1
|
Vadlamani S, Karmakar R, Kumar A, Rajala MS. Non-metabolic role of alpha-enolase in virus replication. Mol Biol Rep 2023; 50:1677-1686. [PMID: 36402937 DOI: 10.1007/s11033-022-08067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/31/2022] [Indexed: 11/20/2022]
Abstract
Viruses are extremely complex and highly evolving microorganisms; thus, it is difficult to analyse them in detail. The virion is believed to contain all the essential components required from its entry to the establishment of a successful infection in a susceptible host cell. Hence, the virion composition is the principal source for its transmissibility and immunogenicity. A virus is completely dependent on a host cell for its replication and progeny production. Occasionally, they recruit and package host proteins into mature virion. These incorporated host proteins are believed to play crucial roles in the subsequent infection, although the significance and the molecular mechanism regulated are poorly understood. One such host protein which is hijacked by several viruses is the glycolytic enzyme, Enolase (Eno-1) and is also packaged into mature virion of several viruses. This enzyme exhibits a highly flexible nature of functions, ranging from metabolic to several non-metabolic activities. All the glycolytic enzymes are known to be moonlighting proteins including enolase. The non-metabolic functions of this moonlighting protein are also highly diverse with respect to its cellular localization. Although very little is known about the virological significance of this enzyme, several of its non-metabolic functions have been observed to influence the virus replication cycle in infected cells. In this review, we have attempted to provide a comprehensive picture of the non-metabolic role of Eno-1, its significance in the virus replication cycle and to stimulate interest around its scope as a therapeutic target for treating viral pathologies.
Collapse
Affiliation(s)
- Satya Vadlamani
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Ruma Karmakar
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Alok Kumar
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | | |
Collapse
|
2
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Zhang L, Liu M, Bao L, Boström KI, Yao Y, Li J, Gu S, Ji C. Novel Structures of Type 1 Glyceraldehyde-3-phosphate Dehydrogenase from Escherichia coli Provide New Insights into the Mechanism of Generation of 1,3-Bisphosphoglyceric Acid. Biomolecules 2021; 11:1565. [PMID: 34827563 PMCID: PMC8615399 DOI: 10.3390/biom11111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a highly conserved enzyme involved in the ubiquitous process of glycolysis and presents a loop (residues 208-215 of Escherichia coli GAPDH) in two alternative conformations (I and II). It is uncertain what triggers this loop rearrangement, as well as which is the precise site from which phosphate attacks the thioacyl intermediate precursor of 1,3-bisphosphoglycerate (BPG). To clarify these uncertainties, we determined the crystal structures of complexes of wild-type GAPDH (WT) with NAD and phosphate or G3P, and of essentially inactive GAPDH mutants (C150S, H177A), trapping crystal structures for the thioacyl intermediate or for ternary complexes with NAD and either phosphate, BPG, or G3P. Analysis of these structures reported here lead us to propose that phosphate is located in the "new Pi site" attacks the thioester bond of the thioacyl intermediate to generate 1,3-bisphosphoglyceric acid (BPG). In the structure of the thioacyl intermediate, the mobile loop is in conformation II in subunits O, P, and R, while both conformations coexist in subunit Q. Moreover, only the Q subunit hosts bound NADH. In the R subunit, only the pyrophosphate part of NADH is well defined, and NADH is totally absent from the O and P subunits. Thus, the change in loop conformation appears to occur after NADH is produced, before NADH is released. In addition, two new D-glyceraldehyde-3-phosphate (G3P) binding forms are observed in WT.NAD.G3P and C150A+H177A.NAD.G3P. In summary, this paper improves our understanding of the GAPDH catalytic mechanism, particularly regarding BPG formation.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Meiruo Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Luyao Bao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA; (K.I.B.); (Y.Y.)
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA; (K.I.B.); (Y.Y.)
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| |
Collapse
|
4
|
Thaventhiran T, Wong W, Alghanem AF, Alhumeed N, Aljasir MA, Ramsey S, Sethu S, Yeang HXA, Chadwick AE, Cross M, Webb SD, Djouhri L, Ball C, Stebbings R, Sathish JG. CD28 Superagonistic Activation of T Cells Induces a Tumor Cell-Like Metabolic Program. Monoclon Antib Immunodiagn Immunother 2019; 38:60-69. [PMID: 31009338 PMCID: PMC6634261 DOI: 10.1089/mab.2018.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CD28 superagonist (CD28SA), a therapeutic immunomodulatory monoclonal antibody triggered rapid and exaggerated activation of CD4+ effector memory T cells (TEMs) in humans with unwanted serious adverse effects. It is well known that distinct metabolic programs determine the fate and responses of immune cells. In this study, we show that human CD4+ TEMs stimulated with CD28SA adopt a metabolic program similar to those of tumor cells with enhanced glucose utilization, lipid biosynthesis, and proliferation in hypoxic conditions. Identification of metabolic profiles underlying hyperactive T cell activation would provide a platform to test safety of immunostimulatory antibodies.
Collapse
Affiliation(s)
- Thilipan Thaventhiran
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Wai Wong
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Ahmad F Alghanem
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Naif Alhumeed
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Mohammad A Aljasir
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Simeon Ramsey
- 2 Inflammation and Remodeling, Pfizer Research Unit, Cambridge, Massachusetts
| | - Swaminathan Sethu
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Han Xian Aw Yeang
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Amy E Chadwick
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Michael Cross
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Steven D Webb
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Laiche Djouhri
- 3 Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Christina Ball
- 4 National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| | - Richard Stebbings
- 4 National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| | - Jean G Sathish
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Demyanenko S, Dzreyan V, Uzdensky A. Axotomy-Induced Changes of the Protein Profile in the Crayfish Ventral Cord Ganglia. J Mol Neurosci 2019; 68:667-678. [PMID: 31066008 DOI: 10.1007/s12031-019-01329-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Abstract
We suggest novel experimental model of nerve injury-bilaterally axotomized ganglia of the crayfish ventral nerve cord (VNC). Using proteomic antibody microarrays, we showed upregulation of apoptosis execution proteins (Bcl-10, caspases 3, 6, and 7, SMAC/DIABLO, AIF), proapoptotic signaling proteins and transcription factors (c-Myc, p38, E2F1, p53, GADD153), and multifunctional proteins capable of initiating apoptosis in specific situations (p75, NMDAR2a) in the axotomized VNC ganglia. Simultaneously, anti-apoptotic proteins (p21WAF-1, MDM2, Bcl-x, Mcl-1, MKP1, MAKAPK2, ERK5, APP, calmodulin, estrogen receptor) were overexpressed. Some proteins associated with actin cytoskeleton (α-catenin, catenin p120CTN, cofilin, p35, myosin Vα) were upregulated, whereas other actin-associated proteins (ezrin, distrophin, tropomyosin, spectrin (α + β), phosphorylated Pyk2) were downregulated. Various cytokeratins and βIV-tubulin, components of intermediate filament and microtubule cytoskeletons, were also downregulated that could be the result of tissue destruction. Downregulation of proteins involved in clathrin vesicle formation (AP2α and AP2γ, adaptin (β1 + β2), and syntaxin) indicated impairment of vesicular transport and synaptic processes. The levels of L-DOPA decarboxylase, tyrosine, and tryptophan hydroxylases that mediate synthesis of serotonin, dopamine, norepinephrine, and epinephrine decreased. Overexpression of histone deacetylases HDAC1, HDAC2, and HDAC4 contributed to suppression of transcription and protein synthesis. So, the balance of multidirectional processes aimed either at cell death, or to repair and recovery, determines the cell fate. Present data provide integral, albeit incomplete, view on the nervous tissue response to axotomy. Some of these proteins can be probably potential markers of nerve injury and targets for neuroprotective therapy.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, Russia, 344090
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, Russia, 344090
| | - Anatoly Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, Russia, 344090.
