1
|
Liu TT, Yang X, Lei HP, Hu YT, Wu LN, Wei AH, Ji XH, Liu J, Jin H, Shi JS, Zhou SY, Jin F. Gastrodin alleviates Aβ 25-35-induced glycolytic dysfunction via activating PI3K/AKT/BACH1 signaling in Alzheimer's disease models. Exp Neurol 2025; 389:115225. [PMID: 40127855 DOI: 10.1016/j.expneurol.2025.115225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/22/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025]
Abstract
Cerebral glycolytic alteration has been identified as an important contributor to the pathological progress of Alzheimer's disease (AD). Research has shown that gastrodin (GAS) possesses neuroprotection in various experimental models of AD, but its specific mechanism remains unclear. In this study, we determined whether GAS exerted neuroprotective effects on AD models through regulating PI3K/AKT/BACH1 signaling axis. Eight-week-old C57BL/6 J male mice were intracerebroventricularly injected with Aβ25-35, to establish an AD model, followed by the administration of GAS (30, 60 mg·kg-1·d-1, i.g.) for 21 days. Treatment of GAS markedly alleviated the downregulation of p-PI3K Tyr199/458, p-AKT Ser473, BACH1 and HK1 in the hippocampus of the Aβ25-35-induced AD mice. To further explore the mechanism of GAS-mediated neuroprotection, an in vitro AD cellular model was established by challenging HT22 cells with Aβ25-35. In the Aβ25-35 induced cells, the expression of BACH1, p-PI3K Tyr199/458 and p-AKT Ser473 was reduced, the mRNA and protein levels of HK1 were decreased, and the levels of pyruvate and ATP were reduced. After treatment of GAS, the decline of these indicators was reversed. In addition, overexpression of BACH1 by lentivirus transfection significantly upregulated the mRNA and protein levels of HK1, thereby enhancing glycolytic function and protecting HT22 cells from Aβ25-35-induced injury. The results of chromatin immunoprecipitation assay-real-time quantitative PCR revealed that BACH1 directly bound to the HK1 promoter region. Collectively, these findings suggest that GAS can play a protective role in Aβ25-35-induced experimental AD models by increasing HK1 expression and ameliorating glycolytic dysfunction through activation of the PI3K/AKT/BACH1 signaling axis.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China; Department of Hospital Pharmacy, People's Hospital of Changshan County, Quzhou, Zhejiang Province, China
| | - Xue Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Hui-Ping Lei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yue-Ting Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Ling-Nan Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Ai-Hong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xin-Hao Ji
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Ju Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Shao-Yu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Feng Jin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
2
|
Liang L, Dong Z, Shen Z, Zang Y, Yang W, Wu L, Bao L. Inhibitory effects of umbelliferone on carbon tetrachloride-induced hepatic fibrosis in rats through the TGF‑β1‑Smad signaling pathway. Mol Med Rep 2025; 32:171. [PMID: 40242963 PMCID: PMC12020354 DOI: 10.3892/mmr.2025.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatic fibrosis (HF) is a critical marker of advanced‑stage chronic liver disease and involves pivotal contributions from hepatic stellate cells (HSCs). Currently, there are no effective treatments for HF. Umbelliferone (7‑hydroxycoumarin; UMB) is a natural compound with significant anti‑inflammatory, antioxidant and anti‑tumor activities. However, its potential efficacy in treating HF has not been studied. The present study explored the protective effects of UMB against HF, targeting the TGF‑β1‑Smad signaling pathway to explore the underlying mechanisms of UMB. Carbon tetrachloride (CCl4) was injected intraperitoneally to induce HF in rats and primary HSCs were treated in vitro with UMB to investigate the improvement effect of UMB on HF. The levels of fibrosis markers, inflammation, oxidative stress and TGF‑β1‑Smad signaling pathway in the rat liver tissue and HSCs were detected using hematoxylin and eosin staining, enzyme‑linked immunosorbent assay, reverse transcription‑quantitative PCR, Cell Counting Kit‑8 and western blotting. The improvement in liver histopathology, liver function indexes and fibrosis markers demonstrated that UMB markedly inhibited the CCl4‑induced HF and inflammation in the rats. Additionally, UMB prominently reduced the pro‑inflammatory factors and oxidative stress levels. In vitro, UMB markedly inhibited primary HSC activation and decreased alpha‑smooth muscle actin and collagen I expression. The mechanism experiment proved that UMB inhibited the TGF‑β1‑Smad signaling pathway and ameliorated HF. The present study was the first to demonstrate, to the best of the authors' knowledge, that UMB might be a promising natural active compound for treating HF. Its therapeutic effect is associated with its modulation of the TGF‑β1‑Smad signaling pathway.
Collapse
Affiliation(s)
- Lijuan Liang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Ziqing Shen
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Yifan Zang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Wenlong Yang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Lan Wu
- Mongolia Medical School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China
| | - Lidao Bao
- Department of Pharmacy, Hohhot First Hospital, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| |
Collapse
|
3
|
Dhiman A, Choudhary D, Mehan S, Maurya PK, Sharma AK, Kumar A, Mukherjee R, Gupta S, Khan Z, Gupta GD, Narula AS. Therapeutic potential of Baicalin against experimental obsessive compulsive disorder: Evidence from CSF, blood plasma, and brain analysis. J Neuroimmunol 2025; 403:578598. [PMID: 40168745 DOI: 10.1016/j.jneuroim.2025.578598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Obsessive-Compulsive Disorder (OCD) is a complex neuropsychiatric condition characterized by recurrent obsessions and compulsions, significantly impacting an individual's functionality and quality of life. This study aimed to explore the neuroprotective and therapeutic potential of baicalin, a flavonoid with known antioxidant, anti-inflammatory, and neurotropic properties, in an animal model of OCD induced by 8-OH-DPAT (8HPAT). The research utilized in silico docking studies and in vivo experiments to assess baicalin's interactions with key intracellular targets: SIRT-1, Nrf2, HO-1, and PPAR-gamma, and its effects on neurochemical, neurobehavioral, and histopathological parameters. In silico results indicated a strong binding affinity of baicalin for SIRT-1, Nrf2, HO-1, and PPAR-gamma, suggesting potential regulatory roles in antioxidant and anti-inflammatory pathways. In-vivo findings demonstrated that baicalin, administered at doses of 50 mg/kg and 100 mg/kg, significantly alleviated OCD-like behaviours, including excessive lever pressing, marble burying, and compulsive checking. Baicalin treatment normalized serotonin and dopamine levels and reduced glutamate levels in the brain, restoring neurotransmitter balance. Furthermore, baicalin decreased inflammatory cytokines (TNF-alpha and IL-1 beta), improved complete blood count profile, and gross morphological and histopathological alterations by restoring neuronal density and cellular integrity in affected brain regions. Combining baicalin with fluvoxamine (10 mg/kg) showed synergistic effects, further enhancing neuroprotective outcomes. These results suggest that baicalin holds promise as a potential therapeutic agent for OCD, warranting further clinical investigation to explore its efficacy and underlying mechanisms in human subjects. The findings underscore the importance of targeting intracellular pathways and neurotransmitter systems in developing effective treatments for OCD and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abhinay Dhiman
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India.
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Arun Kumar Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
4
|
Abdelall EKA, Elshemy HAH, Labib MB, Philoppes JN, Ali FEM, Ahmed AKM. Synthesis of new selective agents with dual anti-inflammatory and SARS-CoV-2 M pro inhibitory activity: Antipyrine-celecoxib hybrid analogues; COX-2, COVID-19 cytokine storm and replication inhibitory activities. Bioorg Chem 2025; 160:108429. [PMID: 40199011 DOI: 10.1016/j.bioorg.2025.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Herein, a great aim to introduce novel pyrazolone derivatives with multiple activities, including selective COX-2 and cytokine inhibition in addition to SARS-CoV-2 Mpro inhibitory effects. All the synthesized compounds 4a-c, 5, 6a,b, 7a-f, 8a,b, 9a,b, 10a,b and 11a-f were evaluated in vitro for investigation of selective COX-2 inhibitory activity. The results introduced the most selective compounds 7a, 7d, 7e, 9a, and 11f that were further screened in vivo to evaluate their anti-inflammatory activity, safety concerning gastric ulcer and myocardial infarction. Compounds 7e, 9a and 11f exhibited % edema inhibition (43.87-54.31) compared to celecoxib (54.17%17 %) at the same time. Histopathological examination of gastric and cardiac tissues proved the safe profiles of compounds 7e and 11 f. The reduction in cardiac biomarkers level (CK-MP, AST, LDH) and the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) ensured the cardiac safety of 7e and 11f. Also, RT-PCR results confirmed the efficacy of compounds 7e and 11f to inhibit gene expression of cytokines responsible for the overwhelming inflammation in COVID-19 infection, including TNF-α, IL-6, IL-2 and IL-1β. Additionally, SARS-CoV-2 Mpro inhibitory assay revealed the potency of the compound 7e against Mpro enzyme (IC50 = 13.24 μM). Furthermore, the proper fitting of 7e inside both COX-2 and Mpro active site through the docking study supported the affinity of 7e to inhibit both enzymes. Therefore, a belief stated that compound 7e is a promising lead compound with a safe profile, acting as a selective COX-2 and cytokine inhibitor. Also, 7e reduces the COVID-19 infection's cytokine storm and inhibits viral replication via targeting the Mpro enzyme.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Heba A H Elshemy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Madlen B Labib
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - John N Philoppes
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fares E M Ali
- Department of pharmacology and toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Amira K M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
5
|
Khallaf WAI, Taha AEAH, Ahmed AS, Hassan MIA, Abo-Youssef AM, Hemeida RAM. Sildenafil abrogates radiation-induced hepatotoxicity in animal model: The impact of NF-κB-p65, P53, Nrf2, and SIRT 1 pathway. Food Chem Toxicol 2025; 200:115373. [PMID: 40086583 DOI: 10.1016/j.fct.2025.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Ionizing radiation has both beneficial and harmful effects on human health, prompting researchers to find ways to protect organs from its adverse impacts. Sildenafil (SIL) has gained attention in protective medicine due to its antioxidant, anti-inflammatory, and anti-apoptotic properties. AIM This study aimed to investigate SIL's protective mechanisms against radiation-induced liver damage. METHOD Forty adult male Wistar rats were divided into: control group, SIL group (2.5 mg/kg,p.o), irradiation group (rats were exposed to single shot at a dose of 10 Gy to induce liver damage), and SIL + irradiation group. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were evaluated. Liver samples were used to evaluate oxidative stress indicators, reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide(NO), Hepatic antioxidant nuclear factor erythroid 2-related factor 2(Nrf2), and apoptoticp53 upregulated modulator of apoptosis(P53) gene expression were determined by Western blot analysis. Immunohistochemical analysis for hepatic nuclear factor-kappa B (NF-κB) and silent information regulator-1(SIRT1) were performed along with histopathological examination. RESULTS SIL effectively diminished inflammation by reducing p-NF-κB-p65 and increasing Nrf2 and SIRT 1 expression. Additionally, SIL restrained apoptosis by reducing P53 protein expressions. Moreover, SIL significantly improved radiation-induced histopathological changes. SIGNIFICANCE SIL preventing hepatotoxicity associated with radiation exposure.
Collapse
Affiliation(s)
- Waleed A I Khallaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Abd Elmoneim A H Taha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Ahmed S Ahmed
- Radiation Therapy and Nuclear Medicine Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mohamed I A Hassan
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minya, 61519, Egypt
| |
Collapse
|
6
|
Khrieba MO, Hegazy SK, Mohammed WF, El-Haggar SM. Clinical study to investigate the adjuvant role of Pentoxifylline in patients with Parkinson's disease: A randomized controlled study. Int Immunopharmacol 2025; 156:114689. [PMID: 40253769 DOI: 10.1016/j.intimp.2025.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the par's compacta of the substantia nigra. A lot of studies have since been carried out on the neuroinflammation linked to the pathophysiology of PD, including elevated levels of proinflammatory cytokines. Preclinical studies proved the efficacy of pentoxifylline (PTX) in PD. AIM To assess the neuroprotective and anti-inflammatory effects of PTX in patients with PD. METHODS Sixtytwo Patients were randomly assigned to two groups (n1 = 30, and n2 = 32); the PTX group received conventional treatment for Parkinson's disease, levodopa/carbidopa, plus PTX 400 mg twice daily, whereas the control group received conventional treatment only. Every patient was assessed by a neurologist both at the start of treatment and six months thereafter. Every patient is evaluated using the Unified Parkinson's disease rating scale (UPDRS). Adenosine monophosphate activated protein kinase (AMPK), reduced glutathione (GSH), high mobility group box protein (HMGB1), and mammalian target of rapamycin (mTOR) were measured both before and after therapy. The statistical analysis within and between groups was evaluated using direct and indirect t-tests, respectively. RESULTS The PTX group revealed a statistically significant decrease in the level of assessed variables as followed: mTOR (p = 0.037), HMGB-1 (p = 0.029), and a significant increase in GSH (p = 0.016) and AMPK (p = 0.027), when compared to the control group. Additionally, the PTX group had a significantly reduced UPDRS. (p < 0.05). CONCLUSION PTX may be suggested as a promising adjuvant anti-inflammatory medication for Parkinson's disease treatment. CLINICAL TRIAL IDENTIFIER NCT05962957.
