1
|
Shi Y, Wang T, Ding Z, Yan L, Yao C, Qian H. Frequent hypoglycemia during hemodialysis in ESRD patients leads to higher risk of death. Ren Fail 2025; 47:2484471. [PMID: 40268794 PMCID: PMC12020138 DOI: 10.1080/0886022x.2025.2484471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE With the increase of patients with end-stage renal disease (ESRD), most of are receiving hemodialysis, hypoglycemia is a frequent occurrence in ESRD patients due to alterations in glucose and insulin metabolism. The purpose of our study was to explore the correlation between hypoglycemia and long-term survival in patients with ESRD during hemodialysis. METHODS Using the database of Hemodialysis Center in Taizhou Second People's Hospital, 268 ESRD patients undergoing maintenance hemodialysis (MHD) for more than 3 months between January 1, 2019 and September 30, 2023 were enrolled. Basic information, laboratory tests and treatment conditions of patients were collected. We analyzed the impact of hypoglycemia during hemodialysis on survival rate, and explored whether hypoglycemia is an independent risk factor for mortality in MHD patients. RESULTS We found that factors such as BMI, smoking, and alcohol consumption didn't affect survival rate in ESRD patients, while all-cause mortality was higher in ESRD patients with diabetes, cardiovascular diseases, cerebrovascular disease and experienced hypoglycemia during hemodialysis (p < 0.05). We also observed that almost all ESRD patients with diabetes experienced hypoglycemia during dialysis, and 87.5% experienced ≥3 times, while this phenomenon was hardly observed in nondiabetic ESRD patients. Cox proportional hazards model analysis found that, frequent hypoglycemia (≥3 times) was associated with higher mortality risk in ESRD patients (p = 0.041), adjusted hazard ratios (95% confidence intervals) 3.998 (2.462-6.492). CONCLUSIONS Occurrence of hypoglycemia during dialysis was associated with a higher risk of death, frequent hypoglycemia (≥3 times) was an independent risk factor for death in MHD patients.
Collapse
Affiliation(s)
- Yuwen Shi
- Department of Endocrinology, The Affiliated Taizhou Second People’s Hospital of Yangzhou University, Taizhou, China
| | - Tao Wang
- Department of Nephrology, The Affiliated Taizhou Second People’s Hospital of Yangzhou University, Taizhou, China
| | - Zhihui Ding
- Department of Nephrology, The Affiliated Taizhou Second People’s Hospital of Yangzhou University, Taizhou, China
| | - Lijuan Yan
- Department of Nephrology, The Affiliated Taizhou Second People’s Hospital of Yangzhou University, Taizhou, China
| | - Chunlei Yao
- Department of Nephrology, The Affiliated Taizhou Second People’s Hospital of Yangzhou University, Taizhou, China
| | - Hua Qian
- Department of Endocrinology, The Affiliated Taizhou Second People’s Hospital of Yangzhou University, Taizhou, China
| |
Collapse
|
2
|
Liu R, Xi Y, Duan X, Zhao Y, Tian Z. Exerkine-mediated organ interactions: A new interpretation of exercise on cardiovascular function improvement. Life Sci 2025; 371:123628. [PMID: 40210118 DOI: 10.1016/j.lfs.2025.123628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Cardiovascular diseases impair the structure and function of distal organs, including the liver, skeletal muscle, kidney, and adipose tissue. Exercise stimulates the interaction between the cardiovascular system and distal organs that is important for disease rehabilitation and organ health. However, the mechanisms by which exercise improves cardiovascular function through exerkine-mediated organ crosstalk remain incompletely elucidated. We used cardiovascular, exercise, exerkines, skeletal muscle, liver, kidney, and adipose tissue as keywords to search for the relevant articles, sorted out the differences between different exercise types, summarized the functions of 17 exerkines, focused on reviewing and categorizing the molecular mechanisms of interactions between the cardiovascular system and remote organs. We also look forward to future research perspectives on exercise prevention and control of chronic metabolic diseases. The aim of this review is to provide a new theoretical basis for establishing clinical rehabilitation and exercise prescriptions for cardiovascular system diseases.
Collapse
Affiliation(s)
- Renhan Liu
- Laboratory of Exercise Intervention on Metabolic Syndrome, Brain-Heart Health and Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China
| | - Yue Xi
- Laboratory of Exercise Intervention on Metabolic Syndrome, Brain-Heart Health and Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China..
| | - Xinyan Duan
- Laboratory of Exercise Intervention on Metabolic Syndrome, Brain-Heart Health and Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China
| | - Yifei Zhao
- Laboratory of Exercise Intervention on Metabolic Syndrome, Brain-Heart Health and Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China
| | - Zhenjun Tian
- Laboratory of Exercise Intervention on Metabolic Syndrome, Brain-Heart Health and Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi' an 710119, PR China..
| |
Collapse
|
3
|
Aloliqi AA, Alnuqaydan AM, Albutti A, Alharbi BF, Rahmani AH, Khan AA. Current updates regarding biogenesis, functions and dysregulation of microRNAs in cancer: Innovative approaches for detection using CRISPR/Cas13‑based platforms (Review). Int J Mol Med 2025; 55:90. [PMID: 40242952 PMCID: PMC12021393 DOI: 10.3892/ijmm.2025.5531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
MicroRNAs (miRNAs) are short non‑coding RNAs, which perform a key role in cellular differentiation and development. Most human diseases, particularly cancer, are linked to miRNA functional dysregulation implicated in the expression of tumor‑suppressive or oncogenic targets. Cancer hallmarks such as continued proliferative signaling, dodging growth suppressors, invasion and metastasis, triggering angiogenesis, and avoiding cell death have all been demonstrated to be affected by dysregulated miRNAs. Thus, for the treatment of different cancer types, the detection and quantification of this type of RNA is significant. The classical and current methods of RNA detection, including northern blotting, reverse transcription‑quantitative PCR, rolling circle amplification and next‑generation sequencing, may be effective but differ in efficiency and accuracy. Furthermore, these approaches are expensive, and require special instrumentation and expertise. Thus, researchers are constantly looking for more innovative approaches for miRNA detection, which can be advantageous in all aspects. In this regard, an RNA manipulation tool known as the CRISPR and CRISPR‑associated sequence 13 (CRISPR/Cas13) system has been found to be more advantageous in miRNA detection. The Cas13‑based miRNA detection approach is cost effective and requires no special instrumentation or expertise. However, more research and validation are required to confirm the growing body of CRISPR/Cas13‑based research that has identified miRNAs as possible cancer biomarkers for diagnosis and prognosis, and as targets for treatment. In the present review, current updates regarding miRNA biogenesis, structural and functional aspects, and miRNA dysregulation during cancer are described. In addition, novel approaches using the CRISPR/Cas13 system as a next‑generation tool for miRNA detection are discussed. Furthermore, challenges and prospects of CRISPR/Cas13‑based miRNA detection approaches are described.
Collapse
Affiliation(s)
- Abdulaziz A. Aloliqi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Abdullah M. Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Aqel Albutti
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| |
Collapse
|
4
|
Fang Y, Tan C, Zheng Z, Yang J, Tang J, Guo R, Silli EK, Chen Z, Chen J, Ge R, Liu Y, Wen X, Liang J, Zhu Y, Jin Y, Li Q, Wang Y. The function of microRNA related to cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Biochem Pharmacol 2025; 236:116849. [PMID: 40056941 DOI: 10.1016/j.bcp.2025.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor characterized by a poor prognosis. A prominent feature of PDAC is the rich and dense stroma present in the tumor microenvironment (TME), which significantly hinders drug penetration. Cancer-associated fibroblasts (CAFs), activated fibroblasts originating from various cell sources, including pancreatic stellate cells (PSCs) and mesenchymal stem cells (MSCs), play a critical role in PDAC progression and TME formation. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules that are frequently involved in tumorigenesis and progression, exhibiting either oncolytic or oncogenic activity. Increasing evidence suggests that aberrant expression of miRNAs can mediate interactions between cancer cells and CAFs, thereby providing novel therapeutic targets for PDAC treatment. In this review, we will focus on the potential roles of miRNAs that target CAFs or CAFs-derived exosomes in PDAC progression, highlighting the feasibility of therapeutic strategies aimed at restoring aberrantly expressed miRNAs associated with CAFs, offering new pathways for the clinical management of PDAC.
Collapse
Affiliation(s)
- Yaohui Fang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjiang Zheng
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiali Tang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruizhe Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Epiphane K Silli
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhe Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jia Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruyu Ge
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiuqi Wen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jingdan Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunfei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yutong Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Qian Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
5
|
Hirata M, Nagashima K, Watanabe R, Wakamatsu Y, Otsuka N, Hirata S, Sawada M, Saito Y, Kurokawa S, Murotani K, Okumura Y. Clinical insights into the role of bepridil in recurrence prevention after ablation of persistent atrial fibrillation. J Arrhythm 2025; 41:e70083. [PMID: 40330543 PMCID: PMC12051097 DOI: 10.1002/joa3.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025] Open
Abstract
Background The role of bepridil in preventing atrial fibrillation (AF) recurrence following ablation for persistent atrial fibrillation (PerAF) remains uncertain, particularly in patients with severe atrial substrates. Methods This retrospective study included 232 consecutive PerAF patients who underwent AF ablation between 2014 and 2019. Among them, 162 received bepridil for 3 months post-ablation (Bepridil group), while 70 received no antiarrhythmic drugs (No-AADs group). Baseline characteristics, procedural details, and outcomes were compared. Kaplan-Meier analysis and Cox regression models were used to evaluate AF/atrial tachycardia (AT) recurrence, with bepridil use treated as a time-dependent covariable. Results The Bepridil group had a higher body mass index (25.1 ± 3.7 vs. 23.8 ± 3.9), a higher prevalence of patients with a LAD >40 mm and a LAV >50 mL (67.9% vs. 47.1%, 64.2% vs. 48.5%, respectively), and lower left atrial appendage flow velocity (37.6 ± 15.0 vs. 42.7 ± 20.5 cm/min). They more frequently underwent intracardiac atrial cardioversion (61.7% vs. 40.0%) and additional extra-pulmonary vein ablation (35.2% vs. 15.7%), but were less likely to receive balloon-based ablation (39.5% vs. 62.9%) (p < 0.05 for all comparison). During a median follow-up of 23.3 months, AF/AT-free survival at 2 years was comparable between the Bepridil and No-AADs groups (80.4% vs. 81.7%; p = 0.61). This finding remained consistent after adjusting for baseline characteristics and considering bepridil as a time-dependent covariable. No bepridil-related adverse events occurred. Conclusion Bepridil may have a limited role in preventing AF/AT recurrence in PerAF patients, particularly those with severe atrial substrates. However, its overall impact appears to be small, warranting further investigation.
Collapse
Affiliation(s)
- Moyuru Hirata
- Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan
| | - Koichi Nagashima
- Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan
| | - Ryuta Watanabe
- Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan
| | - Yuji Wakamatsu
- Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan
| | - Naoto Otsuka
- Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan
| | - Shu Hirata
- Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan
| | - Masanaru Sawada
- Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan
| | - Yuji Saito
- Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan
| | - Sayaka Kurokawa
- Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan
| | - Kenta Murotani
- Biostatistics CenterKurume University School of MedicineKurumeFukuokaJapan
| | - Yasuo Okumura
- Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan
| |
Collapse
|
6
|
Chen Y, Wu N, Yan X, Kang L, Ou G, Zhou Z, Xu C, Feng J, Shi T. Impact of gut microbiota on colorectal anastomotic healing (Review). Mol Clin Oncol 2025; 22:52. [PMID: 40297498 PMCID: PMC12035527 DOI: 10.3892/mco.2025.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Intestinal anastomosis is a critical procedure in both emergency and elective surgeries to maintain intestinal continuity. However, the incidence of anastomotic leakage (AL) has recently increased, reaching up to 20%, imposing major clinical and economic burdens. Substantial perioperative alterations in the intestinal microbiota composition may contribute to AL, particularly due to disruptions in key microbial populations essential for intestinal health and healing. The intricate interplay between the intestinal microbiota and the host immune system, along with microbial changes before and during surgery, significantly influences anastomotic integrity. Notably, specific pathogens such as Enterococcus and Pseudomonas aeruginosa have been implicated in AL pathogenesis. Preventive strategies including dietary regulation, personalized intestinal preparation, microbiota restoration and enhanced recovery after surgery protocols, may mitigate AL risks. Future research should focus on elucidating the precise mechanisms linking intestinal microbiota alterations to anastomotic healing and developing targeted interventions to improve surgical outcomes.