| |
Collapse
|
6
|
Marondedze C, Thomas L, Gehring C, Lilley KS. Changes in the Arabidopsis RNA-binding proteome reveal novel stress response mechanisms. BMC PLANT BIOLOGY 2019; 19:139. [PMID: 30975080 PMCID: PMC6460520 DOI: 10.1186/s12870-019-1750-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 03/31/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND RNA-binding proteins (RBPs) are increasingly recognized as regulatory component of post-transcriptional gene expression. RBPs interact with mRNAs via RNA-binding domains and these interactions affect RNA availability for translation, RNA stability and turn-over thus affecting both RNA and protein expression essential for developmental and stimulus specific responses. Here we investigate the effect of severe drought stress on the RNA-binding proteome to gain insights into the mechanisms that govern drought stress responses at the systems level. RESULTS Label-free mass spectrometry enabled the identification 567 proteins of which 150 significantly responded to the drought-induced treatment. A gene ontology analysis revealed enrichment in the "RNA binding" and "RNA processing" categories as well as biological processes such as "response to abscisic acid" and "response to water deprivation". Importantly, a large number of the stress responsive proteins have not previously been identified as RBPs and include proteins in carbohydrate metabolism and in the glycolytic and citric acid pathways in particular. This suggests that RBPs have hitherto unknown roles in processes that govern metabolic changes during stress responses. Furthermore, a comparative analysis of RBP domain architectures shows both, plant specific and common domain architectures between plants and animals. The latter could be an indication that RBPs are part of an ancient stress response. CONCLUSION This study establishes mRNA interactome capture technique as an approach to study stress signal responses implicated in environmental changes. Our findings denote RBP changes in the proteome as critical components in plant adaptation to changing environments and in particular drought stress protein-dependent changes in RNA metabolism.
Collapse
Affiliation(s)
- Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Kingdom of Saudi Arabia.
- Present Address: Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054, Grenoble Cedex 9, France.
| | - Ludivine Thomas
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Present Address: HM.Clause, rue Louis Saillant, 26802, Portes-lès-Valence, France
| | - Chris Gehring
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 74 Borgo XX Giugno, 06121, Perugia, Italy
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
7
|
Qu Z, D'Mello SR. Proteomic analysis identifies NPTX1 and HIP1R as potential targets of histone deacetylase-3-mediated neurodegeneration. Exp Biol Med (Maywood) 2018; 243:627-638. [PMID: 29486577 DOI: 10.1177/1535370218761149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A defining feature of neurodegenerative diseases is the abnormal and excessive loss of neurons. One molecule that is particularly important in promoting neuronal death in a variety of cell culture and in vivo models of neurodegeneration is histone deacetylase-3 (HDAC3), a member of the histone deacetylase family of proteins. As a step towards understanding how HDAC3 promotes neuronal death, we conducted a proteomic screen aimed at identifying proteins that were regulated by HDAC3. HDAC3 was overexpressed in cultured rat cerebellar granule neurons (CGNs) and protein lysates were analyzed by mass spectrometry. Of over 3000 proteins identified in the screen, only 21 proteins displayed a significant alteration in expression. Of these, 12 proteins were downregulated whereas 9 proteins were upregulated. The altered expression of five of these proteins, TEX10, NPTX1, TFG, TSC1, and NFL, along with another protein that was downregulated in the proteomic screen, HIP1R, was confirmed using Western blots and commercially available antibodies. Because antibodies were not available for some of the proteins and since HDAC3 is a transcriptional regulator of gene expression, we conducted RT-PCR analysis to confirm expression changes. In separate analyses, we also included other proteins that are known to regulate neurodegeneration, including HDAC9, HSF1, huntingtin, GAPDH, FUS, and p65/RELA. Based on our proteomic screen and candidate protein approach, we identify three genes, Nptx1, Hip1r, and Hdac9, all known to regulate neurodegeneration that are robustly regulated by HDAC3. Given their suggested roles in regulating neuronal death, these genes are likely to be involved in regulating HDAC3-mediated neurotoxicity. Impact statement Neurodegenerative diseases are a major medical, social, and economic problem. Recent studies by several laboratories have indicated that histone deacetylase-3 (HDAC3) plays a key role in promoting neuronal death. But the downstream mediators of HDAC3 neurotoxicity have yet to be identified. We conducted a proteomic screen to identify HDAC3 targets the results of which have been described in this report. Briefly, we identify Nptx1, Hip1r, and Hdac9 as genes whose expression is altered by HDAC3. Investigating how these genes are involved in HDAC3 neurotoxicity could shed valuable insight into neurodegenerative disease and identify molecules that can be targeted to treat these devastating disorders.
Collapse
Affiliation(s)
- Zhe Qu
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
8
|
Levin E, Ballester AR, Raphael G, Feigenberg O, Liu Y, Norelli J, Gonzalez-Candelas L, Ma J, Dardick C, Wisniewski M, Droby S. Identification and characterization of LysM effectors in Penicillium expansum. PLoS One 2017; 12:e0186023. [PMID: 29084256 PMCID: PMC5662087 DOI: 10.1371/journal.pone.0186023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/22/2017] [Indexed: 11/18/2022] Open
Abstract
P. expansum is regarded as one of the most important postharvest rots of apple fruit and is also of great concern to fruit processing industries. Elucidating the pathogenicity mechanism of this pathogen is of utmost importance for the development of effective and safe management strategies. Although, many studies on modification of the host environment by the pathogen were done, its interactions with fruit during the early stages of infection and the virulence factors that mediate pathogenicity have not been fully defined. Effectors carrying LysM domain have been identified in numerous pathogenic fungi and their role in the first stages of infection has been established. In this study, we identified 18 LysM genes in the P. expansum genome. Amino acid sequence analysis indicated that P. expansum LysM proteins belong to a clade of fungal-specific LysM. Eleven of the discovered LysM genes were found to have secretory pathway signal peptide, among them, 4 (PeLysM1 PeLysM2, PeLysM3 and PeLysM4) were found to be highly expressed during the infection and development of decay of apple fruit. Effect of targeted deletion of the four putative PeLysM effectors on the growth and pathogenicity was studied. Possible interactions of PeLysM with host proteins was investigated using the yeast-two-hybrid system.
Collapse
Affiliation(s)
- Elena Levin
- Department of Postharvest Science, ARO, the Volcani Center, Bet Dagan, Israel
| | - Ana Rosa Ballester
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino, Paterna, Valencia, Spain
| | - Ginat Raphael
- Department of Postharvest Science, ARO, the Volcani Center, Bet Dagan, Israel
| | - Oleg Feigenberg
- Department of Postharvest Science, ARO, the Volcani Center, Bet Dagan, Israel
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - John Norelli
- Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV, United States of America
| | - Luis Gonzalez-Candelas
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino, Paterna, Valencia, Spain
| | - Jing Ma
- Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV, United States of America
| | - Christopher Dardick
- Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV, United States of America
| | - Michael Wisniewski
- Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV, United States of America
| | - Samir Droby
- Department of Postharvest Science, ARO, the Volcani Center, Bet Dagan, Israel
- * E-mail:
| |
Collapse
|
9
|
Xu X, Wang M, Li L, Che R, Li P, Pei L, Li H. Genome-wide trait-trait dynamics correlation study dissects the gene regulation pattern in maize kernels. BMC PLANT BIOLOGY 2017; 17:163. [PMID: 29037150 PMCID: PMC5644097 DOI: 10.1186/s12870-017-1119-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Dissecting the genetic basis and regulatory mechanisms for the biosynthesis and accumulation of nutrients in maize could lead to the improved nutritional quality of this crop. Gene expression is regulated at the genomic, transcriptional, and post-transcriptional levels, all of which can produce diversity among traits. However, the expression of most genes connected with a particular trait usually does not have a direct association with the variation of that trait. In addition, expression profiles of genes involved in a single pathway may vary as the intrinsic cellular state changes. To work around these issues, we utilized a statistical method, liquid association (LA) to investigate the complex pattern of gene regulation in maize kernels. RESULTS We applied LA to the expression profiles of 28,769 genes to dissect dynamic trait-trait correlation patterns in maize kernels. Among the 1000 LA pairs (LAPs) with the largest LA scores, 686 LAPs were identified conditional correlation. We also identified 830 and 215 LA-scouting leaders based on the positive and negative LA scores, which were significantly enriched for some biological processes and molecular functions. Our analysis of the dynamic co-expression patterns in the carotene biosynthetic pathway clearly indicated the important role of lcyE, CYP97A, ZEP1, and VDE in this pathway, which may change the direction of carotene biosynthesis by controlling the influx and efflux of the substrate. The dynamic trait-trait correlation patterns between gene expression and oil concentration in the fatty acid metabolic pathway and its complex regulatory network were also assessed. 23 of 26 oil-associated genes were correlated with oil concentration conditioning on 580 LA-scoutinggenes, and 5% of these LA-scouting genes were annotated as enzymes in the oil metabolic pathway. CONCLUSIONS By focusing on the carotenoid and oil biosynthetic pathways in maize, we showed that a genome-wide LA analysis provides a novel and effective way to detect transcriptional regulatory relationships. This method will help us understand the biological role of maize kernel genes and will benefit maize breeding programs.