Collapse
Affiliation(s)
- Mohannad O Khrieba
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Sahar K Hegazy
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta 31527, Egypt
| | | | - Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta 31527, Egypt
| |
Collapse
|
7
|
Meng C, Chen S, Liu Q, Xu H, He Y, Qu Y, Li J, Zhou R, Hou Y, Huang X, You H. Therapeutic potential of CHI3L1 in osteoarthritis: Inhibition of cartilage matrix degradation and inflammation through TLR4-MAPK-STAT1 pathway. Int Immunopharmacol 2025; 156:114684. [PMID: 40253766 DOI: 10.1016/j.intimp.2025.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
AIMS CHI3L1 has been identified as a protein expressed in various tissues and tumor tissues, playing critical roles in diverse physiological and pathological processes such as inflammation, oxidative stress, cell death, and immune regulation. Previous studies have indicated that the elevated CHI3L1 levels in synovial fluid and serum of osteoarthritis patients may serve as a biomarker for osteoarthritis. However, the mechanisms by which CHI3L1 affects chondrocytes and the significance of its upregulated expression remain to be fully elucidated. This study aims to investigate the effects of CHI3L1 on chondrocytes and elucidate its molecular mechanisms. METHODS Interleukin-1 beta (IL-1β) was utilized in vitro to induce an inflammatory injury model in chondrocytes. The destabilization of the medial meniscus (DMM) surgery was employed to establish a mouse model of osteoarthritis in vivo. Experimental techniques, including Western blot, RT-qPCR, immunofluorescence, transcriptome sequencing, and co-immunoprecipitation, were applied to investigate the effects and mechanisms of CHI3L1 on chondrocytes. Microcomputed tomography (micro-CT), X-ray imaging, and IHC were used to evaluate the impact of CHI3L1 on knee joint osteoarthritis in mice. RESULTS In vitro experiments demonstrated that CHI3L1 enhanced matrix synthesis markers, suppressed matrix degradation indicators, and reduced inflammatory factors levels in chondrocytes. In vivo studies showed that intra-articular overexpression of CHI3L1 via rAAV-Chi3l1 alleviated cartilage degeneration and synovial inflammation in a murine osteoarthritis model. Mechanistically, integrated transcriptomic profiling and functional assays revealed that CHI3L1 interacts with TLR4 to attenuate MAPK phosphorylation, thereby inhibiting STAT1 phosphorylation and nuclear translocation. CONCLUSION The expression of CHI3L1 is upregulated in osteoarthritis. CHI3L1 alleviates osteoarthritis inflammation and cartilage matrix degradation through the TLR4-MAPK-STAT1 pathway, thereby inhibiting the progression of osteoarthritis. These findings indicate that CHI3L1 is a cytokine with protective effects in osteoarthritis and may represent a promising therapeutic target for alleviating osteoarthritis. ARTICLE FOCUS The objective of this study is to investigate the effects of CHI3L1 on chondrocytes and to further elucidate the underlying mechanisms by which CHI3L1 exerts its influence on chondrocytes. KEY MESSAGES In this study, it is proposed that CHI3L1 maintains the homeostasis of the cartilage matrix and alleviates inflammation by inhibiting the activation of the TLR4-MAPK-STAT1 signaling pathway. STRENGTHS AND LIMITATIONS We have established the protective role of CHI3L1 in maintaining cartilage matrix homeostasis, identified potential receptors and pathways associated with CHI3L1, and elucidated its mechanisms of action. The role of CHI3L1 in osteoarthritic synovial tissue has not yet been investigated. Further research is needed to elucidate the effects of CHI3L1 secreted by synovial tissue on chondrocytes.
Collapse
Affiliation(s)
- Chen Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Qingyi Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jie Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ruijia Zhou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
8
|
Alenezi FO, Nader MA, El-Kashef DH, Abdelmageed ME. Dapansutrile mitigates concanavalin A- induced autoimmune hepatitis: Involvement of NLRP3/IL-1β and JNK/ p38 MAPK pathways. Biomed Pharmacother 2025; 186:118026. [PMID: 40164046 DOI: 10.1016/j.biopha.2025.118026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
AIM Dapansutrile (Dapan) is a newly developed anti-inflammatory molecule that supresses the production of NLRP3 inflammasome-dependent IL-1β. Its hepatoprotective effects against autoimmune hepatitis (AIH) have not yet been explored. Hence, this study was conducted to examine the possible protective effects of Dapan against concanavalin A (Con A)-induced hepatitis in mice. MAIN METHODS Mice were randomly divided into five groups (n = 6): control, Con A (15 mg/kg), Dapan (60 mg/kg), Dapan (6 mg/kg) + Con A, and Dapan (60 mg/kg) + Con A. Mice were euthanised at the end of the study, and blood and hepatic tissues were collected. KEY FINDINGS Hepatic function testing using lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase levels, in addition to hepatic tissue histological examination, revealed that intraperitoneal administration of Dapan noticeably ameliorated Con A-induced hepatic enzyme impairment and histopathological disruption. Moreover, Dapan-treated mice had significantly lower malondialdehyde hepatic content and elevated reduced glutathione, superoxide dismutase, and total antioxidant capacity levels than non-treated mice in a dose-dependent manner. The Dapan-treated groups showed significantly lower levels of the inflammatory mediators, NLRP3, TNF-α, IL-6, and IL-1β, in addition to the immunomodulators CD8, CD4, INF-γ, and NFκB and inhibition of JNK and p38 MAPK levels compared to the Con A-treated group. SIGNIFICANCE Our results showed that intraperitoneal administration of Dapan could be a therapeutic opportunity to inhibit the development of AIH via inhibition of inflammatory pathways.
Collapse
Affiliation(s)
- Fahad O Alenezi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Forensic Toxicology Services Center, Ministry of health, Qassim, Saudi Arabia
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
9
|
Abdelaziz A, Gaber C, Gupta P, Lee T. High Throughput Pharmacovigilance Screening for Roflumilast Adverse Effects in Real-World Settings: A Sequence Symmetry Analysis. Basic Clin Pharmacol Toxicol 2025; 136:e70038. [PMID: 40256954 PMCID: PMC12010455 DOI: 10.1111/bcpt.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Roflumilast is an add-on therapy for COPD following exacerbations, but real-world safety data in the United States are limited. OBJECTIVE This study aimed to identify safety signals associated with roflumilast initiation through a high-throughput signal detection algorithm. METHODS Using sequence symmetry analysis (SSA), we analysed Marketscan databases for new roflumilast users (2011-2021). We screened for adverse effects across 211 therapeutic classes within 365 days of initiation. Sensitivity analyses were conducted by sex, age and observation period. Crude and adjusted sequence ratios (cSR and aSR) were reported with 95% confidence intervals (CIs). RESULTS Among 11 091 patients (53% aged 65+, 52% female), 32 safety signals were identified. Strong associations were observed with antithyroid agents (aSR, 4.18; 95% CI: 1.66-11.95), parathyroid hormones (aSR, 3.09; 95% CI: 1.56-6.44), haematopoietic agents (aSR, 2.55; 95% CI: 1.07-6.49) and meglitinides (aSR, 2.37; 95% CI: 1.15-5.35). While many signals aligned with prior clinical trial data, novel associations with antithyroid and parathyroid agents were discovered. CONCLUSION In our study, we detected 32 safety signals for roflumilast, including notable associations with antithyroid agents and parathyroid hormones. Future investigations using more robust study designs are warranted to evaluate those signals.
Collapse
Affiliation(s)
- Abdullah Abdelaziz
- Department of Pharmacy Systems, Outcomes and Policy, College of PharmacyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Charles E. Gaber
- Department of Pharmacy Systems, Outcomes and Policy, College of PharmacyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Preeti Gupta
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and AllergyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Todd A. Lee
- Department of Pharmacy Systems, Outcomes and Policy, College of PharmacyUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
10
|
Ramirez A, Howes S, Chilton R. Ketamine in insulin resistance: Pharmacokinetics, cardiovascular implications and cellular effects on cardiomyocytes. Diabetes Obes Metab 2025; 27:2339-2341. [PMID: 39949188 DOI: 10.1111/dom.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 04/04/2025]
Abstract
Ketamine, a dissociative anaesthetic, has expanded its clinical use beyond anaesthesia to pain management and treatment-resistant depression. As an N-methyl-d-aspartate receptor antagonist, ketamine disrupts the excitatory neurotransmission via interaction with the opioid, alpha-amino-3-hydroxy-5-methyl-4-isooxazole-propionic acid receptor and serotonin pathways, contributing to its broad therapeutic potential. However, its use is not without risks. In patients with insulin resistance, ketamine's effect on glucose metabolism, mitochondrial function and oxidative stress are exacerbated. This paper explores ketamine's pharmacokinetics, cardiovascular impact and its cellular effects on cardiomyocytes, particularly in insulin-resistant individuals. The findings discussed emphasize the importance of careful administration and monitoring in these vulnerable populations to balance ketamine's therapeutic benefits against its potential risks in patients with underlying metabolic or cardiovascular conditions.
Collapse
Affiliation(s)
- Ariana Ramirez
- Cardiology, San Antonio Uniformed Services Health Education Consortium, San Antonio, Texas, USA
| | - Stephanie Howes
- Cardiology, San Antonio Uniformed Services Health Education Consortium, San Antonio, Texas, USA
| | - Robert Chilton
- Division of Cardiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
11
|
Bansod SP, Saifi MA, Chilvery S, Doijad N, Godugu C. Berberine Attenuates Cerulein-Induced Acute Pancreatitis by Modulating Nrf2/NOX2 Signaling Pathway via AMPK Activation. ENVIRONMENTAL TOXICOLOGY 2025; 40:764-773. [PMID: 39723751 DOI: 10.1002/tox.24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
AMP-activated protein kinase (AMPK) is the master regulator of cellular energy which gets activated during energy stress and restores tissue homeostasis. AMPK is widely expressed in the pancreas and is involved in protein synthesis. In cerulein-induced acute pancreatitis (AP), diminished AMPK activity in the pancreatic tissue may be associated with pancreatic inflammation and oxidative stress. Our results demonstrated that berberine (BR) treatment produced significant decrease in plasma amylase and lipase levels and improved histopathological features in AP mice model. Myeloperoxidase (MPO) activity indicated that BR suppressed the infiltration of neutrophils in pancreas. BR treatment markedly decreased the levels of proinflammatory cytokines including interleukins (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) via inhibition of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression. In addition, BR activates the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling and inhibits cerulein-induced oxidative-nitrosative stress. Mechanistically, we found inhibition of AMPK activity in cerulein-induced AP, while BR-treated animals showed marked increase in the AMPK expression. Together, our study indicated that BR-mediated AMPK activation in pancreatic tissues demonstrated attenuation of cerulein-induced oxidative stress and inflammation. Based on our observations, further exploration of this promising natural product against AP and associated complications may lead to promising therapeutic options.
Collapse
Affiliation(s)
- Sapana P Bansod
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and the Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shrilekha Chilvery
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Nandkumar Doijad
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
12
|
Bashirrohelleh MA, Bavarsad K, Khodadadi A, Shohan M, Asadirad A. Curcumin-enhanced stem cell exosomes: A novel approach to modulating neuroinflammation and improving cognitive function in a rat model of Alzheimer's disease. Eur J Pharmacol 2025; 999:177695. [PMID: 40315951 DOI: 10.1016/j.ejphar.2025.177695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/04/2025]
Abstract
The effect of Curcumin-enhanced stem cell exosomes on the learning and memory impairment induced by streptozotocin (STZ) and neuro-inflammation in rats was evaluated. An animal model of Alzheimer's disease (AD) was established by intracerebroventricular (ICV) injection of STZ (3 mg/kg) in male Wistar rats (250 ± 50 g). ICV STZ injections chronically reduce cerebral glucose uptake and produce other effects similar to pathological, molecular and behavioral features of AD. Numerous studies confirmed the anti-inflammatory and antioxidant properties of curcumin (a natural polyphenol) against free radicals, as well as its ability to inhibit the aggregation of proteins such as beta-amyloid and alpha-synuclein in disorders such as AD and Parkinson's disease. The use of extracellular vesicles has garnered a lot of interest in research studies because of the important roles that mesenchymal stem cell-derived exosomes play in permeability, retention, and drug delivery as well as their ability to reduce inflammatory cytokines (TNF-α, IL-1β, and IL-6). Furthermore, researches highlighted the positive effect of curcumin on neuronal differentiation of stem cells in vivo and in vitro. Since studies emphasized the ameliorating effect of curcumin-treated macrophage-exosomes on symptoms of Alzheimer's disease by inhibiting tau protein phosphorylation, we proposed that Curcumin-primed MSC exosomes may offer greater efficacy to alleviate AD compared to naïve MSC exosomes. In this study, we investigated the effect of curcumin in stimulating the anti-inflammatory potential of exosome-derived stem cells. We evaluated the effect of MSC-EXO and pre-treated MSC-EXO with curcumin (CUR-MSC-EXO) on inhibiting inflammation and memory and learning impairments. Following four intraperitoneal injections of MSC-EXO and CUR-MSC-EXO at a dosage of 30μg/body over 30 days, we found that MSC-EXO and CUR-MSC-EXO elevated anti-inflammatory cytokines (IL10, TGF-β) and reduced pro-inflammatory cytokines (IL1, TNF-α) in peripheral blood compared to the AD group. The elevated level of M2 anti-inflammatory microglia markers (Arg1, CD206) and decreased level expression of M1 pro-inflammatory markers (iNOS, CD86) indicated that the CUR-MSC-EXO effect was more significant in the polarization of microglia into the M2 phenotype in the rat hippocampus. Both treatment groups demonstrated improvements in memory and learning skills. The results of the passive avoidance learning in the rats with STZ-induced memory impairment, however, were better in the CUR-MSC-EXO. Additionally, after therapy, a decrease in degenerative neurons was seen. Therefore, using curcumin may stimulate the anti-inflammatory and neuroprotective potential of exosome-derived stem cells which could provide hope for Alzheimer's disease treatment in the future.
