26
|
Matsunaga A, Miller BC, Cottam GL. Dehydroisoandrosterone prevention of autoimmune disease in NZB/W F1 mice: lack of an effect on associated immunological abnormalities. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 992:265-71. [PMID: 2528378 DOI: 10.1016/0304-4165(89)90084-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of dietary dehydroisoandrosterone (DHA) on several immunological abnormalities associated with the development of systemic lupus erythematosus in New Zealand Black/New Zealand White F1 (NZB/W) female mice was examined. Despite the extraordinary benefits in prolonged survival and decreased synthesis of antibodies to double-stranded DNA obtained by adding DHA (0.4% w/v) to the diet fed to these mice (Lucas et al. (1985) J. Clin. Invest. 75, 2091-2093), remarkably small changes in the chemistry and function of the immune system were detected. DHA prevented the increases in spleen mass and in peritoneal cell number which occur with age in NZB/W female mice, but did not prevent the development of hypergammaglobulinemia. DHA did not affect peritoneal macrophage functions as measured by the phagocytosis of opsonized and non-opsonized sheep erythrocytes, or the zymosan-stimulated release of PGE2, 6-ketoPGF1 alpha, TXB2 and LTC4. In spleen, DHA delayed the loss of T-cell mitogenic responses until 5.5 months of age, but did not alter the spleen lymphocyte population.
Collapse
|
|
36 |
16 |
27
|
Miller BC, Lau HW, Tyler NE, Cottam GL. Liver composition and lipid metabolism in NZB/W F1 female mice fed dehydroisoandrosterone. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 962:25-36. [PMID: 2970867 DOI: 10.1016/0005-2760(88)90091-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The beneficial effects obtained with dehydroisoandrosterone (DHA) feeding in the treatment of murine systemic lupus erythematosus are similar to those obtained with caloric restriction or with dietary manipulation of essential fatty acid availability. In this study, the fatty acid composition of selected tissues was examined in NZB/W F1 mice fed a diet containing 0.4% DHA. The effect of the DHA diet on liver composition and the activity of key hepatic enzymes involved in fatty acid synthesis and glucose metabolism was also investigated. The content of the essential fatty acid, arachidonate, was decreased in plasma cholesteryl esters and liver and kidney phospholipids in mice fed the DHA diet, yet no significant decrease in arachidonate content was observed in plasma phospholipid. The most striking change in both plasma and liver phospholipid was an increase in palmitic acid and a decrease in stearic acid, which could result from a decreased ability for fatty acid elongation. The liver mass was dramatically increased in the mice fed DHA, primarily from parenchymal cell hypertrophy, and contained little lipid. Significant changes in the activities of malic enzyme, glucose-6-phosphate dehydrogenase and pyruvate kinase, similar to those changes which occur with fasting, were observed during the initial adaptation to the DHA diet. The pyruvate kinase activity remained low, suggesting a decrease in liver glycolysis. These results are consistent with the concept that diets containing DHA result in an altered metabolism with a decreased dependence on carbohydrate metabolism and an increased metabolism of lipids.