Collapse
Affiliation(s)
- Xiuqin Xu
- School of Biological and Science Technology, University of Jinan, Jinan, 250022 China
| | - Min Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Lianbo Li
- School of Biological and Science Technology, University of Jinan, Jinan, 250022 China
| | - Ronghui Che
- School of Biological and Science Technology, University of Jinan, Jinan, 250022 China
| | - Peng Li
- School of Biological and Science Technology, University of Jinan, Jinan, 250022 China
| | - Laming Pei
- School of Biological and Science Technology, University of Jinan, Jinan, 250022 China
| | - Hui Li
- School of Biological and Science Technology, University of Jinan, Jinan, 250022 China
| |
Collapse
|
10
|
Ujcikova H, Vosahlikova M, Roubalova L, Svoboda P. Proteomic analysis of protein composition of rat forebrain cortex exposed to morphine for 10 days; comparison with animals exposed to morphine and subsequently nurtured for 20 days in the absence of this drug. J Proteomics 2016; 145:11-23. [DOI: 10.1016/j.jprot.2016.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 01/20/2023]
|
11
|
Seo JK, Choi HS, Kim KH. Engineering of soybean mosaic virus as a versatile tool for studying protein-protein interactions in soybean. Sci Rep 2016; 6:22436. [PMID: 26926710 PMCID: PMC4772626 DOI: 10.1038/srep22436] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
Transient gene expression approaches are valuable tools for rapid introduction of genes of interest and characterization of their functions in plants. Although agroinfiltration is the most effectively and routinely used method for transient expression of multiple genes in various plant species, this approach has been largely unsuccessful in soybean. In this study, we engineered soybean mosaic virus (SMV) as a dual-gene delivery vector to simultaneously deliver and express two genes in soybean cells. We further show the application of the SMV-based dual vector for a bimolecular fluorescence complementation assay to visualize in vivo protein-protein interactions in soybean and for a co-immunoprecipitation assay to identify cellular proteins interacting with SMV helper component protease. This approach provides a rapid and cost-effective tool for transient introduction of multiple traits into soybean and for in vivo characterization of the soybean cellular protein interaction network.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
12
|
Hunt NJ, Phillips L, Waters KA, Machaalani R. Proteomic MALDI-TOF/TOF-IMS examination of peptide expression in the formalin fixed brainstem and changes in sudden infant death syndrome infants. J Proteomics 2016; 138:48-60. [PMID: 26926438 DOI: 10.1016/j.jprot.2016.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/30/2016] [Accepted: 02/23/2016] [Indexed: 01/23/2023]
Abstract
UNLABELLED Matrix assisted laser desorption/ionisation imaging mass spectrometry (MALDI-IMS) has not previously been utilised to examine sudden infant death syndrome (SIDS). This study aimed to optimise MALDI IMS for use on archived formalin-fixed-paraffin-embedded human infant medulla tissue (n=6, controls; n=6, SIDS) to evaluate differences between multiple nuclei of the medulla by using high resolution IMS. Profiles were compared between SIDS and age/sex matched controls. LC-MALDI identified 55 proteins based on 321 peptides across all samples; 286 peaks were found using IMS, corresponding to these 55 proteins that were directly compared between controls and SIDS. Control samples were used to identify common peptides for neuronal/non-neuronal structures allowing identification of medullary regions. In SIDS, abnormal expression patterns of 41 peptides (p≤0.05) corresponding to 9 proteins were observed; these changes were confirmed with immunohistochemistry. The protein abnormalities varied amongst nuclei, with the majority of variations in the raphe nuclei, hypoglossal and pyramids. The abnormal proteins are not related to a previously identified neurological disease pathway but consist of developmental neuronal/glial/axonal growth, cell metabolism, cyto-architecture and apoptosis components. This suggests that SIDS infants have abnormal neurological development in the raphe nuclei, hypoglossal and pyramids of the brainstem, which may contribute to the pathogenesis of SIDS. BIOLOGICAL SIGNIFICANCE This study is the first to perform an imaging mass spectrometry investigation in the human brainstem and also within sudden infant death syndrome (SIDS). LC MALDI and MALDI IMS identified 55 proteins based on 285 peptides in both control and SIDS tissue; with abnormal expression patterns present for 41/285 and 9/55 proteins in SIDS using IMS. The abnormal proteins are critical for neurological development; with the impairment supporting the hypothesis that SIDS may be due to delayed neurological maturation. The brainstem regions mostly affected included the raphe nuclei, hypoglossal and pyramids. This study highlights that basic cyto-architectural proteins are affected in SIDS and that abnormal expression of these proteins in other CNS disorders should be examined. KEY SENTENCES LC MALDI and MALDI IMS identified 55 proteins based on 285 peptides in both control and SIDS tissue. Abnormal expression patterns were present for 41/285 and 9/55 proteins in SIDS using IMS. Brainstem regions mostly affected included the raphe nuclei, hypoglossal and pyramids.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia
| | - Leo Phillips
- Hormones and Cancer Division, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, NSW, Australia
| | - Karen A Waters
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia; The Children's Hospital, Westmead, NSW 2145, Australia
| | - Rita Machaalani
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia; The Children's Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
13
|
Shi MJ, Cai FG, Tian WM. Ethrel-stimulated prolongation of latex flow in the rubber tree (Hevea brasiliensis Muell. Arg.): an Hev b 7-like protein acts as a universal antagonist of rubber particle aggregating factors from lutoids and C-serum. J Biochem 2015; 159:209-16. [PMID: 26381537 DOI: 10.1093/jb/mvv095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/15/2015] [Indexed: 11/14/2022] Open
Abstract
Ethrel is the most effective stimuli in prolonging the latex flow that consequently increases yield per tapping. This effect is largely ascribed to the enhanced lutoid stability, which is associated with the decreased release of initiators of rubber particle (RP) aggregation from lutoid bursting. However, the increase in both the bursting index of lutoids and the duration of latex flow after applying ethrel or ethylene gas in high concentrations suggests that a new mechanism needs to be introduced. In this study, a latex allergen Hev b 7-like protein in C-serum was identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS). In vitro analysis showed that the protein acted as a universal antagonist of RP aggregating factors from lutoids and C-serum. Ethrel treatment obviously weakened the effect of C-serum on RP aggregation, which was closely associated with the increase in the level of the Hev b 7-like protein and the decrease in the level of the 37 kDa protein, as revealed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting analysis and antibody neutralization. Thus, the increase of the Hev b 7-like protein level or the ratio of the Hev b 7-like protein to the 37 kDa protein in C-serum should be primarily ascribed to the ethrel-stimulated prolongation of latex flow duration.