Collapse
Affiliation(s)
- Mohammad-Ali Bashirrohelleh
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Mohammadi M, Rahimi K, Rezaie A, Tabandeh MR. The role of fecal microbiota transplantation on the NLRP3-Caspase 1 pathway and anxiety like behavioral in the ulcerative colitis model in rats. Sci Rep 2025; 15:14831. [PMID: 40295607 PMCID: PMC12037881 DOI: 10.1038/s41598-025-96948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
The purpose of this study was to investigate the function of the NLRP3-Caspase 1 signaling pathway in the colon during fecal microbiota transplantation (FMT) in colitis induced by acetic acid. Additionally, the study aimed to determine the impact of FMT on anxiety behaviors by analyzing the function of the NLRP3-Caspase 1 signaling pathway in the hippocampus. A total of twenty-four rats were selected randomly for the study and divided into two groups, a control group, and an acid acetic-induced colitis group. The acid acetic-induced colitis group further consisted of three subgroups: untreated acid acetic-induced colitis group, mesalazine 0.3 gr/kg group, and FMT group. After 6 days, the colon was evaluated for macroscopic and microscopic damage, and the signaling pathway NLRP3-Caspase1-related genes in the colon and hippocampus were analyzed. Additionally, anxiety-related behaviors of the rats were observed. FMT decreased colonic mRNA expression levels of NLRP3, NF-кB, and Caspase1 and pro-inflammatory cytokines (IL-1β and IL-18). Also, FMT reduced the expression of NLRP3, NF-κB, and Caspase1 protein levels as well as pro-inflammatory cytokines IL-1β and IL-18 in the hippocampus, resulting in a reduction of anxiety behaviors in the open field and elevated plus maze tests in the colitis model. FMT may improve acetic acid-induced colitis by regulating the NLRP3-Caspase1 signaling pathway in the colon. It also reduced colitis-induced anxiety behavior by regulating the expression of proteins related to the NLRP3-Caspase 1 pathway in the hippocampus.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Anahita Rezaie
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
14
|
Mohamed RS, Akl EM, Dacrory S. Fabrication of sodium alginate/polyvinyl alcohol@ ZnNPs with SPI scaffold for evaluation of immune-stimulating and liver-protective effects in methotrexate-treated rats. Int J Biol Macromol 2025; 311:143514. [PMID: 40286953 DOI: 10.1016/j.ijbiomac.2025.143514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Fabrication of new 3D scaffold based on sodium alginate (SA), polyvinyl alcohol (PVA), sesame protein isolate (SPI) and Zinc nanoparticles (ZnNPs) has been prepared. SPI was extracted and evaluated via its amino acid composition, solubility, and antioxidant activity. The scaffolds were formulated with different ratios of SA/PVA/Zn/SPI and investigated via different instruments FTIR, XRD and SEM/EDX. Additionally, the effect of the scaffold on the hepato-protection and immune-stimulating in methotrexate (MTX) treated rats has been studied. The results showed that SPI rich in Arginine (21.33 %), Histidine (15 %), Aspartic acid (12.7 %) and Glutamic acid (9.69 %). SPI exhibited higher solubility and antioxidant activity at pH 7 (47.55 and 87.23 %) when measured by DPPH and ABTS methods respectively. SPI and Zn have the ability to mitigate the effects of MTX on body weight loss. SA/PVA/ZnNPs and SA/PVA/ZnNPs/SPI scaffolds have potential liver protection by down-regulating liver functions (34.83 ± 1.17 U/L and 27.83 ± 1.08 U/L, respectively for ALT and 53.00 ± 1.15 U/L and 48.29 ± 1.29 U/L, respectively for AST) and oxidative and inflammatory markers (MDA, IL-6, IL-1β, and TNF-α) and up-regulating liver antioxidant enzymes (GPx and SOD). Furthermore, the immune-enhancing effects of SA/PVA/ZnNPs and SA/PVA/ZnNPs/SPI scaffolds were demonstrated by the reduction in INF-γ (33.17 ± 0.94 pg/mL and 27.73 ± 0.68 pg/mL, respectively) and CD8 (381.5 ± 2.56 pg/mL and 337.8 ± 1.87 pg/mL, respectively) levels and the elevation in CD4/CD8 ratio (1.79 ± 0.02 and 3.00 ± 0.01, respectively) comparable to the MTX group (41.25 ± 0.85 pg/mL, 531.7 ± 2.56 pg/mL and 0.99 ± 0.005, respectively). Thus, the scaffold may have a role in liver protection and immune enhancement.
Collapse
Affiliation(s)
- Rasha S Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| | - Engy M Akl
- Fats and Oils Department, National Research Centre, Cairo, Egypt.
| | - Sawsan Dacrory
- Cellulose & Paper Department, National Research Centre, Giza, Egypt.
| |
Collapse
|
15
|
Khattab MA, Ahmed SM, Salama HG, Mekawy NH. Effect of olanzapine on testes of adult albino rats and the possible role of granulocyte colony stimulating factor versus umbelliferone light and electron microscopic study. Ultrastruct Pathol 2025; 49:265-287. [PMID: 40275515 DOI: 10.1080/01913123.2025.2495159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Olanzapine (OLZ) is one of atypical antipsychotic drugs (second generation) used for treating schizophrenia, manic, and mixed episodes of bipolar disorder. Continuous evaluation of its effects is necessary, and there is a need to explore alternative natural products as G-CSF and UMB to manage potential side effects. This research designed to mitigate the atypical antipsychotic drugs' adverse effects through biochemical analyses, light and electron microscopic studies. Fifty-six rats were divided into five groups: Control, OLZ, G-CSF, UMB, and Recovery groups. End body and testicular weights, serum testosterone, testicular MDA levels, and seminal analysis were recorded. Testicular specimens were processed to evaluate histological structure, PCNA, and CD34 immune expression. Morphometric and statistical analyses were also performed. OLZ group exhibited a distorted testicular structure, a significant increase in end body and a decline in testicular weight, a significant decline in the serum level of testosterone level, testicular MDA, and seminal analysis parameters. Furthermore, disturbed histoarchitecture, reduction in PCNA, and elevation in CD34 immunoreaction were observed. These alterations were partially attenuated by G-CSF therapy, whereas UMB significantly improved all parameters. In conclusion, UMB, and to a lesser degree G-CSF, appeared to be superior therapeutic options by attenuating oxidative stress and restoring intact histological structure and biochemical parameters.
Collapse
Affiliation(s)
- Maha A Khattab
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Samah M Ahmed
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Haidy G Salama
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Noura H Mekawy
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| |
Collapse
|
16
|
Singh A, Singh L, Dalal D. Neuroprotective potential of hispidulin and diosmin: a review of molecular mechanisms. Metab Brain Dis 2025; 40:188. [PMID: 40257619 DOI: 10.1007/s11011-025-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Flavonoids are an important class of natural products, particularly, belong to a class of plant secondary metabolites having a polyphenolic structure. They are widely found in fruits, vegetables, and certain beverages. Hispidulin and diosmin are naturally occurring flavonoids recognized for their potential health benefits, such as antioxidant, anti-inflammatory, and neuroprotective properties. Hispidulin is present in several plants, including Arnica montana, Salvia officinalis (sage), and Eupatorium arnottianum. Diosmin is mainly extracted from citrus fruits like lemons and oranges and can also be synthesized from hesperidin, another flavonoid found in citrus fruits. Neurodegenerative diseases are characterized by complex signaling pathways that contribute to neuronal deterioration. The JAK/STAT pathway is involved in inflammatory responses, while the NF-κB/NLRP3 pathway is associated with metabolic stress and inflammation, both facilitating neurodegeneration. Conversely, the AMPK/pGSK3β pathway is crucial for neuroprotection, regulating cellular responses to oxidative stress and promoting neuronal survival. Additionally, the BACE/Aβ pathway exacerbates neuronal damage by triggering inflammatory and oxidative stress responses, highlighting critical targets for therapeutic strategies. Hispidulin and diosmin have emerged as promising agents in the modulation of mediators involved in neuroinflammation and neurodegenerative diseases. Oxidative stress and inflammatory pathways, including those driven by Aβ/BACE1 and JAK/STAT signaling, are central to neuronal damage and disease progression. Recent studies highlight that hispidulin and diosmin exhibit notable neuroprotective effects by targeting these mediators. Hispidulin has been shown to impact key inflammatory cytokines and adhesion molecules, while diosmin influences proinflammatory cytokine production and inflammasome activation. Both compounds offer potential therapeutic benefits by modulating crucial mediators linked to neuroinflammation and neurodegeneration. This review article is designed to explore the intricate mechanistic interplay underlying the neuroprotective effects of hispidulin and diosmin.
Collapse
Affiliation(s)
- Anish Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Diksha Dalal
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
17
|
Yang YP, Nicol CJB, Chiang MC. A Review of the Neuroprotective Properties of Exosomes Derived from Stem Cells and Exosome-Coated Nanoparticles for Treating Neurodegenerative Diseases and Stroke. Int J Mol Sci 2025; 26:3915. [PMID: 40332773 DOI: 10.3390/ijms26083915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Neurological diseases, including neurodegenerative disorders and stroke, represent significant medical challenges due to their complexity and the limitations of current treatment approaches. This review explores the potential of stem cell (SC)-derived exosomes (Exos) as a transformative therapeutic strategy for these diseases. Exos, especially those derived from SCs, exhibit natural targeting ability, biocompatibility, and the capacity to cross the blood-brain barrier (BBB), making them ideal vehicles for drug delivery. This review provides an in-depth discussion of the properties and advantages of SC-Exos. It highlights their potential synergistic benefits in therapeutic approaches to treat neurological diseases. This article discusses the mechanisms of action of SC-Exos, highlighting their ability to target specific cells, modulate disease pathways, and provide controlled release of therapeutic agents. Applications in specific neurological disorders have been investigated, demonstrating the potential to improve outcomes in conditions such as Alzheimer's Disease (AD), Parkinson's Disease (PD), and stroke. Moreover, Exos-coated nanoparticles (NPs) combine the natural properties of Exos with the multifunctionality of NPs. This integration takes advantage of exosome membrane biocompatibility and targeting capabilities while preserving NPs' beneficial features, such as drug loading and controlled release. As a result, Exos-coated NPs may enhance the precision, efficacy, and safety of therapeutic interventions. In conclusion, SC-Exos represent a promising and innovative approach to treating neurological diseases.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Sinclair Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
18
|
Feng S, Jin Y, Ni X, Zheng H, Wu L, Xia Y, Zhou C, Liang T, Zhu Y, Xu J, Wu Q, Yang Y, Zhao L, Zhuang S, Li X. FGF1 ΔHBS ameliorates DSS-induced ulcerative colitis by reducing neutrophil recruitment through the MAPK pathway. Br J Pharmacol 2025. [PMID: 40258390 DOI: 10.1111/bph.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/17/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory bowel diseases (IBDs) constitute chronic inflammatory disease of the gastrointestinal tract, with escalating global prevalence. There is a pressing demand for safe and effective treatments for IBDs. Fibroblast growth factor 1 (FGF1) variant FGF1ΔHBS, characterised by reduced mitogenic capacity, has shown promising therapeutic potential in various inflammatory conditions, including obesity and diabetic nephropathy. Hence, exploring the therapeutic impact of FGF1ΔHBS on colitis is warranted. EXPERIMENTAL APPROACH The protective role of FGF1ΔHBS was evaluated using a dextran sulphate sodium (DSS)-induced colitis model in mice. RNA-seq analysis was performed on colonic tissues. Inflammatory factor expression was examined by quantitative real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay. Flow cytometry and immunofluorescence staining were employed to confirm the inhibitory effect of FGF1ΔHBS on neutrophil recruitment. Western blotting was performed to explore the mitogen-activated protein kinase (MAPK) signalling pathway. KEY RESULTS FGF1ΔHBS significantly alleviated DSS-induced colitis, as indicated by reduced Disease Activity Index scores and less histological injury to the colon. Additionally, FGF1ΔHBS decreased the expression of pro-inflammatory factors. Mechanistically, FGF1ΔHBS inhibited neutrophil-associated chemokine expression in intestinal epithelial cells by suppressing the MAPK signalling pathway, thereby reducing neutrophil recruitment and attenuating neutrophil-mediated intestinal inflammation. CONCLUSION AND IMPLICATIONS FGF1ΔHBS protects against DSS-induced colitis in mice by inhibiting neutrophil recruitment through MAPK activity suppression, suggesting a potential therapeutic strategy for preventing IBDs.