Collapse
|
|
37 |
11 |
28
|
Gitomer WL, Miller BC, Cottam GL. In vivo effects of lipopolysaccharide on hepatic free-NAD(P)(+)-linked redox states and cytosolic phosphorylation potential in 48-hour-fasted rats. Metabolism 1995; 44:1170-4. [PMID: 7666791 DOI: 10.1016/0026-0495(95)90011-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study was performed to determine the magnitude and time of onset of in vivo changes in hepatic bioenergetics in response to a sublethal dose of lipopolysaccharide (LPS), a bacterial endotoxin. Male rats (48-hour-fasted) were administered an intraperitoneal injection of LPS (5 mg/kg body weight) or vehicle alone, and the livers were freeze-clamped 5, 30, or 180 minutes or 24 hours later. Liver tissue was extracted with perchloric acid, and the metabolites necessary to calculate NAD(+)- and NADP(+)-linked redox states and the cytosolic phosphorylation potential were measured. There was no significant difference in hepatic cytosolic phosphorylation potential between LPS and control groups at any of the times investigated. This indicated that the ability of the liver to synthesize adenosine triphosphate (ATP) was not compromised under the conditions of the study. No changes in hepatic redox states were observed 5 or 30 minutes after LPS treatment. Three hours after LPS treatment, hepatic cytosolic and mitochondrial free-[NAD+]/[NADH] redox states and the cytosolic free-[NADP+]/[NADPH] redox state were more oxidized. By 24 hours, only NAD(+)-linked redox states were more oxidized than the time-matched controls. Hepatic urea content was elevated at both 3 and 24 hours, compatible with an increased rate of urea synthesis as a consequence of increased amino acid metabolism, whereas hepatic beta-hydroxybutyrate and total ketone bodies were decreased 24 hours after LPS treatment, indicating decreased hepatic ketogenesis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
30 |
11 |
29
|
Miller BC, Thiele D, Hersh LB, Cottam GL. A secreted peptidase involved in T cell beta-endorphin metabolism. IMMUNOPHARMACOLOGY 1996; 31:151-61. [PMID: 8861741 DOI: 10.1016/0162-3109(95)00046-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Beta-endorphin metabolism by CD4+ and CD8+ T cells, and the thymoma cell line, EL4, was investigated. In all three cell types, extracellular beta-endorphin was metabolized exclusively by a secreted, metal-dependent, thiol peptidase. The enzyme activity is expressed constitutively in EL4 cells and following activation of CD4+ and CD8+ T cells with anti-CD3 antibody. The enzyme is not one of the proteinases associated with cytolytic T cells and does not appear to be identical with any previously described beta-endorphin metabolizing enzyme. The enzyme cleaves beta-endorphin at approximately equal rates at either of two sites to yield beta-endorphin(1-17) (which is gamma-endorphin), beta-endorphin(1-18), beta-endorphin(18-31) and beta-endorphin(19-31). Evidence in the literature indicates that these N- and C-terminal peptides which contain, respectively, the opioid and non-opioid receptor binding domains of beta-endorphin, are biologically active. Thus, it is likely that this new T cell peptidase has important immunoregulatory activity.
Collapse
|
|
29 |
11 |
30
|
Miller BC. Western blot analysis of the delta (delta)-opioid receptor in activated murine T cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 437:159-67. [PMID: 9666267 DOI: 10.1007/978-1-4615-5347-2_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
|
27 |
10 |
31
|
Miller BC, Ackroyd A, Hersh LB, Cottam GL. Methionine enkephalin metabolism by murine macrophage ectopeptidase(s). REGULATORY PEPTIDES 1994; 50:87-98. [PMID: 7512741 DOI: 10.1016/0167-0115(94)90194-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ectopeptidases which hydrolyze opioid and other neuropeptides have been identified in brain, kidney and intestine. In this study, identification of the enzymes metabolizing the opioid peptide methionine enkephalin (YGGFM) in murine macrophages was undertaken. Incubation of methionine enkephalin with intact murine peritoneal macrophages results in five products identified as Y, F, FM, GFM and GGFM by amino acid analysis and peptide microsequencing after fractionation by HPLC. The spectrum of metabolites results from at least two distinct aminopeptidase activities. The enzyme hydrolyzing YGGFM to GGFM is identified as the membrane-anchored aminopeptidase N (ApN; EC 3.4.11.2) based on its substrate specificity and inhibitor profile. A distinct bestatin and amastatin sensitive aminopeptidase catalyzes hydrolysis of GGFM to GFM. The macrophage ApN protein has a larger mass and is antigenically distinct from murine kidney ApN, which is suggested to result from glycosylation differences rather than expression of a distinct protein. The ApN catalytic activity and mRNA levels are increased in thioglycollate-elicited as compared to resident peritoneal macrophages. RT-PCR analysis identified a 0.7 kb fragment of the ApN coding sequence which was identical in mouse kidney and thioglycollate-elicited peritoneal macrophages and which has 89% identity with the corresponding rat kidney ApN cDNA sequence.
