26
|
Yuhki KI, Kashiwagi H, Kojima F, Ushikubi F. [Endocannabinoid system]. NIHON RINSHO. JAPANESE JOURNAL OF CLINICAL MEDICINE 2011; 69 Suppl 1:331-335. [PMID: 21766619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
27
|
Di Marzo V, Piscitelli F, Mechoulam R. Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes. Handb Exp Pharmacol 2011:75-104. [PMID: 21484568 DOI: 10.1007/978-3-642-17214-4_4] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The cannabinoid receptors for Δ(9)-THC, and particularly, the CB(1) receptor, as well as its endogenous ligands, the endocannabinoids anandamide and 2-arachidonoylglycerol, are deeply involved in all aspects of the control of energy balance in mammals. While initially it was believed that this endocannabinoid signaling system would only facilitate energy intake, we now know that perhaps even more important functions of endocannabinoids and CB(1) receptors in this context are to enhance energy storage into the adipose tissue and reduce energy expenditure by influencing both lipid and glucose metabolism. Although normally well controlled by hormones and neuropeptides, both central and peripheral aspects of endocannabinoid regulation of energy balance can become dysregulated and contribute to obesity, dyslipidemia, and type 2 diabetes, thus raising the possibility that CB(1) antagonists might be used for the treatment of these metabolic disorders. On the other hand, evidence is emerging that some nonpsychotropic plant cannabinoids, such as cannabidiol, can be employed to retard β-cell damage in type 1 diabetes. These novel aspects of endocannabinoid research are reviewed in this chapter, with emphasis on the biological effects of plant cannabinoids and endocannabinoid receptor antagonists in diabetes.
Collapse
|
28
|
Al-Massadi O, Gabellieri E, Trujillo ML, Señaris R, Pagotto U, Pasquali R, Casanueva FF, Seoane LM. Peripheral endocannabinoid system-mediated actions of rimonabant on growth hormone secretion are ghrelin-dependent. J Neuroendocrinol 2010; 22:1127-36. [PMID: 20807320 DOI: 10.1111/j.1365-2826.2010.02065.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The somatotroph axis is a crucial pathway regulating metabolism. Despite the fact that the endocannabinoid system has been also revealed as a potent modulator of energy homeostasis, little information is available concerning a putative interaction between these two systems. The aim of the present study was to determine the in vivo effects of the blockade of the cannabinoid receptor type 1 (CB1) over growth hormone (GH) secretion using the CB1 antagonist rimonabant. The results obtained show that the blockade of the CB1 peripheral receptor by i.p. injection of rimonabant significantly inhibited pulsatile GH secretion. Similarly, it was found that this injection significantly decreased ghrelin-induced GH secretion without any effect on growth hormone-releasing hormone (GHRH)-induced GH discharge. In situ hybridisation showed that the peripheral blockade of CB1 did not affect hypothalamic somatostatin mRNA levels; however, GHRH mRNA expression was significantly decreased. The blockade of the vagus nerve signal by surgical vagotomy eliminated the inhibitory action of rimonabant on GHRH mRNA and consequently on GH. On the other hand, the central CB1 blockade by i.c.v. rimonabant treatment was unable to reproduce the effect of peripheral blockade on GHRH mRNA, nor the GH response to ghrelin. In conclusion, the data reported in the present study establish, from a physiological point of view, the existence of a novel mechanism of GH regulation implicating the action of the cannabinoid receptor on the somatotroph axis.