Collapse
Affiliation(s)
- Min-Jing Shi
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan, P. R. China and Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737 Hainan, P. R. China
| | - Fu-Ge Cai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737 Hainan, P. R. China
| | - Wei-Min Tian
- Institute of Rubber Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan, P. R. China and Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737 Hainan, P. R. China
| |
Collapse
|
14
|
Liu S, Zhu P, Zhang L, Li Z, Lv Q, Zheng S, Wang Y, Lu F. Increased glyceraldehyde-3-phosphate dehydrogenase expression indicates higher survival rates in male patients with hepatitis B virus-accociated hepatocellular carcinoma and cirrhosis. Exp Ther Med 2015; 9:1597-1604. [PMID: 26136865 DOI: 10.3892/etm.2015.2309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 01/15/2015] [Indexed: 12/22/2022] Open
Abstract
Elevated expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported in different human malignancies. To understand its role in hepatitis B virus (HBV) infection-associated hepatocellular carcinoma (HCC), the expression of GAPDH was quantitatively measured in a cohort of 72 male HCC patients without preoperative treatment, all with evidence of chronic HBV infection. Using C-terminal banding protein 1 (CTBP1) or hypoxanthine phosphori-bosyltransferase 1 (HPRT1) as reference genes, the level of GAPDH mRNA in tumor tissue was found to be significantly higher compared with that in paired non tumor tissues (P=0.0087 for CTBP1; P=0.0116 for HPRT1). Accordingly, compared with the non-tumor tissue, 37.5% (27/72) of patients' tumor tissues had a more than 2-fold increase of GAPDH expression. Furthermore, following knockdown GAPDH expression via siRNA transient transfection, HepG2 cells exhibited enhanced resistance to cytosine arabinoside (IC50, 308.28 µM vs. 67.68 µM in the control; P=0.01). Notably, higher GAPDH expression was significantly associated with lower liver fibrosis score (P=0.0394) and a tendency towards higher survival rates for patients with HCC. To the best of our knowledge, the present study is the first study to report that the elevated expression levels of GAPDH in HCC tumor tissue may be relevant to an improved fibrosis score and survival probability in male patients with HBV infection; however, the underlying mechanism requires further investigation.
Collapse
Affiliation(s)
- Shuang Liu
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Pengfei Zhu
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Ling Zhang
- Department of Hepatobiliary Surgery, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Zhuo Li
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Quanjun Lv
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Sujun Zheng
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yang Wang
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing 100086, P.R. China
| |
Collapse
|
15
|
Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HHB, Elhassan GO, Ibrahim ME, David Polo Orozco J, Cardone RA, Reshkin SJ, Harguindey S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014; 1:777-802. [PMID: 25621294 PMCID: PMC4303887 DOI: 10.18632/oncoscience.109] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then proposea new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.
Collapse
Affiliation(s)
| | | | - Cyril Rauch
- University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, UK
| | | | | | - Gamal O. Elhassan
- Unizah Pharmacy Collage, Qassim University, Unizah, AL-Qassim, King of Saudi Arabia
- Omdurman Islamic University, Omdurman, Sudan
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The concept of the cytosol as a space that contains discrete zones of metabolites is discussed relative to the contribution of GAPDH. GAPDH is directed to very specific cell compartments. This chapter describes the utilization of GAPDH's enzymatic function for focal demands (i.e. ATP/ADP and NAD(+)/NADH), and offers a speculative role for GAPDH as perhaps moderating local concentrations of inorganic phosphate and hydrogen ions (i.e. co-substrate and co-product of the glycolytic reaction, respectively). Where known, the structural features of the binding between GAPDH and the compartment components are discussed. The nuances, which are associated with the intracellular distribution of GAPDH, appear to be specific to the cell-type, particularly with regards to the various plasma membrane proteins to which GAPDH binds. The chapter includes discussion on the curious observation of GAPDH being localized to the external surface of the plasma membrane in a human cell type. The default perspective has been that GAPDH localization is synonymous with compartmentation of glycolytic energy. The chapter discusses GAPDH translocation to the nucleus and to non-nuclear cellular structures, emphasizing its glycolytic function. Nevertheless, it is becoming clear that alternate functions of GAPDH play a role in compartmentation, particularly in the translocation to the nucleus.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
17
|
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been recognized as an important enzyme for energy metabolism and the production of ATP and pyruvate through anaerobic glycolysis in the cytoplasm. Recent studies have shown that GAPDH has multiple functions independent of its role in energy metabolism. Although increased GAPDH gene expression and enzymatic function is associated with cell proliferation and tumourigenesis, conditions such as oxidative stress impair GAPDH catalytic activity and lead to cellular aging and apoptosis. The mechanism(s) underlying the effects of GAPDH on cellular proliferation remains unclear, yet much evidence has been accrued that demonstrates a variety of interacting partners for GAPDH, including proteins, various RNA species and telomeric DNA. The present mini review summarizes recent findings relating to the extraglycolytic functions of GAPDH and highlights the significant role this enzyme plays in regulating both cell survival and apoptotic death.
Collapse
Affiliation(s)
- Craig Nicholls
- Molecular Signalling Laboratory, Murdoch Childrens Research Institute, Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
18
|
Shoshan-Barmatz V, Mizrachi D. VDAC1: from structure to cancer therapy. Front Oncol 2012; 2:164. [PMID: 23233904 PMCID: PMC3516065 DOI: 10.3389/fonc.2012.00164] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/24/2012] [Indexed: 12/14/2022] Open
Abstract
Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to cancer. Found at the outer mitochondrial membrane, VDAC1 assumes a crucial position in the cell, controlling the metabolic cross-talk between mitochondria and the rest of the cell. Moreover, its location at the boundary between the mitochondria and the cytosol enables VDAC1 to interact with proteins that mediate and regulate the integration of mitochondrial functions with other cellular activities. As a metabolite transporter, VDAC1 contributes to the metabolic phenotype of cancer cells. This is reflected by VDAC1 over-expression in many cancer types, and by inhibition of tumor development upon silencing VDAC1 expression. Along with regulating cellular energy production and metabolism, VDAC1 is also a key protein in mitochondria-mediated apoptosis, participating in the release of apoptotic proteins and interacting with anti-apoptotic proteins. The involvement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space is discussed, as is VDAC1 oligomerization as an important step in apoptosis induction. VDAC also serves as an anchor point for mitochondria-interacting proteins, some of which are also highly expressed in many cancers, such as hexokinase (HK), Bcl2, and Bcl-xL. By binding to VDAC, HK provides both metabolic benefit and apoptosis-suppressive capacity that offers the cell a proliferative advantage and increases its resistance to chemotherapy. VDAC1-based peptides that bind specifically to HK, Bcl2, or Bcl-xL abolished the cell’s abilities to bypass the apoptotic pathway. Moreover, these peptides promote cell death in a panel of genetically characterized cell lines derived from different human cancers. These and other functions point to VDAC1 as a rational target for the development of a new generation of therapeutics.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel ; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | | |
Collapse
|
19
|
Kim JJ, Lee MY. p53 is not necessary for nuclear translocation of GAPDH during NO-induced apoptosis. BMB Rep 2012; 44:782-6. [PMID: 22189680 DOI: 10.5483/bmbrep.2011.44.12.782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aberrant GAPDH expression following S-nitrosoglutathione (GSNO) treatment was compared in HepG2 cells, which express functional p53, and Hep3B cells, which lack functional p53. The results of Western blotting and fluorescent immunocytochemistry revealed that nuclear translocation and accumulation of GAPDH occur in both HepG2 and Hep3B cells. This finding suggests that p53 may not be necessary for the GSNO-induced translocation of GAPDH to the nucleus during apoptotic cell death in hepatoma cells.
