1
|
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203:631-7. [PMID: 15141377 PMCID: PMC7167720 DOI: 10.1002/path.1570] [Citation(s) in RCA: 4105] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) has been identified as the functional receptor for SARS-CoV. Although ACE2 mRNA is known to be present in virtually all organs, its protein expression is largely unknown. Since identifying the possible route of infection has major implications for understanding the pathogenesis and future treatment strategies for SARS, the present study investigated the localization of ACE2 protein in various human organs (oral and nasal mucosa, nasopharynx, lung, stomach, small intestine, colon, skin, lymph nodes, thymus, bone marrow, spleen, liver, kidney, and brain). The most remarkable finding was the surface expression of ACE2 protein on lung alveolar epithelial cells and enterocytes of the small intestine. Furthermore, ACE2 was present in arterial and venous endothelial cells and arterial smooth muscle cells in all organs studied. In conclusion, ACE2 is abundantly present in humans in the epithelia of the lung and small intestine, which might provide possible routes of entry for the SARS-CoV. This epithelial expression, together with the presence of ACE2 in vascular endothelium, also provides a first step in understanding the pathogenesis of the main SARS disease manifestations.
Collapse
|
Journal Article |
21 |
4105 |
2
|
Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003; 348:1953-66. [PMID: 12690092 DOI: 10.1056/nejmoa030781] [Citation(s) in RCA: 3037] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. METHODS We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. RESULTS None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. CONCLUSIONS A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus.
Collapse
|
|
22 |
3037 |
3
|
Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong ASY. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202:415-24. [PMID: 16043521 PMCID: PMC2213088 DOI: 10.1084/jem.20050828] [Citation(s) in RCA: 1093] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 06/16/2005] [Indexed: 11/04/2022] Open
Abstract
After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features.
Collapse
|
research-article |
20 |
1093 |
4
|
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53:25-32. [PMID: 32446778 PMCID: PMC7211650 DOI: 10.1016/j.cytogfr.2020.05.003] [Citation(s) in RCA: 923] [Impact Index Per Article: 184.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
In 2019-2020 a new coronavirus named SARS-CoV-2 was identified as the causative agent of a several acute respiratory infection named COVID-19, which is causing a worldwide pandemic. There are still many unresolved questions regarding the pathogenesis of this disease and especially the reasons underlying the extremely different clinical course, ranging from asymptomatic forms to severe manifestations, including the Acute Respiratory Distress Syndrome (ARDS). SARS-CoV-2 showed phylogenetic similarities to both SARS-CoV and MERS-CoV viruses, and some of the clinical features are shared between COVID-19 and previously identified beta-coronavirus infections. Available evidence indicate that the so called "cytokine storm" an uncontrolled over-production of soluble markers of inflammation which, in turn, sustain an aberrant systemic inflammatory response, is a major responsible for the occurrence of ARDS. Chemokines are low molecular weight proteins with powerful chemoattractant activity which play a role in the immune cell recruitment during inflammation. This review will be aimed at providing an overview of the current knowledge on the involvement of the chemokine/chemokine-receptor system in the cytokine storm related to SARS-CoV-2 infection. Basic and clinical evidences obtained from previous SARS and MERS epidemics and available data from COVID-19 will be taken into account.
Collapse
|
Review |
5 |
923 |
5
|
Nicholls JM, Poon LLM, Lee KC, Ng WF, Lai ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, Yan KW, Chan KH, Tsang NC, Guan Y, Yuen KY, Malik Peiris JS. Lung pathology of fatal severe acute respiratory syndrome. Lancet 2003; 361:1773-8. [PMID: 12781536 PMCID: PMC7112492 DOI: 10.1016/s0140-6736(03)13413-7] [Citation(s) in RCA: 861] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome (SARS) is a novel infectious disease with global impact. A virus from the family Coronaviridae has been identified as the cause, but the pathogenesis is still unclear. METHODS Post-mortem tissue samples from six patients who died from SARS in February and March, 2003, and an open lung biopsy from one of these patients were studied by histology and virology. Only one full autopsy was done. Evidence of infection with the SARS-associated coronavirus (SARS-CoV) and human metapneumovirus was sought by reverse-transcriptase PCR and serology. Pathological samples were examined by light and electron microscopy and immunohistochemistry. FINDINGS All six patients had serological evidence of recent infection with SARS-CoV. Diffuse alveolar damage was common but not universal. Morphological changes identified were bronchial epithelial denudation, loss of cilia, and squamous metaplasia. Secondary bacterial pneumonia was present in one case. A giant-cell infiltrate was seen in four patients, with a pronounced increase in macrophages in the alveoli and the interstitium of the lung. Haemophagocytosis was present in two patients. The alveolar pneumocytes also showed cytomegaly with granular amphophilic cytoplasm. The patient for whom full autopsy was done had atrophy of the white pulp of the spleen. Electron microscopy revealed viral particles in the cytoplasm of epithelial cells corresponding to coronavirus. INTERPRETATION SARS is associated with epithelial-cell proliferation and an increase in macrophages in the lung. The presence of haemophagocytosis supports the contention that cytokine dysregulation may account, at least partly, for the severity of the clinical disease. The case definition of SARS should acknowledge the range of lung pathology associated with this disease.