Collapse
|
29
|
Wu CS, Zhu J, Wager-Miller J, Wang S, O'Leary D, Monory K, Lutz B, Mackie K, Lu HC. Requirement of cannabinoid CB(1) receptors in cortical pyramidal neurons for appropriate development of corticothalamic and thalamocortical projections. Eur J Neurosci 2010; 32:693-706. [PMID: 21050275 PMCID: PMC2970673 DOI: 10.1111/j.1460-9568.2010.07337.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A role for endocannabinoid signaling in neuronal morphogenesis as the brain develops has recently been suggested. Here we used the developing somatosensory circuit as a model system to examine the role of endocannabinoid signaling in neural circuit formation. We first show that a deficiency in cannabinoid receptor type 1 (CB(1)R), but not G-protein-coupled receptor 55 (GPR55), leads to aberrant fasciculation and pathfinding in both corticothalamic and thalamocortical axons despite normal target recognition. Next, we localized CB(1)R expression to developing corticothalamic projections and found little if any expression in thalamocortical axons, using a newly established reporter mouse expressing GFP in thalamocortical projections. A similar thalamocortical projection phenotype was observed following removal of CB(1)R from cortical principal neurons, clearly demonstrating that CB(1)R in corticothalamic axons was required to instruct their complimentary connections, thalamocortical axons. When reciprocal thalamic and cortical connections meet, CB(1)R-containing corticothalamic axons are intimately associated with elongating thalamocortical projections containing DGLβ, a 2-arachidonoyl glycerol (2-AG) synthesizing enzyme. Thus, 2-AG produced in thalamocortical axons and acting at CB(1)Rs on corticothalamic axons is likely to modulate axonal patterning. The presence of monoglyceride lipase, a 2-AG degrading enzyme, in both thalamocortical and corticothalamic tracts probably serves to restrict 2-AG availability. In summary, our study provides strong evidence that endocannabinoids are a modulator for the proposed 'handshake' interactions between corticothalamic and thalamocortical axons, especially for fasciculation. These findings are important in understanding the long-term consequences of alterations in CB(1)R activity during development, a potential etiology for the mental health disorders linked to prenatal cannabis use.
Collapse
|
30
|
Sciolino NR, Bortolato M, Eisenstein SA, Fu J, Oveisi F, Hohmann AG, Piomelli D. Social isolation and chronic handling alter endocannabinoid signaling and behavioral reactivity to context in adult rats. Neuroscience 2010; 168:371-86. [PMID: 20394803 PMCID: PMC2882942 DOI: 10.1016/j.neuroscience.2010.04.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 12/22/2022]
Abstract
Social deprivation in early life disrupts emotionality and attentional processes in humans. Rearing rats in isolation reproduces some of these abnormalities, which are attenuated by daily handling. However, the neurochemical mechanisms underlying these responses remain poorly understood. We hypothesized that post-weaning social isolation alters the endocannabinoid system, a neuromodulatory system that controls emotional responding. We characterized behavioral consequences of social isolation and evaluated whether handling would reverse social isolation-induced alterations in behavioral reactivity to context and the endocannabinoid system. At weaning, pups were single or group housed and concomitantly handled or not handled daily until adulthood. Rats were tested in emotionality- and attentional-sensitive behavioral assays (open field, elevated plus maze, startle and prepulse inhibition). Cannabinoid receptor densities and endocannabinoid levels were quantified in a separate group of rats. Social isolation negatively altered behavioral responding. Socially-isolated rats that were handled showed less deficits in the open field, elevated plus maze, and prepulse inhibition tests. Social isolation produced site-specific alterations (supraoptic nucleus, ventrolateral thalamus, rostral striatum) in cannabinoid receptor densities compared to group rearing. Handling altered the endocannabinoid system in neural circuitry controlling emotional expression. Handling altered endocannabinoid content (prefrontal and piriform cortices, nucleus accumbens) and cannabinoid receptor densities (lateral globus pallidus, cingulate and piriform cortices, hippocampus) in a region-specific manner. Some effects of social isolation on the endocannabinoid system were moderated by handling. Isolates were unresponsive to handling-induced increases in cannabinoid receptor densities (caudal striatum, anterior thalamus), but were sensitive to handling-induced changes in endocannabinoid content (piriform, prefrontal cortices), compared to group-reared rats. Our findings suggest alterations in the endocannabinoid system may contribute to the abnormal isolate phenotype. Handling modifies the endocannabinoid system and behavioral reactivity to context, but surmounts only some effects of social isolation. These data implicate a pivotal role for the endocannabinoid system in stress adaptation and emotionality-related disturbances.