Collapse
Affiliation(s)
- Jum-Ji Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-600, Korea
| | | |
Collapse
|
20
|
Silva A, Almeida B, Sampaio-Marques B, Reis M, Ohlmeier S, Rodrigues F, Vale AD, Ludovico P. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2044-9. [DOI: 10.1016/j.bbamcr.2011.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
|
21
|
Marino N, Marshall JC, Steeg PS. Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011. [PMID: 21713383 DOI: 10.07/s00210-011-0646-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nm23-H1, also known as NDPK-A, was the first of a class of metastasis suppressor genes to be identified. Overexpression of Nm23-H1 in metastatic cell lines (melanoma, breast carcinoma, prostate, colon, hepatocellular, and oral squamous cell carcinoma) reduced cell motility in in vitro assays and metastatic potential in xenograft models, without a significant effect on primary tumor size. The mechanism of Nm23-H1 suppression of metastasis, however, is incompletely understood. Nm23-H1 has been reported to bind proteins, including those in small G-protein complexes, transcriptional complexes, the Map kinase, the TGF-β signaling pathways and the cytoskeleton. Evidence supporting these associations is presented together with evidence of resultant biochemical and phenotypic consequences of association. Cumulatively, the data suggest that part of the anti-metastatic function of Nm23-H1 lies in pathways that it interrupts via binding and inactivation of proteins.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
22
|
Marino N, Marshall JC, Steeg PS. Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:351-62. [PMID: 21713383 DOI: 10.1007/s00210-011-0646-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/14/2011] [Indexed: 01/12/2023]
Abstract
Nm23-H1, also known as NDPK-A, was the first of a class of metastasis suppressor genes to be identified. Overexpression of Nm23-H1 in metastatic cell lines (melanoma, breast carcinoma, prostate, colon, hepatocellular, and oral squamous cell carcinoma) reduced cell motility in in vitro assays and metastatic potential in xenograft models, without a significant effect on primary tumor size. The mechanism of Nm23-H1 suppression of metastasis, however, is incompletely understood. Nm23-H1 has been reported to bind proteins, including those in small G-protein complexes, transcriptional complexes, the Map kinase, the TGF-β signaling pathways and the cytoskeleton. Evidence supporting these associations is presented together with evidence of resultant biochemical and phenotypic consequences of association. Cumulatively, the data suggest that part of the anti-metastatic function of Nm23-H1 lies in pathways that it interrupts via binding and inactivation of proteins.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
23
|
Abdel-Hamid NM, Nazmy MH, Abdel-Bakey AI. Polyol profile as an early diagnostic and prognostic marker in natural product chemoprevention of hepatocellular carcinoma in diabetic rats. Diabetes Res Clin Pract 2011; 92:228-37. [PMID: 21388699 DOI: 10.1016/j.diabres.2011.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 01/15/2011] [Accepted: 02/03/2011] [Indexed: 01/12/2023]
Abstract
AIM Diabetes mellitus (DM) is a risk factor for hepatocellular carcinoma (HCC). It directs glucose to sorbitol and fructose in polyol pathway (PP). To pursue contribution of PP in hepatocarcinogenesis. METHODS We utilized ascorbic acid (AA) and diallyl sulfide (DAS) in experimental DM and HCC against control. HCC was induced by diethyl nitrosamine (DENA, one intraperitoneal (IP) dose 125 mg/kg), DM, by streptozotocin (STZ, IP dose 65 mg/kg). AA was given as 7.4 g/kg/d, I.P., DAS 200mg/kg/d, orally. All animals were killed after 10 weeks. RESULTS DENA elevated serum AFP, erythrocyte sorbitol (ES), neoplastic changes in liver, lowered blood glucose, increased hepatocyte aldose reductase (AR) and sorbitol dehydrogenase (SDH), significantly alleviated by DAS/AA combination. DM elevated ES activating AR, inhibiting SDH, improved by DAS and AA. CONCLUSION Co-induction of DM and HCC increased liver tissue lesion, serum AFP, ES, liver AR and SDH. Co-administration of DAS/AA reduced ES, AR without changing SDH. DAS/AA co-therapy lowered ES by depressing AR without affecting SDH, meaning that AR is activated by cancer and DM in different ways. PP is early marker for HCC detection and response to chemoprevention. DAS/AA combination is promising cost effective chemopreventive and anti-diabetic combination.
Collapse
Affiliation(s)
- N M Abdel-Hamid
- Department of Biochemistry, College of Pharmacy, Minia University, Egypt.
| | | | | |
Collapse
|
24
|
Choi JW, Kim JH, Cho SC, Ha MK, Song KY, Youn HD, Park SC. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription. Biochem Biophys Res Commun 2010; 404:400-6. [PMID: 21130747 DOI: 10.1016/j.bbrc.2010.11.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.
Collapse
Affiliation(s)
- Ji-Woong Choi
- Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P. A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC SYSTEMS BIOLOGY 2010; 4:141. [PMID: 20969759 PMCID: PMC2987880 DOI: 10.1186/1752-0509-4-141] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 10/22/2010] [Indexed: 12/24/2022]
Abstract
Background Yeasts are attractive expression platforms for many recombinant proteins, and there is evidence for an important interrelation between the protein secretion machinery and environmental stresses. While adaptive responses to such stresses are extensively studied in Saccharomyces cerevisiae, little is known about their impact on the physiology of Pichia pastoris. We have recently reported a beneficial effect of hypoxia on recombinant Fab secretion in P. pastoris chemostat cultivations. As a consequence, a systems biology approach was used to comprehensively identify cellular adaptations to low oxygen availability and the additional burden of protein production. Gene expression profiling was combined with proteomic analyses and the 13C isotope labelling based experimental determination of metabolic fluxes in the central carbon metabolism. Results The physiological adaptation of P. pastoris to hypoxia showed distinct traits in relation to the model yeast S. cerevisiae. There was a positive correlation between the transcriptomic, proteomic and metabolic fluxes adaptation of P. pastoris core metabolism to hypoxia, yielding clear evidence of a strong transcriptional regulation component of key pathways such as glycolysis, pentose phosphate pathway and TCA cycle. In addition, the adaptation to reduced oxygen revealed important changes in lipid metabolism, stress responses, as well as protein folding and trafficking. Conclusions This systems level study helped to understand the physiological adaptations of cellular mechanisms to low oxygen availability in a recombinant P. pastoris strain. Remarkably, the integration of data from three different levels allowed for the identification of differences in the regulation of the core metabolism between P. pastoris and S. cerevisiae. Detailed comparative analysis of the transcriptomic data also led to new insights into the gene expression profiles of several cellular processes that are not only susceptible to low oxygen concentrations, but might also contribute to enhanced protein secretion.
Collapse
Affiliation(s)
- Kristin Baumann
- Department of Chemical Engineering, Autonomous University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tomokuni Y, Goryo K, Katsura A, Torii S, Yasumoto KI, Kemnitz K, Takada M, Fukumura H, Sogawa K. Loose interaction between glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase revealed by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy in living cells. FEBS J 2010; 277:1310-8. [PMID: 20392205 DOI: 10.1111/j.1742-4658.2010.07561.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Loose interaction between the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) was visualized in living CHO-K1 cells by fluorescence resonance energy transfer (FRET), using time-domain fluorescence lifetime imaging microscopy. FRET between active tetrameric subunits of GAPDH linked to cerulean or citrine was observed, and this FRET signal was significantly attenuated by coexpression of PGK. Also, direct interaction between GAPDH-citrine and PGK-cerulean was observed by FRET. The strength of FRET signals between them was dependent on linkers that connect GAPDH to citrine and PGK to cerulean. A coimmunoprecipitation assay using hemagglutinin-tagged GAPDH and FLAG-tagged PGK coexpressed in CHO-K1 cells supported the FRET observation. Taken together, these results demonstrate that a complex of GAPDH and PGK is formed in the cytoplasm of living cells.
Collapse
Affiliation(s)
- Yosuke Tomokuni
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 2010; 31:227-85. [PMID: 20346371 DOI: 10.1016/j.mam.2010.03.002] [Citation(s) in RCA: 552] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/17/2010] [Indexed: 01/22/2023]
Abstract
Research over the past decade has extended the prevailing view of the mitochondrion to include functions well beyond the generation of cellular energy. It is now recognized that mitochondria play a crucial role in cell signaling events, inter-organellar communication, aging, cell proliferation, diseases and cell death. Thus, mitochondria play a central role in the regulation of apoptosis (programmed cell death) and serve as the venue for cellular decisions leading to cell life or death. One of the mitochondrial proteins controlling cell life and death is the voltage-dependent anion channel (VDAC), also known as mitochondrial porin. VDAC, located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, thereby controlling cross-talk between mitochondria and the rest of the cell. VDAC is also a key player in mitochondria-mediated apoptosis. Thus, in addition to regulating the metabolic and energetic functions of mitochondria, VDAC appears to be a convergence point for a variety of cell survival and cell death signals mediated by its association with various ligands and proteins. In this article, we review what is known about the VDAC channel in terms of its structure, relevance to ATP rationing, Ca(2+) homeostasis, protection against oxidative stress, regulation of apoptosis, involvement in several diseases and its role in the action of different drugs. In light of our recent findings and the recently solved NMR- and crystallography-based 3D structures of VDAC1, the focus of this review will be on the central role of VDAC in cell life and death, addressing VDAC function in the regulation of mitochondria-mediated apoptosis with an emphasis on structure-function relations. Understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of functions, all important for cell life and death. This review also provides insight into the potential of VDAC1 as a rational target for new therapeutics.
