharbanda KK, Osna NA, Ganesan M, Thompson KJ, McKillop IH, Bautista A, Bataller R, French SW. Alcoholic liver disease: Clinical and translational research. Exp Mol Pathol 2015; 99:596-610. [PMID: 26342547 DOI: 10.1016/j.yexmp.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 02/05/2023] [Imported: 04/16/2025]
Abstract
The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical research, translational research, pathogenesis and therapies. A special accent is placed on alcohol misuse, as alcohol is a legally commercialized and taxable product. Drinking alcohol, particularly from a young age, is a major health problem. Alcoholism is known to contribute to morbidity and mortality. A systematic literature search was performed in order to obtain updated data (2008-2015). The review is focused on genetic polymorphisms of alcohol metabolizing enzymes and the role of cytochrome p450 2E1 and iron in ALD. Alcohol-mediated hepatocarcinogenesis is also discussed in the presence or absence of co-morbidities such as viral hepatitis C as well as therapeutic the role of innate immunity in ALD-HCV. Moreover, emphasis was placed on alcohol and drug interactions, as well as liver transplantation for end-stage ALD. Finally, the time came to eradicate alcohol-induced liver and intestinal damage by using betaine.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
27 |
13
|
Ganesan M, Natarajan SK, Zhang J, Mott JL, Poluektova LI, McVicker BL, Kharbanda KK, Tuma DJ, Osna NA. Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde. Am J Physiol Gastrointest Liver Physiol 2016; 310:G930-40. [PMID: 27056722 PMCID: PMC6842882 DOI: 10.1152/ajpgi.00021.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/31/2016] [Indexed: 02/08/2023] [Imported: 04/16/2025]
Abstract
Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1β, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.
Collapse
|
research-article |
9 |
26 |
14
|
Vangimalla SS, Ganesan M, Kharbanda KK, Osna NA. Bifunctional Enzyme JMJD6 Contributes to Multiple Disease Pathogenesis: New Twist on the Old Story. Biomolecules 2017; 7:biom7020041. [PMID: 28587176 PMCID: PMC5485730 DOI: 10.3390/biom7020041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 02/05/2023] [Imported: 08/29/2023] Open
Abstract
Jumonji domain-containing protein 6 (JMJD6) is a non-heme Fe(II) 2-oxoglutarate (2OG)-dependent oxygenase with arginine demethylase and lysyl hydroxylase activities. Its initial discovery as a dispensable phosphatidylserine receptor (PSR) in the cell membrane of macrophages for phagocytosis was squashed by newer studies which revealed its nuclear localization and bifunctional enzymatic activity. Though its interaction with several nuclear and cytoplasmic target proteins has been demonstrated, the exact mechanisms and clinical significance of these various biologic interplays are not yet well established. Recent investigations have shed the light on the multiple pathways by which JMJD6 can regulate cell proliferation and cause tumorigenesis. Clinically, JMJD6 has been associated with more aggressive and metastatic disease, poorer prognosis, and lower overall survival rates-particularly in lung colon and oral cancers. JMJD6 is a novel biomarker for predicting future disease outcomes and is a target for new therapeutic treatments in future studies. Aberrant expression and dysregulation of JMJD6 are implicated in various other processes such as impaired T-cell proliferation and maturation, inoculation, and virulence of foot-and-mouth disease virus (FMDV), and impaired methylation of innate immunity factor. This article reviews the association of JMJD6 with various pathological processes-particularly, its role in tumorigenesis and virological interactions.
Collapse
|
Review |
8 |
25 |
15
|
Ganesan M, Eikenberry A, Poluektova LY, Kharbanda KK, Osna NA. Role of alcohol in pathogenesis of hepatitis B virus infection. World J Gastroenterol 2020; 26:883-903. [PMID: 32206001 PMCID: PMC7081008 DOI: 10.3748/wjg.v26.i9.883] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Hepatitis B virus (HBV) and alcohol abuse often contribute to the development of end-stage liver disease. Alcohol abuse not only causes rapid progression of liver disease in HBV infected patients but also allows HBV to persist chronically. Importantly, the mechanism by which alcohol promotes the progression of HBV-associated liver disease are not completely understood. Potential mechanisms include a suppressed immune response, oxidative stress, endoplasmic reticulum and Golgi apparatus stresses, and increased HBV replication. Certainly, more research is necessary to gain a better understanding of these mechanisms such that treatment(s) to prevent rapid liver disease progression in alcohol-abusing HBV patients could be developed. In this review, we discuss the aforementioned factors for the higher risk of liver diseases in alcohol-induced HBV pathogenies and suggest the areas for future studies in this field.