Collapse
|
|
31 |
9 |
32
|
Miller BC, Ishikawa E, Uyeda K, Cottam GL. Endotoxin increases the liver fructose 2,6-bisphosphate concentration in fasted rats. Biochem Biophys Res Commun 1989; 165:1072-8. [PMID: 2558647 DOI: 10.1016/0006-291x(89)92711-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Following endotoxin administration to fasted rats, the liver fructose 2,6-bisphosphate level is significantly increased within 1 hr, is elevated 2.3-fold by 3 hrs, and remains elevated 2 to 3-fold for at least 24 hrs. This increase in the potent allosteric activator of phosphofructokinase occurs when there is no change in the liver Glc 6-P, glycogen or cAMP concentrations, or in the activities of phosphoenolpyruvate carboxykinase or pyruvate kinase. The increase in fructose 2,6-bisphosphate concentration accounts for the increased phosphofructokinase activity previously observed in hepatocytes isolated 18 hours following endotoxin administration to rats (1). By stimulating the phosphofructokinase/Fru 1,6-bisphosphate cycle in the direction of glycolysis, fructose 2,6-bisphosphate is likely the factor responsible for decreased gluconeogenesis in endotoxemia.
Collapse
|
|
36 |
9 |
33
|
Jones JG, Cottam GL, Miller BC, Sherry AD, Malloy CR. A method for obtaining 13C isotopomer populations in 13C-enriched glucose. Anal Biochem 1994; 217:148-52. [PMID: 8203729 DOI: 10.1006/abio.1994.1095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
13C NMR analysis of 13C-enriched glucose containing multiple isotopomers is hampered by chemical shift similarities of several carbon resonances and by the presence of two anomeric forms. A convenient and quantitative method of enzymatically oxidizing glucose to gluconate in tissue and perfusate extracts is presented. The six carbon resonances of the resulting 13C-enriched gluconate are fully resolved at high pH, thereby allowing a determination of the fractional population of each 13C isotopomer by 13C NMR. The utility of this method is demonstrated using the effluent from an isolated perfused liver containing 13C-enriched glucose produced by hepatic metabolism of sodium [1,2,3-13C3]propionate via the citric acid cycle and gluconeogenesis. An analysis of the gluconate C2 and C5 resonances in this sample showed that pentose phosphate activity was insignificant during this perfusion protocol. As demonstrated, this method provides a means of fully describing 13C isotopomer populations in enriched glucose samples where isotope may be derived from multiple metabolic pathways, thus expanding the scope of experimental design and enrichment strategies.
Collapse
|
|
31 |
9 |
34
|
Miller BC. Adolescent parenthood, economic issues, and social policies. JOURNAL OF FAMILY AND ECONOMIC ISSUES 1992; 13:467-475. [PMID: 12288905 DOI: 10.1007/bf01018927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
|
33 |
6 |
35
|
Matsunaga A, Miller BC, Cottam GL. Pertussis toxin and H-7 distinguish mechanisms involved in eicosanoid release from lipopolysaccharide-primed macrophages. Eicosanoid release from lipopolysaccharide-primed macrophages. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 187:599-603. [PMID: 2105889 DOI: 10.1111/j.1432-1033.1990.tb15342.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Release of eicosanoids is an important response of macrophages to inflammation and bacterial infection. At low concentrations, bacterial lipopolysaccharide (1-2 micrograms/ml) fails to stimulate eicosanoid release in resident peritoneal macrophages but primes the macrophages for a greatly enhanced release of eicosanoids on stimulation with the calcium ionophore A23187 (0.1 microM) or with phorbol 12-myristate 13-acetate (50 nM), an activator of protein kinase C. Incubation of macrophages with Bordetella pertussis toxin, prior to priming with lipopolysaccharide, inhibited the release of both cyclooxygenase and lipoxygenase products upon A23187 stimulation. Pertussis toxin treatment of macrophages had no effect on eicosanoid release when the stimulus was phorbol 12-myristate 13-acetate. The presence of 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), an effective inhibitor of protein kinase C, during lipopolysaccharide priming and subsequent stimulation significantly inhibited eicosanoid release when phorbol 12-myristate 13-acetate was the stimulus, but did not affect eicosanoid release stimulated by A23187. Based on these results, at least two mechanisms, distinguished by apparent differences in sensitivity to pertussis-toxin-sensitive, guanine-nucleotide-binding proteins and protein kinase C, are involved in eicosanoid secretion by lipopolysaccharide-activated macrophages in response to A23187 and phorbol 12-myristate 13-acetate.