Collapse
|
31
|
Kvasnicka T. [The endocannabinoid system and interference with thrombogenesis]. VNITRNI LEKARSTVI 2010; 56:127-129. [PMID: 20329583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The endocannabinoid system is an endogenous signaling system that plays a role in the regulation of energy homeostasis and lipid and glucose metabolism-all of which can influence cardiometabolic risk. The endocannabinoid system is normally a silent physiologic system that becomes transiently activated, that is, only when needed. Endocannabinoids may also be secreted by the endothelium. Accordingly, there has been interest in the interactions between endocannabinoids and blood cells. There is certainly evidence that endocannabinoids, especially 2-arachidonoylglycerol (2-AG), may promote platelet activation, indicating that they may participace in regulation of thrombosis and inflammation. Platelets are involved both in the metabolism and release of endocannabinoids, and so it is possible that their circulating levels may be regulated by platelets. 2-AG can be considered a new physiologic platelet agonist able to induce full platelet activation and aggregation with a non-CB1/CB2 receptor-mediated mechanism. Not only may endocannabinoids regulate platelet function and possibly lead to thrombogenesis, but they may also influence haematopoesis.
Collapse
|
32
|
Martykánová L. [Endocannabinoid system II--the role in addictive behaviour, depression and in pathology of eating behaviour]. CASOPIS LEKARU CESKYCH 2010; 149:368-371. [PMID: 20925268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Endocannabinoid system is involved in the neurobiological mechanism underlying drug addiction in all known kinds of drugs including nicotine and alcohol. Recently, relationships between endocannabinoids and biological nature of depression and eating disorders were recognised. Polymorphisms of genes encoding CB1 receptors and genes encoding main degrading enzyme FAAH responsible for pathology in motivation and cognition were identified.
Collapse
|
33
|
Martykánová L. [Endocannabinoid system I--the role in regulation of physiology functions]. CASOPIS LEKARU CESKYCH 2010; 149:363-367. [PMID: 20925267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Endocannabinoid system has a wide scale of actions on CNS and on peripheral tissues. The system consists of cannabinoid receptors CB1 and CB2, endocannabinoids and their biosynthetic and degrading enzymes. CB1 receptors in high density occur on presynaptic neuronal terminals in brain influencing neurotransmission thereby number of functions--pain perception, inhibition of stress reaction, regulation of motor functions, cognition, emotional reactions, regulation of food intake, psychical homeostasis and motivation. CB1 receptors are present in GIT cells, hepatocytes, adipocytes, pancreatic isles cells. Energy homeostasis is the main function in peripheral issues. CB2 receptors are present mainly in cells of immune system, in the cilliary body of eye, in testes, vasal cells, and intestinal smooth muscle cells.
Collapse
|
34
|
Fonseca BM, Correia-da-Silva G, Taylor AH, Konje JC, Bell SC, Teixeira NA. Spatio-temporal expression patterns of anandamide-binding receptors in rat implantation sites: evidence for a role of the endocannabinoid system during the period of placental development. Reprod Biol Endocrinol 2009; 7:121. [PMID: 19860893 PMCID: PMC2775033 DOI: 10.1186/1477-7827-7-121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 10/27/2009] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Although there is growing evidence that endocannabinoids play a critical role in early pregnancy, there are no studies describing the possible targets for this system after implantation. The endometrial stroma, which undergoes extensive proliferation and differentiation giving rise to the decidua and the trophoblast cells that invade after the initial stages of implantation, are potential targets. Since high anandamide (AEA) levels, the main endocannabinoid, are detrimental to implantation and in order to gain insight into the role of the endocannabinoid system in the development of the fetoplacental unit, the spatio-temporal pattern of expression of the anandamide-binding receptors, CB1, CB2 and the vanilloid receptor (TRPV1), were investigated by quantitative RT-PCR, western blot and immunohistochemistry. METHODS Rat uterine maternal tissues from different days of pregnancy were used to investigate the expression of CB1, CB2 and vanilloid receptors by quantitative RT-PCR, western blot and immunohistochemistry. RESULTS The data indicate that all the three receptors were expressed in decidualized cells and placenta. Interestingly, CB1 and CB2 were also expressed in smooth muscle cells of maternal blood vessels and in endovascular trophoblast cells, whereas TRPV1 was mainly expressed in uterine natural killer (uNK) cells and in the longitudinal muscle layer throughout pregnancy. In all tissues, CB2 protein was present at a lower level than CB1. CONCLUSION These observations support a role for the endocannabinoid system during the period of decidualization and placental development.