Collapse
Affiliation(s)
- Yangyang Chen
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Nian Wu
- Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xin Yan
- Anesthesia Operating Room, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Liping Kang
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Guoyong Ou
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Zhenlin Zhou
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Changbo Xu
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Jiayi Feng
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Tou Shi
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
7
|
Zheng X, Jiang GJ, Fan TJ. Blue Light Irradiation Elicits Senescence of Corneal Endothelial Cells In Vitro by Provoking Energy Crisis, Inflammasome Assembly and DNA Damage. Curr Eye Res 2025:1-12. [PMID: 40336349 DOI: 10.1080/02713683.2025.2497330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
PURPOSE The blue light from the digital screens endangers the visual system among which the corneas at the outmost of eyes are vulnerable to the irradiation. Therein, the human corneal endothelial (HCE) cells are crucial to maintain corneal transparency and their damage leads to HCE decompensation resulting in blindness ultimately. Thus, understanding the phototoxic effects of the blue light on the HCE cells and the underlying mechanisms is important for taking measures to protect the vision clarity from the blue-light hazard. METHODS We pulse-irradiated the HCE cell line cells at logarithmic phase for 3 passages using 440 nm blue light and examined the levels of reactive oxygen species (ROS), ATP, nicotinamide adenine dinucleotide (NAD+) and autophagy using cytochemistry assay to investigate the alterations of energy metabolism. Moreover, we examined the γH2AX+ cells using immunofluorescence and expression of poly(ADP-Ribose)polymerase1 (PARP1) using western blotting to investigate the degrees of DNA damage and repair. We also monitored the levels of inflammasome using western blotting and senescence associated secretory phenotypes (SASPs) of interleukin (IL)-8, IL-1β and IL-6 using qPCR and ELISA to investigate the inflammasome assembly and secretion of SASPs. We detected the senescent features with senescence-associated-β-galactosidase assay, p16 levels by western blotting, Lamin B1 localization by immunofluorescence observation, cell growth by EdU incorporation assay and confluence forming time and alterations of the cell morphology and relative areas by microscopy observation. RESULTS The HCE cells exhibited senescent features after blue-light-pulse-irradiation. The blue light provokes overproduction of ROS to decrease the levels of ATP, NAD+ and autophagy leading to energy crisis. Moreover, the excess ROS injure DNA and downregulate PARP1 resulting in stable cell-cycle arrest. The excess ROS also facilitate inflammasome assembly leading to hypersecretion of SASPs. CONCLUSION The blue light elicits HCE cell senescence via inducing energy crisis, stable cell-cycle arrest and SASP hypersecretion.
Collapse
Affiliation(s)
- Xin Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Guo-Jian Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Ting-Jun Fan
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
8
|
Dai Q, Ain Q, Seth N, Rooney M, Zipprich A. Liver sinusoidal endothelial cells: Friend or foe in metabolic dysfunction- associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis. Dig Liver Dis 2025; 57:493-503. [PMID: 39904692 DOI: 10.1016/j.dld.2025.01.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the predominant liver disease and is becoming the paramount contributor to end-stage liver disease and liver-related deaths. Liver sinusoidal endothelial cells (LSECs) located between the hepatic parenchyma and blood from viscera and gastrointestinal tract are the gatekeepers for the hepatic microenvironment and normal function. In normal physiological conditions, LSECs govern the substance exchange between hepatic parenchyma and blood through dynamic regulation of fenestration and maintain the quiescent state of Kupffer cells (KCs) and hepatic stellate cells. In MASLD, lipotoxicity, insulin resistance, gastrointestinal microbiota dysbiosis, and mechanical compression caused by fat-laden hepatocytes result in LSECs capillarization and dysfunction. The altered LSECs progressively shift from healer to injurer, exacerbating liver inflammation and advancing liver fibrosis. This review focuses on the deteriorative roles of LSECs and related molecular mechanisms involved in MASLD and their contribution to metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis development and progression. Furthermore, in this review, we propose that targeting LSECs dysfunction is a prospective therapeutic strategy to restore the physiological function of LSECs and mitigate MASLD progression.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Navodita Seth
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany.
| |
Collapse
|
9
|
Hsiao CT, Fu SJ, Cheng KM, Lo H, Tang CY, Chan CC, Jeng CJ. Restoration of Shal/K V4 proteostasis and motor function in a Drosophila model of spinocerebellar ataxia type 19/22. Cell Mol Life Sci 2025; 82:181. [PMID: 40293501 PMCID: PMC12037467 DOI: 10.1007/s00018-025-05711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Loss-of-function mutations in the human KCND3 gene encoding KV4.3 K+ channels are linked to the autosomal dominant neurodegenerative disease spinocerebellar ataxia type 19/22 (SCA19/22). Previous biophysical and biochemical analyses in vitro support the notion that the autosomal dominant inheritance pattern of SCA19/22 is associated with the dominant-negative effects of disease-causing KV4.3 mutants on proteostasis of their wild-type (WT) counterpart. Herein we aimed to explore whether the disease-causing mutants might perturb protein expression of endogenous KV4.3 channel in human cells, as well as contributing to in vivo pathomechanisms underlying motor impairments and neurodegeneration in an animal model of SCA19/22. Substantial reduction in human KV4.3 protein level was validated in skin fibroblasts derived from heterozygous SCA19/22 patients. Genetic knockdown of endogenous Shal, the fly ortholog of human KV4.3, in Drosophila led to locomotor impairment, ommatidia degeneration, and reduced brain cortex thickness, all of which was effectively ameliorated by transgenic expression of human KV4.3, but not KV1.1 K+ channel. Transgenic expression of SCA19/22-causing human KV4.3 mutants resulted in notable disruption of endogenous Shal proteostasis, locomotor function, and ommatidia morphology in Drosophila. Enhanced expression of the Drosophila molecular chaperones HSC70 and HSP83 in our fly model of SCA19/22 corrected Shal protein deficit, locomotor dysfunction, and neurodegeneration. Overexpression of Hsp90β also upregulated endogenous human KV4.3 protein level in patient-derived skin fibroblasts. Our findings highlight Drosophila as a suitable animal model for studying KV4.3 channelopathy in vivo, and accentuate a critical role of defective KV4.3 proteostasis in the pathogenesis of motor dysfunction and neurodegeneration in SCA19/22.
Collapse
Affiliation(s)
- Cheng-Tsung Hsiao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Ssu-Ju Fu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kai-Min Cheng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Hsiang Lo
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Chih-Chiang Chan
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
10
|
Federti E, Mattoscio D, Recchiuti A, Matte A, Monti M, Cozzolino F, Iezzi M, Ceci M, Ghigo A, Tolosano E, Siciliano A, Ceolan J, Riccardi V, Gremese E, Brugnara C, De Franceschi L. 17(R)-Resolvin D1 protects against sickle cell-related inflammatory cardiomyopathy in humanized mice. Blood 2025; 145:1915-1928. [PMID: 39928855 PMCID: PMC12060164 DOI: 10.1182/blood.2024024768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/12/2025] Open
Abstract
ABSTRACT Cardiovascular disease has been recognized as the main cause of death in adults with sickle cell disease (SCD). Although the exact mechanism linking SCD to cardiomyopathy remains elusive, a possible role of subclinical acute transient myocardial ischemia during acute sickle cell-related vaso-occlusive crises (VOCs) has been suggested. We approached SCD cardiomyopathy by integrated omics using humanized SS mice exposed to hypoxia/reoxygenation (H/R; 10 hours hypoxia followed by 3 hours reoxygenation) stress, mimicking acute VOCs. In sickle cell (SS) mice exposed to H/R, a neutrophil-driven cardiac hypertrophic response is initiated by cardiac proinflammatory pathways, intersecting proteins and micro RNA involved in profibrotic signaling. This response may be facilitated by local unresolved inflammation. We then examined the effect of 17(R)-resolvin D1 (17R-RvD1), a member of the specialized proresolving lipid mediator superfamily, administration on H/R-activated profibrotic and proangiogenic pathways. In SS mice, we found that 17R-RvD1 (1) modulates miRNAome; (2) prevents the activation of NF-κB p65; (3) protects against the H/R-induced activation of both platelet derived growth factor receptor and transforming growth factor (TGF)-β1/Smad2-3 canonical pathways; (4) reduces the expression of hypoxia-inducible factor-dependent proangiogenic signaling; and (5) decreases the H/R-induced proapoptotic cell signature. The protective role of 17R-RvD1 against H/R-induced maladaptive heart remodeling was supported by the reduction of galectin-3, procollagen C-proteinase enhancer-1, and endothelin-1 expression and perivascular fibrosis in SS mice at 3 days after H/R stress compared with vehicle-treated SS animals. Collectively, our data support the novel role of unresolved inflammation in pathologic heart remodeling in SCD mice in response to H/R stress. Our study provides new evidence for protective effects of 17R-RvD1 against SCD-related cardiovascular disease.
Collapse
Affiliation(s)
- Enrica Federti
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral, and Biotechnology Science; Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti, Pescara, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral, and Biotechnology Science; Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti, Pescara, Italy
| | - Alessandro Matte
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Maria Monti
- Dipartimento Scienze Chimiche, Università degli studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Flora Cozzolino
- Dipartimento Scienze Chimiche, Università degli studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti, Pescara, Italy
| | - Martina Ceci
- Department of Medicine and Aging Science, Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti, Pescara, Italy
| | - Alessandra Ghigo
- Department Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center Guido Tarone, University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Department Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center Guido Tarone, University of Torino, Torino, Italy
| | - Angela Siciliano
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Jacopo Ceolan
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Veronica Riccardi
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Elisa Gremese
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-Istituto di Ricovero e Cura a Carattere Scientifico, Università Cattolica del Sacro Cuore, Rome, Italy
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Carlo Brugnara
- Departments of Laboratory Medicine and Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Lucia De Franceschi
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
11
|
Gómez-Echavarría A, Ugarte JP, Tobón C. Non-stationary components in Electrograms localize arrhythmogenic substrates in a 3D model of human atria. Comput Biol Med 2025; 192:110126. [PMID: 40267533 DOI: 10.1016/j.compbiomed.2025.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Catheter ablation, as a treatment for atrial fibrillation (AF), often yields low success rates in the advanced stages of the arrhythmia. Ablation procedures are guided by atrial mapping using electrogram (EGM) signals, which reflect local electrical activations. The primary goal is to identify arrhythmogenic mechanisms, such as rotors, to serve as ablation targets. Given the chaotic nature of AF propagation, these electrical activations occur at variable rates. This work introduces a novel signal processing approach based on the fractional Fourier transform (FrFT) to characterize the non-stationary content in EGM signals. A 3D biophysical and anatomical model of human atria was used to simulate AF, and unipolar EGMs were calculated. The FrFT-based algorithm was applied to all EGM signals, estimating the optimal FrFT order to capture linear frequency modulations. Electroanatomical maps of these optimal FrFT orders were generated. Results revealed that the AF EGMs exhibit non-stationarity, which can be characterized using the FrFT. Rotors displayed a distinct pattern of non-stationarity, allowing for dynamic tracking, while transient mechanisms were identifiable through variations in the FrFT order, showing different patterns than those of rotors. As a generalization of the classical Fourier analysis, FrFT mapping offers clinically interpretable insights into the rate of change in EGM frequency content over time. This method proves valuable for characterizing AF spatiotemporal dynamics by leveraging the non-stationary information inherent in fibrillatory propagation.
Collapse
Affiliation(s)
| | - Juan P Ugarte
- GIMSC, Universidad de San Buenaventura, Medellín, Colombia
| | | |
Collapse
|
12
|
Wang Q, Oh PS, Jeong HJ. From molecular mechanisms to clinical applications: A comprehensive review of photobiomodulation in cancer treatment. Photochem Photobiol 2025. [PMID: 40259459 DOI: 10.1111/php.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/23/2025]
Abstract
Photobiomodulation (PBM) is a non-invasive therapeutic technique that regulates biological processes using primarily low-power lasers or light-emitting diodes (LEDs) to achieve therapeutic effects. Its application has expanded significantly, particularly in the field of cancer therapy. This review provides a comprehensive overview of PBM, elucidating its underlying mechanisms of action and its potential applications in cancer therapy. It highlights the benefits of PBM in reducing side effects of cancer treatments such as acute oral mucositis, radiation dermatitis, lymphedema, neuropathic pain, and radiation enteropathy. Furthermore, the ability of PBM to inhibit cancer cell proliferation and induce apoptosis, and discusses safety concerns of PBM in clinical applications, presenting existing research that emphasizes its significant potential in cancer therapy was summarized. PBM therapy may offer promising new clinical options for managing cancer and mitigating the side effects associated with conventional cancer therapies.
Collapse
Affiliation(s)
- Qi Wang
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Phil-Sun Oh
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| |
Collapse
|
13
|
Vassallo GA, Dionisi T, De Vita V, Augello G, Gasbarrini A, Pitocco D, Addolorato G. The role of fecal microbiota transplantation in diabetes. Acta Diabetol 2025:10.1007/s00592-025-02508-0. [PMID: 40252102 DOI: 10.1007/s00592-025-02508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/29/2025] [Indexed: 04/21/2025]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a potential therapeutic strategy for modulating gut dysbiosis in diabetes mellitus. This review critically evaluates preclinical and clinical evidence on FMT in type 1 (T1D) and type 2 diabetes (T2D). Studies suggest that FMT can restore microbial diversity, improve glycemic control, and modulate immune responses, with varying effects across diabetes subtypes. In T1D, preclinical models demonstrate that FMT influences regulatory T-cell expansion and β-cell preservation, though clinical translation remains limited. In T2D, FMT has shown transient improvements in insulin sensitivity, with sustained effects observed only in patients with specific microbiome signatures. However, heterogeneity in patient responses, donor variability, and methodological limitations complicate its clinical application. This review highlights the interplay between FMT, immune modulation, and microbial metabolism, advocating for phenotype-stratified trials and multi-omics integration to enhance therapeutic precision.