Collapse
|
Review |
5 |
24 |
16
|
Osna NA, Ganesan M, Kharbanda KK. Hepatitis C, innate immunity and alcohol: friends or foes? Biomolecules 2015; 5:76-94. [PMID: 25664450 PMCID: PMC4384112 DOI: 10.3390/biom5010076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/19/2015] [Accepted: 01/24/2015] [Indexed: 02/05/2023] [Imported: 08/29/2023] Open
Abstract
Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.
Collapse
|
Review |
10 |
22 |
17
|
Ganesan M, New-Aaron M, Dagur RS, Makarov E, Wang W, Kharbanda KK, Kidambi S, Poluektova LY, Osna NA. Alcohol Metabolism Potentiates HIV-Induced Hepatotoxicity: Contribution to End-Stage Liver Disease. Biomolecules 2019; 9:biom9120851. [PMID: 31835520 PMCID: PMC6995634 DOI: 10.3390/biom9120851] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
In an era of improved survival due to modern antiretroviral therapy, liver disease has become a major cause of morbidity and mortality, resulting in death in 15-17% of human immunodeficiency virus (HIV)-infected patients. Alcohol enhances HIV-mediated liver damage and promotes the progression to advanced fibrosis and cirrhosis. However, the mechanisms behind these events are uncertain. Here, we hypothesize that ethanol metabolism potentiates accumulation of HIV in hepatocytes, causing oxidative stress and intensive apoptotic cell death. Engulfment of HIV-containing apoptotic hepatocytes by non-parenchymal cells (NPCs) triggers their activation and liver injury progression. This study was performed on primary human hepatocytes and Huh7.5-CYP cells infected with HIV-1ADA, and major findings were confirmed by pilot data obtained on ethanol-fed HIV-injected chimeric mice with humanized livers. We demonstrated that ethanol exposure potentiates HIV accumulation in hepatocytes by suppressing HIV degradation by lysosomes and proteasomes. This leads to increased oxidative stress and hepatocyte apoptosis. Exposure of HIV-infected apoptotic hepatocytes to NPCs activates the inflammasome in macrophages and pro-fibrotic genes in hepatic stellate cells. We conclude that while HIV and ethanol metabolism-triggered apoptosis clears up HIV-infected hepatocytes, continued generation of HIV-expressing apoptotic bodies may be detrimental for progression of liver inflammation and fibrosis due to constant activation of NPCs.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
22 |
18
|
Murali G, Panneerselvam C. Age-Associated Oxidative Macromolecular Damages in Rat Brain Regions: Role of Glutathione Monoester. J Gerontol A Biol Sci Med Sci 2007; 62:824-30. [PMID: 17702872 DOI: 10.1093/gerona/62.8.824] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] [Imported: 04/16/2025] Open
Abstract
The generation of reactive oxygen species (ROS) and resultant oxidative stress has been implicated in the mechanism of brain dysfunction due to age-related neurodegenerative diseases. We have evaluated the efficacy of glutathione monoester (GME) when administered intraperitoneally (12 mg/kg body weight) for 20 days on glutathione, ROS, superoxide anion production, lipid peroxidation (LPO), protein carbonyls, thiol status, oxidative DNA damage products such as 8-hydroxy deoxy guanosine and DNA protein cross-links in discrete brain regions of young and aged rats. An age associated increase in ROS, superoxide anion production, LPO, protein oxidation, and DNA damage products in cortex, striatum, and hippocampus was observed which was reversed by GME. Contradictorily, a decline in the levels of glutathione, total thiol, and nonprotein and protein thiols was observed which was also reversed upon GME administration. These findings suggest that GME administration inhibits free radical-induced oxidative macromolecular damage in aged rats and thereby protects the brain from ROS.