Collapse
|
Comparative Study |
35 |
6 |
36
|
Miller BC, Cottam GL. Hormonal regulation of L-type pyruvate kinase in rat liver cells in culture. Arch Biochem Biophys 1987; 259:66-78. [PMID: 2825602 DOI: 10.1016/0003-9861(87)90471-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An immortalized rat liver cell line (RLC) expresses two isozymes of pyruvate kinase, the adult liver or L-type isozyme and an M-type isozyme presumed to be the M2-type. In RLC cells incubated in serum-free medium, the addition of 0.1 microM insulin maintained the initial level of L-type pyruvate kinase when it was high and induced the L-type isozyme when it was low. The addition of 1.0 mM dibutyryl cAMP and 0.5 mM theophylline decreased the L-type isozyme, even in the presence of insulin. The amount of M2-type isozyme was relatively constant under the conditions used. Regulation of the amount of L-type pyruvate kinase by both insulin and cAMP occurred primarily through changes in the rate of L-pyruvate kinase protein synthesis and translatable mRNA levels. These results are consistent with the in vivo observations that both insulin and glucagon regulate the rate of L-pyruvate kinase gene transcription and that cAMP is the dominant regulator of L-pyruvate kinase gene expression.
Collapse
|
|
38 |
5 |
37
|
Grygoruk A, Fei H, Daniels RW, Miller BC, Chen A, DiAntonio A, Krantz DE. Vesicular neurotransmitter transporter trafficking in vivo: Moving from cells to flies. Fly (Austin) 2014; 4:302-5. [DOI: 10.4161/fly.4.4.13305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
|
11 |
2 |
38
|
Miller BC. Characteristics of effective day treatment programming for persons with borderline personality disorder. Psychiatr Serv 1995; 46:605-8. [PMID: 7641004 DOI: 10.1176/ps.46.6.605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Day treatment, or partial hospitalization, may have unique advantages for the treatment of patients with borderline personality disorder. Such treatment may offer patients the optimal level of intensiveness and containment, resulting in less regressive dependency and acting-out behavior. To be successful in treatment of patients with borderline personality disorder, a day treatment program should facilitate the patient's need to experience and express affect safely, optimize the program's ability to provide less restrictiveness than inpatient treatment but more sustained and intensive support than outpatient treatment, and use verbal and nonverbal approaches to help patients maintain primary responsibility for their well-being. A length of stay of three weeks allows patients to regain baseline functioning and resume long-term outpatient care. Treatment goals should be clear and resolvable in three weeks.