Collapse
|
28
|
Hugo W, Song F, Aung Z, Ng SK, Sung WK. SLiM on Diet: finding short linear motifs on domain interaction interfaces in Protein Data Bank. Bioinformatics 2010; 26:1036-42. [DOI: 10.1093/bioinformatics/btq065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Demarse NA, Ponnusamy S, Spicer EK, Apohan E, Baatz JE, Ogretmen B, Davies C. Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation. J Mol Biol 2009; 394:789-803. [PMID: 19800890 DOI: 10.1016/j.jmb.2009.09.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 01/01/2023]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that displays several non-glycolytic activities, including the maintenance and/or protection of telomeres. In this study, we determined the molecular mechanism and biological role of the interaction between GAPDH and human telomeric DNA. Using gel-shift assays, we show that recombinant GAPDH binds directly with high affinity (K(d)=45 nM) to a single-stranded oligonucleotide comprising three telomeric DNA repeats, and that nucleotides T1, G5, and G6 of the TTAGGG repeat are essential for binding. The stoichiometry of the interaction is 2:1 (DNA:GAPDH), and GAPDH appears to form a high-molecular-weight complex when bound to the oligonucleotide. Mutation of Asp32 and Cys149, which are localized to the NAD-binding site and the active-site center of GAPDH, respectively, produced mutants that almost completely lost their telomere-binding functions both in vitro and in situ (in A549 human lung cancer cells). Treatment of A549 cells with the chemotherapeutic agents gemcitabine and doxorubicin resulted in increased nuclear localization of expressed wild-type GAPDH, where it protected telomeres against rapid degradation, concomitant with increased resistance to the growth-inhibitory effects of these drugs. The non-DNA-binding mutants of GAPDH also localized to the nucleus when expressed in A549 cells, but did not confer any significant protection of telomeres against chemotherapy-induced degradation or growth inhibition; this occurred without the involvement of caspase activation or apoptosis regulation. Overall, these data demonstrate that GAPDH binds telomeric DNA directly in vitro and may have a biological role in the protection of telomeres against rapid degradation in response to chemotherapeutic agents in A549 human lung cancer cells.
Collapse
Affiliation(s)
- Neil A Demarse
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kim JJ, Kim YH, Lee MY. Proteomic characterization of differentially expressed proteins associated with no stress in retinal ganglion cells. BMB Rep 2009; 42:456-61. [PMID: 19643045 DOI: 10.5483/bmbrep.2009.42.7.456] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Proteomic analyses of differentially expressed proteins in rat retinal ganglion cells (RGC-5) following S-nitrosoglutathione (GSNO), an NO donor, treatment were conducted. Of the approximately 314 protein spots that were detected, 19 were differentially expressed in response to treatment with GSNO. Of these, 14 proteins were up-regulated and 5 were down- regulated. Notably, an increase in GAPDH expression following GSNO treatment was detected in RGC-5 cells through Western blotting as well as proteomics. The increased GAPDH expression in response to GSNO treatment was accompanied by an increase in Herc6 protein, an E3 ubiquitin ligase. Moreover, GSNO treatment resulted in the translocation of GADPH from the cytosol to the nucleus and its subsequent accumulation. These results suggest that NO stress-induced apoptosis may be associated with the nuclear translocation and accumulation of GAPDH in RGC-5 cells.
Collapse
Affiliation(s)
- Jum-Ji Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-600, Korea
| | | | | |
Collapse
|
31
|
Groeneveld GJ, van Muiswinkel FL, de Leeuw van Weenen J, Blauw H, Veldink JH, Wokke JHJ, van den Berg LH, Bär PR. CGP 3466B has no effect on disease course of (G93A) mSOD1 transgenic mice. ACTA ACUST UNITED AC 2009; 5:220-5. [PMID: 15799550 DOI: 10.1080/14660820410019530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND There is an accumulating body of evidence that apoptosis is involved in the motor neuron death that occurs in ALS, and in the (G93A) mSOD1 transgenic mouse model (mSOD1 mice). CGP 3466B, a tricyclic propargylamine structurally related to (-)-deprenyl, was found to inhibit apoptosis in a wide variety of in vitro and in vivo models. We therefore studied the effect of CGP 3466B in mSOD1 mice. METHODS As the effect of CGP 3466B was previously reported to have a bell-shaped curve, we performed a dose-ranging study. High-copy G93A mSOD1 mice were treated subcutaneously from the age of 50 days until death with four concentrations of CGP 3466B (0.39 microg kg(-1), 3.9 microg kg(-1), 39 microg kg(-1), and 390 microg kg(-1)). Behavioural tests were performed daily to determine disease onset, disease progression and survival. At the age of 110 days, two mice per group were sacrificed for histopathological analysis of the lumbar ventral horn and for semiquantitative analysis of motor neuron number. RESULTS We observed no effect on disease onset, disease progression, or survival of the mice. We also did not observe a significant effect on the number of motor neurons due to CGP 3466B. CONCLUSIONS We conclude that in high-copy G93A mSOD1 mice, chronic subcutaneous treatment with CGP 3466B offers no clinical benefit.
Collapse
Affiliation(s)
- Geert J Groeneveld
- Department of Neurology, Laboratory for Experimental Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Salas-Leiton E, Cánovas-Conesa B, Zerolo R, López-Barea J, Cañavate JP, Alhama J. Proteomics of juvenile senegal sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:473-487. [PMID: 19101763 DOI: 10.1007/s10126-008-9168-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/19/2008] [Indexed: 05/27/2023]
Abstract
Solea senegalensis is a commercial flat fish traditionally farmed in earth ponds in coastal wetlands that might also become important to more intensive aquaculture. Gas bubble disease (GBD) is a potential risk for outdoor fish farming, particularly in certain periods of the year, related to improper management leading to macroalgae blooms. Physical-chemical conditions inducing hyperoxia, including radiation, temperature, and high levels of dissolved oxygen, have been monitored in fish affected by GBD together with observed symptoms. Exophthalmia, subcutaneous emphysemas, obstruction of gill lamellae, hemorrhages, and anomalous swimming were the main effects of oxygen supersaturation. A proteomic study was carried out for the first time under aquaculture conditions and protein expression changes are described for fish that were subject to hyperoxic conditions. Proteins identified in gill of GBD-affected fish are related to oxidative alteration of cytoskeleton structure/function (beta-tubulin, beta-actin), motility (light myosin chain, alpha-tropomyosin), or regulatory pathways (calmodulin, Raf kinase inhibitor protein), reflecting the central role of gill in oxygen exchange. Hepatic proteins identified are related to protein oxidative damages (beta-globin, FABPs), protection from oxidative stress (DCXR, GNMT), and inflammatory response (C3), in agreement with the predominant metabolic role of liver. Comparison of protein expression patterns and protein identification are suggested as potentially specific hyperoxia biomarkers that would facilitate prevention of GBD outbreaks.
Collapse
Affiliation(s)
- E Salas-Leiton
- IFAPA Centro El Toruño, Junta de Andalucía, El Puerto de Santa María, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Yang SH, Liu ML, Tien CF, Chou SJ, Chang RY. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interaction with 3' ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein. J Biomed Sci 2009; 16:40. [PMID: 19368702 PMCID: PMC2673215 DOI: 10.1186/1423-0127-16-40] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 04/15/2009] [Indexed: 01/26/2023] Open
Abstract
Replication of the Japanese encephalitis virus (JEV) genome depends on host factors for successfully completing their life cycles; to do this, host factors have been recruited and/or relocated to the site of viral replication. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cellular metabolic protein, was found to colocalize with viral RNA-dependent RNA polymerase (NS5) in JEV-infected cells. Subcellular fractionation further indicated that GAPDH remained relatively constant in the cytosol, while increasing at 12 to 24 hours postinfection (hpi) and decreasing at 36 hpi in the nuclear fraction of infected cells. In contrast, the redistribution patterns of GAPDH were not observed in the uninfected cells. Co-immunoprecipitation of GAPDH and JEV NS5 protein revealed no direct protein-protein interaction; instead, GAPDH binds to the 3' termini of plus- and minus-strand RNAs of JEV by electrophoretic mobility shift assays. Accordingly, GAPDH binds to the minus strand more efficiently than to the plus strand of JEV RNAs. This study highlights the findings that infection of JEV changes subcellular localization of GAPDH suggesting that this metabolic enzyme may play a role in JEV replication.