Collapse
|
Case Reports |
22 |
861 |
6
|
McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, Netland J, Jia HP, Halabi C, Sigmund CD, Meyerholz DK, Kirby P, Look DC, Perlman S. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2006; 81:813-21. [PMID: 17079315 PMCID: PMC1797474 DOI: 10.1128/jvi.02012-06] [Citation(s) in RCA: 832] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible. Here we show that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus. Infection begins in airway epithelia, with subsequent alveolar involvement and extrapulmonary virus spread to the brain. Infection results in macrophage and lymphocyte infiltration in the lungs and upregulation of proinflammatory cytokines and chemokines in both the lung and the brain. This model of lethal infection with SARS-CoV should be useful for studies of pathogenesis and for the development of antiviral therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
832 |
7
|
Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010; 47:193-9. [PMID: 19333547 PMCID: PMC7088164 DOI: 10.1007/s00592-009-0109-4] [Citation(s) in RCA: 769] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Accepted: 02/24/2009] [Indexed: 02/06/2023]
Abstract
Multiple organ damage in severe acute respiratory syndrome (SARS) patients is common; however, the pathogenesis remains controversial. This study was to determine whether the damage was correlated with expression of the SARS coronavirus receptor, angiotensin converting enzyme 2 (ACE2), in different organs, especially in the endocrine tissues of the pancreas, and to elucidate the pathogenesis of glucose intolerance in SARS patients. The effect of clinical variables on survival was estimated in 135 SARS patients who died, 385 hospitalized SARS patients who survived, and 19 patients with non-SARS pneumonia. A total of 39 SARS patients who had no previous diabetes and received no steroid treatment were compared to 39 matched healthy siblings during a 3-year follow-up period. The pattern of SARS coronavirus receptor-ACE2 proteins in different human organs was also studied. Significant elevations in oxygen saturation, serum creatinine, lactate dehydrogenase, creatine kinase MB isoenzyme, and fasting plasma glucose (FPG), but not in alanine transaminase were predictors for death. Abundant ACE2 immunostaining was found in lung, kidney, heart, and islets of pancreas, but not in hepatocytes. Twenty of the 39 followed-up patients were diabetic during hospitalization. After 3 years, only two of these patients had diabetes. Compared with their non-SARS siblings, these patients exhibited no significant differences in FPG, postprandial glucose (PPG), and insulin levels. The organ involvements of SARS correlated with organ expression of ACE2. The localization of ACE2 expression in the endocrine part of the pancreas suggests that SARS coronavirus enters islets using ACE2 as its receptor and damages islets causing acute diabetes.
Collapse
|
research-article |
15 |
769 |
8
|
Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, de Meulder D, van Amerongen G, van den Brand J, Okba NMA, Schipper D, van Run P, Leijten L, Sikkema R, Verschoor E, Verstrepen B, Bogers W, Langermans J, Drosten C, Fentener van Vlissingen M, Fouchier R, de Swart R, Koopmans M, Haagmans BL. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 2020; 368:1012-1015. [PMID: 32303590 PMCID: PMC7164679 DOI: 10.1126/science.abb7314] [Citation(s) in RCA: 694] [Impact Index Per Article: 138.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/15/2020] [Indexed: 11/09/2022]
Abstract
The current pandemic coronavirus, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), was recently identified in patients with an acute respiratory syndrome, coronavirus disease 2019 (COVID-19). To compare its pathogenesis with that of previously emerging coronaviruses, we inoculated cynomolgus macaques with SARS-CoV-2 or Middle East respiratory syndrome (MERS)-CoV and compared the pathology and virology with historical reports of SARS-CoV infections. In SARS-CoV-2-infected macaques, virus was excreted from nose and throat in the absence of clinical signs and detected in type I and II pneumocytes in foci of diffuse alveolar damage and in ciliated epithelial cells of nasal, bronchial, and bronchiolar mucosae. In SARS-CoV infection, lung lesions were typically more severe, whereas they were milder in MERS-CoV infection, where virus was detected mainly in type II pneumocytes. These data show that SARS-CoV-2 causes COVID-19-like disease in macaques and provides a new model to test preventive and therapeutic strategies.