Collapse
Affiliation(s)
| | - Tommaso Dionisi
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Vittorio De Vita
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Augello
- Department of Internal Medicine, Barone Lombardo Hospital, Canicattì, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Dario Pitocco
- Diabetes Care Unit, Institute of Endocrinology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Addolorato
- Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
14
|
Tabata K, Sudo T, Nagata Y, Ihara K, Asada K, Kinoshita A, Tanaka Y, Yamauchi Y, Sasaki T, Hachiya H, Imai Y, Fujita H, Sasano T, Furukawa T, Iwata T, Tanaka T. Rare genetic variants involved in increased risk of paroxysmal atrial fibrillation in a Japanese population. Sci Rep 2025; 15:13216. [PMID: 40240483 PMCID: PMC12003908 DOI: 10.1038/s41598-025-97794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in the world and can cause serious complications such as stroke or heart failure. Paroxysmal atrial fibrillation (PAF), a subtype of AF, accounts for approximately 25% of AF cases and is estimated to affect approximately 30 million people worldwide. Despite extensive genetic research on AF, the genetic factors involved in PAF in East Asian (EAS) populations remain unidentified. The aim of our study was to identify genetic factors associated with PAF in the Japanese population, contributing to our understanding of the genetic architecture of AF in Japanese populations. We conducted whole-exome sequencing on a cohort of 1176 PAF individuals and 1172 non-PAF control subjects in a Japanese population. We processed the sequencing data in accordance with the best practices outlined in the Genome Analysis Toolkit (GATK) and conducted gene-based association tests under three variant grouping strategies (masks) using the burden test, SKAT, and SKAT-O. We then performed a meta-analysis of the resulting P-values, which revealed that four genes-ZNF785, SMPD3, GFRA4, and LGALS1-were significantly associated with PAF, representing novel findings. These findings provide new insights into PAF pathogenesis and suggest potential biomarkers for early detection.
Collapse
Affiliation(s)
- Kanji Tabata
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Takeaki Sudo
- Department of Educational Media Development, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Yuki Nagata
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Bioresource Research Support Center, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Kensuke Ihara
- Department of Bio-Informational Pharmacology, Medicine Research Institute, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
- Department of Cardiovascular Medicine, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Atsuhiro Kinoshita
- Department of Educational Media Development, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Yasuaki Tanaka
- Department of Cardiology, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Yasuteru Yamauchi
- Department of Cardiology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Takeshi Sasaki
- Department of Cardiology, Heart Rhythm Center, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Hitoshi Hachiya
- Cardiology Division, Cardiovascular Center, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Yasushi Imai
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Hideo Fujita
- Division of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medicine Research Institute, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
- Bioresource Research Support Center, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan.
| |
Collapse
|
15
|
Brown R, Barko P, Ruiz Romero JDJ, Williams DA, Gochenauer A, Nguyen-Edquilang J, Suchodolski JS, Pilla R, Ganz H, Lopez-Villalobos N, Gal A. The effect of lyophilised oral faecal microbial transplantation on functional outcomes in dogs with diabetes mellitus. J Small Anim Pract 2025. [PMID: 40235083 DOI: 10.1111/jsap.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/10/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
OBJECTIVES We aimed to determine if oral faecal microbiota transplantation improves indices of glycaemic control, changes the faecal dysbiosis indices, alters faecal short-chain fatty acid and bile acid profiles and increases serum glucagon-like-peptide 1 concentrations in diabetic dogs. MATERIALS AND METHODS In this prospective randomised, placebo-controlled, double-blinded pilot study, we recruited nine diabetic dogs (five faecal microbiota transplantation and four placebo) and nine healthy controls. RESULTS Compared to healthy dogs, diabetic dogs had altered faecal short-chain fatty acid and bile acid profiles. In the first 30 days, the faecal microbiota transplantation group had a more rapid decline in interstitial glucose; however, the mean interstitial glucose of the faecal microbiota transplantation recipients did not differ from the placebo recipients at the end of the study. Compared with placebo, faecal microbiota transplantation recipients had a decreased 24-hour water intake at day 60 and increased faecal abundance of Faecalibacterium. CLINICAL SIGNIFICANCE This study provides a proof of concept for faecal microbiota transplantation in canine diabetes, and its data could inform the design of future large-scale studies. Further investigation is required to determine whether faecal microbiota transplantation would have any role as an adjunctive therapy in canine diabetes and to elucidate the mechanisms by which faecal microbiota transplantation may provide a beneficial clinical effect in canine diabetes.
Collapse
Affiliation(s)
- R Brown
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - P Barko
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - J D J Ruiz Romero
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - D A Williams
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - A Gochenauer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - J Nguyen-Edquilang
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - R Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - H Ganz
- AnimalBiome, Oakland, California, USA
| | - N Lopez-Villalobos
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - A Gal
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
16
|
Senesi G, Lodrini AM, Mohammed S, Mosole S, Hjortnaes J, Veltrop RJA, Kubat B, Ceresa D, Bolis S, Raimondi A, Torre T, Malatesta P, Goumans MJ, Paneni F, Camici GG, Barile L, Balbi C, Vassalli G. miR-24-3p secreted as extracellular vesicle cargo by cardiomyocytes inhibits fibrosis in human cardiac microtissues. Cardiovasc Res 2025; 121:143-156. [PMID: 39527589 PMCID: PMC11998913 DOI: 10.1093/cvr/cvae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS Cardiac fibrosis in response to injury leads to myocardial stiffness and heart failure. At the cellular level, fibrosis is triggered by the conversion of cardiac fibroblasts (CF) into extracellular matrix-producing myofibroblasts. miR-24-3p regulates this process in animal models. Here, we investigated whether miR-24-3p plays similar roles in human models. METHODS AND RESULTS Gain- and loss-of-function experiments were performed using human induced pluripotent stem cell-derived cardiomyocytes (hCM) and primary hCF under normoxic or ischaemia-simulating conditions. hCM-derived extracellular vesicles (EVs) were added to hCF. Similar experiments were performed using three-dimensional human cardiac microtissues and ex vivo cultured human cardiac slices. hCF transfection with miR-24-3p mimic prevented TGFβ1-mediated induction of FURIN, CCND1, and SMAD4-miR-24-3p target genes participating in TGFβ1-dependent fibrogenesis-regulating hCF-to-myofibroblast conversion. hCM secreted miR-24-3p as EV cargo. hCM-derived EVs modulated hCF activation. Ischaemia-simulating conditions induced miR-24-3p depletion in hCM-EVs and microtissues. Similarly, hypoxia down-regulated miR-24-3p in cardiac slices. Analyses of clinical samples revealed decreased miR-24-3p levels in circulating EVs in patients with acute myocardial infarction (AMI), compared with healthy subjects. Post-mortem RNAScope analysis showed miR-24-3p down-regulation in myocardium from patients with AMI, compared with patients who died from non-cardiac diseases. Berberine, a plant-derived agent with miR-24-3p-stimulatory activity, increased miR-24-3p contents in hCM-EVs, down-regulated FURIN, CCND1, and SMAD4, and inhibited fibrosis in cardiac microtissues. CONCLUSION These findings suggest that hCM may control hCF activation through miR-24-3p secreted as EV cargo. Ischaemia impairs this mechanism, favouring fibrosis.
Collapse
Affiliation(s)
- Giorgia Senesi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Istituto Cardiocentro Ticino, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Alessandra M Lodrini
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Shafeeq Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Zurich, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Switzerland
| | - Jesper Hjortnaes
- Department of Thoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Rogier J A Veltrop
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Bela Kubat
- Department of Pathology, Maastricht University Medical Center, The Netherlands
| | - Davide Ceresa
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Sara Bolis
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Istituto Cardiocentro Ticino, Bellinzona, Switzerland
| | - Andrea Raimondi
- Institute of Biomedical Research, IRB, Bellinzona, Switzerland
| | - Tiziano Torre
- Heart Surgery Unit, Cardiocentro Ticino Institute, EOC, Lugano, Switzerland
| | - Paolo Malatesta
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine (DIMES), Experimental Biology Unit, University of Genova, Genova, Italy
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Zurich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Lucio Barile
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Istituto Cardiocentro Ticino, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
| | - Carolina Balbi
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Medicine, Baden Cantonal Hospital, Baden, Switzerland
| | - Giuseppe Vassalli
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Istituto Cardiocentro Ticino, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
17
|
Luo Y, Gu W, Pan Z, Zeng J, Yin H. MiR-1 alleviates chronic heart failure through HCN2/HCN4 axis in vitro. Tissue Cell 2025; 95:102921. [PMID: 40252568 DOI: 10.1016/j.tice.2025.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE Chronic heart failure (CHF) is a complex and progressive condition. This study aimed to investigate the potential regulatory effect of miR-1 on CHF through the hyperpolarization-activated cyclic nucleotide-gated channels 2 and 4 (HCN2/HCN4) axis. METHOD The expression of miR-1 was examined in individuals diagnosed with CHF. The patients' level of NT-proBNP was evaluated. A cellular model using H9c2 cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) was established. RT-qPCR and western blot were performed to determine the levels of miR-1, HCN2, or HCN4. Elisa was used to measure the levels of TNF-α and IL-6. The potential target of miR-1 on HCN2 and HCN4 was verified using the dual luciferase assay. Overexpression of miR-1 or HCN was employed to explore the specific mechanism of miR-1 and HCN on CHF. The MTT assay was used to evaluate cell viability, while apoptosis was quantified through flow cytometry. RESULTS In both patients with CHF and OGD/R-treated H9c2 cells, miR-1 levels were found to be reduced. The overexpression of miR-1 notably suppressed the secretion of TNF-α and IL-6 (P < 0.05). Overexpression of miR-1 also markedly increased cell viability (P < 0.01) and reduced apoptosis (P < 0.05) in OGD/R-treated H9c2 cells. Using miRNA-target prediction databases and luciferase reporter assays, we identified HCN2 and HCN4 as direct targets of miR-1. Moreover, overexpression of HCN2 and HCN4 counteracted the protective effects of miR-1, as evidenced by a significant reduction in cell viability (P < 0.01) and an increase in apoptosis (P < 0.05). CONCLUSION This study suggests that miR-1 regulates cell viability and apoptosis in CHF through the HCN2/HCN4 axis, highlighting its potential as a therapeutic target for CHF.