Collapse
Affiliation(s)
- Shuang Feng
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Yanyan Jin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Xinrui Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Haoxin Zheng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Linling Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Ying Xia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Changzhi Zhou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tong Liang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yunfei Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Juyi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qijin Wu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Yong Yang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Longwei Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Shentian Zhuang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xianjing Li
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Bishr A, Atwa AM, El-Mokadem BM, El-Din MN. Canagliflozin potentially promotes renal protection against glycerol-induced acute kidney injury by activating the AMPK/SIRT1/FOXO-3a/PGC-1α and Nrf2/HO-1 pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04017-x. [PMID: 40257493 DOI: 10.1007/s00210-025-04017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
The reno-protective potential of canagliflozin (Cana), an inhibitor of the sodium glucose-linked co-transporter-2 (SGLT-2), has been demonstrated in different models of kidney injury. However, its potential role in preventing glycerol (Gly)-induced acute kidney injury (AKI) remains to be divulged. Therefore, the aim of this study is to investigate the potential reno-protective effect of Cana and its underlying mechanism in a rat model of Gly-induced AKI. Rats were randomly allocated into five groups: normal, Gly, Gly pretreated with 10 mg/kg Cana, Gly pretreated with Cana 25 mg/kg, and normal pretreated with Cana 25 mg/kg for 14 consecutive days. Pretreatment with Cana improved renal structure and enhanced kidney functions manifested by reducing serum creatinine and blood urea nitrogen, as well as renal contents of neutrophil gelatinase-associated lipocalin and kidney injury molecule. Moreover, Cana signified its anti-inflammatory effect by reducing the Gly-induced elevation in renal contents of nuclear factor-κB and interleuκin-6. Additionally, Cana augmented the defense enzymatic antioxidants superoxide dismutase (SOD), manganese-SOD, and heme oxygenase-1, besides increasing the protein expression of the antioxidant transcription factor nuclear factor erythroid 2-related factor 2 to point for its ability to correct redox balance. Cana also upregulated the protein expression of the 5' adenosine monophosphate-activated protein kinase (AMPK), Sirtuin1 (SIRT1), Forkhead box protein O3 (FOXO-3a), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), as well as the transcriptional activity of growth arrest and DNA damage-inducible protein alpha (GAAD45a). In conclusion, Cana demonstrated potentially novel reno-protective mechanisms and mitigated the consequences of AKI through its antioxidant and anti-inflammatory properties, partially by activating the AMPK/SIRT1/FOXO-3a/PGC-1α pathway.
Collapse
Affiliation(s)
- Abeer Bishr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
| | - Bassant M El-Mokadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Mahmoud Nour El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| |
Collapse
|
20
|
Sharata EE, Attya ME, Khalaf MM, Rofaeil RR, Abo-Youssef AM, Hemeida RAM. Levomilnacipran alleviates cyclophosphamide-induced hepatic dysfunction in male Wistar albino rats; emerging role of α-Klotho/TLR4/p38-MAPK/NF-κB p65 and caspase-3-driven apoptosis trajectories. Int Immunopharmacol 2025; 152:114384. [PMID: 40056515 DOI: 10.1016/j.intimp.2025.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
AIM This study aims to investigate the potential protective effect of levomilnacipran (LVM) against cyclophosphamide (CPA)-induced hepatotoxicity by targeting α-Klotho/TLR4/p38-MAPK/NF-κB p65 and Caspase-3-dependent apoptosis signaling pathways. MAIN METHODS The toxicity of CPA was assessed using biochemical analysis of the serum hepatotoxicity parameters (AST, ALT, and direct bilirubin) and histopathological examination. Hepatic MDA and SOD were evaluated. The ELISA procedure was employed to evaluate the levels of hepatic TNF-α, IL-1β, and IL-18, hepatic caspase-3, and serum α-Klotho. The expression of hepatic TLR4 and NF-κB p65 was examined using an immunohistochemical technique. A western blot assay was used to determine the expression of MYD88, and p38-MAPK. KEY FINDINGS LVM abrogated CPA-induced hepatotoxicity by reducing the elevated hepatoxicity markers and mitigating the histopathological aberrations. It also lowered MDA content and increased SOD activity. Furthermore, it reduced TNF-α, IL-1β, and IL-18 contents, as well as caspase-3 activity. Additionally, LVM diminished TLR4, MYD88, NF-κB p65, and p38 MAPK expression and boosted the levels of α-Klotho. SIGNIFICANCE LVM alleviated hepatic injury generated by CPA via downregulating TLR4/p38 MAPK/NF-κB p65 signaling cascade through the participation of α-Klotho, as well as inhibiting caspase-3-driven apoptosis.
Collapse
Affiliation(s)
- Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Remon Roshdy Rofaeil
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| |
Collapse
|
21
|
Chen Y, Chen M, Chen H, Zhu JH, Liang C, Wu S, Gu S, Sun W, Yan J. Crosstalk patterns of necroptosis signaling and NLRP3 inflammasome in the colonic epithelium and its initial role in colitis. Int Immunopharmacol 2025; 152:114413. [PMID: 40088873 DOI: 10.1016/j.intimp.2025.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Inflammation-mediated epithelial damage, including necroptosis of the intestinal epithelia, can lead to subsequent immune responses, but the molecular mechanisms of inflammation in the initial stages are not well understood. Based on cellular experiments and mouse models, we investigated the activation of the NLRP3 inflammasome under necroptotic conditions, and its contribution to the inflammatory response in colitis. Our results showed that, under inflammatory conditions, intestinal epithelial cells (IECs) undergo phosphor-MLKL-dependent necroptosis with subsequent activation of the NLRP3 inflammasome for caspase-1 activation and IL-1β maturation. Mechanisms investigation revealed that components of the inflammasome were primed through the NF-κB signaling pathway and ASC-NLRP3 organization was dependent on mitochondrial reactive oxygen species (ROS), which could be promoted by necroptosis signaling. In addition, we found that Tempol, a kind of compound for ROS neutralization, could effectively reduce intestinal inflammation in mice by inhibiting the activation of the NLRP3 pathway in epithelia. Taken together, our research suggests that the necroptosis-triggered NLRP3 inflammasome in IECs plays an important role in the initiation of epithelial shedding and further inflammatory response in colitis. Our results provide a novel insight into the use of the ROS inhibitor Tempol as a treatment for the prevention of immune response and inflammation-induced tissue damage in the intestinal epithelium and thus as a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Yujiao Chen
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China; Department of Laboratory Medicine, the Second People's Hospital of Lianyungang City, Jiangsu Province 222023, China
| | - Min Chen
- Department of Electrocardiogram examination, Guangzhou First People's Hospital, Guangzhou, China
| | - Huifang Chen
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jin-Hong Zhu
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Chanyang Liang
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Sijie Wu
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Suda Gu
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Weimin Sun
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China.
| | - Jie Yan
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Hildebrandt J, Bauerschlag DO, Fricker G, Girreser U, Konukiewitz B, Kellers F, Maass N, Clement B, Flörkemeier I. In Vivo and In Vitro Pharmacokinetic Studies of a Dual Topoisomerase I/II Inhibitor. ACS Pharmacol Transl Sci 2025; 8:1050-1071. [PMID: 40242581 PMCID: PMC11997890 DOI: 10.1021/acsptsci.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/18/2025]
Abstract
Due to high mortality rates, new and more effective drugs are urgently needed in cancer therapy. The novel dual topoisomerase inhibitor P8-D6, a dimethylaminoethyl-substituted pyridophenanthroline, showed in vitro impressive induction of apoptosis in tumors such as ovarian cancer or multiple myeloma compared to the current standard therapy. The purpose of this study was to investigate its in vitro and in vivo pharmacokinetics and to discover further potential drug candidates. Samples of plasma, various tissues, urine, feces, and cell culture supernatants were examined by HPLC. In addition, the efficacy of the metabolites against ovarian cancer was determined in vitro. Three phase I metabolites were identified in vitro and in vivo, and one phase II metabolite was identified in vivo. Among the metabolites, N-dealkylated P8-D6 (P8-D6 mono) achieved efficacy similar to that of P8-D6 in ovarian cancer. P8-D6 showed a relevant inhibitory effect on the efflux pumps P-GP (IC50 = 20.63 μM) and BCRP (16.32 μM). The calculated oral bioavailability in Sprague-Dawley rats was 21.5%, while P8-D6 had a high plasma protein binding of 99% and an extensive tissue distribution with an apparent volume of distribution between 57.69 (i.v.) and 82.92 (p.o.) L/m2. Both P8-D6 and its metabolites were detected in urine and feces. This study provides a basis for the clinical application of P8-D6 and has also identified P8-D6 mono as a very potent and metabolically stable drug candidate.
Collapse
Affiliation(s)
- Jonas Hildebrandt
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
| | - Dirk O. Bauerschlag
- Department
of Gynaecology and Obstetrics, University
and University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
- Department
of Gynecology and Reproductive Medicine, Jena University Hospital, Jena 07747, Germany
| | - Gert Fricker
- Ruprecht-Karls
University, Institute of Pharmacy and Molecular Biotechnology, Heidelberg 69120, Germany
| | - Ulrich Girreser
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
| | - Björn Konukiewitz
- Department
of Pathology, University and University
Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Franziska Kellers
- Department
of Pathology, University and University
Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Nicolai Maass
- Department
of Gynaecology and Obstetrics, University
and University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Bernd Clement
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
| | - Inken Flörkemeier
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
- Department
of Gynaecology and Obstetrics, University
and University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| |
Collapse
|
23
|
Nasr G, Ali DME, Fawzy MA, Ali FEM, Fathy M. Combined quercetin with phosphodiesterase inhibitors; sildenafil and pentoxifylline alleviated CCl 4-induced chronic hepatic fibrosis: Role of redox-sensitive pathways. Food Chem Toxicol 2025; 201:115442. [PMID: 40220882 DOI: 10.1016/j.fct.2025.115442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Liver fibrosis is a common pathological condition that is caused by complicated molecular and cellular processes. This study evaluated the therapeutic potential of combined quercetin (QU) with either sildenafil (Sild) or pentoxifylline (PTX) in chronic carbon tetrachloride (CCl4)-induced liver fibrosis in Wistar albino rats. Fibrosis was induced by CCl4 injections (1.5 mg/kg, i.p.) three times weekly for 10 weeks. After six weeks, rats received oral QU (50 mg/kg/day), Sild (50 mg/kg/day), or PTX (10 mg/kg twice/day) individually or in combination for the remaining four weeks. Results showed significant alterations in liver biochemical markers, histopathology, oxidative stress, inflammation, apoptosis, and hypoxic responses due to CCl4 exposure. These changes included reduced expression of Nrf-2, HO-1, and cytoglobin, alongside increased levels of NF-κB, cleaved caspase-3, TNF-α, IL-1β, and HIF-1. Notably, QU, Sild, and PTX, individually or in combination, improved these parameters. The combination of QU with Sild or PTX proved more effective than single treatments, modulating anti-oxidant (Nrf2/HO-1/cytoglobin), anti-inflammatory (NF-κB/TNF-α), and hypoxic signaling pathways (HIF-1α). In conclusion, QU combined with phosphodiesterase inhibitors shows promise as a therapy for liver fibrosis, offering enhanced protection through anti-oxidants and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Gehad Nasr
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | | | - Michael A Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 77110, Jordan.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Biochemistry Department, Faculty of Pharmacy, Minia National University, New Minia, Egypt
| |
Collapse
|
24
|
Yan J, Xu X, Zhu Y, Wang Y, Duan X. Escin Ia ameliorates DSS-induced chronic colitis in mice by inhibiting inflammation and oxidative stress via the LOXL2/MMP-9 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119623. [PMID: 40090427 DOI: 10.1016/j.jep.2025.119623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/16/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aesculus wilsonii Rehd.'s dried mature seeds are the source of escin, a significant triterpenoid saponin. Aesculus wilsonii Rehd was first mentioned in the Compendium of Materia Medica, according to the Chinese Pharmacopoeia. It possesses the effectiveness of anti-inflammatory as well as treating gastrointestinal disorders. Escin Ia is the primary active component of escin, exhibiting significant antioxidant and anti-inflammatory properties. An increasing number of studies have demonstrated that escin exhibits a broad spectrum of pharmacological activities beneficial for the protection against gastrointestinal diseases. AIM OF THE STUDY Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that can be managed through pharmacological treatment; however, it features a high recurrence rate as well as propensity for complications. Therefore, reducing the rate of recurrence and improving the recurrence symptoms should be the primary focus of clinical prevention and treatment. Therefore, this research aims to study the effects of escin Ia on inflammation as well as oxidative stress in mice with chronic UC and to explain the molecular mechanisms underlying its potential to improve recurrent symptoms in UC mice. MATERIALS AND METHODS A mouse model of colitis produced via dextran sodium sulfate (DSS) was developed for in vivo studies. A model of inflammation was created in vitro using caco-2 cells that were generated by lipopolysaccharide (LPS). Through the observation of colitis symptoms and histological morphology in mice, the protective effect of escin Ia against colitis was ascertained. The enzyme-linked immunosorbent assay (ELISA) and biochemical kits were then harnessed to measure the levels of oxidative stress markers as well as inflammatory factors. Additionally, to identify the possible target and molecular mechanism of escin Ia, qRT-PCR and western blotting, immunofluorescence, molecular docking, and molecular dynamics modeling were employed. RESULTS We demonstrated that escin Ia remarkably improved the colitis symptoms as well as histological features of DSS-treated mice, lowered the levels of proinflammatory cytokines as well as oxidative stress biomarkers, and subsequently restored the permeability of the intestinal mucosa. Additionally, high expression of LOXL2 significantly reduced the protective effects of escin Ia in both inflamed mice and Caco-2 cells. Furthermore, escin Ia exhibited a strong binding affinity and notable stability with LOXL2. CONCLUSION Escin Ia inhibits inflammation and oxidative stress through the LOXL2/MMP-9 pathway, thereby restoring intestinal mucosal barrier function. Improved recurrent symptoms in mice with enteritis.