Collapse
|
|
30 |
2 |
39
|
Miller BC, Thiele DL, Rodd D, Hersh LB, Cottam GL. Active beta-endorphin metabolites generated by T-cell ectopeptidases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 373:49-56. [PMID: 7668160 DOI: 10.1007/978-1-4615-1951-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
|
30 |
2 |
40
|
Miller BC, Sen DR, Abosy RA, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, Manos M, Gjini E, Hodi FS, Rodig SJ, Sharpe AH, Haining WN. Abstract 2701: Functionally specialized subsets of exhausted CD8+ T cells mediate tumor control and differentially respond to checkpoint blockade. Cancer Res 2019. [DOI: 10.1158/1538-7445.am2019-2701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
T cell dysfunction in the tumor microenvironment (TME) is a hallmark of many cancers. Reinvigoration of T cell function by PD-1 checkpoint blockade can result in striking clinical responses, but is only effective in a minority of patients. The basis for T cell dysfunction in the TME, as well as the mechanisms by which anti-PD-1 therapy acts on dysfunctional T cells are not fully understood. Here we show that anti-PD-1 therapy acts on a specific subpopulation of CD8+ tumor-infiltrating lymphocytes (TILs) in melanoma mouse models, which can also be found in patients with melanoma. We find that dysfunctional CD8+ TILs possess canonical epigenetic and transcriptional features of T cell exhaustion, mirroring those seen in chronic viral infection. Similar to chronic viral infection, exhausted CD8+ TILs contain a subpopulation of “progenitor exhausted” T cells that have a distinct regulatory state. Progenitor exhausted TILs also have critical functional attributes that are not shared by the majority “terminally exhausted” TILs: they retain more polyfunctionality, persist following transfer into tumor-bearing mice, and differentiate to repopulate terminally exhausted TILs in the TME. As a result, progenitor exhausted CD8+ TILs are better able to control tumor growth than terminally exhausted cells. Progenitor exhausted, but not terminally exhausted, CD8+ TILs can respond to anti-PD-1 therapy but this occurs without reversion of their exhausted epigenetic state. Human melanomas contain CD8+ T cells with a progenitor exhausted phenotype and patients with a higher fraction of this subpopulation in their tumors have a significantly longer duration of response to combination checkpoint blockade therapy. Therefore, approaches to expand progenitor exhausted CD8+ T cells in the tumor microenvironment may be an important component of improving checkpoint blockade response.
Citation Format: Brian C. Miller, Debattama R. Sen, Rose Al Abosy, Kevin Bi, Yamini V. Virkud, Martin W. LaFleur, Kathleen B. Yates, Ana Lako, Kristen Felt, Girish S. Naik, Michael Manos, Evisa Gjini, F. Stephen Hodi, Scott J. Rodig, Arlene H. Sharpe, W. Nicholas Haining. Functionally specialized subsets of exhausted CD8+ T cells mediate tumor control and differentially respond to checkpoint blockade [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2701.
Collapse
|
|
6 |
2 |
41
|
Miller BC, Uyeda K, Cottam GL. Endotoxin stimulation of liver parenchymal cell phosphofructokinase activity requires nonparenchymal cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 203:593-8. [PMID: 1531195 DOI: 10.1111/j.1432-1033.1992.tb16588.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The rate of carbohydrate flux through phosphofructokinase (measured as the rate of [3-3H]glucose detritiation) was increased fourfold in rat liver parenchymal cells incubated with conditioned medium from lipopolysaccharide-stimulated adherent liver non-parenchymal cells. The rate was not affected in parenchymal cells incubated either with lipopolysaccharide directly or with conditioned medium from non-stimulated non-parenchymal cells. The stimulation of carbohydrate flux through phosphofructokinase by conditioned medium was not duplicated by peptide cytokines known to be released by lipopolysaccharide-activated liver non-parenchymal cells (interleukin-1, interleukin-6, tumor necrosis factor-alpha, and transforming growth factor-beta) or platelet activating factor. Furthermore, formation of the active conditioned medium was not prevented by inclusion of cycloheximide or dexamethasone to inhibit cytokine synthesis, or indomethacin or BW755c to inhibit arachidonic acid metabolism, during lipopolysaccharide-stimulation of the non-parenchymal cells. The results indicate that intercellular communication between lipopolysaccharide-stimulated liver non-parenchymal cells and parenchymal cells by soluble mediators is responsible for the stimulation of liver phosphofructokinase activity during endotoxin-induced shock. Studies to isolate and identify the factor(s) in the conditioned medium are currently in progress.