Collapse
|
35
|
Immenschuh S. Endocannabinoid signalling as an anti-inflammatory therapeutic target in atherosclerosis: does it work? Cardiovasc Res 2009; 84:341-2. [PMID: 19819883 DOI: 10.1093/cvr/cvp339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
36
|
Makriyannis A, Mechoulam R, Piomelli D. Therapeutic opportunities through modulation of the endocannabinoid system. Neuropharmacology 2009; 48:1068-71. [PMID: 15885714 DOI: 10.1016/j.neuropharm.2005.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Lupica CR, Riegel AC. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology 2009; 48:1105-16. [PMID: 15878779 DOI: 10.1016/j.neuropharm.2005.03.016] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 02/18/2005] [Accepted: 03/09/2005] [Indexed: 11/30/2022]
Abstract
Substantial evidence suggests that all commonly abused drugs act upon the brain reward circuitry to ultimately increase extracellular concentrations of the neurotransmitter dopamine in the nucleus accumbens and other forebrain areas. Many drugs of abuse appear to increase dopamine levels by dramatically increase the firing and bursting rates of dopamine neurons located in the ventral mesencephalon. Recent clinical evidence in humans and behavioral evidence in animals indicate that cannabinoid receptor antagonists such as SR141716A (Rimonabant) can reduce the self-administration of, and craving for, several commonly addictive drugs. However, the mechanism of this potentially beneficial effect has not yet been identified. We propose, on the basis of recent studies in our laboratory and others, that these antagonists may act by blocking the effects of endogenously released cannabinoid molecules (endocannabinoids) that are released in an activity- and calcium-dependent manner from mesencephalic dopamine neurons. It is hypothesized that, through the antagonism of cannabinoid CB1 receptors located on inhibitory and excitatory axon terminals targeting the midbrain dopamine neurons, the effects of the endocannabinoids are occluded. The data from these studies therefore suggest that the endocannabinoid system and the CB1 receptors located in the ventral mesencephalon may play an important role in regulating drug reward processes, and that this substrate is recruited whenever dopamine neuron activity is increased.
Collapse
|
38
|
Maccarrone M. Endocannabinoids: friends and foes of reproduction. Prog Lipid Res 2009; 48:344-54. [PMID: 19602425 DOI: 10.1016/j.plipres.2009.07.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 12/20/2022]
Abstract
Endocannabinoids are fatty acid amides like anandamide (AEA), and monoacylglycerols like 2-arachidonoylglycerol, that bind to cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Their biological actions are controlled through not yet fully characterized cellular mechanisms. These compounds, together with their related enzymes, that include key proteins for the synthesis and degradation of endocannabinoids, cannabinoid and non-cannabinoid receptors, and purported membrane transporter(s), form the "endocannabinoid system (ECS)". In the past few years AEA and related ECS elements have emerged as essential players in various aspects of human reproduction, both for males and females. Here, the key features of the ECS and the potential of its components to direct human fertility towards a positive or negative end will be reviewed. In particular, the involvement of AEA and related ECS elements in regulating embryo oviductal transport, blastocyst implantation and placental development (in females), and sperm survival, motility, capacitation and acrosome reaction (in males) will be addressed, as well as the role of endocannabinoids in sperm-oviduct interactions. Additionally, the possibility that blood AEA and its hydrolase FAAH may represent reliable diagnostic markers of natural and assisted reproduction in humans will be discussed, along with the therapeutic exploitation of ECS-oriented drugs as useful fertility enhancers.
Collapse
|
39
|
Abstract
As the incidence of obesity continues to increase, the development of effective therapies is a high priority. The endocannabinoid system has emerged as an important influence on the regulation of energy homeostasis. The endocannabinoids anandamide and 2-arachidonoylglycerol act on cannabinoid receptor-1 (CB1) in the brain and many peripheral tissues causing a net anabolic action. This includes increasing food intake, and causing increased lipogenesis and fat storage in adipose tissue and liver. The endocannabinoid system is hyperactive in obese humans and animals, and treating them with CB1 antagonists causes weight loss and improved lipid and glucose profiles. Although clinical trials with CB1 antagonists have yielded beneficial metabolic effects, concerns about negative affect have limited the therapeutic potential of the first class of CB1 antagonists available.