Collapse
Affiliation(s)
- Jing Yan
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin, 541199, China
| | - Xiaotian Xu
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Yizhun Zhu
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Yuhui Wang
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin, 541199, China.
| | - Xiaoqun Duan
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China; School of Biomedical Industry, Guilin Medical University, Guilin, 541199, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China.
| |
Collapse
|
25
|
Alami M, Morvaridzadeh M, El Khayari A, Boumezough K, El Fatimy R, Khalil A, Fulop T, Berrougui H. Reducing Alzheimer's disease risk with SGLT2 inhibitors: From glycemic control to neuroprotection. Ageing Res Rev 2025; 108:102751. [PMID: 40204129 DOI: 10.1016/j.arr.2025.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Recent research has established a strong link between metabolic abnormalities and an increased risk of dementia. In parallel, there is growing epidemiological evidence supporting the neuroprotective effects of antidiabetic medications against cognitive impairments. Among these, sodium-glucose co-transporter (SGLT2) inhibitors have emerged as pharmacological candidates with promising potential in alleviating the burden of age-related diseases, particularly neurodegenerative diseases (NDD). SGLT2 inhibitor therapies are FDA-approved medications routinely prescribed to manage diabetes. This novel class was initially developed to address cardiovascular disorders and to reduce the risk of hypoglycemia associated with insulin-secretagogue agents. It subsequently attracted growing interest for its beneficial effects on central nervous system (CNS) disorders. However, the molecular mechanisms through which these glucose-lowering therapies mitigate cognitive decline and limit the progression of certain brain degenerative diseases remain largely unexplored. Consequently, the neuroscientific community needs further studies that gather, analyze, and critically discuss the available mechanistic evidence regarding the neuroprotective effects of SGLT2 inhibitors. This review aims to critically examine the most relevant published findings, both in vitro and in vivo, as well as human studies evaluating the impact of SGLT2 inhibitors exposure on Alzheimer's disease (AD). It seeks to integrate the current understanding of their beneficial effects at the molecular level and their role in addressing the pathophysiology and neuropathology of AD. These insights will help extend our knowledge of how SGLT2 inhibitor therapies are associated with reduced risk of dementia and thus shed light on the link between diabetes and AD.
Collapse
Affiliation(s)
- Mehdi Alami
- Sultan Moulay Sliman University, Polydisciplinary Faculty, Department of Biology, Beni Mellal, Morocco; University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Mojgan Morvaridzadeh
- University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Abdellatif El Khayari
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Ben-Guerir 43150, Morocco; Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kaoutar Boumezough
- Sultan Moulay Sliman University, Polydisciplinary Faculty, Department of Biology, Beni Mellal, Morocco; University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Rachid El Fatimy
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Ben-Guerir 43150, Morocco
| | - Abdelouahed Khalil
- University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Tamas Fulop
- University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Hicham Berrougui
- Sultan Moulay Sliman University, Polydisciplinary Faculty, Department of Biology, Beni Mellal, Morocco; University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada.
| |
Collapse
|
26
|
Abdel-Rahman N, Abdel-Rahman AM, Sharawy MH. Regulating ferroptosis by roflumilast attenuates cisplatin-induced kidney injury. Int Immunopharmacol 2025; 151:114331. [PMID: 39983419 DOI: 10.1016/j.intimp.2025.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Acute kidney injury (AKI) represents a concerning health challenge that alters renal structure and function. Ferroptosis has been identified as a cell death mechanism involved in AKI. Cisplatin is a widely used antineoplastic agent, but AKI is a serious limitation to its clinical use. We explored the effect of roflumilast on cisplatin-induced AKI. Wistar rats were divided into 3 groups (n = 7 per group); control group, cisplatin group rats received a single injection (7 mg/kg, i.p.), and roflumilast/cisplatin group: roflumilast was given two days earlier and one hour before cisplatin injection and was continued for the following five days. Kidney histological structure and renal function were assessed. Additionally, the effect on the antioxidant reduced glutathione (GSH) and malonaldehyde (MDA), the lipid peroxidation product, were investigated. Ferroptosis regulators such as xCT subunit of system Xc-, ferritin and nuclear factor erythroid 2-related factor 2 (Nrf2) were assessed in renal tissue by ELISA whereas glutathione peroxidase 4 (GPX4) was assessed by both ELISA and immunohistochemistry. Histopathological evaluation showed that roflumilast ameliorated the renal structure and biochemical assessment of serum creatinine and blood urea nitrogen showed improvement in renal function. Roflumilast lowered renal MDA levels and elevated renal GSH levels demonstrating its antioxidant activity. Renal expression of GPX4 and xCT subunit of system Xc- were elevated by roflumilast. Moreover, renal levels of ferritin and Nrf2 were increased. These results propose that roflumilast exerted a renoprotective effect by alleviating oxidative stress and inhibiting ferroptosis suggesting a new repurposed role for roflumilast.
Collapse
Affiliation(s)
- Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Ahmed M Abdel-Rahman
- Department of Nephrology, Urology and Nephrology Center, Mansoura University, 35516 Mansoura, Egypt.
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
27
|
Abdollah MRA, Aly MH, Wally ME, Sedky NK, Saadawy AH, Badr E, Tolba MF. Trimetazidine mitigates methotrexate-induced liver damage: Insights From biochemical, histological, and in silico analyses. Arch Pharm (Weinheim) 2025; 358:e2400726. [PMID: 40165666 DOI: 10.1002/ardp.202400726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/17/2025] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
This study aimed at generating preliminary evidence for the potential utility of repurposing the clinically approved anti-ischemic drug trimetazidine (TMZ) against methotrexate (MTX)-induced hepatotoxicity. In this study, rats received MTX (30 mg/kg) with or without TMZ pretreatment (20 mg/kg). MTX caused a 2.7-3.6-fold increase in serum transaminases, while TMZ pretreatment caused a 37%-40% reduction. Regarding oxidative markers, MTX significantly suppressed the antioxidant glutathione (GSH) levels by 37% and elevated malondialdehyde (MDA) levels by 29%, while TMZ boosted GSH levels by 40% and reduced MDA levels by 20%. Next, we assessed nuclear factor kappa B (NF-κB) (p-65), nuclear factor erythroid 2-related factor 2 (Nrf2) and hemoxygenase-1 (HO-1) to find that MTX significantly elevated the levels of the proinflammatory nuclear factor kappa B (NF-κB) (p65) by 2.4-fold, while TMZ pretreatment reduced its levels by 48%. Conversely, MTX decreased the levels of Nrf2, HO-1, and adenosine triphosphate (ATP) by 55%-71%, while TMZ led to a threefold increase in their levels. Regarding apoptosis, MTX caused a five to sixfold elevation in B-cell lymphoma 2 associated X (Bax)/B-cell lymphoma 2 (BCL2) ratio and caspase-3, while TMZ pretreatment caused a threefold reduction in their levels. An in silico analysis of TMZ protein target-prediction revealed statistically enriched pathways related to oxidative stress, inflammation, and apoptosis. In conclusion, pretreatment with TMZ successfully ameliorated MTX-induced alterations in serum aminotransferases, liver histology, oxidative stress, and apoptosis. Pathway enrichment analysis (PEA) showed that TMZ is involved in multiple signaling and immune-related pathways that might be, at least partly, implicated in its cytoprotective effects.
Collapse
Affiliation(s)
- Maha R A Abdollah
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Health Research Center of Excellence; Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Mohamed H Aly
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Health Research Center of Excellence; Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Maha E Wally
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Health Research Center of Excellence; Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Nada K Sedky
- Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Ahmed H Saadawy
- Biomedical Sciences Program, University of Science and Technology, Zewail City, Giza, Egypt
| | - Eman Badr
- Biomedical Sciences Program, University of Science and Technology, Zewail City, Giza, Egypt
- Information Technology Department, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
28
|
Jannesar K, Soraya H. MPO and its role in cancer, cardiovascular and neurological disorders: An update. Biochem Biophys Res Commun 2025; 755:151578. [PMID: 40043618 DOI: 10.1016/j.bbrc.2025.151578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Myeloperoxidase (MPO) is an enzyme that contains a heme group, found mostly in neutrophils and in small amounts in monocytes and plays a major role in their anti-microbial activity. However, excessive levels of MPO have been linked to various disorders and identified as a major cause of tissue destruction. Inhibiting its activity can reduce the severity and extent of tissue damage. Over activity of MPO during chronic inflammation has been shown to be involved in tumorigenesis by inducing a hyper-mutagenic environment through oxidant interaction with DNA, causing DNA modification. Vascular endothelium is one of the most important targets of MPO and high levels have been associated with increased rates of cardiomyopathy, ischemic stroke, heart failure, myocardial infarction, and atrial fibrillation. Therefore, it may be considered a therapeutic target in the treatment of cardiovascular disorders. MPO also participates in the pathogenesis of neurodegenerative diseases. For example, an increase in MPO levels has been observed in the brain tissue of patients with Alzheimer's, Multiple sclerosis (MS), and Parkinson's diseases. In Alzheimer's disease, active MPO is mostly found in the location of beta amyloids and microglia. Therefore, targeting MPO may be a potential treatment and prevention strategy for neurological disorders. This review will discuss MPO's physiological and pathological role in cancer, cardiovascular, and neurological disorders.
Collapse
Affiliation(s)
- Kosar Jannesar
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
29
|
Hu WS, Lin CL. Beneficial effect of sodium-glucose cotransporter-2 inhibitors on mortality among patients with cancer and diabetes mellitus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4355-4360. [PMID: 39466440 DOI: 10.1007/s00210-024-03553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
The work attempts to describe mortality outcomes of sodium-glucose cotransporter-2 inhibitor (SGLT2I) in patients with diabetes mellitus (DM) and cancer. Using Taiwan's National Health Insurance Research Database to analyze the prognosis of cancer patients with coexisting DM, comparing those receiving SGLT2I with those who do not. After index-year and matching (age, sex, some comorbidities and medications), we obtain two groups of 20,339 patients. After further adjustment for age, sex and comorbidities, those with SGLT2I had a lower adjusted hazard ratio of mortality (aHR: 0.64 [95% CI: 0.60-0.68]). We conclude that SGLT2I medication should be considered first choice in patients suffering from DM and cancer.
Collapse
Affiliation(s)
- Wei-Syun Hu
- School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, 2, Yuh-Der Road, Taichung, 40447, Taiwan.
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, 40447, Taiwan
| |
Collapse
|
30
|
Liu Y, Ren Q, Qin H, Huang M, Mao J, Xi B, Zhang S. Comparative study on the anti-alcoholic liver disease efficiency of the ethanol- and water-soluble polysaccharides from Baijiu vinasses. Int J Biol Macromol 2025; 299:140087. [PMID: 39842569 DOI: 10.1016/j.ijbiomac.2025.140087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Ethanol- and water-soluble polysaccharides were extracted from Baijiu vinasses (EP and WP), respectively. EP was dominantly composed by arabinose, glucose and xylose with molar ratio of 8.81: 76.82: 6.9. While, WP was dominantly composed by galactose, glucose and mannose with molar ratio of 8.32: 56.05: 25.19. The molecular weights and reducing sugar contents in EP and WP were 6.2 kDa vs. 16.1 kDa and 24.52 ± 0.97 % vs. 19.77 ± 0.75 %, respectively. Alterations in activation of the Nrf2/HO-1 signalling pathway and increases in the abundance of Lachnospiraceae and Akkermansia and their associated metabolisms could be the general mechanism by which Baijiu vinasses (BV) polysaccharides alleviated alcohol-induced liver disease (ALD) in mice. Due to the different physicochemical characteristics, the ALD alleviation efficiency was different. EP exhibited higher efficiency in oxidative stress suppressing and lipid alternation by activating the peroxisome proliferators-activated receptors (PPAR) signalling pathway. WP exhibited higher efficiency in liver damage repairing with the controlment in tryptophan metabolism pathway. This study exhibited the potential biofunction of BV polysaccharides in ALD alleviation and could promote the BV upcycling.