Collapse
|
Comparative Study |
5 |
694 |
9
|
Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2006; 79:14614-21. [PMID: 16282461 PMCID: PMC1287568 DOI: 10.1128/jvi.79.23.14614-14621.2005] [Citation(s) in RCA: 638] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of patients with severe acute respiratory syndrome (SARS) demonstrate that the respiratory tract is a major site of SARS-coronavirus (CoV) infection and disease morbidity. We studied host-pathogen interactions using native lung tissue and a model of well-differentiated cultures of primary human airway epithelia. Angiotensin converting enzyme 2 (ACE2), the receptor for both the SARS-CoV and the related human respiratory coronavirus NL63, was expressed in human airway epithelia as well as lung parenchyma. As assessed by immunofluorescence staining and membrane biotinylation, ACE2 protein was more abundantly expressed on the apical than the basolateral surface of polarized airway epithelia. Interestingly, ACE2 expression positively correlated with the differentiation state of epithelia. Undifferentiated cells expressing little ACE2 were poorly infected with SARS-CoV, while well-differentiated cells expressing more ACE2 were readily infected. Expression of ACE2 in poorly differentiated epithelia facilitated SARS spike (S) protein-pseudotyped virus entry. Consistent with the expression pattern of ACE2, the entry of SARS-CoV or a lentivirus pseudotyped with SARS-CoV S protein in differentiated epithelia was more efficient when applied to the apical surface. Furthermore, SARS-CoV replicated in polarized epithelia and preferentially exited via the apical surface. The results indicate that infection of human airway epithelia by SARS coronavirus correlates with the state of cell differentiation and ACE2 expression and localization. These findings have implications for understanding disease pathogenesis associated with SARS-CoV and NL63 infections.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
638 |
10
|
Fouchier RAM, Kuiken T, Schutten M, van Amerongen G, van Doornum GJJ, van den Hoogen BG, Peiris M, Lim W, Stöhr K, Osterhaus ADME. Aetiology: Koch's postulates fulfilled for SARS virus. Nature 2003; 423:240. [PMID: 12748632 PMCID: PMC7095368 DOI: 10.1038/423240a] [Citation(s) in RCA: 614] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome (SARS) has recently emerged as a new human disease, resulting globally in 435 deaths from 6,234 probable cases (as of 3 May 2003). Here we provide proof from experimental infection of cynomolgus macaques (Macaca fascicularis ) that the newly discovered SARS-associated coronavirus (SCV) is the aetiological agent of this disease. Our understanding of the aetiology of SARS will expedite the development of diagnostic tests, antiviral therapies and vaccines, and may allow a more concise case definition for this emerging disease.
Collapse
|
research-article |
22 |
614 |
11
|
Schwartz DA, Graham AL. Potential Maternal and Infant Outcomes from (Wuhan) Coronavirus 2019-nCoV Infecting Pregnant Women: Lessons from SARS, MERS, and Other Human Coronavirus Infections. Viruses 2020; 12:v12020194. [PMID: 32050635 PMCID: PMC7077337 DOI: 10.3390/v12020194] [Citation(s) in RCA: 590] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022] Open
Abstract
In early December 2019 a cluster of cases of pneumonia of unknown cause was identified in Wuhan, a city of 11 million persons in the People’s Republic of China. Further investigation revealed these cases to result from infection with a newly identified coronavirus, initially termed 2019-nCoV and subsequently SARS-CoV-2. The infection moved rapidly through China, spread to Thailand and Japan, extended into adjacent countries through infected persons travelling by air, eventually reaching multiple countries and continents. Similar to such other coronaviruses as those causing the Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS), the new coronavirus was reported to spread via natural aerosols from human-to-human. In the early stages of this epidemic the case fatality rate is estimated to be approximately 2%, with the majority of deaths occurring in special populations. Unfortunately, there is limited experience with coronavirus infections during pregnancy, and it now appears certain that pregnant women have become infected during the present 2019-nCoV epidemic. In order to assess the potential of the Wuhan 2019-nCoV to cause maternal, fetal and neonatal morbidity and other poor obstetrical outcomes, this communication reviews the published data addressing the epidemiological and clinical effects of SARS, MERS, and other coronavirus infections on pregnant women and their infants. Recommendations are also made for the consideration of pregnant women in the design, clinical trials, and implementation of future 2019-nCoV vaccines.