Collapse
|
40
|
Orio L, Edwards S, George O, Parsons LH, Koob GF. A role for the endocannabinoid system in the increased motivation for cocaine in extended-access conditions. J Neurosci 2009; 29:4846-57. [PMID: 19369553 PMCID: PMC2688678 DOI: 10.1523/jneurosci.0563-09.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 11/21/2022] Open
Abstract
Extended access to cocaine produces an increase in cocaine self-administration in rats that mimics aspects of compulsive drug intake in human addicts. Although emerging evidence implicates the endogenous cannabinoid system in aspects of opioid and ethanol addiction, a role of the endocannabinoid system in cocaine addiction remains widely inconclusive. Here, we investigate the effects of systemic and intra-accumbal administration of the CB1 antagonist SR141716A (Rimonabant) on cocaine self-administration (0.5 mg/kg/infusion) under a progressive ratio (PR) schedule in rats with extended [long access (LgA); 6 h/d] or limited [short access (ShA); 1 h/d] access to cocaine. LgA rats, but not ShA rats, showed an increase in cocaine intake as previously reported, and responding for cocaine by LgA rats was higher than in ShA rats under a PR schedule. Systemic SR141716A induced a dramatic dose-dependent decrease in the breakpoint for cocaine by LgA rats, whereas only the highest dose of the antagonist had a significant effect in the ShA group. Anandamide levels in the nucleus accumbens (NAc) shell were decreased in ShA rats but unchanged in LgA rats during cocaine self-administration. Both phosphorylated and total CB1 receptor protein expression were upregulated in LgA rats in the NAc and the amygdala compared with ShA and drug-naive rats, 24 h after last cocaine session. Finally, intra-NAc infusions of SR141716A reduced cocaine breakpoints selectively in LgA animals. These results suggest that neuroadaptations in the endogenous cannabinoid system may be part of the neuroplasticity associated with the development of cocaine addiction.
Collapse
|
41
|
Abstract
Endocannabinoids, such as anandamide and 2-arachidonoylglycerol, are synthesized from membrane phospholipids in the heart and other cardiovascular tissues. They activate cannabinoid CB1 and CB2 receptors, transient receptor potential V1 (TRPV1), peroxisome proliferator-activated receptors, and perhaps a novel vascular G-protein-coupled receptor. Inactivation is by cellular uptake and fatty acid amide hydrolase. Endocannabinoids relax coronary and other arteries and decrease cardiac work but seem not to be involved in tonic regulation of cardiovascular function. They act as a stress response system, which is activated, for example, in myocardial infarction and circulatory shock. Endocannabinoids are largely protective; they decrease tissue damage and arrhythmia in myocardial infarction and may reduce progression of atherosclerosis (CB2 receptor stimulation inhibits lesion progression), and fatty acid amide hydrolase knockout mice (which have enhanced endocannabinoid levels) show decreased cardiac dysfunction with age compared with wild types. However, endocannabinoids may mediate doxorubicin-induced cardiac dysfunction. Their signaling pathways are not fully elucidated but they can lead to changed expression of a variety of genes, including those involved in inflammatory responses. There is potential for therapeutic targeting of endocannabinoids and their receptors, but their apparent involvement in both protective and deleterious actions on the heart means that careful risk assessment is needed before any treatment can be introduced.