Collapse
Affiliation(s)
- Yishan Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wanjie Gu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhe Pan
- Department of Emergency Medicine, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Jun Zeng
- Department of Emergency Medicine, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Haiyan Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
18
|
Saadh MJ, Muhammad FA, Alazzawi TS, Fahdil AA, Athab ZH, Tuxtayev J, Alsaikhan F, Farhood B. Regulation of Apoptotic Pathways by MicroRNAs: A Therapeutic Strategy for Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04833-5. [PMID: 40220245 DOI: 10.1007/s12035-025-04833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder marked by a gradual decline in memory and cognitive functions. It is characterized by the presence of senile plaques, neurofibrillary tangles, and neuronal degeneration, affecting a significant portion of the human population. A key feature of various nervous system disorders, including AD, is extensive cellular death caused by apoptosis, which affects not only neurons but also glial cells. While apoptosis plays a vital role in eliminating certain cells and supporting normal development, alterations or disruptions in apoptotic pathways can lead to harmful neurodegenerative conditions such as AD. Thus, targeting apoptosis presents a promising therapeutic approach for these diseases. MicroRNAs (miRNAs), a class of non-coding RNA, play diverse roles in cellular functions, including proliferation, gene expression regulation, programmed cell death, intercellular communication, and angiogenesis. By modulating regulatory genes, miRNAs can influence apoptosis, either promoting or inhibiting it. Aberrant expression of miRNAs can impact multiple apoptotic pathways, potentially driving the progression of AD and related health issues. This review summarizes recent research on miRNAs and their dual role in exacerbating or protecting against neural cell damage in AD by altering apoptotic pathways. The regulation of apoptosis by miRNAs offers a prospective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Jamshid Tuxtayev
- Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Boshuizen B, De Maré L, Oosterlinck M, Van Immerseel F, Eeckhaut V, De Meeus C, Devisscher L, Vidal Moreno de Vega C, Willems M, De Oliveira JE, Hosotani G, Gansemans Y, Meese T, Van Nieuwerburgh F, Deforce D, Vanderperren K, Verdegaal EL, Delesalle C. Aleurone supplementation enhances the metabolic benefits of training in Standardbred mares: impacts on glucose-insulin dynamics and gut microbiome composition. Front Physiol 2025; 16:1565005. [PMID: 40276369 PMCID: PMC12018385 DOI: 10.3389/fphys.2025.1565005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Aleurone, derived from the bran layer of grains like wheat and barley, has demonstrated positive effects on energy metabolism in pigs, mice, and untrained horses, influencing glucose-insulin dynamics and gut microbiome composition. Training itself enhances insulin sensitivity in horses, similar to the improvements in performance capacity observed in human athletes. This study aimed to investigate whether aleurone supplementation provides additional benefits to training by modulating insulin metabolism and gut microbiota in Standardbred mares. Methods Sixteen Standardbred mares (aged 3-5 years) participated in a cross-over study with two 8-week training periods separated by 8 weeks of detraining. Each horse received either 200 g/day aleurone supplementation or a control diet. Insulin metabolism was evaluated using oral (OGTT) and intravenous (FSIGTT) glucose tolerance tests, measuring parameters such as Maximumglucose, AUCglucose, Maximuminsulin, AUCinsulin, Time to peakinsulin (OGTT), Acute Insulin Response to Glucose (AIRg), glucose effectiveness (Sg), and disposition index (DI) (FSIGTT). Fecal samples underwent metagenomic analysis to assess alpha and beta diversity and microbial composition. Results Training alone: Training significantly improved OGTT parameters by decreasing Maximuminsulin (P = 0.005) and AUCinsulin (P = 0.001), while increasing Time to peakinsulin (P = 0.03), indicating enhanced insulin sensitivity. FSIGTT results also showed a decrease in logAIRg (P = 0.044). Training with Aleurone: Aleurone supplementation further reduced FSIGTT AIRg (P = 0.030), logAIRg (P = 0.021) while increasing glucose effectiveness (Sg; P = 0.031). These findings suggest aleurone improves insulin sensitivity, glucose disposal, and fasting glucose regulation beyond training. Microbiome analysis revealed training decreased Pseudomonas, associated with dysbiosis, while aleurone reduced inflammation-associated Desulfovibrio. Beta diversity metrics showed no significant changes. Conclusion Aleurone supplementation enhances training-induced improvements in glucose metabolism and fecal microbiota composition, which could offer potential benefits for equine athletes by optimizing metabolic flexibility. It also supports improvements in glucose and insulin dynamics, particularly by further enhancing insulin sensitivity and glucose-mediated disposal. Future studies should investigate the mechanisms of aleurone at the muscle and gut level and explore its potential applications for metabolic disorders such as Equine Metabolic Syndrome.
Collapse
Affiliation(s)
- Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Hospital Wolvega, Oldeholtpade, Netherlands
| | - Lorie De Maré
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Oosterlinck
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathobiology, Pharmacology and Special Animals Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathobiology, Pharmacology and Special Animals Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Constance De Meeus
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lindsey Devisscher
- Gut-Liver ImmunoPharmacology Unit, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Willems
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Katrien Vanderperren
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Elisabeth-Lidwien Verdegaal
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Health and Performance Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Health and Performance Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
20
|
Bei Y, Wang T, Guan S. Berberine Extends Lifespan in C. elegans Through Multi-Target Synergistic Antioxidant Effects. Antioxidants (Basel) 2025; 14:450. [PMID: 40338239 PMCID: PMC12024168 DOI: 10.3390/antiox14040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Aging is a process of gradual functional decline in complex physiological systems and is closely related to the occurrence of various diseases. Berberine, a bioactive alkaloid derived from Coptis chinensis (Huanglian), has emerged as a promising candidate for anti-aging interventions. This study comprehensively investigated the lifespan-extending effects and molecular mechanisms of berberine in C. elegans through integrated approaches including lifespan assays, locomotor activity analysis, oxidative stress challenges, and transcriptomic profiling. Furthermore, genetic models of mutant and transgenic worms were employed to delineate their interactions with the insulin/IGF-1 signaling (IIS) pathway. Our results demonstrate that berberine extended the mean lifespan of wild-type worms by 27%. By activating transcription factors such as DAF-16/FOXO, HSF-1, and SKN-1/NRF2, berberine upregulated antioxidant enzyme expression, reduced lipofuscin accumulation, and improved stress resistance. Transcriptomic analysis revealed significant changes in lipid metabolism-related genes, particularly in pathways involving fatty acid synthesis, degradation, and sphingolipid metabolism. These findings establish that berberine exerts multi-target anti-aging effects through coordinated activation of stress-responsive pathways and metabolic optimization, providing mechanistic insights for developing natural product-based geroprotective strategies.
Collapse
Affiliation(s)
| | | | - Shuwen Guan
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
21
|
Gyöngyösi M, Guthrie J, Hasimbegovic E, Han E, Riesenhuber M, Hamzaraj K, Bergler-Klein J, Traxler D, Emmert MY, Hackl M, Derdak S, Lukovic D. Critical analysis of descriptive microRNA data in the translational research on cardioprotection and cardiac repair: lost in the complexity of bioinformatics. Basic Res Cardiol 2025:10.1007/s00395-025-01104-1. [PMID: 40205177 DOI: 10.1007/s00395-025-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
The unsuccessful translation of cardiac regeneration and cardioprotection from animal experiments to clinical applications in humans has raised the question of whether microRNA bioinformatics can narrow the gap between animal and human research outputs. We reviewed the literature for the period between 2000 and 2024 and found 178 microRNAs involved in cardioprotection and cardiac regeneration. On analyzing the orthologs and annotations, as well as downstream regulation, we observed species-specific differences in the diverse regulation of the microRNAs and related genes and transcriptomes, the influence of the experimental setting on the microRNA-guided biological responses, and database-specific bioinformatics results. We concluded that, in addition to reducing the number of in vivo experiments, following the 3R animal experiment rules, the bioinformatics approach allows the prediction of several currently unknown interactions between pathways, coding and non-coding genes, proteins, and downstream regulatory elements. However, a comprehensive analysis of the miRNA-mRNA-protein networks needs a profound bioinformatics and mathematical education and training to appropriately design an experimental study, select the right bioinformatics tool with programming language skills and understand and display the bioinformatics output of the results to translate the research data into clinical practice. In addition, using in-silico approaches, a risk of deviating from the in vivo processes exists, with adverse consequences on the translational research.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Julia Guthrie
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Ena Hasimbegovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Emilie Han
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Martin Riesenhuber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Kevin Hamzaraj
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jutta Bergler-Klein
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Berlin, Germany
| | | | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Boichenko V, Noakes VM, Reilly-O’Donnell B, Luciani GB, Emanueli C, Martelli F, Gorelik J. Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity. Cells 2025; 14:553. [PMID: 40214506 PMCID: PMC11989213 DOI: 10.3390/cells14070553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality worldwide, representing a complex clinical syndrome in which the heart's ability to pump blood efficiently is impaired. HF can be subclassified into heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), each with distinct pathophysiological mechanisms and varying levels of severity. The progression of HF is significantly driven by cardiac fibrosis, a pathological process in which the extracellular matrix undergoes abnormal and uncontrolled remodelling. Cardiac fibrosis is characterized by excessive matrix protein deposition and the activation of myofibroblasts, increasing the stiffness of the heart, thus disrupting its normal structure and function and promoting lethal arrythmia. MicroRNAs, long non-coding RNAs, and circular RNAs, collectively known as non-coding RNAs (ncRNAs), have recently gained significant attention due to a growing body of evidence suggesting their involvement in cardiac remodelling such as fibrosis. ncRNAs can be found in the peripheral blood, indicating their potential as biomarkers for assessing HF severity. In this review, we critically examine recent advancements and findings related to the use of ncRNAs as biomarkers of HF and discuss their implication in fibrosis development.
Collapse
Affiliation(s)
- Veronika Boichenko
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular and Surgical Sciences, The University of Verona, Policlinico G. B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milano, Italy
| | - Victoria Maria Noakes
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Benedict Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular and Surgical Sciences, The University of Verona, Policlinico G. B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milano, Italy
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
23
|
Wu H, Hui Y, Qian X, Wang X, Xu J, Wang F, Pan S, Chen K, Liu Z, Gao W, Bai J, Liang G. Exosomes derived from mesenchymal stem cells ameliorate impaired glucose metabolism in myocardial Ischemia/reperfusion injury through miR-132-3p/PTEN/AKT pathway. Cell Cycle 2025:1-20. [PMID: 40181235 DOI: 10.1080/15384101.2025.2485834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Exosomes secreted by mesenchymal stem cells (MSCs) have been considered as a novel biological therapy for myocardial ischemia/reperfusion injury (MIRI). However, the underlying mechanism of exosomes has not been completely established, especially in the early stage of MIRI. In this study, we primarily investigated the protective effect of exosomes on MIRI from both in vitro and ex vivo perspectives. Bioinformatic analysis was conducted to identify exosomal miRNA associated with myocardial protection, Genes and proteins related to functional studies and myocardial energy metabolism were analyzed and evaluated using techniques such as Polymerase Chain Re-action (PCR), Western blotting, double luciferase biochemical techniques, flow cytometry assay, etc. It was discovered that exosomes ameliorated cardiomyocyte injury t by delivery of miR-132-3p.This process reduced the expression of Phosphatase and tensin homolog (PTEN) mRNA and protein, enhanced the expression of phosphorylated protein kinase (pAKT), regulated the insulin signaling pathway, facilitated intracellular Glucose transporter 4 (GLUT4) protein membrane translocation, and enhanced glucose uptake and Adenosine Triphosphate (ATP) production. This study confirmed, for the first time, that MSC-EXO can provide myocardial protection in the early stages of MIRI through miR-132/PTEN/AKT pathway. This research establishes a theoretical and experimental foundation for the clinical application of MSC-derived exosomes.
Collapse
Affiliation(s)
- Hongkun Wu
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yongpeng Hui
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xingkai Qian
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueting Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, China
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, China
| | - Feng Wang
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Sisi Pan
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaiyuan Chen
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhou Liu
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weilong Gao
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jue Bai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Guiyou Liang
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
24
|
Moise N, Weinberg SH. Calcium Homeostatic Feedback Control Predicts Atrial Fibrillation Initiation, Remodeling, and Progression. JACC Clin Electrophysiol 2025:S2405-500X(25)00162-8. [PMID: 40338780 DOI: 10.1016/j.jacep.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/11/2025] [Accepted: 03/11/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Atrial fibrillation (AF) is a progressive disorder, with arrhythmia episodes becoming increasingly longer and ultimately permanent. The chaotic electrical activity by itself is well known to drive progression, a process classically summarized as "AF begets AF." However, the mechanisms underlying this progression are not yet well defined. OBJECTIVES We hypothesize that calcium homeostatic feedback regulating ion channel expression is a critical mechanistic component of this pathological process. METHODS We propose a modeling framework that tracks both short-term beat-to-beat electrical and calcium activity and long-term tissue substrate remodeling as a single coupled dynamical system. Importantly, the full AF progression from healthy to pathological remodeled tissue is reproduced, in contrast with prior studies that consider "snapshots" of various AF stages. RESULTS Simulations predict that single cells respond to fast pacing by maintaining intracellular calcium concentrations through dynamic ion channel expression and electrical phenotype changes. In 2-dimensional homogeneous tissue, spontaneous spiral waves stabilize into permanent re-entry. In 2-dimensional heterogeneous tissue, we observe the initiation of re-entrant activity in response to fast pacing, followed by increasingly longer intermittent, and then permanent, arrhythmic activity. Simulations predict critical properties of re-entrant wave locations, leading to a novel hypothesis: spiral wave activity itself drives underlying substrate remodeling and the emergence of remodeled tissue "niches" that support the stabilization of fast re-entrant activity. CONCLUSIONS Thus, the model joins multiple lines of inquiry (ie, long-term calcium regulation, ion channel coexpression and remodeling, and tissue-scale arrhythmia spatiotemporal organization) into a single coherent framework, and for the first time, captures the dynamics of the long-term natural history of AF.