Collapse
|
Journal Article |
5 |
590 |
12
|
Ding Y, Wang H, Shen H, Li Z, Geng J, Han H, Cai J, Li X, Kang W, Weng D, Lu Y, Wu D, He L, Yao K. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 2003; 200:282-9. [PMID: 12845623 PMCID: PMC7168017 DOI: 10.1002/path.1440] [Citation(s) in RCA: 573] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 05/19/2003] [Accepted: 05/19/2003] [Indexed: 12/13/2022]
Abstract
In order to investigate the clinical pathology of severe acute respiratory syndrome (SARS), the autopsies of three patients who died from SARS in Nan Fang Hospital Guangdong, China were studied retrospectively. Routine haematoxylin and eosin (H&E) staining was used to study all of the tissues from the three cases. The lung tissue specimens were studied further with Macchiavello staining, viral inclusion body staining, reticulin staining, PAS staining, immunohistochemistry, ultrathin sectioning and staining, light microscopy, and transmission electron microscopy. The first symptom was hyperpyrexia in all three cases, followed by progressive dyspnoea and lung field shadowing. The pulmonary lesions included bilateral extensive consolidation, localized haemorrhage and necrosis, desquamative pulmonary alveolitis and bronchitis, proliferation and desquamation of alveolar epithelial cells, exudation of protein and monocytes, lymphocytes and plasma cells in alveoli, hyaline membrane formation, and viral inclusion bodies in alveolar epithelial cells. There was also massive necrosis of splenic lymphoid tissue and localized necrosis in lymph nodes. Systemic vasculitis included oedema, localized fibrinoid necrosis, and infiltration of monocytes, lymphocytes, and plasma cells into vessel walls in the heart, lung, liver, kidney, adrenal gland, and the stroma of striated muscles. Thrombosis was present in small veins. Systemic toxic changes included degeneration and necrosis of the parenchyma cells in the lung, liver, kidney, heart, and adrenal gland. Electron microscopy demonstrated clusters of viral particles, consistent with coronavirus, in lung tissue. SARS is a systemic disease that injures many organs. The lungs, immune organs, and systemic small vessels are the main targets of virus attack, so that extensive consolidation of the lung, diffuse alveolar damage with hyaline membrane formation, respiratory distress, and decreased immune function are the main causes of death.
Collapse
|
brief-report |
22 |
573 |
13
|
te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 2010; 6:e1001176. [PMID: 21079686 PMCID: PMC2973827 DOI: 10.1371/journal.ppat.1001176] [Citation(s) in RCA: 572] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 10/01/2010] [Indexed: 02/06/2023] Open
Abstract
Increasing the intracellular Zn2+ concentration with zinc-ionophores like pyrithione (PT) can efficiently impair the replication of a variety of RNA viruses, including poliovirus and influenza virus. For some viruses this effect has been attributed to interference with viral polyprotein processing. In this study we demonstrate that the combination of Zn2+ and PT at low concentrations (2 µM Zn2+ and 2 µM PT) inhibits the replication of SARS-coronavirus (SARS-CoV) and equine arteritis virus (EAV) in cell culture. The RNA synthesis of these two distantly related nidoviruses is catalyzed by an RNA-dependent RNA polymerase (RdRp), which is the core enzyme of their multiprotein replication and transcription complex (RTC). Using an activity assay for RTCs isolated from cells infected with SARS-CoV or EAV—thus eliminating the need for PT to transport Zn2+ across the plasma membrane—we show that Zn2+ efficiently inhibits the RNA-synthesizing activity of the RTCs of both viruses. Enzymatic studies using recombinant RdRps (SARS-CoV nsp12 and EAV nsp9) purified from E. coli subsequently revealed that Zn2+ directly inhibited the in vitro activity of both nidovirus polymerases. More specifically, Zn2+ was found to block the initiation step of EAV RNA synthesis, whereas in the case of the SARS-CoV RdRp elongation was inhibited and template binding reduced. By chelating Zn2+ with MgEDTA, the inhibitory effect of the divalent cation could be reversed, which provides a novel experimental tool for in vitro studies of the molecular details of nidovirus replication and transcription. Positive-stranded RNA (+RNA) viruses include many important pathogens. They have evolved a variety of replication strategies, but are unified in the fact that an RNA-dependent RNA polymerase (RdRp) functions as the core enzyme of their RNA-synthesizing machinery. The RdRp is commonly embedded in a membrane-associated replication complex that is assembled from viral RNA, and viral and host proteins. Given their crucial function in the viral replicative cycle, RdRps are key targets for antiviral research. Increased intracellular Zn2+ concentrations are known to efficiently impair replication of a number of RNA viruses, e.g. by interfering with correct proteolytic processing of viral polyproteins. Here, we not only show that corona- and arterivirus replication can be inhibited by increased Zn2+ levels, but also use both isolated replication complexes and purified recombinant RdRps to demonstrate that this effect may be based on direct inhibition of nidovirus RdRps. The combination of protocols described here will be valuable for future studies into the function of nidoviral enzyme complexes.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