Collapse
|
|
18 |
21 |
19
|
Ganesan M, Tikhanovich I, Vangimalla SS, Dagur RS, Wang W, Poluektova LI, Sun Y, Mercer DF, Tuma D, Weinman SA, Kharbanda KK, Osna NA. Demethylase JMJD6 as a New Regulator of Interferon Signaling: Effects of HCV and Ethanol Metabolism. Cell Mol Gastroenterol Hepatol 2018; 5:101-112. [PMID: 29693039 PMCID: PMC5904050 DOI: 10.1016/j.jcmgh.2017.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/10/2017] [Indexed: 02/05/2023] [Imported: 04/16/2025]
Abstract
BACKGROUND & AIMS Alcohol-induced progression of hepatitis C virus (HCV) infection is related to dysfunction of innate immunity in hepatocytes. Endogenously produced interferon (IFN)α induces activation of interferon-stimulated genes (ISGs) via triggering of the Janus kinase-signal transducer and activator of transcription 1 (STAT1) pathway. This activation requires protein methyltransferase 1-regulated arginine methylation of STAT1. Here, we aimed to study whether STAT1 methylation also depended on the levels of demethylase jumonji domain-containing 6 protein (JMJD6) and whether ethanol and HCV affect JMJD6 expression in hepatocytes. METHODS Huh7.5-CYP (RLW) cells and hepatocytes were exposed to acetaldehyde-generating system (AGS) and 50 mmol/L ethanol, respectively. JMJD6 messenger RNA and protein expression were measured by real-time polymerase chain reaction and Western blot. IFNα-activated cells either overexpressing JMJD6 or with knocked-down JMJD6 expression were tested for STAT1 methylation, ISG activation, and HCV RNA. In vivo studies have been performed on C57Bl/6 mice (expressing HCV structural proteins or not) or chimeric mice with humanized livers fed control or ethanol diets. RESULTS AGS exposure to cells up-regulated JMJD6 expression in RLW cells. These results were corroborated by ethanol treatment of primary hepatocytes. The promethylating agent betaine reversed the effects of AGS/ethanol. Similar results were obtained in vivo, when mice were fed control/ethanol with and without betaine supplementation. Overexpression of JMJD6 suppressed STAT1 methylation, IFNα-induced ISG activation, and increased HCV-RNA levels. In contrast, JMJD6 silencing enhanced STAT1 methylation, ISG stimulation by IFNα, and attenuated HCV-RNA expression in Huh7.5 cells. CONCLUSIONS We conclude that arginine methylation of STAT1 is suppressed by JMJD6. Both HCV and acetaldehyde increase JMJD6 levels, thereby impairing STAT1 methylation and innate immunity protection in hepatocytes exposed to the virus and/or alcohol.
Collapse
Key Words
- 4-MP, 4-methylpirazole
- ADH, alcohol dehydrogenase
- AGS, acetaldehyde-generating system
- AMI-1, protein arginine N-methyltransferase inhibitor
- Ach, acetaldehyde
- Alcohol
- BHMT, betaine-homocysteine-S-methyltransferase
- CYP2E1, cytochrome P450 2E1
- HCV
- HCV, hepatitis C virus
- IFN, interferon
- ISG, interferon-stimulated gene
- JAK-STAT, Janus kinase–STAT, signal transducer and activator of transcription
- JMJD6
- JMJD6, jumonji domain-containing 6 protein
- OA, okadaic acid
- OAS-1, 2’-5’-oligoadenylate synthetase-1
- OASL, 2’-5’-oligoadenylate synthetase-like protein
- PCR, polymerase chain reaction
- PP2A, protein phosphatase 2A
- PRMT1, protein methyl transferase 1
- RT, reverse-transcription
- SAM, S-adenosylmethionine
- STAT1
- TK-NOG, thymidine kinase transgene-NOD/Shi-scid/IL-2Rγnull mice
- cDNA, complementary DNA
- mRNA, messenger RNA
- siRNA, short interfering RNA
Collapse
|
research-article |
7 |
20 |
20
|
Saraswathi V, Ramnanan CJ, Wilks AW, Desouza CV, Eller AA, Murali G, Ramalingam R, Milne GL, Coate KC, Edgerton DS. Impact of hematopoietic cyclooxygenase-1 deficiency on obesity-linked adipose tissue inflammation and metabolic disorders in mice. Metabolism 2013; 62:1673-85. [PMID: 23987235 PMCID: PMC4845736 DOI: 10.1016/j.metabol.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/13/2013] [Accepted: 07/16/2013] [Indexed: 01/21/2023] [Imported: 04/16/2025]
Abstract
OBJECTIVE Adipose tissue (AT)-specific inflammation is considered to mediate the pathological consequences of obesity and macrophages are known to activate inflammatory pathways in obese AT. Because cyclooxygenases play a central role in regulating the inflammatory processes, we sought to determine the role of hematopoietic cyclooxygenase-1 (COX-1) in modulating AT inflammation in obesity. MATERIALS/METHODS Bone marrow transplantation was performed to delete COX-1 in hematopoietic cells. Briefly, female wild type (wt) mice were lethally irradiated and injected with bone marrow (BM) cells collected from wild type (COX-1+/+) or COX-1 knock-out (COX-1-/-) donor mice. The mice were fed a high fat diet for 16 weeks. RESULTS The mice that received COX-1-/- bone marrow (BM-COX-1-/-) exhibited a significant increase in fasting glucose, total cholesterol and triglycerides in the circulation compared to control (BM-COX-1+/+) mice. Markers of AT-inflammation were increased and were associated with increased leptin and decreased adiponectin in plasma. Hepatic inflammation was reduced with a concomitant reduction in TXB2 levels. The hepatic mRNA expression of genes involved in lipogenesis and lipid transport was increased while expression of genes involved in regulating hepatic glucose output was reduced in BM-COX-1-/- mice. Finally, renal inflammation and markers of renal glucose release were increased in BM-COX-1-/- mice. CONCLUSION Hematopoietic COX-1 deletion results in impairments in metabolic homeostasis which may be partly due to increased AT inflammation and dysregulated adipokine profile. An increase in renal glucose release and hepatic lipogenesis/lipid transport may also play a role, at least in part, in mediating hyperglycemia and dyslipidemia, respectively.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