Collapse
Affiliation(s)
- Nicolae Moise
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
25
|
Zhuo S, Liu Y, Wang S, Chen Z, Shi X, Zhang Y, Xu D, Hu J, Wang Y, Qu X. LncRNA MEG3 exacerbates diabetic cardiomyopathy via activating pyroptosis signaling pathway. Front Pharmacol 2025; 16:1538059. [PMID: 40242439 PMCID: PMC12000004 DOI: 10.3389/fphar.2025.1538059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is a prevalent complication observed in diabetic patients. The long non-coding RNA maternally expressed gene 3 (lncMEG3) has been found to be intricately associated with myocardial infarction and heart failure. However, the role of lncMEG3 in DCM remains unclear. The present study was designed to investigate the role of lncMEG3 in DCM and elucidate the underlying molecular mechanisms. Methods: The diabetic mouse model was established through intraperitoneal injection streptozotocin (STZ). The heart-targeted adeno-associated virus carrying lncMEG3 interfering RNA (AAV9-shMEG3) was administered via tail-vein injection to induce silencing of lncMEG3 in diabetic mice. Echocardiography was performed to evaluate cardiac function, while hematoxylin and eosin (H&E) staining and Masson trichrome staining were employed for the detection of cardiac remodeling. The underlying mechanisms were investigated using Western blot and real-time PCR (qPCR). Results: The expression of lncMEG3 was increased in hearts with DCM and in AC16 cardiomyocytes treated with high glucose. The knockout of lncMEG3 reduced inflammation, cardiac fibrosis and myocardial hypertrophy, and improved cardiac dysfunction in diabetic mice. In diabetic mice, the activation of the nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3)-inflammasome was observed, whereas silencing of lncMEG3 resulted in a reduction in NLRP3 inflammasome activation. Mechanistically, we discovered that lncMEG3 specifically functions as a competitive inhibitor of miR-223. Moreover, the use of miR-223 antisense oligonucleotide (AMO) counteracted the suppressive effects of lncMEG3 knockdown on NLRP3 inflammasome activation induced by high glucose in vitro. Conclusion: LncMEG3 exacerbates DCM by enhancing NLRP3 inflammasome activation through attenuating miR-223-mediated degradation of NLRP3 in the hearts of individuals with diabetes.
Collapse
Affiliation(s)
- Shengnan Zhuo
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yifeng Liu
- Department of Health Monitoring, Bazhong Center for Disease Control and Prevention, Bazhong, Sichuan, China
| | - Siyuan Wang
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuoling Chen
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xuran Shi
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yangjunna Zhang
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dengfeng Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingjin Hu
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yin Wang
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xuefeng Qu
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Doherty I, Shetty R, Ni H, Morotti S, Grandi E. Exploring the mechanisms of sex-specific proarrhythmia in long QT syndrome through computational modeling. Am J Physiol Heart Circ Physiol 2025; 328:H963-H972. [PMID: 40080081 PMCID: PMC12034239 DOI: 10.1152/ajpheart.00792.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/08/2024] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Females exhibit longer QT intervals and a higher risk of long QT syndrome (LQTS) associated arrhythmogenesis compared with males. Although several studies suggest these sex disparities result from the effect of sex hormones on cardiac ion channels, the underlying mechanisms remain incompletely understood. This research investigates the arrhythmogenic effects, sex-specific risk, and mechanisms associated with LQTS linked to either to loss-of-function of the rapidly activating delayed rectifier K+ current (IKr), or gain-of-function of the L-type Ca2+ current (ICaL). We primarily used the Tomek-Rodriguez (ToR-ORd) model of human ventricular cardiomyocytes and incorporated sex-specific parameterizations based on previous studies. The O'Hara-Rudy and Grandi-Bers models were used to demonstrate model-independence of the findings. We used a populations-of-models approach to assess early afterdepolarization (EAD) susceptibility in control and LQTS male and female groups. All female models had consistently longer action potentials and were more prone to EADs than male models. In the ToR-ORd model, IKr loss-of-function led to EADs in 65.8% of females versus 22.8% of males. ICaL gain-of-function led to EADs in 66.2% of females but only 3.6% of males. Using logistic regression analysis, we identified key ionic predictors of EAD susceptibility, with maximal conductance of the L-type Ca2+ current (GCaL) and maximal transport rate of the Na+/Ca2+ exchanger (GNCX) consistently emerging as positively and maximal conductance of the rapidly activating delayed rectifier K+ current (GKr) as negatively associated to EADs across both sexes and LQTS types. Notably, higher GNCX but lower GKr in female versus male cardiomyocytes could explain heightened female EAD risk. Our studies explore the ionic traits that favor (or confer resilience against) EADs with potential implications for personalized treatments. NEW & NOTEWORTHY We explored sex disparities in long QT syndrome (LQTS) using sex-specific human ventricular cardiomyocyte models. We showed that females exhibit greater susceptibility to early afterdepolarizations (EADs) than males, and identified key ionic predictors of EAD risk, including increases in the voltage-gated L-type Ca2+ current and electrogenic Na+/Ca2+ exchanger, and downregulation of the rapidly activating delayed rectifier K+ current. These findings offer new insights into sex-specific mechanisms underlying arrhythmogenesis in LQTS, with potential implications for personalized treatments.
Collapse
Grants
- Quad Fellowship
- R03AG086695 HHS | NIH | National Institute on Aging (NIA)
- 20POST35120462 - HAIBO NI American Heart Association-American Stroke Association
- R01 HL170521 NHLBI NIH HHS
- R01HL176651 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL131517 NHLBI NIH HHS
- R00HL138160 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R03 AG086695 NIA NIH HHS
- R01HL171586 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL138160 NHLBI NIH HHS
- R01HL131517 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL170521 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL171057 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- OT2 OD026580 NIH HHS
- P01 HL141084 NHLBI NIH HHS
- R01HL141214 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL176651 NHLBI NIH HHS
- R01 HL171057 NHLBI NIH HHS
- R01 HL171586 NHLBI NIH HHS
- P01HL141084 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 24CDA1258695 American Heart Association-American Stroke Association
- 1OT2OD026580-01 HHS | NIH | OSC | Common Fund (NIH Common Fund)
- Dean's Fellow Award UC | UCD | University of California Davis School of Medicine (UC Davis School of Medicine)
- 24CDA1258695 American Heart Association (AHA)
- 20POST35120462 American Heart Association (AHA)
Collapse
Affiliation(s)
- Isabella Doherty
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Roshni Shetty
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, United States
| |
Collapse
|
27
|
Li X, Liu L, Lou H, Dong X, Hao S, Sun Z, Dou Z, Li H, Zhao W, Sun X, Liu X, Zhang Y, Yang B. Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the m 6A modification of calsequestrin 2 in diabetic cardiomyopathy. Front Med 2025; 19:329-346. [PMID: 39821729 DOI: 10.1007/s11684-024-1102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/26/2024] [Indexed: 01/19/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca2+ overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM. Our results revealed the remarkably upregulation of Trdn-as in the hearts of the DCM mice and cardiomyocytes treated with high glucose (HG). Knocking down Trdn-as in cardiac tissues significantly improved cardiac dysfunction and remodeling in the DCM mice. Conversely, Trdn-as overexpression resulted in cardiac damage resembling that observed in the DCM mice. At the cellular level, Trdn-as induced Ca2+ overload in the SR and mitochondria, leading to mitochondrial dysfunction. RNA-seq and bioinformatics analyses identified calsequestrin 2 (Casq2), a primary calcium-binding protein in the junctional SR, as a potential target of Trdn-as. Further investigations revealed that Trdn-as facilitated the recruitment of METTL14 to the Casq2 mRNA, thereby enhancing the m6A modification of Casq2. This modification increased the stability of Casq2 mRNA and subsequently led to increased protein expression. When Casq2 was knocked down, the promoting effects of Trdn-as on Ca2+ overload and mitochondrial damage were mitigated. These findings provide valuable insights into the pathogenesis of DCM and suggest Trdn-as as a potential therapeutic target for this condition.
Collapse
Affiliation(s)
- Xiaohan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Han Lou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xinxin Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Shengxin Hao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Zijia Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Huimin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Wenjie Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
28
|
Nishino K, Temma T, Natsui H, Watanabe M, Nakao M, Kawasaki M, Shimano K, Kawakami K, Saito S, Koya J, Tatsuta D, Koizumi T, Kadosaka T, Koya T, Tsuneta S, Kamiya K, Nagai T, Anzai T. Serum Vasoactive Intestinal Peptide as a Novel Biomarker for Low-Voltage Areas in Patients With Atrial Fibrillation. J Am Heart Assoc 2025; 14:e039192. [PMID: 40118798 DOI: 10.1161/jaha.124.039192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/11/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Low-voltage areas in the left atrium predict atrial fibrillation recurrence after catheter ablation and are associated with adverse outcomes like death, heart failure, and stroke. Detecting low-voltage areas (LVAs) typically requires invasive procedures, highlighting the need for a simple, minimally invasive marker. Vasoactive intestinal peptide (VIP), a neuropeptide released during parasympathetic stimulation, affects electrophysiological remodeling in atrial fibrillation. We hypothesized that serum VIP could serve as a biomarker for detecting LVAs in these patients. METHODS AND RESULTS This prospective, cross-sectional study was conducted at Hokkaido University Hospital between August 2021 and September 2023. We included 108 patients with atrial fibrillation scheduled for catheter ablation. Blood samples were collected during ablation to measure VIP using an ELISA. Electroanatomical mapping identified LVAs, defined as regions with bipolar voltage ≤0.5 mV and occupying >5% of the left atrial surface. Statistical analyses evaluated the relationship between VIP and LVAs. Fifty-one patients (47%) had LVAs, with significantly higher serum VIP levels than those without (335.1 versus 247.7 pg/mL, P<0.001). VIP levels and female sex were statistically significant factors of LVAs. Adding VIP to the existing score significantly improved its discrimination (area under the curve: 0.784 versus 0.707, P<0.001). CONCLUSIONS Serum VIP levels are higher in patients with atrial fibrillation with LVAs, suggesting its potential as a noninvasive biomarker for detecting these areas and improving clinical management.
Collapse
Affiliation(s)
- Kotaro Nishino
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Hiroyuki Natsui
- Department of Cardiovascular Medicine Otaru Kyokai Hospital Otaru Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine Hokko Memorial Hospital Sapporo Japan
| | - Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Masahiro Kawasaki
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Kintaro Shimano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Kei Kawakami
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Shota Saito
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Jiro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Daishiro Tatsuta
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine Hanaoka Seishu Memorial Hospital Sapporo Japan
| | - Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Satonori Tsuneta
- Department of Diagnostic and Interventional Radiology Hokkaido University Hospital Sapporo Japan
- Department of Radiology, Graduate School of Dental Medicine Hokkaido University Sapporo Japan
| | - Kiwamu Kamiya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Toshiyuki Nagai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan
| |
Collapse
|
29
|
He T, Chen Q, Li H, Mao J, Luo J, Ma D, Yang Z. The potential mechanism of MicroRNA involvement in the regulation of muscle development in weaned piglets by tryptophan and its metabolites. BMC Genomics 2025; 26:330. [PMID: 40169975 PMCID: PMC11963679 DOI: 10.1186/s12864-025-11424-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Muscle development is a key factor influencing the growth performance of piglets. Optimizing this developmental process is crucial for enhancing breeding efficiency and economic profitability. Tryptophan (Trp) is considered one of the key limiting amino acids for weaned piglets, plays an essential role in regulating feed intake, growth, and muscle development. However, the regulatory mechanisms by which Trp and its derivatives influence muscle development in weaned piglets remain unclear. METHODS The aim of this study was to investigate the regulatory pathways and potential mechanisms of Trp and its metabolites on muscle development in weaned piglets. In this study, 10 healthy castrated male piglets, 28 days old and weaned, were selected and randomly assigned to a control group (CON, 0.14% Trp) and a high tryptophan group (HT, 0.35% Trp), with 5 in each group. After a 7-day pre-feeding period, the formal feeding began, and after 28 days, the pigs were slaughtered and the longissimus dorsi muscles was collected for transcriptome sequencing. RESULTS The results indicated that different dietary Trp levels led to the identification of sixteen differentially expressed microRNAs (DE miRNAs) in the longissimus dorsi muscle of the weaned piglets. Target gene functional enrichment analysis showed that these DE miRNAs are involved in muscle cell proliferation, differentiation, protein deposition, and muscle development through multiple biological pathways. Furthermore, we constructed a protein-protein interaction (PPI) network for the target genes, with the enriched core gene cluster functions associated with cellular proliferation, signaling pathways, hormone release, and muscle development. Finally, qRT-PCR validated the reliability and accuracy of the RNA-seq results, revealing a correlation coefficient of 0.97 between the two methods. CONCLUSIONS This study uncovers the potential mechanisms by which miRNAs participate in the regulation of muscle development in weaned piglets mediated by Trp and its metabolites, providing a theoretical basis and practical guidance for optimizing piglet management and health improvement.