572 |
14
|
Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun 2020; 111:102452. [PMID: 32291137 PMCID: PMC7151347 DOI: 10.1016/j.jaut.2020.102452] [Citation(s) in RCA: 522] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
The emergent outbreak of coronavirus disease 2019 (COVID-19) has caused a global pandemic. Acute respiratory distress syndrome (ARDS) and multiorgan dysfunction are among the leading causes of death in critically ill patients with COVID-19. The elevated inflammatory cytokines suggest that a cytokine storm, also known as cytokine release syndrome (CRS), may play a major role in the pathology of COVID-19. However, the efficacy of corticosteroids, commonly utilized antiinflammatory agents, to treat COVID-19-induced CRS is controversial. There is an urgent need for novel therapies to treat COVID-19-induced CRS. Here, we discuss the pathogenesis of severe acute respiratory syndrome (SARS)-induced CRS, compare the CRS in COVID-19 with that in SARS and Middle East respiratory syndrome (MERS), and summarize the existing therapies for CRS. We propose to utilize interleukin-6 (IL-6) blockade to manage COVID-19-induced CRS and discuss several factors that should be taken into consideration for its clinical application.
Collapse
|
Review |
5 |
522 |
15
|
Martina BEE, Haagmans BL, Kuiken T, Fouchier RAM, Rimmelzwaan GF, van Amerongen G, Peiris JSM, Lim W, Osterhaus ADME. Virology: SARS virus infection of cats and ferrets. Nature 2003; 425:915. [PMID: 14586458 PMCID: PMC7094990 DOI: 10.1038/425915a] [Citation(s) in RCA: 457] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is now a choice of animal models for testing therapies against the human virus. The reservoir of the coronavirus isolated from patients with severe acute respiratory syndrome (SARS)1,2 is still unknown, but is suspected to have been a wild animal species. Here we show that ferrets (Mustela furo) and domestic cats (Felis domesticus) are susceptible to infection by SARS coronavirus (SCV) and that they can efficiently transmit the virus to previously uninfected animals that are housed with them. The observation that these two distantly related carnivores can so easily be infected with the virus indicates that the reservoir for this pathogen may involve a range of animal species.
Collapse
|
Journal Article |
22 |
457 |
16
|
Abstract
Coronaviruses are animal and human pathogens that can cause lethal zoonotic infections like SARS and MERS. They have polycistronic plus-stranded RNA genomes and belong to the order Nidovirales, a diverse group of viruses for which common ancestry was inferred from the common principles underlying their genome organization and expression, and from the conservation of an array of core replicase domains, including key RNA-synthesizing enzymes. Coronavirus genomes (~ 26–32 kilobases) are the largest RNA genomes known to date and their expansion was likely enabled by acquiring enzyme functions that counter the commonly high error frequency of viral RNA polymerases. The primary functions that direct coronavirus RNA synthesis and processing reside in nonstructural protein (nsp) 7 to nsp16, which are cleavage products of two large replicase polyproteins translated from the coronavirus genome. Significant progress has now been made regarding their structural and functional characterization, stimulated by technical advances like improved methods for bioinformatics and structural biology, in vitro enzyme characterization, and site-directed mutagenesis of coronavirus genomes. Coronavirus replicase functions include more or less universal activities of plus-stranded RNA viruses, like an RNA polymerase (nsp12) and helicase (nsp13), but also a number of rare or even unique domains involved in mRNA capping (nsp14, nsp16) and fidelity control (nsp14). Several smaller subunits (nsp7–nsp10) act as crucial cofactors of these enzymes and contribute to the emerging “nsp interactome.” Understanding the structure, function, and interactions of the RNA-synthesizing machinery of coronaviruses will be key to rationalizing their evolutionary success and the development of improved control strategies.