Collapse
Affiliation(s)
- Yizhou Liu
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qingxi Ren
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hui Qin
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Mengyang Huang
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Jian Mao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Beidou Xi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Suyi Zhang
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China.
| |
Collapse
|
31
|
Apaydin Yildirim B, Dogan T, Aktas Senocak E, Yildirim S, Kordali S, Yildirim F. Punica granatum L. peel extract protects diabetic nephropathy by activating the Nrf-2/HO-1 pathway. Acta Diabetol 2025; 62:469-480. [PMID: 39259236 DOI: 10.1007/s00592-024-02371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Diabetes raises cardiovascular morbidity and mortality worldwide and causes retinopathy, neuropathy, and nephropathy. Punica granatum L. (Pomegranate) is a fruit that has been used for its medicinal properties in various cultures. This article aims to investigate the antioxidant, anti-inflammatory, anti-apoptotic activity of Punica granatum L. peel ethanol extract (PGE) and its efficacy on NF-κB and Nrf-2/HO-1 signaling pathways in kidney tissue of rats with streptozotocin-induced diabetes. Single dose STZ 60 mg/kg/i.p. rats were given to induce diabetes and blood glucose measurements were taken 7 days later. PGE 10 mg/kg/p.o. administered to the treatment groups for 20 days. Blood, kidney, and pancreas samples taken from anesthetized rats were analyzed biochemically and histopathologically. It was observed that STZ increased the levels of urea, uric acid and creatine in the blood, while PGE significantly decreased these parameters. The diabetic group had higher MDA and lower renal tissue GSH level, CAT, GPx, and SOD activity than the control group. STZ also enhanced inflammation, apoptosis, Bax, Caspase-3, and NF-κB expression, and decreased Bcl-2, HO-1, and Nrf-2 expression. Experimental results showed that PGE has the potential to alleviate the harmful effects on the kidney and pancreas by altering the mentioned parameters in diabetic rats.
Collapse
Affiliation(s)
- Betul Apaydin Yildirim
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Tuba Dogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Esra Aktas Senocak
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Türkiye.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Saban Kordali
- Department of Plant Protection, Faculty of Agriculture, Mugla Sitki Kocaman University, Fethiye, Mugla, Türkiye
| | - Fatih Yildirim
- Department of Animal Science, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
32
|
Abdelhady R, Arab HH, Fakhr Eldeen RR, Shalaby HN, Nawwar DA, Elhemely MA, Sayed RH. Unveiling the Therapeutic Potential of Dulaglutide in Mitigating Tacrolimus-Induced Nephrotoxicity Through Targeting the miR-22/HMGB-1/TLR4/MyD88/NF-κB Trajectory. Arch Pharm (Weinheim) 2025; 358:e3127. [PMID: 40205909 PMCID: PMC11983086 DOI: 10.1002/ardp.202500023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/23/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Tacrolimus (Tac) is an immunosuppressive drug used to reduce the risk of allograft rejection; however, it can induce renal injury. High mobility group box 1 (HMGB-1) protein, which induces inflammation through the aberrant stimulation of the Toll-like receptor 4 (TLR4)/myeloid differentiation primary response protein (MyD88)/nuclear factor kappa B (NF-κB) trajectory, could represent a molecular target for alleviating Tac-induced renal damage. The present study aimed to investigate the potential protective role of the GLP-1 agonist, dulaglutide (Dula), against Tac-induced nephrotoxicity in rats. Rats were administered Tac (5 mg/kg/day) and vehicle or Dula (0.2 mg/kg once a week) for 14 days. Treatment with Dula reduced serum creatinine plus blood urea nitrogen and attenuated Tac-induced renal histopathological changes. Dula treatment also hampered renal inflammation and restored redox homeostasis, as indicated by remarkably reduced tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA), and NADPH oxidase 1 levels alongside marked replenishment in reduced glutathione (GSH) content. These effects were mediated through the upregulation of miR-22 expression and the consequent inhibition of the HMGB-1/TLR4/MyD88/NF-κB trajectory. Collectively, Dula has been demonstrated to protect rats against Tac-induced nephrotoxicity by reducing inflammation, restoring redox homeostasis, and modulation of the miR-22/HMGB-1/TLR4/MyD88/NF-κB trajectory. Dula may be beneficial clinically in preventing Tac-induced renal injury.
Collapse
Affiliation(s)
- Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of PharmacyFayoum UniversityFayoumEgypt
- Pharmacology and Toxicology Department, Faculty of PharmacyEgyptian Chinese UniversityCairoEgypt
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of PharmacyTaif UniversityTaifSaudi Arabia
| | - Rasha R. Fakhr Eldeen
- Biochemistry Department, College of Pharmaceutical Sciences and Drug ManufacturingMisr University for Science and Technology6th of October CityEgypt
| | - Heba Nasr Shalaby
- Pharmacology and Toxicology Department, Faculty of PharmacyCairo UniversityCairoEgypt
| | - Dalia A. Nawwar
- Pharmacology and Toxicology Department, Faculty of PharmacyCairo UniversityCairoEgypt
| | - Mai Abdallah Elhemely
- School of Medical Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Department of Pharmacology and Toxicology, Faculty of PharmacyBeni‐Suef UniversityBeni‐SuefEgypt
| | - Rabab H. Sayed
- Pharmacology and Toxicology Department, Faculty of PharmacyCairo UniversityCairoEgypt
- School of PharmacyNewgiza UniversityGizaEgypt
| |
Collapse
|
33
|
Al-Khawalde AAMA, Abukhalil MH, Althunibat OY, Jaber FA, Alaryani FS, Saleh AM, Albalawi AE, Alhasani RH. Taxifolin mitigates cisplatin-induced testicular damage by reducing inflammation, oxidative stress, and apoptosis in mice. Tissue Cell 2025; 93:102767. [PMID: 39904193 DOI: 10.1016/j.tice.2025.102767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Cisplatin (CIS) is effective against various cancers but causes significant side effects, including testicular damage. This study investigated the effects of taxifolin (TX), a potent flavonoid with well-known benefits, against CIS-induced testicular injury. Mice received TX (25 and 50 mg/kg) orally for 14 days, with a single injection of CIS (7 mg/kg) on day 8. CIS significantly impaired sperm parameters (motility, viability, and count) and caused notable histopathological alterations in testicular tissue. CIS-treated testicular tissue exhibited elevated MDA and protein carbonyl levels, alongside decreased antioxidant defenses, including GSH, SOD, and catalase activities. TX significantly mitigated the deterioration of sperm parameters and prevented testicular tissue damage. It also restored antioxidant levels and reduced MDA and protein carbonyl contents. Furthermore, CIS elevated pro-inflammatory markers (NF-κB p65, TNF-α, and IL-1β) and apoptosis markers (Bax and caspase-3), while reducing anti-apoptotic Bcl-2 levels. TX effectively suppressed NF-κB activation, reduced pro-inflammatory cytokine production, and inhibited apoptosis in CIS-treated mice. Overall, TX alleviated CIS-induced oxidative stress, inflammation, apoptosis, and testicular damage, thereby improving sperm quality. These findings emphasize TX's potential as a protective agent against CIS-induced testicular damage and warrant further research in human applications.
Collapse
Affiliation(s)
- Alayn' Al-Marddyah A Al-Khawalde
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan; Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an 71111, Jordan.
| | - Osama Y Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan; Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid 21110, Jordan
| | - Fatima A Jaber
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Fatima S Alaryani
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Alaa M Saleh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura, Makkah, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of science, University of Tabuk, Tabuk 47913, Saudi Arabia
| | - Reem H Alhasani
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
34
|
Alanazi ST, Salama SA, Althobaiti MM, Bakhsh A, Aljehani NM, Alanazi E, Alanazi MT, Musa A. Theaflavin alleviates cisplatin-induced nephrotoxicity: Targeting SIRT1/p53/FOXO3a/Nrf2 signaling and the NF-kB inflammatory cascade. Food Chem Toxicol 2025; 198:115334. [PMID: 39978533 DOI: 10.1016/j.fct.2025.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Cisplatin is a widely used chemotherapeutic agent. Nevertheless, a significant fraction of cisplatin-treated patients develops nephrotoxicity which limits cisplatin therapeutic implementation. The current work was devoted to investigate the potential nephroprotective impact of theaflavin against the cisplatin-induced nephrotoxicity using male Wistar rats as a mammalian model. The results indicated that theaflavin significantly improved the renal histopathological picture and glomerular filtration rate, along with reduced renal injury marker KIM-1, urinary albumin/creatinine ratio, serum creatinine, and urea. Mechanistically, theaflavin upregulated protein level of SIRT1 and downregulated the acetylated forms of the inflammatory transcription factor (TF) NF-kB, the antioxidant TF FOXO3a, and the pro-apoptotic TF p53 in the cisplatin-treated rats. Additionally, it upregulated the antioxidant TF Nrf2. In the same context, it suppressed the inflammatory responses, oxidative stress, and apoptosis. NF-kB nuclear translocation and levels of its responsive gene products IL-6 and TNF-α were suppressed. Lipids and DNA oxidation were reduced, and level of the antioxidant GSH and activity of the antioxidant enzymes SOD, GPx, and CAT were increased. The apoptotic markers caspase-3, BAX, and Bcl2 were modulated. Collectively, these findings highlight the nephroprotective competency of theaflavin against cisplatin-induced nephrotoxicity and underscore modulations of SIRT1, p53, FOXO3a, Nrf2, and NF-kB as potential targets.
Collapse
Affiliation(s)
- Samyah T Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Musaad M Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Afnan Bakhsh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Najla M Aljehani
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 13316, Saudi Arabia
| | - Ebtisam Alanazi
- Cardiac Center King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Maha T Alanazi
- Medical Imaging, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| |
Collapse
|
35
|
Khalaf MM, Hassanein EHM, Qebesy HS, Ahmed AA, Mahmoud HM. Granisetron ameliorates doxorubicin-evoked nephrotoxicity via modulation of Nrf2 and TLR4/p38 MAPK/NLRP3 signals in rats. Tissue Cell 2025; 93:102744. [PMID: 39855027 DOI: 10.1016/j.tice.2025.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Doxorubicin (DOX) is an anthracycline chemotherapy employed in treating malignancies. Unfortunately, the clinical application of DOX is limited due to its nephrotoxicity. Granisetron (GRAN) is a 5-HT3 receptor blocker used widely to manage post-chemotherapy nausea and vomiting with anti-inflammatory, anti-oxidant, and anti-apoptotic bioactivities. We plan to examine the renoprotective effect of GRAN against DOX-associated renal toxicity. In this investigation, twenty-four adult male Wistar rats were allocated to control, DOX (30 mg/kg, i.p), and GRAN (2.5 mg/kg, p.o) + DOX groups. GRAN attenuated renal impairment induced by DOX in rats by decreasing the BUN, creatinine, KIM-1, and Cys-C levels, and such finding is supported by attenuating histological alterations caused by DOX. GRAN combated oxidative stress proved by decreasing MDA content and elevating GSH and CAT levels mediated by Nrf2 activation. GRAN suppressed inflammation evidenced by decreasing IL-6 and TNF-α levels mediated by downregulation of inflammatory sensitive controllers TLR-4, NLRP3, and p38 MAPK. GRAN prevented apoptosis by controlling renal expression of BAX, caspase-3 and Bcl2. Therefore, GRAN holds promise agent against DOX-induced renal toxicity by upregulating Nrf2 and suppressing apoptosis and inflammatory cascadeTLR4/p38 MAPK/ NLRP3.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Hamada S Qebesy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Abdullatif A Ahmed
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Heba M Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
36
|
Azouz AA, El komy MH, Elmowafy M, Mahmoud MO, Ali FE, Aboud HM. Crafting cationic lecithmer nanocomposites as promising wagons for brain targeting of cinnamaldehyde: Accentuated neuroprotection via downregulation of Aβ1-42/p-tau crosstalk. J Drug Deliv Sci Technol 2025; 106:106664. [DOI: 10.1016/j.jddst.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2025]
|
37
|
Daksh R, Mathew MS, Bosco AM, Sojan C, Tom AA, Bojja SL, Nampoothiri M. The role of exosomes in diagnosis, pathophysiology, and management of Alzheimer's Disease. Biochem Biophys Res Commun 2025; 754:151526. [PMID: 40015072 DOI: 10.1016/j.bbrc.2025.151526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with impaired cognitive function and memory loss. Currently, available therapeutics can effectively alleviate the symptoms of AD, but there is a lack of treatment to halt the progression of the disease. In recent years, exosomes have gained much attention due to their involvement in various neurological disorders. Exosomes are small extracellular vesicles comprising lipids, proteins, DNA, non-coding RNA, and mRNAs, can carry various therapeutic molecules, and are potential drug delivery vehicles. Exosomes are known as a double-edged sword due to their involvement in both the pathogenesis and management of AD. This review explores the function of exosomes in the pathophysiology, treatment, and diagnosis of AD, also emphasizing their potential as a targeted drug delivery carrier to the brain. This review seeks to provide novel perspectives to understand better the onset, targeted treatment, and diagnosis of AD using exosomes.