Collapse
|
|
33 |
2 |
42
|
|
Comment |
5 |
1 |
43
|
Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, Collins NB, Bi K, Lafleur MW, Juneja VR, Weiss SA, Fisher DE, Root DE, Sharpe AH, Doench JG, Haining WN. Abstract 1019: In vivo CRISPR screening identifies Ptpn2 as a target for cancer immunotherapy. Cancer Res 2017. [DOI: 10.1158/1538-7445.am2017-1019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Despite the dramatic clinical success of cancer immunotherapy with PD-1 checkpoint blockade, most patients don’t experience sustained clinical benefit, suggesting that additional therapeutic strategies are needed. Functional genomic screens in cancer cells to discover new therapeutic targets are usually carried out in vitro where interaction with the immune system is absent. Here we report a pooled, loss-of-function genetic screening approach using CRISPR/Cas9 genome editing that is conducted in vivo in mouse transplantable tumors treated with vaccination and PD-1 checkpoint blockade. We tested 2,400 genes expressed by melanoma cells for those that synergize with or cause resistance to checkpoint blockade, and recovered the known immune evasion molecules, PD-L1 and CD47. Loss of function of multiple genes required to sense interferon-y caused resistance to immunotherapy. Deletion of Ptpn2, a pleotropic protein tyrosine phosphatase improved response to immunotherapy. In vivo, Ptpn2 deficient tumors showed increased infiltration of activated CD8+T cells. In vitro, Ptpn2 loss by tumor cells increased antigen presentation to T cells. Biochemical, transcriptional and genetic epistasis experiments demonstrated that loss of function of Ptpn2 sensitizes tumors to immunotherapy by enhancing interferon-y-mediated effects on the tumor cell. Thus, augmenting interferon-y signaling in tumor cells could increase the efficacy of immunotherapy. More generally, in vivo genetic screens in tumor models can identify new immunotherapy targets and rationally prioritize combination therapies.
Citation Format: Robert T. Manguso, Hans W. Pope, Margaret D. Zimmer, Flavian D. Brown, Kathleen B. Yates, Brian C. Miller, Natalie B. Collins, Kevin Bi, Martin W. Lafleur, Vikram R. Juneja, Sarah A. Weiss, David E. Fisher, David E. Root, Arlene H. Sharpe, John G. Doench, W Nicholas Haining. In vivo CRISPR screening identifies Ptpn2 as a target for cancer immunotherapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1019. doi:10.1158/1538-7445.AM2017-1019
Collapse
|
|
8 |
1 |
44
|
Miller BC, Fan X, Christensen M, Grotevant HD, van Dulmen M. Comparisons of adopted and nonadopted adolescents in a large, nationally representative sample. Child Dev 2000. [PMID: 11108107 DOI: 10.1111/1467–8624.00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are conflicting findings about whether adopted children have more psychological and behavioral problems than nonadoptees. Research results are discrepant partly because many previous studies were based on small clinical samples or on samples biased by self-selection. A nationally representative school survey (Add Health) was used to compare adopted (n = 1,587) and nonadopted adolescents (total N = 87,165) across a wide variety of measures. Standardized mean differences show that adopted adolescents are at higher risk in all of the domains examined, including school achievement and problems, substance use, psychological well-being, physical health, fighting, and lying to parents. Demographic and background variable breakdowns show that the effect sizes for differences between adopted and nonadopted adolescents were larger for males, younger or older adolescents, Hispanics or Asians, and adolescents living in group homes or with parents of low education. Distributional analyses revealed approximately a 1:1 ratio of adopted to nonadopted adolescents in the middle ranges of the outcome variables but a ratio of 3:1 or greater near the tails of the distributions. These data clearly show that more adopted adolescents have problems of various kinds than their nonadopted peers; effect sizes were small to moderate based on mean differences, but comparisons of distributions suggest much larger proportions of adopted than nonadopted adolescents at the extremes of salient outcome variables.