20 |
21
|
Age‐associated alterations of lipofuscin, membrane‐bound ATPases and intracellular calcium in cortex, striatum and hippocampus of rat brain: protective role of glutathione monoester. Int J Dev Neurosci 2007; 26:211-5. [PMID: 18242929 DOI: 10.1016/j.ijdevneu.2007.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 12/14/2007] [Indexed: 11/22/2022] [Imported: 04/16/2025] Open
|
|
18 |
20 |
22
|
Ganesan M, Krutik VM, Makarov E, Mathews S, Kharbanda KK, Poluektova LY, Casey CA, Osna NA. Acetaldehyde suppresses the display of HBV-MHC class I complexes on HBV-expressing hepatocytes. Am J Physiol Gastrointest Liver Physiol 2019; 317:G127-G140. [PMID: 31141391 PMCID: PMC6734374 DOI: 10.1152/ajpgi.00064.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] [Imported: 08/29/2023]
Abstract
Hepatitis B virus (HBV) infection and alcoholism are major public health problems worldwide, contributing to the development of end-stage liver disease. Alcohol intake affects HBV infection pathogenesis and treatment outcomes. HBV-specific cytotoxic T lymphocytes (CTLs) play an important role in HBV clearance. Many previous studies have focused on alcohol-induced impairments of the immune response. However, it is not clear whether alcohol alters the presentation of HBV peptide-major histocompatibility complex (MHC) class I complexes on infected hepatocytes resulting in escape of its recognition by CTLs. Hence, the focus of this study was to investigate the mechanisms by which ethanol metabolism affects the presentation of CTL epitope on HBV-infected hepatocytes. As demonstrated here, although continuous cell exposure to acetaldehyde-generating system (AGS) increased HBV load in HepG2.2.15 cells, it decreased the expression of HBV core peptide 18-27-human leukocyte antigen-A2complex (CTL epitope) on the cell surface. Moreover, we observed AGS-induced suppression of chymotrypsin- and trypsin-like proteasome activities necessary for peptide processing by proteasome as well as a decline in IFNγ-stimulated immunoproteasome (IPR) function and expression of PA28 activator and immunoproteasome subunits LMP7 and LMP2. Furthermore, IFNγ-induced activation of peptide-loading complex (PLC) components, such as transporter associated with antigen processing (TAP1) and tapasin, were suppressed by AGS. The attenuation of IPR and PLC activation was attributed to AGS-triggered impairment of IFNγ signaling in HepG2.2.15 cells. Collectively, all these downstream events reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, which may suppress CTL activation and the recognition of CTL epitopes on HBV-expressing hepatocytes by immune cells, thereby leading to persistence of liver inflammation.NEW & NOTEWORTHY Our study shows that in HBV-expressing HepG2.2.15 cells, acetaldehyde alters HBV peptide processing by suppressing chymotrypsin- and trypsin-like proteasome activities and decreases IFNγ-stimulated immunoproteasome function and expression of PA28 activator and immunoproteasome subunits. It also suppresses IFNγ-induced activation of peptide-loading complex (PLC) components due to impairment of IFNγ signaling via the JAK-STAT1 pathway. These acetaldehyde-induced dysfunctions reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, thereby leading to persistence of HBV infection.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
19 |
23
|
Osna NA, Carter WG, Ganesan M, Kirpich IA, McClain CJ, Petersen DR, Shearn CT, Tomasi ML, Kharbanda KK. Aberrant post-translational protein modifications in the pathogenesis of alcohol-induced liver injury. World J Gastroenterol 2016; 22:6192-6200. [PMID: 27468209 PMCID: PMC4945978 DOI: 10.3748/wjg.v22.i27.6192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/28/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] [Imported: 04/16/2025] Open
Abstract
It is likely that the majority of proteins will undergo post-translational modification, be it enzymatic or non-enzymatic. These modified protein(s) regulate activity, localization and interaction with other cellular molecules thereby maintaining cellular hemostasis. Alcohol exposure significantly alters several of these post-translational modifications leading to impairments of many essential physiological processes. Here, we present new insights into novel modifications following ethanol exposure and their role in the initiation and progression of liver injury. This critical review condenses the proceedings of a symposium at the European Society for the Biomedical Research on Alcoholism Meeting held September 12-15, 2015, in Valencia, Spain.