Collapse
Affiliation(s)
- Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Meby Susan Mathew
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Aan Mery Bosco
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Christy Sojan
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Antriya Annie Tom
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
38
|
Malak MN, Arafa EA, Abdel-Fattah MM, Khalaf MM, Arab HH, Hamzawy MA. Targeting EGFR/PI3K/AKT/mTOR and Bax/Bcl-2/caspase3 pathways with ivermectin mediates its anticancer effects against urethane-induced non-small cell lung cancer in BALB/c mice. Tissue Cell 2025; 95:102873. [PMID: 40174264 DOI: 10.1016/j.tice.2025.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/12/2025] [Accepted: 03/15/2025] [Indexed: 04/04/2025]
Abstract
Lung cancer's mortality is among the highest compared to other cancers globally. However, a recent study has shown that ivermectin, an antiparasitic drug, may have a promising anticancer effect on lung cancer. The present study aimed to investigate the impact of ivermectin on EGFR.3/PI3K4/AKT5/mTOR6 signaling pathway in NSCLC.7 Mice were divided into four groups; (1) normal; (2) oral ivermectin alone (5 mg/kg) daily; (3) NSCLC was induced by urethane (1.5 g/kg, i.p.) at days one and sixty; (4) NSCLC group treated with ivermectin. The effect of ivermectin on macroscopic, microscopic, and lung index was assessed. The antitumor and antiproliferative effects of ivermectin were investigated by CYFRA 21-1 level and Ki-67, respectively. IHC determined the molecular expression of EGFR8, while phosphorylated PI3K, AKT, and mTOR were quantified by Western blotting assay. ELISA assay of active caspase 3, Bcl-29, and BAX10 was used to assess the apoptotic effect of ivermectin. Finally, VEGF11 lung content was measured. Findings showed that ivermectin improved macro and microscopic pathological changes. Ivermectin induced cytotoxic effect as indicated by CYFRA 21-1 suppression besides enhancing BAX/Bcl-2 ratio and active caspase 3. The immunoexpression of Ki-67 and EGFR declined. Ivermectin remarkably reduced p-PI3K, p-AKT, p-mTOR, and VEGF expressions. Overall, the study proposes ivermectin as a promising drug for lung cancer through its orchestral regulation of EGFR/PI3K/AKT/mTOR/VEGF signaling.
Collapse
Affiliation(s)
- Marina N Malak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Elshaimaa A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates.
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohamed A Hamzawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
39
|
Saleem MAU, Zhao YX, Bano F, Tang YX, Li MZ, Malhi KK, Li XW, Li XN, Zhao Y, Li JL. Cadmium disrupted homeostasis of proximal renal tubular cells via targeting ATF4-CHOP complex into the nucleus. Poult Sci 2025; 104:105059. [PMID: 40220672 PMCID: PMC12017987 DOI: 10.1016/j.psj.2025.105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Cadmium, a ubiquitous toxic metal and environmental pollutant, is associated with several renal metabolic disorders and disrupts the homeostasis of kidneys in humans and animals. However, the precise molecular mechanism remains poorly elucidated. The present study investigated the role of the ATF4-CHOP nuclear transcriptional axis and its interactions with cellular pathways in cadmium-induced nephrotoxicity. We acquired 120 one-day-old chickens, randomly divided them into four groups (Con, Cd35, Cd70, Cd140), and were treated with graded cadmium doses for 90 days. The kidney tissues were collected for comprehensive histopathological, biochemical, and molecular analyses using western blotting, qRT-PCR, immunofluorescence, and tunel assay. Subsequently, we revealed that cadmium exposure induced ER stress, significantly upregulated CHOP expression, and activated pro-apoptotic ATF4-CHOP axis. Our findings revealed a complex interplay, where ER stress activated inflammation. Concurrently, mitochondrial disruption elevated ROS production and oxidative stress, which impaired renal homeostasis. Moreover, inhibition of autophagy and mitophagy led to the accumulation of damaged cell organelles, further exacerbating apoptotic signaling. Our results elucidate that an integrated network of cellular stress pathways mediates cadmium-induced renal toxicity, with the ATF4-CHOP axis acting as a crucial pro-apoptotic pathway. This study provides critical insights into the mechanisms of cadmium-induced nephrotoxicity and potential therapeutic interventions to mitigate heavy metal-induced renal homeostasis disruption and renal damage.
Collapse
Affiliation(s)
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Farhat Bano
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kanwar Kumar Malhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
40
|
Hassan MAM, Fahmy MI, Azzam HN, Ebrahim YM, El-Shiekh RA, Aboulmagd YM. Multifaceted therapeutic potentials of catalpol, an iridoid glycoside: an updated comprehensive review. Inflammopharmacology 2025:10.1007/s10787-025-01694-1. [PMID: 40097877 DOI: 10.1007/s10787-025-01694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Catalpol, classified as an iridoid glucoside, is recognized for its significant role in medicine, particularly in the treatment of various conditions such as diabetes mellitus, neuronal disorders, and inflammatory diseases. This review aims to evaluate the biological implications of catalpol and the mechanisms underlying its diverse pharmacological effects. A thorough exploration of existing literature was conducted utilizing the keyword "Catalpol" across prominent public domains like Google Scholar, PubMed, and EKB. Catalpol has demonstrated a diverse array of pharmacological effects in experimental models, showcasing its anti-diabetic, cardiovascular-protective, neuroprotective, anticancer, hepatoprotective, anti-inflammatory, and antioxidant properties. In summary, catalpol manifests a spectrum of biological effects through a myriad of mechanisms, prominently featuring its anti-inflammatory and antioxidant capabilities. Its diverse pharmacological profile underscores its potential for therapeutic applications across a range of conditions. Further research is warranted to fully elucidate the clinical implications of catalpol and optimize its use in medical practice.
Collapse
Affiliation(s)
- Mennat-Allah M Hassan
- Department of Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohamed I Fahmy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Hany N Azzam
- Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasmina M Ebrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Yara M Aboulmagd
- Department of Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
41
|
Dhapola R, Kumari S, Sharma P, Vellingiri B, HariKrishnaReddy D. Advancements in autophagy perturbations in Alzheimer's disease: Molecular aspects and therapeutics. Brain Res 2025; 1851:149494. [PMID: 39922409 DOI: 10.1016/j.brainres.2025.149494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Emerging evidences suggest that autophagy, a key cellular process responsible for degrading and recycling damaged organelles and proteins, plays a crucial role in maintaining neuronal health. Dysfunctional autophagy has been linked to the pathogenesis of Alzheimer's disease (AD), contributing to the accumulation of misfolded proteins and cellular debris. Molecular mechanisms underlying autophagy dysfunction in AD involve amyloid-beta (Aβ) and tau accumulation, neuroinflammation, mitochondrial dysfunction, oxidative stress and endoplasmic reticulum stress. Disrupted signaling pathways such as TRIB3, Nmnat and BAG3 that regulate key processes like autophagosome initiation, lysosome function, and protein homeostasis also play a crucial role in the pathogenesis. Restoration of autophagy by modulating these molecular and signaling pathways may be an effective therapeutic strategy for AD. Studies have found few drugs targeting autophagy dysregulation in AD. These drugs include metformin that has been found to modulate the expression of TRIB3 for autophagy regulation. Another drug, resveratrol has been reported to augment the activity of Nmnat thus, increases autophagy flux. BACE1 and mTOR inhibitors like arctigenin, nilvadipine and dapagliflozin were also found to restore autophagy. This study elaborates recent advances in signaling and molecular pathways and discusses current and emerging therapeutic interventions targeting autophagy dysfunction in AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab 151401 Bathinda, Punjab, India.
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India.
| |
Collapse
|
42
|
Ren HL, Zhang SH, Li PY. The multifaceted role of phosphodiesterase 4 in tumor: from tumorigenesis to immunotherapy. Front Immunol 2025; 16:1528932. [PMID: 40129976 PMCID: PMC11931042 DOI: 10.3389/fimmu.2025.1528932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Phosphodiesterase 4 (PDE4) is an enzyme that specifically hydrolyzes the second messenger cAMP and has a critical role in the regulation of a variety of cellular functions. In recent years, PDE4 has attracted great interest in cancer research, and its role in tumorigenesis and development has been gradually elucidated. Research indicates that abnormal expression or heightened activity of PDE4 is associated with the initiation and progression of multiple cancers, including lung, colorectal, and hematological cancers, by facilitating cell proliferation, migration, invasion, and anti-apoptosis. Moreover, PDE4 also influences the tumor immune microenvironment, significantly immune evasion by suppressing anti-tumor immune responses, reducing T-cell activation, and promoting the polarization of tumor-associated macrophages toward a pro-tumorigenic phenotype. However, the PDE4 family may have both oncogenic and tumor-suppressive effects, which could depend on the specific type and grade of the tumor. PDE4 inhibitors have garnered substantial interest as potential anti-cancer therapeutics, directly inhibiting tumor cell growth and restoring immune surveillance capabilities to enhance the clearance of tumor cells. Several PDE4 inhibitors are currently under investigation with the aim of exploring their potential in cancer therapy, particularly in combination strategies with immune checkpoint inhibitors, to improve therapeutic efficacy and mitigate the side effects of conventional chemotherapy. This review provides an overview of PDE4 in tumorigenesis, drug resistance, immunotherapy, and the anti-tumor actions of its inhibitors, intending to guide the exploration of PDE4 as a new target in tumor therapy.
Collapse
Affiliation(s)
- Huili-li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Wenchang People’s Hospital, Wenchang, Hainan, China
| |
Collapse
|
43
|
Atia HA, Elariny HA, Abdallah MH, Khalifa AM, Estfanous RS, Abd Elmaaboud MA, Kabel AM. Repositioning Perindopril for Mitigation of Methotrexate-Induced Hepatotoxicity in Rats. Pharmaceuticals (Basel) 2025; 18:358. [PMID: 40143135 PMCID: PMC11945847 DOI: 10.3390/ph18030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Methotrexate is a folate antagonist that has proven efficacy as an anticancer and immunomodulatory agent. However, the possible incidence of overt hepatotoxicity represents a challenge for its clinical use. Up till now, no single remedy has been considered an effective solution to this important adverse effect. Perindopril is an angiotensin-converting enzyme inhibitor that is widely used for the treatment of hypertension. Due to the involvement of the renin-angiotensin system in the pathogenesis of methotrexate-elicited hepatotoxicity, investigating the efficacy of perindopril in this condition may be of particular interest. The current work aimed at an evaluation of the potential effects of perindopril in a rat model of methotrexate-induced hepatotoxicity and tried to precisely determine the molecular mechanisms that may represent the basis of these effects. Methods: In a model of methotrexate-elicited hepatotoxicity in male Wistar rats, the effects of different doses of perindopril were evaluated at the level of the biochemical measurements and the morphological examination. Results: Oral administration of perindopril to methotrexate-injected rats exhibited a dose-dependent significant improvement in daily food intake; the restoration of the functions of hepatocytes; the potentiation of antioxidant defense mechanisms; the abrogation of the different signaling pathways involved in liver inflammation, apoptosis, and fibrosis; and an enhancement in AMPK/mTOR-driven autophagy when compared to animals that received only a methotrexate injection. These events were reflected in the morphological appearance of the different studied groups. Conclusions: This study presents perindopril as a promising remedy for mitigation of the hepatotoxic effects that occur as a consequence of treatment with methotrexate.
Collapse
Affiliation(s)
- Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Hemat A. Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amany M. Khalifa
- Department of Pathology, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Remon S. Estfanous
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
44
|
Hraoui G, Grondin M, Breton S, Averill-Bates DA. Nrf2 mediates mitochondrial and NADPH oxidase-derived ROS during mild heat stress at 40 °C. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119897. [PMID: 39800224 DOI: 10.1016/j.bbamcr.2025.119897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Hyperthermia is an adjuvant to chemotherapy and radiotherapy and sensitizes tumors to these treatments. However, repeated heat treatments result in acquisition of heat resistance (thermotolerance) in tumors. Thermotolerance is an adaptive survival response that appears to be mediated by upregulated cellular defenses. However, the mechanisms of activation remain unclear. When HeLa cells were exposed to mild heat shock at 40 °C for 3 h, levels of superoxide and peroxides increased. Cells were treated with mitochondrial antioxidant MitoQ and NADPH oxidase (NOX) inhibitor apocynin to characterize the contribution of these two sources to the total reactive oxygen species (ROS) pool. We found that both mitochondria and NOX are sources of ROS during mild heat shock at 40 °C. Heat-derived ROS are thought to activate the adaptive survival response at 40 °C. Nrf2, the master regulator of the cellular antioxidant response, is thought to play a pivotal role in establishing the adaptive survival response. Nrf2 was overexpressed or knocked down to assess its role. Moreover, Nrf2 levels correlate with the cellular redox state, and do so via scavenging of mitochondria- and NOX-derived ROS. Knockdown of Nrf2 markedly increased levels of ROS that were scavenged by either apocynin or MitoQ. Finally, critical defense proteins such as DJ-1 and PGAM5 seemed to require a two-key activation system mediated by Nrf2 and mitochondrial ROS. Our study characterized mitochondrial and NOX-derived ROS as being essential in activating cellular defenses alongside Nrf2 and underlines potential therapeutic targets that may contribute to the acquisition of thermotolerance.