Collapse
|
Review |
9 |
403 |
17
|
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1136-47. [PMID: 17392154 PMCID: PMC1829448 DOI: 10.2353/ajpath.2007.061088] [Citation(s) in RCA: 397] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Severe acute respiratory syndrome (SARS) is an emerging infectious viral disease characterized by severe clinical manifestations of the lower respiratory tract. The pathogenesis of SARS is highly complex, with multiple factors leading to severe injury in the lungs and dissemination of the virus to several other organs. The SARS coronavirus targets the epithelial cells of the respiratory tract, resulting in diffuse alveolar damage. Several organs/cell types may be infected in the course of the illness, including mucosal cells of the intestines, tubular epithelial cells of the kidneys, neurons of the brain, and several types of immune cells, and certain organs may suffer from indirect injury. Extensive studies have provided a basic understanding of the pathogenesis of this disease. In this review we describe the most significant pathological features of SARS, explore the etiological factors causing these pathological changes, and discuss the major pathogenetic mechanisms. The latter include dysregulation of cytokines/chemokines, deficiencies in the innate immune response, direct infection of immune cells, direct viral cytopathic effects, down-regulation of lung protective angiotensin converting enzyme 2, autoimmunity, and genetic factors. It seems that both abnormal immune responses and injury to immune cells may be key factors in the pathogenesis of this new disease.
Collapse
|
Review |
18 |
397 |
18
|
Leung WK, To KF, Chan PKS, Chan HLY, Wu AKL, Lee N, Yuen KY, Sung JJY. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 2003; 125. [PMID: 14517783 PMCID: PMC7126982 DOI: 10.1016/j.gastro.2003.08.001] [Citation(s) in RCA: 386] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Severe acute respiratory syndrome (SARS) is a recently emerged infection from a novel coronavirus (CoV). Apart from fever and respiratory complications, gastrointestinal symptoms are frequently observed in patients with SARS but the significance remains undetermined. Herein, we describe the clinical, pathologic, and virologic features of the intestinal involvement of this new viral infection. METHODS A retrospective analysis of the gastrointestinal symptoms and other clinical parameters of the first 138 patients with confirmed SARS admitted for a major outbreak in Hong Kong in March 2003 was performed. Intestinal specimens were obtained by colonoscopy or postmortem examination to detect the presence of coronavirus by electron microscopy, virus culture, and reverse-transcription polymerase chain reaction. RESULTS Among these 138 patients with SARS, 28 (20.3%) presented with watery diarrhea and up to 38.4% of patients had symptoms of diarrhea during the course of illness. Diarrhea was more frequently observed during the first week of illness. The mean number of days with diarrhea was 3.7 +/- 2.7, and most diarrhea was self-limiting. Intestinal biopsy specimens obtained by colonoscopy or autopsy showed minimal architectural disruption but the presence of active viral replication within both the small and large intestine. Coronavirus was also isolated by culture from these specimens, and SARS-CoV RNA can be detected in the stool of patients for more than 10 weeks after symptom onset. CONCLUSIONS Diarrhea is a common presenting symptom of SARS. The intestinal tropism of the SARS-CoV has major implications on clinical presentation and viral transmission.
Collapse
|
research-article |
22 |
386 |
19
|
Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, Li Z, Deng P, Zhang J, Zhong N, Ding Y, Jiang Y. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis 2005; 41:1089-96. [PMID: 16163626 PMCID: PMC7107994 DOI: 10.1086/444461] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 06/14/2005] [Indexed: 01/08/2023] Open
Abstract
Background. Previous studies have shown that common human coronavirus might be neurotropic, although it was first isolated as a pathogen of the respiratory tract. We noticed that a few patients with severe acute respiratory syndrome (SARS) experienced central nervous symptoms during the course of illness. In the present study, we isolated a SARS coronavirus strain from a brain tissue specimen obtained from a patient with SARS with significant central nervous symptoms. Methods. Using transmission electronic microscopy and nested reverse transcription–polymerase chain reaction, the causative pathogen was identified in cultures of a brain tissue specimen obtained from the patient with SARS. Histopathologic examination of the brain tissue was performed using the methods of immunohistochemistry analysis and double immunofluorescence staining. Fifteen cytokines and chemokines were detected in the blood of the patient with SARS by means of a bead-based multiassay system. Results. A fragment specific for SARS human coronavirus was amplified from cultures of the brain suspension, and transmission electronic microscopy revealed the presence of an enveloped virus morphologically compatible with a coronavirus isolated in the cultures. Pathologic examination of the brain tissue revealed necrosis of neuron cells and broad hyperplasia of gliocytes. Immunostaining demonstrated that monokine induced by interferon-Γ (Mig) was expressed in gliocytes with the infiltration of CD68+ monocytes/macrophages and CD3+ T lymphocytes in the brain mesenchyme. Cytokine/chemokine assay revealed that levels of interferon-Γ–inducible protein 10 and Mig in the blood were highly elevated, although the levels of other cytokines and chemokines were close to normal. Conclusions. This study provides direct evidence that SARS human coronavirus is capable of infecting the central nervous system, and that Mig might be involved in the brain immunopathology of SARS.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