Collapse
|
Comparative Study |
25 |
1 |
45
|
Miller BC, Sen DR, Abosy RA, Bi K, Virkud Y, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, Manos M, Gjini E, Ishizuka JJ, Hodi FS, Rodig SJ, Sharpe AH, Haining WN. Abstract A83: Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Cancer Immunol Res 2020. [DOI: 10.1158/2326-6074.tumimm19-a83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
T-cell dysfunction in the tumor microenvironment (TME) is a hallmark of many cancers. Reinvigoration of T-cell function by PD-1 checkpoint blockade can result in striking clinical responses, but is only effective in a minority of patients. The mechanisms by which anti-PD-1 therapy acts on exhausted T cells are not fully understood. Here we show that anti-PD-1 therapy acts on a specific subpopulation of CD8+ tumor-infiltrating lymphocytes (TILs) in melanoma mouse models, which can also be found in patients with melanoma. Exhausted CD8+ TILs contain a subpopulation of “progenitor exhausted” T cells with critical functional attributes that are not shared by the majority “terminally exhausted” TILs: they retain more polyfunctionality, persist following transfer into tumor-bearing mice, and differentiate to repopulate terminally exhausted TILs in the TME. As a result, progenitor exhausted CD8+ TILs are better able to control tumor growth than terminally exhausted cells. Progenitor exhausted, but not terminally exhausted, CD8+ TILs can respond to anti-PD-1 therapy. Melanoma patients with a higher percentage of progenitor exhausted cells have a longer duration of response to checkpoint blockade therapy. Therefore, approaches to expand progenitor exhausted CD8+ T cells in the tumor microenvironment may be an important component of improving checkpoint blockade response.
Citation Format: Brian C. Miller, Debattama R. Sen, Rose Al Abosy, Kevin Bi, Yamini Virkud, Martin W. LaFleur, Kathleen B. Yates, Ana Lako, Kristen Felt, Girish S. Naik, Michael Manos, Evisa Gjini, Jeffrey J. Ishizuka, F. Stephen Hodi, Scott J. Rodig, Arlene H. Sharpe, W. Nicholas Haining. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2019 Nov 17-20; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2020;8(3 Suppl):Abstract nr A83.
Collapse
|
|
5 |
1 |
46
|
Safavi A, Miller BC, Hersh LB, Cottam GL. Purification and characterization of a secreted T cell beta-endorphin endopeptidase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 402:71-9. [PMID: 8787646 DOI: 10.1007/978-1-4613-0407-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
|
29 |
1 |
47
|
Alspach E, Chow RD, Demehri S, Guerriero JL, Gujar S, Hartmann FJ, Helmink BA, Hudson WH, Ho WJ, Ma L, Maier BB, Maltez VI, Miller BC, Moran AE, Parry EM, Pillai PS, Rafiq S, Reina-Campos M, Rosato PC, Rudqvist NP, Ruhland MK, Sagiv-Barfi I, Sahu AD, Samstein RM, Schürch CM, Sen DR, Thommen DS, Wolf Y, Zappasodi R. Supporting the Next Generation of Scientists to Lead Cancer Immunology Research. Cancer Immunol Res 2021; 9:1245-1251. [PMID: 34544686 PMCID: PMC9644410 DOI: 10.1158/2326-6066.cir-21-0519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Recent success in the use of immunotherapy for a broad range of cancers has propelled the field of cancer immunology to the forefront of cancer research. As more and more young investigators join the community of cancer immunologists, the Arthur L. Irving Family Foundation Cancer Immunology Symposium provided a platform to bring this expanding and vibrant community together and support the development of the future leaders in the field. This commentary outlines the lessons that emerged from the inaugural symposium highlighting the areas of scientific and career development that are essential for professional growth in the field of cancer immunology and beyond. Leading scientists and clinicians in the field provided their experience on the topics of scientific trajectory, career trajectory, publishing, fundraising, leadership, mentoring, and collaboration. Herein, we provide a conceptual and practical framework for career development to the broader scientific community.