Collapse
Affiliation(s)
- Tianle He
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Qingyun Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Huifeng Li
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Jiani Mao
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Ju Luo
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Dengjun Ma
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhenguo Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
30
|
Wong ZW, New SY. Recent Advances in Biosensors Based on Hybridization Chain Reaction and Silver Nanoclusters. SMALL METHODS 2025; 9:e2401436. [PMID: 39757735 DOI: 10.1002/smtd.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/22/2024] [Indexed: 01/07/2025]
Abstract
Hybridization chain reaction (HCR) and DNA-templated silver nanoclusters (AgNCs) have emerged as powerful tools in biosensing. HCR enables cascade amplification through programmable DNA interactions, while DNA-AgNCs serve as transducing units with unique fluorogenic and electrochemical properties. Integrating these components into a hybrid sensor could significantly enhance sensing capabilities across various fields. Nonetheless, limited studies and the lack of systematic guidelines for HCR-AgNCs systems have hindered research progress, despite their potential. This review aims to address this gap by providing a comprehensive overview of HCR-AgNCs biosensors, facilitating further innovation in this field. The working principles, performance factors, and complementary features are discussed. Thereafter, reported HCR-AgNCs studies are assessed, emphasizing their distinct sensing mechanisms (e.g., fluorogenic, electrochemical), applications across various fields, and challenges in adopting the hybrid sensors. Drawing from the experience developing multiple HCR-AgNCs sensors, insights and guidelines for designing and developing HCR-AgNCs systems are provided for future researchers. Finally, prospective directions in HCR-AgNCs research, including multiplex assays and integration with emerging technologies, are explored to guide future advancements. The synergistic combination of HCR and AgNCs as a hybrid biosensor holds promise for addressing pressing challenges in healthcare, environmental monitoring, and beyond, paving the way for next-generation biosensing technologies.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, 43500, Malaysia
| | - Siu Yee New
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, 43500, Malaysia
| |
Collapse
|
31
|
Chen H, Tian T, Wang D. Dysregulation of miR-25-3p in Diabetic Nephropathy and Its Role in Inflammatory Response. Biochem Genet 2025; 63:1635-1646. [PMID: 38602597 DOI: 10.1007/s10528-024-10781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
To investigate the expression level of miR-25-3p in patients with type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN), and its effect on proliferation, apoptosis and inflammatory response of mesangial cells cultured with high glucose. Blood samples of all clinical subjects were collected for RT-qPCR analysis to detect serum miR-25-3p levels. Human mesangial cells (HMCs) cultured with high glucose were used to construct DN model in vitro. MTT assay, flow cytometry and ELISA were used to evaluate the effects of miR-25-3p on the proliferation, apoptosis, and inflammatory response of DN cell models. Serum miR-25-3p was decreased in both T2DM group and DN group, but more in DN group. Serum miR-25-3p was positively correlated with eGFR and negatively correlated with UAER. The expression of miR-25-3p was reduced in HMCs induced by high glucose. Transfection of miR-25-3p mimic could significantly up-regulate the miR-25-3p level in HMCs. Besides, high glucose culture resulted in abnormal proliferation of HMCs, reduced apoptotic cells, and increased inflammation. The addition of miR-25-3p mimic significantly inhibited cell proliferation and promoted cell apoptosis and reduced the production of inflammatory factors. The abnormal reduction of serum miR-25-3p in DN indicates that it may be a potential biomarker for clinical diagnosis of DN. In in vitro experiments, miR-25-3p was involved in the progression of DN by regulating cell proliferation, apoptosis, and inflammatory response.
Collapse
Affiliation(s)
- Huanzhen Chen
- School of Medicine, Tongji University, No.500, Zhennan Road, Taopu Town, Shanghai, 200092, China.
- Department of Endocrinology and Metabolism, Shanghai Jiangong Hospital, No. 666 Zhongshan North 1st Road, Hongkou District, Shanghai, 200083, China.
| | - Tongguan Tian
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Dan Wang
- Department of Endocrinology and Metabolism, Shanghai Jiangong Hospital, No. 666 Zhongshan North 1st Road, Hongkou District, Shanghai, 200083, China
| |
Collapse
|
32
|
Meng X, Du H, Li D, Guo Y, Luo P, Pan L, Kan R, Yu P, Xiang Y, Mao B, He Y, Wang S, Li W, Yang Y, Yu X. Risk Factors, Pathological Changes, and Potential Treatment of Diabetes-Associated Cognitive Dysfunction. J Diabetes 2025; 17:e70089. [PMID: 40296350 PMCID: PMC12037708 DOI: 10.1111/1753-0407.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Diabetes is a prevalent public health issue worldwide, and the cognitive dysfunction and subsequent dementia caused by it seriously affect the quality of life of patients. METHODS Recent studies were reviewed to provide a comprehensive summary of the risk factors, pathogenesis, pathological changes and potential drug treatments for diabetes-related cognitive dysfunction (DACD). RESULTS Several risk factors contribute to DACD, including hyperglycemia, hypoglycemia, blood sugar fluctuations, hyperinsulinemia, aging, and others. Among them, modifiable risk factors for DACD include blood glucose control, physical activity, diet, smoking, and hypertension management, while non-modifiable risk factors include age, genetic predisposition, sex, and duration of diabetes. At the present, the pathogenesis of DACD mainly includes insulin resistance, neuroinflammation, vascular disorders, oxidative stress, and neurotransmitter disorders. CONCLUSIONS In this review, we provide a comprehensive summary of the risk factors, pathogenesis, pathological changes and potential drug treatments for DACD, providing information from multiple perspectives for its prevention and management.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Haiyang Du
- Department of OrthopaedicsZhoukou Central HospitalZhoukouChina
| | - Danpei Li
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yaming Guo
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Peiqiong Luo
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Limeng Pan
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Ranran Kan
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Peng Yu
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of EndocrinologyThe Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yuxi Xiang
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Beibei Mao
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yi He
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Siyi Wang
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Wenjun Li
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yan Yang
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| |
Collapse
|
33
|
Chen Q, Gao Y, Li F, Yuan L. The role of gut-islet axis in pancreatic islet function and glucose homeostasis. Diabetes Obes Metab 2025; 27:1676-1692. [PMID: 39916498 PMCID: PMC11885102 DOI: 10.1111/dom.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/08/2025]
Abstract
The gastrointestinal tract plays a vital role in the occurrence and treatment of metabolic diseases. Recent studies have convincingly demonstrated a bidirectional axis of communication between the gut and islets, enabling the gut to influence glucose metabolism and energy homeostasis in animals strongly. The 'gut-islet axis' is an essential endocrine signal axis that regulates islet function through the dialogue between intestinal microecology and endocrine metabolism. The discovery of glucagon-like peptide-1 (GLP-1), gastric inhibitory peptide (GIP) and other gut hormones has initially set up a bridge between gut and islet cells. However, the influence of other factors remains largely unknown, such as the homeostasis of the gut microbiota and the integrity of the gut barrier. Although gut microbiota primarily resides and affect intestinal function, they also affect extra-intestinal organs by absorbing and transferring metabolites derived from microorganisms. As a result of this transfer, islets may be continuously exposed to gut-derived metabolites and components. Changes in the composition of gut microbiota can damage the intestinal barrier function to varying degrees, resulting in increased intestinal permeability to bacteria and their derivatives. All these changes contribute to the severe disturbance of critical metabolic pathways in peripheral tissues and organs. In this review, we have outlined the different gut-islet axis signalling mechanisms associated with metabolism and summarized the latest progress in the complex signalling molecules of the gut and gut microbiota. In addition, we will discuss the impact of the gut renin-angiotensin system (RAS) on the various components of the gut-islet axis that regulate energy and glucose homeostasis. This work also indicates that therapeutic approaches aiming to restore gut microbial homeostasis, such as probiotics and faecal microbiota transplantation (FMT), have shown great potential in improving treatment outcomes, enhancing patient prognosis and slowing down disease progression. Future research should further uncover the molecular links between the gut-islet axis and the gut microbiota and explore individualized microbial treatment strategies, which will provide an innovative perspective and approach for the diagnosis and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fangyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
34
|
Narbonne-Reveau K, Erni A, Eichner N, Sankar S, Kapoor S, Meister G, Cremer H, Maurange C, Beclin C. In vivo AGO-APP identifies a module of microRNAs cooperatively preserving neural progenitors. PLoS Genet 2025; 21:e1011680. [PMID: 40299997 DOI: 10.1371/journal.pgen.1011680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
MicroRNAs are essential regulators of gene expression. Their function is particularly important during neurogenesis, when the production of large numbers of neurons from a limited number of neural stem cells depends on the precise control of determination, proliferation and differentiation. However, microRNAs can target many mRNAs and vice-versa, raising the question of how specificity is achieved to elicit a precise regulatory response. Here we introduce in vivo AGO-APP, a novel approach to purify Argonaute-bound, and therefore active microRNAs from specific cell types. Using AGO-APP in the larval Drosophila central nervous system, we identify a module of microRNAs predicted to redundantly target all iconic genes known to control the transition from neuroblasts to neurons. While microRNA overexpression generally validated predictions, knockdown of individual microRNAs did not induce detectable phenotypes. In contrast, neuroblasts were induced to differentiate precociously when several microRNAs were knocked down simultaneously. Our data supports the concept that at physiological expression levels, the cooperative action of miRNAs allows efficient targeting of entire gene networks.
Collapse
Affiliation(s)
- Karine Narbonne-Reveau
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
- Equipe labellisée Ligue contre le Cancer, Marseille, France
| | - Andrea Erni
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
| | - Norbert Eichner
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Shobana Sankar
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
- Equipe labellisée Ligue contre le Cancer, Marseille, France
| | - Surbhi Kapoor
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Harold Cremer
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
| | - Cédric Maurange
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
- Equipe labellisée Ligue contre le Cancer, Marseille, France
| | - Christophe Beclin
- Aix-Marseille Université, Centre National pour la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
| |
Collapse
|
35
|
Schotten U, Goette A, Verheule S. Translation of pathophysiological mechanisms of atrial fibrosis into new diagnostic and therapeutic approaches. Nat Rev Cardiol 2025; 22:225-240. [PMID: 39443702 DOI: 10.1038/s41569-024-01088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
Atrial fibrosis is one of the main manifestations of atrial cardiomyopathy, an array of electrical, mechanical and structural alterations associated with atrial fibrillation (AF), stroke and heart failure. Atrial fibrosis can be both a cause and a consequence of AF and, once present, it accelerates the progression of AF. The pathophysiological mechanisms leading to atrial fibrosis are diverse and include stretch-induced activation of fibroblasts, systemic inflammatory processes, activation of coagulation factors and fibrofatty infiltrations. Importantly, atrial fibrosis can occur in different forms, such as reactive and replacement fibrosis. The diversity of atrial fibrosis mechanisms and patterns depends on sex, age and comorbidity profile, hampering the development of therapeutic strategies. In addition, the presence and severity of comorbidities often change over time, potentially causing temporal changes in the mechanisms underlying atrial fibrosis development. This Review summarizes the latest knowledge on the molecular and cellular mechanisms of atrial fibrosis, its association with comorbidities and the sex-related differences. We describe how the various patterns of atrial fibrosis translate into electrophysiological mechanisms that promote AF, and critically appraise the clinical applicability and limitations of diagnostic tools to quantify atrial fibrosis. Finally, we provide an overview of the newest therapeutic interventions under development and discuss relevant knowledge gaps related to the association between clinical manifestations and pathological mechanisms of atrial fibrosis and to the translation of this knowledge to a clinical setting.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, Paderborn, Germany
- Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
36
|
Quilgars C, Boué-Grabot E, de Deurwaerdère P, Cazalets JR, Perrin FE, Bertrand SS. Brief early-life motor training induces behavioral changes and alters neuromuscular development in mice. PLoS Biol 2025; 23:e3003153. [PMID: 40258043 PMCID: PMC12052215 DOI: 10.1371/journal.pbio.3003153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 05/05/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025] Open
Abstract
In this study, we aimed to determine the impact of an increase in motor activity during the highly plastic period of development of the motor spinal cord and hindlimb muscles in newborn mice. A swim training regimen, consisting of two sessions per day for two days, was conducted in 1 and 2-day-old (P1, P2) pups. P3-trained pups showed a faster acquisition of a four-limb swimming pattern, accompanied by dysregulated gene expression in the lateral motor column, alterations in the intrinsic membrane properties of motoneurons (MNs) and synaptic plasticity, as well as increased axonal myelination in motor regions of the spinal cord. Network-level changes were also observed, as synaptic events in MNs and spinal noradrenaline and serotonin contents were modified by training. At the muscular level, slight changes in neuromuscular junction morphology and myosin subtype expression in hindlimb muscles were observed in trained animals. Furthermore, the temporal sequence of acquiring the adult-like swimming pattern and postural development in trained pups showed differences persisting until almost the second postnatal week. A very short motor training performed just after birth is thus able to induce functional adaptation in the developing neuromuscular system that could persist several days. This highlights the vulnerability of the neuromuscular apparatus during development and the need to evaluate carefully the impact of any given sensorimotor procedure when considering its application to improve motor development or in rehabilitation strategies.