Collapse
|
Review |
9 |
18 |
24
|
Ganesan M, Dagur RS, Makarov E, Poluektova LI, Kidambi S, Osna NA. Matrix stiffness regulate apoptotic cell death in HIV-HCV co-infected hepatocytes: Importance for liver fibrosis progression. Biochem Biophys Res Commun 2018; 500:717-722. [PMID: 29679566 PMCID: PMC6863049 DOI: 10.1016/j.bbrc.2018.04.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] [Imported: 04/16/2025]
Abstract
HIV-HCV co-infection causes rapid progression of liver fibrosis. These outcomes to liver cirrhosis can be improved, but not stopped by specific antiviral therapies. Due to high significance of HIV-HCV interactions for morbidity and mortality in co-infected patients, our attention was attracted to the multi-component pathogenesis of fibrosis progression as the transition to end-stage liver disease development. In this study, we hypothesize that increased matrix stiffness enhances apoptosis in HCV-HIV-co-infected hepatocytes and that capturing of apoptotic bodies (AB) derived from these infected hepatocytes by hepatic stellate cells (HSC) drives the fibrosis progression. As the source of viruses, JFH1 (HCV genotype 2a) and HIV-1ADA (either purified or containing in infected macrophage supernatants) were chosen. Using Huh7.5-CYP (RLW) cells and primary human hepatocytes mono-infected with HCV and HIV or co-infected, we have shown that both HCV and HIV RNA levels were increased in co-infected cells, which was accompanied by hepatocyte apoptosis. This apoptosis was attenuated by azidothymidine treatment. The levels of both infections and apoptosis were more prominent in primary hepatocytes cultured on substrates mimicking fibrotic stiffness (24 kPa-stiff) compared to substrates mimicking healthy liver (2.4 kPa-soft). The engulfment of AB from pathogen-exposed hepatocytes activated pro-fibrotic mRNAs in HSC. Overall, the increased matrix stiffness is not only a consequence of liver inflammation/fibrosis, but the condition that further accelerates liver fibrosis development. This is attributed to the switching of HSC to pro-fibrotic phenotype by capturing of excessive amounts of apoptotic HCV- and HIV-infected hepatocytes.
Collapse
|
research-article |
7 |
17 |
25
|
Murali G, Milne GL, Webb CD, Stewart AB, McMillan RP, Lyle BC, Hulver MW, Saraswathi V. Fish oil and indomethacin in combination potently reduce dyslipidemia and hepatic steatosis in LDLR(-/-) mice. J Lipid Res 2012; 53:2186-2197. [PMID: 22847176 DOI: 10.1194/jlr.m029843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] [Imported: 04/16/2025] Open
Abstract
Fish oil (FO) is a potent anti-inflammatory and lipid-lowering agent. Because inflammation can modulate lipid metabolism and vice versa, we hypothesized that combining FO with cyclooxygenase inhibitors (COXIBs), well-known anti-inflammatory drugs, can enhance the anti-inflammatory and lipid-lowering effect of FO. LDLR(-/-) mice were fed a high-fat diet supplemented with 6% olive oil or FO for 12 wk in the presence or absence of indomethacin (Indo, 6 mg/l drinking water). FO reduced plasma total cholesterol by 30% but, in combination with Indo, exerted a greater decrease (44%). The reduction of liver cholesterol ester (CE) and triglycerides (TG) by FO (63% and 41%, respectively) was enhanced by Indo (80% in CE and 64% in TG). FO + Indo greatly increased the expression of genes modulating lipid metabolism and reduced the expression of inflammatory genes compared with control. The mRNA and/or protein expression of pregnane X receptor (PXR) and cytochrome P450 isoforms that alter inflammation and/or lipid metabolism are increased to a greater extent in mice that received FO + Indo. Moroever, the nuclear level of PXR is significantly increased in FO + Indo group. Combining FO with COXIBs may exert their beneficial effects on inflammation and lipid metabolism via PXR and cytochrome P450.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
17 |