Collapse
|
other |
4 |
1 |
48
|
Miller BC. Cook County Hospital, Chicago, Ills.: Rupture of Urethra-Cystotomy-Cured. Service of Dr. Edwin Powell. THE CHICAGO MEDICAL JOURNAL 1869; 26:137-139. [PMID: 37412507 PMCID: PMC9787175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
|
research-article |
156 |
|
49
|
Georgiev P, Han S, Huang AY, Nguyen TH, Drijvers JM, Creasey H, Pereira JA, Yao CH, Park JS, Conway TS, Fung ME, Liang D, Peluso M, Joshi S, Rowe JH, Miller BC, Freeman GJ, Sharpe AH, Haigis MC, Ringel AE. Age-Associated Contraction of Tumor-Specific T Cells Impairs Antitumor Immunity. Cancer Immunol Res 2024; 12:1525-1541. [PMID: 39186561 PMCID: PMC11532741 DOI: 10.1158/2326-6066.cir-24-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Progressive decline of the adaptive immune system with increasing age coincides with a sharp increase in cancer incidence. In this study, we set out to understand whether deficits in antitumor immunity with advanced age promote tumor progression and/or drive resistance to immunotherapy. We found that multiple syngeneic cancers grew more rapidly in aged versus young adult mice, driven by dysfunctional CD8+ T-cell responses. By systematically mapping immune cell profiles within tumors, we identified loss of tumor antigen-specific CD8+ T cells as a primary feature accelerating the growth of tumors in aged mice and driving resistance to immunotherapy. When antigen-specific T cells from young adult mice were administered to aged mice, tumor outgrowth was delayed and the aged animals became sensitive to PD-1 blockade. These studies reveal how age-associated CD8+ T-cell dysfunction may license tumorigenesis in elderly patients and have important implications for the use of aged mice as preclinical models of aging and cancer.
Collapse
|
research-article |
1 |
|
50
|
Ware KE, Thomas BC, Olawuni PD, Sheth MU, Hawkey N, Yeshwanth M, Miller BC, Vietor KJ, Jolly MK, Kim SY, Armstrong AJ, Somarelli JA. A synthetic lethal screen for Snail-induced enzalutamide resistance identifies JAK/STAT signaling as a therapeutic vulnerability in prostate cancer. Front Mol Biosci 2023; 10:1104505. [PMID: 37228586 PMCID: PMC10203420 DOI: 10.3389/fmolb.2023.1104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Despite substantial improvements in the treatment landscape of prostate cancer, the evolution of hormone therapy-resistant and metastatic prostate cancer remains a major cause of cancer-related death globally. The mainstay of treatment for advanced prostate cancer is targeting of androgen receptor signaling, including androgen deprivation therapy plus second-generation androgen receptor blockade (e.g., enzalutamide, apalutamide, darolutamide), and/or androgen synthesis inhibition (abiraterone). While these agents have significantly prolonged the lives of patients with advanced prostate cancer, is nearly universal. This therapy resistance is mediated by diverse mechanisms, including both androgen receptor-dependent mechanisms, such as androgen receptor mutations, amplifications, alternative splicing, and amplification, as well as non-androgen receptor-mediated mechanisms, such as lineage plasticity toward neuroendocrine-like or epithelial-mesenchymal transition (EMT)-like lineages. Our prior work identified the EMT transcriptional regulator Snail as critical to hormonal therapy resistance and is commonly detected in human metastatic prostate cancer. In the current study, we sought to interrogate the actionable landscape of EMT-mediated hormone therapy resistant prostate cancer to identify synthetic lethality and collateral sensitivity approaches to treating this aggressive, therapy-resistant disease state. Using a combination of high-throughput drug screens and multi-parameter phenotyping by confluence imaging, ATP production, and phenotypic plasticity reporters of EMT, we identified candidate synthetic lethalities to Snail-mediated EMT in prostate cancer. These analyses identified multiple actionable targets, such as XPO1, PI3K/mTOR, aurora kinases, c-MET, polo-like kinases, and JAK/STAT as synthetic lethalities in Snail+ prostate cancer. We validated these targets in a subsequent validation screen in an LNCaP-derived model of resistance to sequential androgen deprivation and enzalutamide. This follow-up screen provided validation of inhibitors of JAK/STAT and PI3K/mTOR as therapeutic vulnerabilities for both Snail+ and enzalutamide-resistant prostate cancer.
Collapse
|
research-article |
2 |
|