Collapse
Affiliation(s)
| | - Eric Boué-Grabot
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | | | | | - Florence E. Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | | |
Collapse
|
37
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2025; 39:435-458. [PMID: 37702834 PMCID: PMC11954709 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
Campos RN, Moreira DAR, da Fonseca GM. Effect of dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, on ventricular repolarization electrocardiographic parameters in type 2 diabetes patients: DAPA - ECG study. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2025; 6:1537005. [PMID: 40230406 PMCID: PMC11994709 DOI: 10.3389/fcdhc.2025.1537005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025]
Abstract
Background Type 2 diabetes (T2DM) is a chronic metabolic disorder that affects approximately 10.5% of the world's population and is an independent risk factor for cardiovascular complications, including sudden cardiac death (SCD). Inhibitors of sodium-glucose co-transporter type 2 (iSGLT2), particularly dapagliflozin, have emerged as promising treatments in patients with T2DM and with heart failure and chronic kidney disease, demonstrating the ability to significantly reduce major cardiovascular events. However, the exact mechanisms that promote the observed benefits are still not fully understood. Objective In this study, we sought to understand the mechanisms associated with the benefits of dapagliflozin by evaluating various electrophysiological parameters of the electrocardiogram (ECG) in patients with T2DM. A randomized, multicenter, prospective study with 174 patients with T2DM divided into two groups: one receiving dapagliflozin plus optimized guideline directed medical therapy (GDMT) and the other optimized GDMT without SGLT2 inhibitors. Clinical, electrocardiographic, laboratory, and echocardiographic evaluations were performed initially and after three months. Descriptive and inferential statistics were used, with a significance level of 0.05. Result This study shows that in patients treated with dapagliflozin plus GDMT, a significant reduction in the duration of the interval from the peak of the T wave to the end of the T wave (TpTe), the QTc interval, and the ratio between the TpTe/QT intervals was observed, with no change in other electrocardiographic variables such as QT interval dispersion, JT peak interval, or changes in the QRS complex and T wave axes (QRS-T angle). Conclusion In patients with T2DM, dapagliflozin significantly shortened the TpTe and QTc intervals, as well as the TpTe/QT ratio. These results suggest a reduction in ventricular electrical remodeling, highlighting a potential cardioprotective effect of dapagliflozin. Clinical trial registration https://clinicaltrials.gov/study/NCT06721442, identifier NCT06721442.
Collapse
Affiliation(s)
- Rodrigo Noronha Campos
- Dante Pazzanese Institute of Cardiology (IDPC), São Paulo, Brazil
- Beneficência Portuguesa Hospital, São Paulo, Brazil
| | | | | |
Collapse
|
39
|
Balan AI, Halaţiu VB, Comșulea E, Mutu CC, Cozac DA, Aspru I, Păcurar D, Bănescu C, Perian M, Scridon A. The Diagnostic and Predictive Potential of miR-328 in Atrial Fibrillation: Insights from a Spontaneously Hypertensive Rat Model. Int J Mol Sci 2025; 26:3049. [PMID: 40243707 PMCID: PMC11989045 DOI: 10.3390/ijms26073049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Using an atrial fibrillation (AF) model in spontaneously hypertensive rats (SHRs), we aimed to identify circulating miRNAs for AF diagnosis and prediction and to confirm the cardiac origin of these miRNAs. A total of 31 SHRs and 39 Wistar Kyoto (WKY) normotensive controls were randomized into six groups: young, adult, and aging SHR and WKY. Spontaneous AF burden and atrial and circulating levels of 11 miRNAs were quantified. Spontaneous AF was absent in all WKY rats. In the SHRs, AF episodes were observed in two adult animals and in all aging animals (13.6 ± 2.3 episodes/24 h). The atrial levels of five miRNAs were significantly higher in adult and aging SHRs compared to their WKY controls (all p < 0.05). Of these, only the circulating levels of miR-328 were significantly higher in the aging SHRs vs. WKYs (p < 0.0001). Atrial miR-328 levels in the SHRs increased progressively with age (p < 0.001) and correlated with circulating miR-328 levels (r = 0.58; p < 0.01). Among aging SHRs, atrial levels of miR-328 strongly correlated with AF burden (r = 0.79; p < 0.01). These data suggest that the circulating level of miR-328 could emerge as a promising marker for both AF diagnosis and, if assessed dynamically, for AF prediction.
Collapse
Affiliation(s)
- Alkora Ioana Balan
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Cardiology Department, Emergency Institute for Cardiovascular Diseases and Transplantation, 540139 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Doctoral School, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Vasile Bogdan Halaţiu
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
| | - Emilian Comșulea
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
| | - Cosmin Constantin Mutu
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Cardiology Department, Emergency Institute for Cardiovascular Diseases and Transplantation, 540139 Târgu Mureș, Romania
| | - Dan Alexandru Cozac
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Cardiology Department, Emergency Institute for Cardiovascular Diseases and Transplantation, 540139 Târgu Mureș, Romania
| | - Ioana Aspru
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Delia Păcurar
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
| | - Claudia Bănescu
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
- Genetics Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Marcel Perian
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Alina Scridon
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| |
Collapse
|
40
|
Cui X, Cong Y. Role of Gut Microbiota in the Development of Some Autoimmune Diseases. J Inflamm Res 2025; 18:4409-4419. [PMID: 40162082 PMCID: PMC11954480 DOI: 10.2147/jir.s515618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
The gut microbiota is crucial for maintaining the homeostasis and function of the immune system. It interacts with the host's immune system through various mechanisms, including promoting immune tolerance, affecting the differentiation and function of immune cells, and participating in the metabolism of immune regulatory substances. The disruption of the gut microbiome may lead to impaired mucosal barrier function, allowing bacteria and their metabolites to invade into the host, activate or interfere with the immune system, and potentially trigger or exacerbate autoimmune responses. Understanding the relationship between the microbiome and autoimmune diseases may help develop new treatment strategies. This article reviewed the recent progresses of microbiome involved in the occurrence and development of some autoimmune diseases and the treatment methods based on regulation of the microbiome, highlighted the key role of microbiome in autoimmune diseases.
Collapse
Affiliation(s)
- Xiaojing Cui
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong Province, 523710, People’s Republic of China
- Dongguan Key Laboratory for Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong Province, 523710, People’s Republic of China
| | - Yanguang Cong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong Province, 523710, People’s Republic of China
- Dongguan Key Laboratory for Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong Province, 523710, People’s Republic of China
| |
Collapse
|
41
|
Abid J, Al-Rawi MBA, Mahmood A, Li A, Jiang T. Identification and functional characterization of key biomarkers in diffuse large B-cell lymphoma: emphasis on STYX as a prognostic marker and therapeutic target. Hereditas 2025; 162:45. [PMID: 40128844 PMCID: PMC11931869 DOI: 10.1186/s41065-025-00411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBC) is the most common subtype of non-Hodgkin lymphoma, characterized by its aggressive nature and poor prognosis in advanced stages. Despite advances in treatment, the molecular mechanisms driving DLBC progression remain incompletely understood, necessitating the identification of novel biomarkers for diagnosis and prognosis. In this study, we analyzed two publicly available datasets (GSE32018 and GSE56315) from the Gene Expression Omnibus database (GEO) to identify overlapping differentially expressed genes (DEGs). Later on, a comprehensive in silico and in vitro methodology was adopted to decipher the role of identify DEGs in DLBC. DEGs analysis of GSE32018 and GSE56315 datasets identified five overlapping gene: SP3, CSNK1A1, STYX, SIRT5, and MGEA5. Expression validation using the GEPIA2 database confirmed the upregulation of SP3, CSNK1A1, STYX, and SIRT5, and the downregulation of MGEA5 in DLBC tissues compared to normal controls. Furthermore, mutational analysis revealed that CSNK1A1 was the only gene among these DEGs to exhibit mutations, with a 2.7% mutation frequency in DLBC patients. Methylation analysis highlighted a negative correlation between DEGs methylation levels and mRNA expression, while survival analysis identified high STYX expression as significantly associated with poorer overall survival in DLBC patients. Functional assays demonstrated that STYX knockdown in U2932 cells led to reduced cell proliferation, colony formation, and enhanced wound healing, indicating STYX's pivotal role in DLBC cell survival and migration. Additionally, gene enrichment analysis revealed the involvement of these DEGs in key biological processes, including intracellular trafficking and myeloid progenitor cell differentiation. These findings emphasize the potential of SP3, CSNK1A1, STYX, SIRT5, and MGEA5 as biomarkers and therapeutic targets in DLBC, particularly highlighting STYX as a promising prognostic marker and potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Junaid Abid
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Mahmood Basil A Al-Rawi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Ahmad Mahmood
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - An Li
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Urumqi, 830054, China.
| | - Tiemin Jiang
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Urumqi, 830054, China.
| |
Collapse
|
42
|
Yuan B, Jia D, Gao B. Preventive treatment of tripdiolide ameliorates kidney injury in diabetic mice by modulating the Nrf2/NF-κB pathway. Front Pharmacol 2025; 16:1492834. [PMID: 40176887 PMCID: PMC11961909 DOI: 10.3389/fphar.2025.1492834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Although tripdiolide has demonstrated a protective role in lupus nephritis, its potential therapeutic and preventive effects on diabetic kidney injury remain inconclusive. Methods In this study, a diabetes mice model was used to evaluate the effect of preventive treatment of tripdiolide on the kidney. The study assessed diabetes related factors levels, while comparing kidney pathological changes, alterations in intestinal microbiota composition, oxidative stress and inflammation in kidneys, validating cytokine expression and protein pathway activation. Results The experiment demonstrated that tripdiolide preventive treatment effectively suppressed the hyperglycemia and elevated hemoglobin level, attenuated the concentrations of creatinine and blood urea nitrogen, mitigated histopathological alterations in the kidney, and alleviated inflammatory cell infiltration. Tripdiolide regulated intestinal microbiota in diabetes mice and affected the abundance of Allobaculum, Dubosella, and Prevotella, and the differential metabolic pathways primarily revolve around ubiquinol biosynthesis and menaquinol biosynthesis. Tripdiolide treatment significantly attenuated renal oxidative stress and inflammation in diabetic mice, as evidenced by the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), heme Oxygenase-1, and the downregulation of phosphorylated nuclear factor-κB (P-NF-κB), and NOD-like receptor protein 3. Experiments performed in RAW264.7 cells demonstrated the effect of tripdiolide. Discussion Tripdiolide may play a protective role in hyperglycemia induced kidney injury by changing the composition of intestinal microorganisms, regulating Nrf2/NF-κB pathway activation, and inhibiting oxidative stress and inflammatory reaction. This study contributes scientific evidence that can inform the development of preventive therapeutic approaches for diabetic nephropathy.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | | | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Liu GX, Diao F, Lu G, Zheng Q, Fu B, Jiao HC, Wang KZ, Liu DH. Alectinib causes sinus bradycardia by suppressing L-type calcium current in sinus node. Eur J Pharmacol 2025; 998:177527. [PMID: 40118326 DOI: 10.1016/j.ejphar.2025.177527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Alectinib is the first-line therapy for anaplastic lymphoma kinase rearranged non-small cell lung cancer globally. Sinus bradycardia, as the major adverse cardiac events of alectinib, still widely impact patient's quality of life. However, its underlying mechanism remains elusive. The aim of this study was to reveal the pathogenesis of the alectinib induced sinus bradycardia (AISB) in a rat model, including the electrophysiology alterations and the molecular mechanism. SD rats were administered alectinib (10 mg/kg/day) by gavage for 7-10 days to mimic the clinical AISB. 3-days alectinib treatment did not change heart rate and sinus node recovery time (SNRT) as assessed through in vivo electrophysiology study. Also, alectinib didn't influence automaticity in isolated heart or single sinus node cardiomyocytes, indicating alectinib cannot decrease sinus node function rapidly. The decreased heart rate and prolonged SNRT was found after 7-days alectinib treatment. The inducibility of atrial fibrillation was not affected under the same condition. The RNA-seq assay revealed the transcriptomic alterations in sinus node of alectinib treated rats, and the dysregulation of genes in cardiac function were observed. The decreased expression of L-type calcium channel Cacna1d was confirmed among the channel candidates identified from RNA-seq assay. Subsequently, the patch-clamp test revealed the reduction in the corresponding L-type calcium current density in 7-days alectinib treated rats. These findings revealed that the AISB was caused by the reduction in Cacna1d expression which resulted in the electro-dysfunction mediated by the suppressed ICaL.
Collapse
Affiliation(s)
- Guo-Xuan Liu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Fan Diao
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Guang Lu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, People's Republic of China
| | - Qiang Zheng
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Bin Fu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Hua-Chen Jiao
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ke-Zhou Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Dong-Hai Liu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China.
| |
Collapse
|
44
|
Luo Y, Ma W, Kang Q, Pan H, Shi L, Ma J, Song J, Gong D, Kang K, Jin X. Atrial APD prolongation caused by the upregulation of RAGE and subsequent I NaL increase in diabetic patients. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40109091 DOI: 10.3724/abbs.2025018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Diabetes mellitus (DM) is a risk factor for the development of atrial fibrillation (AF). The action potential duration (APD) has been demonstrated to be prolonged in the atrium of diabetic mice. In contrast, the APD is generally shortened in AF patients. It is unclear what change occurs in the atrial APD of diabetic patients. In this study, we explore the APD change of atrial myocytes from diabetic patients and the underlying molecular mechanisms. The whole-cell patch-clamp technique is used to detect single-cell electrical activity in diabetic and nondiabetic human samples. The results show that both APD 50 and APD 90, the APD at 50% and 90% repolarization, are increased in diabetic patients compared with those in nondiabetic controls. The density of late sodium current ( I NaL) in the atrial myocytes of diabetic patients is greater than that in the myocytes of nondiabetic patients. The expression of receptor for advanced glycation end products (RAGE) is increased in the atria of diabetic patients. In cultured HL-1 cells, high glucose (HG) treatment increases I NaL, and the expression of RAGE prolongs APD. The siRNA-mediated knockdown of RAGE reduces the I NaL and shortens the APD. The APD is prolonged in the atria of diabetic patients because of the upregulation of RAGE and the subsequent increase in I NaL. Our findings provide novel insights into atrial electrical remodeling in diabetic patients.