376 |
20
|
Liu J, Zheng X, Tong Q, Li W, Wang B, Sutter K, Trilling M, Lu M, Dittmer U, Yang D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol 2020; 92:491-494. [PMID: 32056249 PMCID: PMC7166760 DOI: 10.1002/jmv.25709] [Citation(s) in RCA: 368] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
First reported from Wuhan, The People's Republic of China, on 31 December 2019, the ongoing outbreak of a novel coronavirus (2019-nCoV) causes great global concerns. Based on the advice of the International Health Regulations Emergency Committee and the fact that to date 24 other countries also reported cases, the WHO Director-General declared that the outbreak of 2019-nCoV constitutes a Public Health Emergency of International Concern on 30 January 2020. Together with the other two highly pathogenic coronaviruses, the severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), 2019-nCov and other yet to be identified coronaviruses pose a global threat to public health. In this mini-review, we provide a brief introduction to the pathology and pathogenesis of SARS-CoV and MERS-CoV and extrapolate this knowledge to the newly identified 2019-nCoV.
Collapse
|
Review |
5 |
368 |
21
|
Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, Xu J, Liu Y, Zheng BJ, Woodle MC, Zhong N, Lu PY. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 2005; 11:944-51. [PMID: 16116432 PMCID: PMC7095788 DOI: 10.1038/nm1280] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 07/10/2005] [Indexed: 02/07/2023]
Abstract
Development of therapeutic agents for severe acute respiratory syndrome (SARS) viral infection using short interfering RNA (siRNA) inhibitors exemplifies a powerful new means to combat emerging infectious diseases. Potent siRNA inhibitors of SARS coronavirus (SCV) in vitro were further evaluated for efficacy and safety in a rhesus macaque (Macaca mulatta) SARS model using clinically viable delivery while comparing three dosing regimens. Observations of SARS-like symptoms, measurements of SCV RNA presence and lung histopathology and immunohistochemistry consistently showed siRNA-mediated anti-SARS efficacy by either prophylactic or therapeutic regimens. The siRNAs used provided relief from SCV infection–induced fever, diminished SCV viral levels and reduced acute diffuse alveoli damage. The 10–40 mg/kg accumulated dosages of siRNA did not show any sign of siRNA-induced toxicity. These results suggest that a clinical investigation is warranted and illustrate the prospects for siRNA to enable a massive reduction in development time for new targeted therapeutic agents.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
346 |
22
|
Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, van Crevel R, van de Veerdonk FL, Bonten M. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell 2020; 181:969-977. [PMID: 32437659 PMCID: PMC7196902 DOI: 10.1016/j.cell.2020.04.042] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 infection is mild in the majority of individuals but progresses into severe pneumonia in a small proportion of patients. The increased susceptibility to severe disease in the elderly and individuals with co-morbidities argues for an initial defect in anti-viral host defense mechanisms. Long-term boosting of innate immune responses, also termed “trained immunity,” by certain live vaccines (BCG, oral polio vaccine, measles) induces heterologous protection against infections through epigenetic, transcriptional, and functional reprogramming of innate immune cells. We propose that induction of trained immunity by whole-microorganism vaccines may represent an important tool for reducing susceptibility to and severity of SARS-CoV-2.
Collapse
|
Review |
5 |
322 |
23
|
Franks TJ, Chong PY, Chui P, Galvin JR, Lourens RM, Reid AH, Selbs E, McEvoy CPL, Hayden CDL, Fukuoka J, Taubenberger JK, Travis WD. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum Pathol 2003; 34:743-8. [PMID: 14506633 PMCID: PMC7119137 DOI: 10.1016/s0046-8177(03)00367-8] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome (SARS) is an infectious condition caused by the SARS-associated coronavirus (SARS-CoV), a new member in the family Coronaviridae. To evaluate the lung pathology in this life-threatening respiratory illness, we studied postmortem lung sections from 8 patients who died from SARS during the spring 2003 Singapore outbreak. The predominant pattern of lung injury in all 8 cases was diffuse alveolar damage. The histology varied according to the duration of illness. Cases of 10 or fewer days’ duration demonstrated acute-phase diffuse alveolar damage (DAD), airspace edema, and bronchiolar fibrin. Cases of more than 10 days’ duration exhibited organizing-phase DAD, type II pneumocyte hyperplasia, squamous metaplasia, multinucleated giant cells, and acute bronchopneumonia. In acute-phase DAD, pancytokeratin staining was positive in hyaline membranes along alveolar walls and highlighted the absence of pneumocytes. Multinucleated cells were shown to be both type II pneumocytes and macrophages by pancytokeratin, thyroid transcription factor-1, and CD68 staining. SARS-CoV RNA was identified by reverse transcriptase-polymerase chain reaction in 7 of 8 cases in fresh autopsy tissue and in 8 of 8 cases in formalin-fixed, paraffin-embedded lung tissue, including the 1 negative case in fresh tissue. Understanding the pathology of DAD in SARS patients may provide the basis for therapeutic strategies. Further studies of the pathogenesis of SARS may reveal new insight into the mechanisms of DAD.