Collapse
Affiliation(s)
- Shang-Hua Yang
- Institute of Biotechnology and Department of Life Science, National Dong Hwa University, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
34
|
Makhina T, Loers G, Schulze C, Ueberle B, Schachner M, Kleene R. Extracellular GAPDH binds to L1 and enhances neurite outgrowth. Mol Cell Neurosci 2009; 41:206-18. [PMID: 19285135 DOI: 10.1016/j.mcn.2009.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 12/08/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022] Open
Abstract
We have identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding partner for the cell adhesion molecule L1. GAPDH binds to sites within the extracellular domain of L1, namely the immunoglobulin-like domains I-VI and the fibronectin type III homologous repeats 4-5. Extracellular GAPDH was detected at the cell surface of neuronal cells by surface biotinylation and immunocytochemistry. Addition of GAPDH antibodies to cultured cerebellar neurons inhibited L1-dependent neurite outgrowth in the presence of ATP, while the application of exogenous GAPDH promoted L1-dependent neurite outgrowth. Pre-treatment of substrate-coated L1-Fc with ATP and GAPDH, which phosphorylates L1, subsequently led to an enhanced neurite outgrowth. Furthermore, aggregation of L1-Fc carrying beads was enhanced in the presence of both GAPDH and ATP. L1-dependent neurite outgrowth and aggregation of L1 were diminished in the presence of alkaline phosphatase or a protein kinase inhibitor. Our results show that GAPDH-dependent phosphorylation of L1 is a novel mechanism in regulating L1-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Tatjana Makhina
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Molecular cloning and expression profile analysis of a novel mouse testis-specific expression gene mtIQ1. Mol Biol Rep 2008; 36:1203-9. [DOI: 10.1007/s11033-008-9298-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
|
36
|
Zhang Y, Wang YH, Zhang XH, Ge HY, Arendt-Nielsen L, Shao JM, Yue SW. Proteomic analysis of differential proteins related to the neuropathic pain and neuroprotection in the dorsal root ganglion following its chronic compression in rats. Exp Brain Res 2008; 189:199-209. [PMID: 18493752 DOI: 10.1007/s00221-008-1419-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 04/30/2008] [Indexed: 12/26/2022]
Abstract
The aim of the study was to identify the differential protein expressions related to neuropathic pain and neuroprotection in the dorsal root ganglion (DRG) following chronic compression of DRG (CCD) in rats. We conducted a proteomics study of L(4) and L(5) DRG after CCD for 28 days. A total of 98 protein spots were detected with significant changes in their expression levels after CCD and 15 protein spots were identified by the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Of these proteins, annexin A2, protein kinase C epsilon (PKCepsilon), glyceraldehyde-3-phosphate dehydrogenases (GAPDH), and heat shock protein 70 (HSP70) were up-regulated significantly compared with the normal control. These four proteins and p11, which was annexin A2 light chain, were further examined by Western blotting. The results of Western blotting and the proteomic analysis showed consistent data. Moreover, real-time quantitative RT-PCR experiments indicated that CCD-induced increase in protein levels was associated with an up-regulation of annexin A2 and PKCepsilon gene expression. In conclusion, this study highlights the molecular process in DRG underlying neuropathic pain. CCD is associated with the up-regulation of annexin A2 and PKCepsilon and their related genes. The up-regulation of GAPDH and HSP70 suggests that there exist concurrent processes of nervous injury and neuroprotection in the course of neuropathic pain.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Physical Medicine and Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Fitzgerald JC, Ufer C, De Girolamo LA, Kuhn H, Billett EE. Monoamine oxidase-A modulates apoptotic cell death induced by staurosporine in human neuroblastoma cells. J Neurochem 2007; 103:2189-99. [PMID: 17883400 DOI: 10.1111/j.1471-4159.2007.04921.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Monoamine oxidases (MAOs) are mitochondrial enzymes which control the levels of neurotransmitters in the brain and dietary amines in peripheral tissues via oxidative deamination. MAO has also been implicated in cell signalling. In this study, we describe the MAO-A isoform as functional in apoptosis induced by staurosporine (STS) in human dopaminergic neuroblastoma cells (SH-SY5Y). Increased levels of MAO-A activity were induced by STS, accompanied by increased MAO-A protein and activation of the initiator of the intrinsic pathway, caspase 9, and the executioner caspase 3. MAO-A mRNA levels were unaffected by STS, suggesting that changes in MAO-A protein are due to post-transcriptional events. Two unrelated MAO-A inhibitors reduced caspase activation. STS treatment resulted in sustained activation of the mitogen-activated protein kinase pathway enzymes extracellular regulated kinase, c-jun terminal kinase and p38, and depletion of the anti-apoptotic protein Bcl-2. These changes were significantly reversed by MAO inhibition. Production of reactive oxygen species was increased following STS exposure, which was blocked by both MAO inhibition and the antioxidant N-acetylcysteine. Therefore our data provide evidence that MAO-A, through its production of reactive oxygen species as a by-product of its catalytic activity on the mitochondrial surface, is recruited by the cell to enhance apoptotic signalling.
Collapse
Affiliation(s)
- Julia C Fitzgerald
- School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton, Nottingham, UK
| | | | | | | | | |
Collapse
|
38
|
Chen J, Wu M, Sezate SA, Matsumoto H, Ramsey M, McGinnis JF. Interaction of glyceraldehyde-3-phosphate dehydrogenase in the light-induced rod alpha-transducin translocation. J Neurochem 2007; 104:1280-92. [PMID: 18028335 DOI: 10.1111/j.1471-4159.2007.05081.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The light-dependent subcellular translocation of rod alpha-transducin (GNAT-1, or rod Talpha) has been well documented. In dark-adapted animals, rod Talpha (rTalpha) is predominantly located in the rod outer segment (ROS) and translocates into the rod inner segment (RIS) upon exposure to the light. Neither the molecular participants nor the mechanism(s) involved in this protein trafficking are known. We hypothesized that other proteins must interact with rTalpha to affect the translocations. Using the MBP-rTalpha fusion pulldown assay, the yeast two-hybrid assay and the co-immunoprecipitation assay, we identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and rTalpha as interacting proteins. Immunoprecipitation also showed beta-actin associates with rTalpha in the dark but not in the light. To further investigate the involvement of GAPDH in light-induced rod Talpha translocation, GAPDH mRNA was knocked down in vivo by transient expression of siRNAs in rat photoreceptor cells. Under completely dark- and light-adapted conditions, the translocation of rTalpha was not significantly different within the 'GAPDH knock-down photoreceptor cells' compared to the non-transfected control cells. However, under partial dark-adaptation, rTalpha translocated more slowly in the 'GAPDH knock-down cells' supporting the conclusion that GAPDH is involved in rTalpha translocation from the RIS to the ROS during dark adaptation.