Collapse
Affiliation(s)
- Yingchun Luo
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wenbo Ma
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Qi Kang
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Han Pan
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ling Shi
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiudong Ma
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiahui Song
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Dongmei Gong
- Department of State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuexin Jin
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
45
|
Wei N. Sex differences in cardiac dynamics during myocardial ischemia using a single cell approach. Sci Rep 2025; 15:9153. [PMID: 40097687 PMCID: PMC11914424 DOI: 10.1038/s41598-025-94055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
Myocardial ischemia, arising from severe blockages in coronary arteries, poses a significant global health risk due to its potential to cause arrhythmia and heart failure, often leading to sudden cardiac death. During acute myocardial ischemia, profound changes occur in cardiac electrophysiology and anatomy, influencing action potential morphology and propagation, which increased susceptibility to arrhythmias. Sex differences play a critical role in myocardial ischemia and arrhythmogenesis. Females exhibit distinct genetic and hormonal influences on ion channel expression and cardiac function, affecting susceptibility to arrhythmias like Torsade de Pointes. Using the O'Hara-Rudy dynamic (ORd) model, this study shows that females are more likely than males to exhibit cardiac alternans (2:2), a periodic variation in action potential duration between consecutive heartbeats, as well as 2:1 arrhythmic behaviors-characterized by inexcitability in the even beats-under ischemic conditions. Additionally, hormones further exacerbate these gender differences. Moreover, females show a higher propensity than males to terminate 2:2 and 2:1 arrhythmic responses during ischemia treatment. This manuscript aims to uncover sex-specific disparities in electrophysiological responses and drug reactions during myocardial ischemia using the optimized ORd model. These findings underscore the importance of considering sex-specific factors in cardiovascular research and clinical practice.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
46
|
Roy D, Bhattacharya B, Chakravarti R, Singh P, Arya M, Kundu A, Patil A, Siva B, Mehta S, Kazi TA, Ghosh D. LncRNAs in oncogenic microenvironment: from threat to therapy. Front Cell Dev Biol 2025; 12:1423279. [PMID: 40176927 PMCID: PMC11962222 DOI: 10.3389/fcell.2024.1423279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
LncRNAs are RNA molecules of more than 200 nucleotides in length and participate in cellular metabolism and cellular responses through their diverse interactomedespite having no protein-coding capabilities. Such significant interactions also implicate the presence of lncRNAs in complex pathobiological pathways of various diseases, affecting cellular survival by modulating autophagy, inflammation and apoptosis. Proliferating cells harbour a complex microenvironment that mainly stimulate growth-specific activities such as DNA replication, repair, and protein synthesis. They also recognise damages at the macromolecular level, preventing them from reaching the next-generation. LncRNAs have shown significant association with the events occurring towards proliferation, regulating key events in dividing cells, and dysregulation of lncRNA transcriptome affects normal cellular life-cycle, promoting the development of cancer. Furthermore, lncRNAs also demonstrated an association with cancer growth and progression by regulating key pathways governing cell growth, epithelial-mesenchymal transition and metastasis. This makes lncRNAs an attractive target for the treatment of cancer and can also be used as a marker for the diagnosis and prognosis of diseases due to their differential expression in diseased samples. This review delves into the correlation of the lncRNA transcriptome with the fundamental cellular signalling and how this crosstalk shapes the complexity of the oncogenic microhabitat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| |
Collapse
|
47
|
Balan AI, Halaţiu VB, Cozac DA, Comșulea E, Mutu CC, Aspru I, Păcurar D, Bănescu C, Perian M, Scridon A. Atrial Fibrillation Begets Atrial Fibrillation in Small Animals: Characterization of New Rat Model of Spontaneous Atrial Fibrillation. Biomedicines 2025; 13:704. [PMID: 40149681 PMCID: PMC11940396 DOI: 10.3390/biomedicines13030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: We previously described a rat model of AF induced by long-term transesophageal atrial burst pacing. Here, we further characterize this model by exploring arrhythmia inducibility, spontaneous AF occurrence, and related autonomic and molecular changes. Methods: Twelve adult male Wistar rats were randomized into two groups: control (n = 5) and AF (n = 7). The rats in the AF group underwent 10 days of transesophageal atrial pacing. In the control rats, the same protocol was mimicked. Spontaneous AF occurrence and heart rate variability (HRV) were evaluated before, during, and after stimulation. Left atrial RNA levels of Hcn1, Hcn2, Hcn4, and Pitx2 were evaluated. Results: In AF, no animal presented spontaneous AF before stimulation. After stimulation initiation, all AF rats presented spontaneous AF (p = 0.08). In the AF rats, HRV analysis revealed a progressive increase in the standard deviation of the RR intervals after atrial stimulation initiation (p < 0.01). The left atrial RNA levels of Hcn4 were higher (p = 0.03) and Pitx2 levels were lower (p = 0.02) in the AF rats compared to the control group. Conclusions: This study validates our previous data and confirms the occurrence of spontaneous AF following long-term atrial pacing in rats. Relatively increased parasympathetic modulation and changes in the atrial expression of Hcn4, encoding for If, and Pitx2 likely play critical mechanistic roles in this model.
Collapse
Affiliation(s)
- Alkora Ioana Balan
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania (D.P.)
- Cardiology Department, Emergency Institute for Cardiovascular Diseases and Transplantation, 540139 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Doctoral School, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Vasile Bogdan Halaţiu
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania (D.P.)
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
| | - Dan Alexandru Cozac
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania (D.P.)
- Cardiology Department, Emergency Institute for Cardiovascular Diseases and Transplantation, 540139 Târgu Mureș, Romania
- Doctoral School, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Emilian Comșulea
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania (D.P.)
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
| | - Cosmin Constantin Mutu
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania (D.P.)
- Cardiology Department, Emergency Institute for Cardiovascular Diseases and Transplantation, 540139 Târgu Mureș, Romania
| | - Ioana Aspru
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania (D.P.)
| | - Delia Păcurar
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania (D.P.)
| | - Claudia Bănescu
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
- Genetics Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| | - Marcel Perian
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania (D.P.)
- Emergency Clinical County Hospital, 540139 Târgu Mureș, Romania
| | - Alina Scridon
- Physiology Department, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania (D.P.)
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540139 Târgu Mureș, Romania
| |
Collapse
|
48
|
Bahardoust M, Hadaegh F, Mehrabi Y, Delpisheh A, Khalili D. Medication time of metformin and sulfonylureas and incidence of cardiovascular diseases and mortality in type 2 diabetes: a pooled cohort analysis. Sci Rep 2025; 15:8401. [PMID: 40069233 PMCID: PMC11897161 DOI: 10.1038/s41598-025-89721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/07/2025] [Indexed: 03/15/2025] Open
Abstract
The effect of duration of medication with metformin and sulfonylurea (SUs) on cardiovascular diseases (CVD) and mortality events by duration of type 2 diabetes (DM) is unclear. This study aimed to investigate the effect of duration of treatment with metformin and SUs on CVD and mortality events based on DM duration in newly diagnosed DM patients. Data from three prospective cohorts of Tehran Lipid and Glucose Study (TLGS), Multi-Ethnic Study of Atherosclerosis (MESA), and Atherosclerosis Risk in Communities (ARIC) including 4108 newly diagnosed type 2 diabetes individuals (mean age, 59.4 ± 0.66 years) were pooled. Exposure was defined as the duration of metformin alone, SUs alone, and a combination of both since drug initiation. The Cox proportional hazards (CPH) model adjusted for confounders, including statin, aspirin, and anti-hypertensive, was used to estimate the hazard ratio (HR) (95% CI) for the outcomes. Cumulative exposure for metformin, SUs, aspirin, statin, and anti-hypertensive medication was calculated using the same method. The median follow-up was 20.33 ± 0.45 years. Cardiovascular events, all-cause mortality (ACM), and CVD mortality occurred in 767, 913, and 439 newly diagnosed DM patients, respectively. Metformin alone reduced the hazard of cardiovascular events, ACM, and CV-mortality by 7%, 4%, and 6%, respectively, for each year of use, respectively (p < 0.05); the corresponding values for SUs alone were 4%, 3%, and 4%, respectively (p < 0.05). The effect of metformin on reducing cardiovascular events, ACM, and CVD mortality continued until approximately 8, 10, and 5 years after the start of treatment, respectively, and then reached Plato. The effect of SUs on cardiovascular events, ACM, and CVD mortality continued to decline or reach Plato until approximately 6, 5, and 8 years after initiation of therapy and then was ineffective or reversed. The effect of the combination therapy on the reduction of cardiovascular events continued until 11 years after therapy initiation. Among newly diagnosed DM patients, metformin, with and without SUs, was associated with a reduced risk of cardiovascular events, ACM, and CVD mortality for up to about one decade. The combined effect of metformin + sulfonylurea was superior to the single effect of metformin or sulfonylurea alone. The combination therapy of Metformin and SUs can still be used with good safety, especially in the first years of diabetes diagnosis.
Collapse
Affiliation(s)
- Mansour Bahardoust
- Department of Epidemiology, School of Public Health & Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Metabolic and Obesity Disorders, Research Institute for Endocrine Sciences, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Mehrabi
- Department of Epidemiology, School of Public Health & Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Delpisheh
- Department of Epidemiology, School of Public Health & Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Metabolic and Obesity Disorders, Research Institute for Endocrine Sciences, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Lown Scholar in Cardiovascular Health, Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston,MA, US.
| |
Collapse
|
49
|
Thammavongsa DA, Jackvony TN, Bookland MJ, Tang-Schomer MD. Targeting Ion Channels: Blockers Suppress Calcium Signals and Induce Cytotoxicity Across Medulloblastoma Cell Models. Bioengineering (Basel) 2025; 12:268. [PMID: 40150732 PMCID: PMC11939613 DOI: 10.3390/bioengineering12030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Medulloblastoma (MB) groups 3 and 4 lack targeted therapies despite their dismal prognoses. Ion channels and pumps have been implicated in promoting MB metastasis and growth; however, their roles remain poorly understood. In this study, we repurposed FDA-approved channel blockers and modulators to investigate their potential anti-tumor effects in MB cell lines (DAOY and D283) and primary cell cultures derived from a patient with MB. For the first time, we report spontaneous calcium signaling in MB cells. Spontaneous calcium signals were significantly reduced by mibefradil (calcium channel blocker), paxilline (calcium-activated potassium channel blocker), and thioridazine (potassium channel blocker). These drugs induced dose-dependent cytotoxicity in both the DAOY and D283 cell lines, as well as in primary cell cultures of a patient with group 3 or 4 MB. In contrast, digoxin and ouabain, inhibitors of the Na/K pump, reduced the calcium signaling by over 90% in DAOY cells and induced approximately 90% cell death in DAOY cells and 80% cell death in D283 cells. However, these effects were significantly diminished in the cells derived from a patient with MB, highlighting the variability in drug sensitivity among MB models. These findings demonstrate that calcium signaling is critical for MB cell survival and that the targeted inhibition of calcium pathways suppresses tumor cell growth across multiple MB models.
Collapse
Affiliation(s)
- Darani Ashley Thammavongsa
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
| | - Taylor N. Jackvony
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
| | - Markus J. Bookland
- Connecticut Children’s Medical Center, 282 Washington St, Hartford, CT 06106, USA;
| | - Min D. Tang-Schomer
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
- Connecticut Children’s Medical Center, 282 Washington St, Hartford, CT 06106, USA;
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| |
Collapse
|
50
|
Jakubczyk-Słabicka A, Kostrzewa T, Barańska-Rybak W, Górska-Ponikowska M. Skin and scalp under exposure to high-energy visible light: the current perspective. Arch Dermatol Res 2025; 317:521. [PMID: 40042632 PMCID: PMC11882610 DOI: 10.1007/s00403-025-04021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025]
Affiliation(s)
- Anna Jakubczyk-Słabicka
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1 Street, Room 203, 80-211, Gdansk, Pomorskie, Poland
| | - Tomasz Kostrzewa
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1 Street, Room 203, 80-211, Gdansk, Pomorskie, Poland
| | - Wioletta Barańska-Rybak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Magdalena Górska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1 Street, Room 203, 80-211, Gdansk, Pomorskie, Poland.
- Euro-Mediterranean Institute of Science and Technology, 90139, Palermo, Italy.
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70174, Stuttgart, Germany.
| |
Collapse
|