Collapse
|
Journal Article |
22 |
311 |
24
|
He L, Ding Y, Zhang Q, Che X, He Y, Shen H, Wang H, Li Z, Zhao L, Geng J, Deng Y, Yang L, Li J, Cai J, Qiu L, Wen K, Xu X, Jiang S. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006; 210:288-97. [PMID: 17031779 PMCID: PMC7167655 DOI: 10.1002/path.2067] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The authors have previously shown that acute lung injury (ALI) produces a wide spectrum of pathological processes in patients who die of severe acute respiratory syndrome (SARS) and that the SARS coronavirus (SARS‐CoV) nucleoprotein is detectable in the lungs, and other organs and tissues, in these patients. In the present study, immunohistochemistry (IHC) and in situ hybridization (ISH) assays were used to analyse the expression of angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV spike (S) protein, and some pro‐inflammatory cytokines (PICs) including MCP‐1, TGF‐β1, TNF‐α, IL‐1β, and IL‐6 in autopsy tissues from four patients who died of SARS. SARS‐CoV S protein and its RNA were only detected in ACE2+ cells in the lungs and other organs, indicating that ACE2‐expressing cells are the primary targets for SARS‐CoV infection in vivo in humans. High levels of PICs were expressed in the SARS‐CoV‐infected ACE2+ cells, but not in the uninfected cells. These results suggest that cells infected by SARS‐CoV produce elevated levels of PICs which may cause immuno‐mediated damage to the lungs and other organs, resulting in ALI and, subsequently, multi‐organ dysfunction. Therefore application of PIC antagonists may reduce the severity and mortality of SARS. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
311 |
25
|
Chau TN, Lee KC, Yao H, Tsang TY, Chow TC, Yeung YC, Choi KW, Tso YK, Lau T, Lai ST, Lai CL. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology 2004; 39:302-10. [PMID: 14767982 PMCID: PMC7165792 DOI: 10.1002/hep.20111] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2003] [Accepted: 11/19/2003] [Indexed: 02/06/2023]
Abstract
Liver impairment is commonly reported in up to 60% of patients who suffer from severe acute respiratory syndrome (SARS). Here we report the clinical course and liver pathology in three SARS patients with liver impairment. Three patients who fulfilled the World Health Organization case definition of probable SARS and developed marked elevation of alanine aminotransferase were included. Percutaneous liver biopsies were performed. Liver specimens were examined by light and electron microscopy, and immunohistochemistry. Reverse-transcriptase polymerase chain reaction (RT-PCR) using enhanced real-time PCR was applied to look for evidence of SARS-associated coronavirus infection. Marked accumulation of cells in mitosis was observed in two patients and apoptosis was observed in all three patients. Other common pathologic features included ballooning of hepatocytes and mild to moderate lobular lymphocytic infiltration. No eosinophilic infiltration, granuloma, cholestasis, fibrosis, or fibrin deposition was noted. Immunohistochemical studies revealed 0.5% to 11.4% of nuclei were positive for proliferative antigen Ki-67. RT-PCR showed evidence of SARS-associated coronavirus in the liver tissues, but not in the sera of all 3 patients. However, electron microscopy could not identify viral particles. No giant mitochondria, micro- or macro-vesicular steatosis was observed. In conclusion, hepatic impairment in patients with SARS is due to SARS-associated coronavirus infection of the liver. The prominence of mitotic activity of hepatocytes is unique and may be due to a hyperproliferative state with or without disruption of cell cycle by the coronavirus. With better knowledge of pathogenesis, specific therapy may be targeted to reduce viral replication and modify the disease course.
Collapse
|
Case Reports |
21 |
297 |