Collapse
|
42
|
Watt MJ. Adipose tissue-skeletal muscle crosstalk: are endocannabinoids an unwanted caller? Diabetologia 2009; 52:571-3. [PMID: 19205657 DOI: 10.1007/s00125-009-1287-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 01/20/2009] [Indexed: 01/24/2023]
|
43
|
Wang LY, Yang T, Qian W, Hou XH. [Effects of central endocannabinoid system on visceral hyposensitivity induced by rapid eye movement sleep deprivation: experiment with rats]. ZHONGHUA YI XUE ZA ZHI 2009; 89:559-563. [PMID: 19567081 DOI: 10.3760/cma.j.issn.0376-2491.2009.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
OBJECTIVE To study the effects and role of central endocannabinoid system in the mechanism of visceral hyposensitivity induced by rapid eye movement (REM) sleep deprivation. METHODS Twenty-four SD rat were divided randomly in to 3 groups: cage-yoked group (YC Group, experimental control group), REM sleep deprivation group (SD Group) exposed to REM sleep deprivation by means of flower pot technique lasting for 48 hours, and Rim Group, receiving rimonabant, a cannabinoid antagonist, after REM sleep deprivation. 48 hours after the sleep deprivation abdominal electromyogram in response to colorectal distension (CRD) was recorded to asses the visceral sensitivity. Then the rats were killed with their central nervous system taken out. RT-PCR and Western blotting were used to detect the RNA and protein expression of cannabinoid receptor CB1, fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) in the thalamus, brain stem, and spinal cord. RESULTS (1) Under the pressures of 40, 60, and 80 mm Hg, the abdominal electrical activity frequencies of external oblique muscle responding to CRD in SD Group were (220 +/- 94), (313 +/- 162), and (493 +/- 279) times respectively, all significantly lower than those in YC Group [(506 +/- 223), (1053 +/- 548), and (1632 +/- 249) times respectively, all P < 0.05], and those of Rim Group were (668 +/- 257), (1144 +/- 93), and (1653 +/- 153) times respectively, all significantly higher than those of SD Group (all P < 0.05), but not significantly different from those of YC Group. (2) The RNA and protein expression levels of CB1 receptor in the thalamus, brain stem, and spinal cord of SD Group were all significantly higher than those of YC Group (all P < 0.05), while the RNA and protein expression levels of FAAH and MGL in the thalamus and spinal cord of SD Group were all significantly lower than those of YC Group (all P < 0.05). CONCLUSION The visceral hyposensitivity induced by REM sleep deprivation may be associated with the increase of expression of CNS endocannabinoid receptor and decrease of its metabolism.
Collapse
|
44
|
Caraceni P, Domenicali M, Giannone F, Bernardi M. The role of the endocannabinoid system in liver diseases. Best Pract Res Clin Endocrinol Metab 2009; 23:65-77. [PMID: 19285261 DOI: 10.1016/j.beem.2008.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Endogenous cannabinoids (ECs) are ubiquitous lipid signaling molecules provided by a number of central and peripheral effects, which are mediated mainly by the specific receptors CB1 and CB2. In the last decade a considerable number of studies has shown that ECs and their receptors play an important role in the pathophysiology of liver diseases. The EC system is strongly up-regulated during chronic liver diseases. Until now it has been implicated in the pathogenesis of fatty liver disease associated with obesity, alcohol abuse, and hepatitis C, in the progression of fibrosis to cirrhosis, and in the development of portal hypertension, hyperdynamic circulatory syndrome and its complications, and cirrhotic cardiomyopathy. Furthermore, the EC system can participate in the pathogenesis of acute liver injury by modulating the mechanisms responsible for cell injury and inflammatory response. Thus, targeting the CB1 and CB2 receptors represents a potential therapeutic goal for the treatment of liver diseases.
Collapse
MESH Headings
- Cannabinoid Receptor Modulators/physiology
- Endocannabinoids
- Fatty Liver/physiopathology
- Fatty Liver, Alcoholic/physiopathology
- Hepatitis C, Chronic/physiopathology
- Liver Cirrhosis/etiology
- Liver Diseases/physiopathology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Reperfusion Injury/physiopathology
Collapse
|
45
|
Vettor R, Pagano C. The role of the endocannabinoid system in lipogenesis and fatty acid metabolism. Best Pract Res Clin Endocrinol Metab 2009; 23:51-63. [PMID: 19285260 DOI: 10.1016/j.beem.2008.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocannabinoids (ECs) regulate energy balance by modulating hypothalamic circuits controlling food intake and energy expenditure. However, convincing evidence has accumulated indicating that the EC system is present also in peripheral tissues, in particular in adipose tissue. Fat cells produce and are targets of ECs. Glucose uptake and lipoprotein lipase (LPL) activity, lipogenesis and adipogenesis are stimulated by ECs through cannabinoid 1 (CB1) receptors. Moreover, CB1 activation leads to a decreased mitochondrial biogenesis and function through inhibition of endothelial nitric oxide synthase (eNOS). All these effects are blocked by the CB1 antagonist rimonabant, suggesting that the weight-reducing effect of CB1 blockade is due not only to the transient suppression of food intake and reduction of lipogenesis but also to an increased mitochondrial biogenesis and oxidative metabolism which counteracts the inhibitory effects of ECs, levels of which are increased in fat tissues of obese rodents and humans. This review focuses on the role of ECs in adipose tissue metabolism, adipokine production, and interactions between ECs and peroxisome proliferator-activated receptors (PPARs) during adipogenesis.