Collapse
Affiliation(s)
- Georges Hraoui
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Mélanie Grondin
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Diana A Averill-Bates
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
45
|
Liu L, Chen S, Song Y, Cui L, Chen Y, Xia J, Fan Y, Yang L, Yang L. Hydrogels empowered mesenchymal stem cells and the derived exosomes for regenerative medicine in age-related musculoskeletal diseases. Pharmacol Res 2025; 213:107618. [PMID: 39892438 DOI: 10.1016/j.phrs.2025.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
As the population ages, musculoskeletal diseases (MSK) have emerged as a significant burden for individuals, healthcare systems, and social care systems. Recently, regenerative medicine has exhibited vast potential in age-related MSK, with mesenchymal stromal cells (MSCs) and their derived exosomes (Exos) therapies showing distinct advantages. However, these therapies face several limitations, including issues related to ensuring stability and effective distribution within the body. Hydrogels, acting as an ideal carrier, can enhance the therapeutic effects and application range of MSCs and Exos derived from MSCs (MSC-Exos). Therefore, this review comprehensively summarizes the application progress of MSCs and MSC-Exos combined with hydrogels in age-related MSK disease research. It aims to provide a detailed perspective, showcasing the functional enhancement of MSCs and MSC-Exos when incorporated into hydrogels. Additionally, this review explores their potential and challenges in treating age-related MSK diseases, offering references for future research directions and potential innovative strategies.
Collapse
Affiliation(s)
- Lixin Liu
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Siwen Chen
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Yantao Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, PR China
| | - Longwei Cui
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, PR China
| | - Yiman Chen
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Jiangli Xia
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yibo Fan
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
46
|
Miorando D, Cristina Maccagnan J, Dalla Vecchia CA, Vedoy Ferraz C, Monteiro M, Assunta Busato M, Antônio Lutinski J, Isadora Roman M, de Souza Rezende R, Vidal Gutiérrez M, Hage-Melim LIS, Pontes FMM, Barison A, Nepel A, Veselinova A, Roman Junior WA. Friedericia Chica, a Medicinal Plant from the Amazon Region, is Repellent Against Aedes Aegypti: In Vivo and Molecular Docking Evidence. Chem Biodivers 2025; 22:e202401128. [PMID: 39412496 DOI: 10.1002/cbdv.202401128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/15/2024] [Indexed: 11/13/2024]
Abstract
Fridericia chica is widely distributed in Brazil, where it is commonly known as crajiru or pariri in several regions. Despite its popular use for treating inflammations and as an insect repellent, there has been limited assessment of its chemical and biological properties, including its bioinsecticide activities. In this study, we conducted phytochemical analyses and investigated the larvicidal and repellent effects of F. chica against the mosquito Aedes aegypti. The F. chica (HEFc) hydroalcoholic extract was partitioned using column chromatography, and subfractions were analyzed using chromatographic and spectroscopic analyses (ESI-IT-MSn and NMR). In addition, HEFc was evaluated for its larvicidal and repellent activities. Phytochemical analyses revealed the presence of 17 constituents, including 2,4-dihydroxybenzoic and p-coumaric acids, along with umbelliferone, acetovanilone, myricetin-3-O-glucuronide, and cis-isorhapontigenin, which are reported for the first time in this species. Although no larvicidal effect was observed at the doses tested, the HEFc exhibited promising repellent effects against A. aegypti, which aligns with its ethnopharmacological potential. In addition, molecular docking studies demonstrated that the compounds of HEFc interacted efficiently with insect odorant binding proteins (OBPs), providing repellent effects. Consistent with the chemical profile and in silico studies, preparations of F. chica have considerable repellent potential.
Collapse
Affiliation(s)
- Daniela Miorando
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | | | | | - Cleidiane Vedoy Ferraz
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Marcelo Monteiro
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Maria Assunta Busato
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Junir Antônio Lutinski
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Maria Isadora Roman
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Renan de Souza Rezende
- Laboratory of Ecology Entomology, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Max Vidal Gutiérrez
- Department of Chemical, Biological and Agricultural Sciences, Universidad de Sonora, Navojoa Sonora, Mexico
| | | | | | - Andersson Barison
- Laboratory of RMN (LabRMN), Federal University of Paraná, UFPR, Curitiba, PR, Brazil
| | - Angelita Nepel
- Laboratory of RMN (LabRMN), Federal University of Paraná, UFPR, Curitiba, PR, Brazil
| | - Anzhela Veselinova
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Walter Antônio Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| |
Collapse
|
47
|
Shan C, Liu T, Miao F, Guo G. Macadamia oil alleviates dextran sulfate sodium-induced ulcerative colitis in mice via activating the Nrf2/Ho-1 pathway. Food Sci Biotechnol 2025; 34:1027-1036. [PMID: 39974866 PMCID: PMC11832958 DOI: 10.1007/s10068-024-01719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 02/21/2025] Open
Abstract
Macadamia nut oil (MO) fatty acids are mainly composed of oleic acid and palmitoleic acid, which have a variety of health benefits. This study established an ulcerative colitis (UC) mouse model using dextran sulfate sodium (DSS), and the ameliorative effects of MO on UC were investigated. The results revealed that MO supplementation mitigated weight loss and colon shortening, increased goblet cell counts, and alleviated histopathologic changes in UC mice. MO significantly increased the intestinal antioxidant levels in UC mice. Moreover, Nrf2 and Ho-1 mRNA and protein expression levels were significantly upregulated in UC mice following treatment with low- and high-dose MO. In contrast, expression levels of Keap1 were significantly downregulated. Lastly, MO inhibited the inflammatory factors (TNF-α, IL-6 and IL-1β) expression in UC mice. These results indicate that MO could enhance colonic antioxidant levels, induce apoptosis, and activate the Nrf2/Ho-1 pathway, thereby ameliorating the pathological injuries associated with UC.
Collapse
Affiliation(s)
- Chunlan Shan
- College of Animal Science, Guizhou University, Guiyang, 550025 P. R. China
| | - Ting Liu
- College of Animal Science, Guizhou University, Guiyang, 550025 P. R. China
| | - Fujun Miao
- Yunnan Academy of Forestry and Grassland, Kunming, 650204 China
| | - Gangjun Guo
- Yunnan Institute of Tropical Crops, Jinghong, 666100 P. R. China
| |
Collapse
|
48
|
Abdelfattah AM, Mohammed ZA, Talaat A, Samy W, Eldesoqui M, Elgarhi RI. A PDE1 inhibitor, vinpocetine, ameliorates epithelial-mesenchymal transition and renal fibrosis in adenine-induced chronic kidney injury in rats by targeting the DNMT1/Klotho/β-catenin/Snail 1 and MMP-7 pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2769-2781. [PMID: 39276250 PMCID: PMC11919975 DOI: 10.1007/s00210-024-03393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
Tubulointerstitial fibrosis (TIF) is present with chronic kidney disease (CKD). Vinpocetine (Vinpo) is used for treating cerebrovascular deficits, exhibiting some kidney-beneficial effects; however, its role in TIF is uncertain. So, the aim of this study was to investigate its potential impact on adenine-induced fibrotic CKD and explore the underlying mechanistic aspects. Eighteen male Wistar rats were categorized into three groups (n = 6 each). Group I was kept as controls and given saline; group II received adenine (300 mg/kg, twice weekly, i.p.) for induction of the CKD model; and group III was administered Vinpo (20 mg/kg/d, orally) concurrently with adenine. All treatments were administered for 4 weeks. Vinpo revealed an improvement in renal function and an alleviation of inflammation triggered by adenine via diminishing serum tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) levels. Further, Vinpo repressed the epithelial-mesenchymal transition (EMT) with preserved E-cadherin mRNA expression and lowered gene and immune expression of fibronectin and vimentin, respectively, besides attenuating the elevated G2/M arrest-related molecules (renal Ki67 protein contents and p21 gene expression). Renal pathological alterations caused by adenine were attenuated upon Vinpo administration. Interestingly, Vinpo suppressed abnormal renal β-catenin immunoreactivity, Snail 1, and MMP-7 gene expression while simultaneously restored Klotho protein expression by downregulating DNA methyltransferase 1 enzyme (DNMT1) protein expression in the kidney. These data indicated that Vinpo effectively mitigated EMT and G2/M arrest-induced renal fibrosis in adenine-induced CKD rats by targeting DNMT1-associated Klotho suppression, subsequently inhibiting β-catenin and its fibrotic downstream genes.
Collapse
Affiliation(s)
| | - Zeinab A Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Aliaa Talaat
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Reham I Elgarhi
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
49
|
Lorke DE, Oz M. A review on oxidative stress in organophosphate-induced neurotoxicity. Int J Biochem Cell Biol 2025; 180:106735. [PMID: 39855621 DOI: 10.1016/j.biocel.2025.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Acetylcholinesterase inhibition, the principal mechanism of acute organophosphorus compound toxicity, cannot explain neuropsychiatric symptoms occurring after exposure to low organophosphate concentrations causing no cholinergic symptoms. Organophosphate-triggered oxidative stress has increasingly come into focus, occurring when the action of reactive oxygen species, generated from free radicals, is not compensated by antioxidant free radical scavengers. Being nucleophilic, organophosphates can easily accept an electron, thereby generating free radicals. Organophosphates inhibit the antioxidant paraoxonase, and reactive oxygen species are produced during organophosphate metabolism. Organophosphates disrupt the function of mitochondria, the principal source of free radicals. Organophosphates also induce neuroinflammation, which generates reactive oxygen species, and reactive oxygen species in turn stimulate neuroinflammation. Markers of reactive oxygen species are elevated in vitro and in vivo after exposure to organophosphates and in individuals professionally exposed to organophosphates. This most probably contributes to the pathogenesis of the intermediate syndrome, chronic organophosphate-induced neuropsychiatric disorders and neurodegeneration occurring in patients after organophosphate exposure. Evidence for beneficial effects of antioxidants in organophosphate poisoning is discussed.
Collapse
Affiliation(s)
- Dietrich E Lorke
- Department of Basic Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, United States; Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| |
Collapse
|
50
|
Hu H, Liu Y, Han S, Guo J, Zhou J, Qiu T. DEF6 regulates renal ischemia reperfusion injury through suppressing the WWP2 mediated ubiquitination of PARP1. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167681. [PMID: 39837430 DOI: 10.1016/j.bbadis.2025.167681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) stands as an unavoidable complication arising from kidney surgery, profoundly intertwined with its prognosis. The role of differentially expressed in FDCP 6 homolog (DEF6) in RIRI remains elusive, despite its confirmation as a potential therapeutic target for diverse diseases. Here, we investigated the mechanism by which DEF6 regulated RIRI. METHODS RNA sequencing data and IP-MS were used to identify the expression and potential targets of DEF6 through bioinformatics analysis. To elucidate the impact of DEF6 on RIRI, both an in vivo model of RIRI in mice and an in vitro model of kidney cell hypoxia/reoxygenation were established. Biochemical and histological analyses were used to investigate the influence of DEF6 on kidney damage mediated by RIRI. RESULTS We confirmed that DEF6 was upregulated during RIRI and had a close correlation with RIRI-related inflammation and apoptosis. Moreover, inhibition of DEF6 could mitigate RIRI-induced kidney damage, inflammation, and apoptosis. Through our comprehensive mechanistic investigation, we revealed that DEF6 interacts with poly ADP-ribose polymerase 1 (PARP1) and suppresses the ubiquitination of PARP1. Inhibition of DEF6 resulted in reduced cleaveage of PARP1, leading to a marked suppression of PARP1-mediated apoptosis activation. The aggravation effect on inflammation and apoptosis achieved through DEF6 was nullified by the inhibition of NF-κB and Bax/Bcl2 signaling activation through PARP1 deletion. CONCLUSIONS The findings from our study indicate that DEF6 suppressed the WWP2 mediated ubiquitination of PARP1 and modulates the activation of NF-κB and Bax/Bcl2 pathway, thus involved in RIRI-induced inflammation and apoptosis. These results suggest that DEF6 holds promise as a potential therapeutic target for mitigating RIRI.
Collapse
Affiliation(s)
- Haochong Hu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China.
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China.
| |
Collapse
|