Collapse
|
46
|
|
47
|
De Petrocellis L, Di Marzo V. An introduction to the endocannabinoid system: from the early to the latest concepts. Best Pract Res Clin Endocrinol Metab 2009; 23:1-15. [PMID: 19285257 DOI: 10.1016/j.beem.2008.10.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A rather complex and pleiotropic endogenous signalling system was discovered in the late 1990s, starting from studies on the mechanism of action of Delta(9)-tetrahydrocannabinol, the major psychoactive principle of the hemp plant Cannabis sativa. This system includes: (1) at least two G-protein-coupled receptors, known as the cannabinoid CB(1) and CB(2) receptors; (2) the endogenous agonists at these receptors, known as endocannabinoids, of which anandamide and 2-arachidonoylglycerol are the best known; and (3) proteins and enzymes for the regulation of endocannabinoid levels and action at receptors. The number of the members of this endocannabinoid signalling system seems to be ever increasing as new non-CB(1) non-CB(2) receptors for endocannabinoids, endocannabinoid-related molecules with little activity at CB(1) and CB(2) receptors, and new enzymes for endocannabinoid biosynthesis and degradation are being identified every year. The complexity of the endocannabinoid system and of its physiological and pathological function is outlined in this introductory chapter, for a better understanding of the subsequent chapters in this special issue.
Collapse
|
48
|
Bermúdez-Silva FJ, Suárez Pérez J, Nadal A, Rodríguez de Fonseca F. The role of the pancreatic endocannabinoid system in glucose metabolism. Best Pract Res Clin Endocrinol Metab 2009; 23:87-102. [PMID: 19285263 DOI: 10.1016/j.beem.2008.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endogenous cannabinoid system participates in the regulation of energy homeostasis, and this fact led to the identification of a new group of therapeutic agents for complicated obesity and diabetes. Cannabinoid receptor antagonists are now realities in clinical practice. The use of such antagonists for reducing body weight gain, lowering cholesterol and improving glucose homeostasis is based on the ability of the endocannabinoids to coordinately regulate energy homeostasis by interacting with central and peripheral targets, including adipose tissue, muscle, liver and endocrine pancreas. In this review we will analyse the presence of this system in the main cell types of the islets of Langerhans, as well as the physiological relevance of the endocannabinoids and parent acylethanolamides in hormone secretion and glucose homeostasis. We will also analyse the impact that these findings may have in clinical practice and the potential outcome of new therapeutic strategies for modulating glucose homeostasis and insulin/glucagon secretion.
Collapse
|
49
|
Samaha FF, Chou CM. Blockade of the endocannabinoid system for the reduction of cardiometabolic risk factors. Obesity (Silver Spring) 2009; 17:220-5. [PMID: 19039319 DOI: 10.1038/oby.2008.476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Scheen AJ, Paquot N. Use of cannabinoid CB1 receptor antagonists for the treatment of metabolic disorders. Best Pract Res Clin Endocrinol Metab 2009; 23:103-16. [PMID: 19285264 DOI: 10.1016/j.beem.2008.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abdominal obesity is associated with numerous metabolic abnormalities, including insulin resistance, impaired glucose tolerance/type-2 diabetes, and atherogenic dyslipidaemia with low high-density lipoprotein (HDL) cholesterol, high triglycerides, and increased small dense low-density lipoprotein (LDL) cholesterol. A proportion of these metabolic disorders may be attributed to increased endocannabinoid activity. The selective cannabinoid 1 (CB1) receptor antagonist rimonabant has been shown to reduce body weight, waist circumference, insulin resistance, triglycerides, dense LDL, C-reactive protein (CRP), and blood pressure, and to increase HDL and adiponectin concentrations in both non-diabetic and diabetic overweight/obese patients. Besides an improvement in glucose tolerance in non-diabetic subjects, a reduction of 0.5-0.7% in haemoglobin A1C (HbA(1c)) levels was consistently observed in various groups of patients with type-2 diabetes. Almost half the metabolic changes could not be explained by weight loss, supporting direct peripheral effects of rimonabant. Ongoing studies should demonstrate whether improved metabolic disorders with CB1 receptor antagonists (rimonabant, taranabant, etc.) would translate into fewer cardiovascular complications among high-risk individuals.
Collapse
|