Collapse
Affiliation(s)
- Junping Chen
- Oklahoma Center for Neuroscience (OCNS), The University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | |
Collapse
|
39
|
Pretsch W, Favor J. Genetic, biochemical, and molecular characterization of nine glyceraldehyde-3-phosphate dehydrogenase mutants with reduced enzyme activity in Mus musculus. Mamm Genome 2007; 18:686-92. [PMID: 17874335 DOI: 10.1007/s00335-007-9055-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 07/20/2007] [Indexed: 10/22/2022]
Abstract
The first mutations causing hereditary glyceraldehyde-3-phosphate dehydrogenase (GAPDH) deficiency in the mouse are described. In the course of various mutagenicity experiments with chemical mutagens and irradiation, nine independent mutations causing approximately 50-55% residual activity in blood compared to wild type were identified at the Gapdh structural locus on chromosome 6. Breeding experiments displayed an autosomal semidominant mode of inheritance for all mutants. Two mutations are homozygous viable producing a GAPDH residual activity of less than 10%. Mortality of the remaining seven homozygous lethal lines occurs at an early postimplantation stage of development. The physiologic and hematologic analyses provided no indication for further altered traits in heterozygotes or homozygotes. The molecular characterization showed base substitutions resulting in amino acid exchanges in seven mutations, in one mutation a transversion creating a stop codon caused a truncated protein of 89 amino acids and two deletions generating truncated proteins of 73 and 9 amino acids, respectively.
Collapse
Affiliation(s)
- Walter Pretsch
- Institute of Human Genetics, GSF - National Research Center for Environment and Health, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
| | | |
Collapse
|
40
|
Du ZX, Wang HQ, Zhang HY, Gao DX. Involvement of glyceraldehyde-3-phosphate dehydrogenase in tumor necrosis factor-related apoptosis-inducing ligand-mediated death of thyroid cancer cells. Endocrinology 2007; 148:4352-61. [PMID: 17540725 DOI: 10.1210/en.2006-1511] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is cytotoxic to most thyroid cancer cell lines, including those originating from anaplastic carcinomas, implying TRAIL as a promising therapeutic agent against thyroid cancers. However, signal transduction in TRAIL-mediated apoptosis is not clearly understood. In addition to its well-known glycolytic functions, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein, including its surprising role as a mediator for cell death. In this study we explored the involvement of GAPDH in TRAIL-mediated thyroid cancer cell death. In follicular undifferentiated thyroid cells, S-nitrosylation and nuclear translocation of GAPDH appear to mediate TRAIL-induced cell death at least partially, as evidenced by pretreatment with N-nitro-L-arginine methyl ester, a competitive nitric oxide synthase inhibitor that partially but significantly attenuated TRAIL-induced apoptosis through the reduction of S-nitrosylation and nuclear translocation of GAPDH. In addition, GAPDH small interfering RNA partially prevented the apoptotic effect of TRAIL, although TRAIL-induced nitric oxide synthase stimulation and production of nitric oxide were not attenuated. Furthermore, nuclear localization of GAPDH was observed in another thyroid cancer cell line, KTC2, which is also sensitive to TRAIL, but not in those TRAIL insensitive cell lines: ARO, KTC1, and KTC3. These data indicate that nitric oxide-mediated S-nitrosylation of GAPDH and subsequent nuclear translocation of GAPDH might function as a mediator of TRAIL-induced cell death in thyroid cancer cells.
Collapse
Affiliation(s)
- Zhen-Xian Du
- Department of Endocrinology and Metabolism, the 1st Affiliated Hospital, China Medical University, Shenyang 110001, China.
| | | | | | | |
Collapse
|
41
|
Kim S, Lee J, Kim J. Regulation of oncogenic transcription factor hTAF(II)68-TEC activity by human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem J 2007; 404:197-206. [PMID: 17302560 PMCID: PMC1868794 DOI: 10.1042/bj20061297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumour-specific chromosomal rearrangements are known to create chimaeric products with the ability to generate many human cancers. hTAF(II)68-TEC (where hTAF(II)68 is human TATA-binding protein-associated factor II 68 and TEC is translocated in extraskeletal chondrosarcoma) is such a fusion product, resulting from a t(9;17) chromosomal translocation found in extraskeletal myxoid chondrosarcomas, where the hTAF(II)68 NTD (N-terminal domain) is fused to TEC protein. To identify proteins that control hTAF(II)68-TEC function, we used affinity chromatography on immobilized hTAF(II)68 (NTD) and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS and isolated a novel hTAF(II)68-TEC-interacting protein, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). GAPDH is a glycolytic enzyme that is also involved in the early steps of apoptosis, nuclear tRNA export, DNA replication, DNA repair and transcription. hTAF(II)68-TEC and GAPDH were co-immunoprecipitated from cell extracts, and glutathione S-transferase pull-down assays revealed that the C-terminus of hTAF(II)68 (NTD) was required for interaction with GAPDH. In addition, three independent regions of GAPDH (amino acids 1-66, 67-160 and 160-248) were involved in binding to hTAF(II)68 (NTD). hTAF(II)68-TEC-dependent transcription was enhanced by GAPDH, but not by a GAPDH mutant defective in hTAF(II)68-TEC binding. Moreover, a fusion of GAPDH with the GAL4 DNA-binding domain increased the promoter activity of a reporter containing GAL4 DNA-binding sites, demonstrating the presence of a transactivation domain(s) in GAPDH. The results of the present study suggest that the transactivation potential of the hTAF(II)68-TEC oncogene product is positively modulated by GAPDH.
Collapse
Affiliation(s)
- Sol Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jungwoon Lee
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jungho Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
42
|
Derakhshan B, Hao G, Gross SS. Balancing reactivity against selectivity: the evolution of protein S-nitrosylation as an effector of cell signaling by nitric oxide. Cardiovasc Res 2007; 75:210-9. [PMID: 17524376 PMCID: PMC1994943 DOI: 10.1016/j.cardiores.2007.04.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 01/22/2023] Open
Abstract
Produced by the action of lightning in the atmosphere of the pre-biotic earth, nitric oxide (NO) is a free radical molecule that provided the major nitrogen source for development of life. Remarkably, when atmospheric sources of NO became restrictive, organisms evolved the capacity for NO biosynthesis and NO took on bioregulatory roles. We now recognize NO as an ancestral regulator of diverse and important biological functions, acting throughout the phylogenetic tree. In mammals, NO has been implicated as a pivotal regulator of virtually every major physiological system. The bioactivities of NO, and reactive species derived from NO, arise predominantly from their covalent addition to proteins. Importantly, S-nitrosylation of protein cysteine (Cys) residues has emerged as a preeminent effector of NO bioactivity. How and why NO selectively adds to particular Cys residues in proteins is poorly understood, yet fundamental to how NO communicates its bioactivities. Also, evolutionary pressures that have shaped S-nitrosylation as a biosignaling modality are obscure. Considering recently recognized NO signaling paradigms, we speculate on the origin of NO signaling in biological systems and the molecular adaptations that have endowed NO with the ability to selectively target a subset of protein Cys residues that mediate biosignaling.
Collapse
Affiliation(s)
- Behrad Derakhshan
- Weill Medical College of Cornell University, Department of Pharmacology, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
43
|
Anderson LE, Gibbons JT. Effect of leaf position on levels of the chloroplast and cytosolic fructose bisphosphatase isozymes in the pea leaf nucleus. PROTOPLASMA 2007; 231:113-21. [PMID: 17370113 DOI: 10.1007/s00709-006-0224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 03/22/2006] [Indexed: 05/14/2023]
Abstract
Immunocytolocalization experiments indicate that nuclear levels of the pea leaf cytosolic fructose bisphosphatase are higher in leaves located near the base of the plant and lower in expanded leaves at the apex. It seems possible that the cytosolic isozyme in the nucleus has a role in tissue aging. In contrast, there is no indication that leaf position or tissue age affects levels of the chloroplastic enzyme in the nucleus. The density of the chloroplast fructose bisphosphatase is higher in the nucleolus than in the nucleoplasm. Conversely, the density of the cytosolic isozyme is slightly higher in the nucleoplasm. Analysis of double immunolabeling experiments indicates that both isozymes are distributed nonrandomly with respect to DNA, and therefore colocalized with DNA, in the nucleus, and that the chloroplast isozyme is also distributed nonrandomly with respect to DNA in the chloroplast.
Collapse
Affiliation(s)
- L E Anderson
- Department of Biological Sciences, University of Illinois-Chicago, Chicago, Illinois 60607-7060, USA.
| | | |
Collapse
|
44
|
Puttonen KA, Lehtonen S, Raasmaja A, Männistö PT. A prolyl oligopeptidase inhibitor, Z-Pro-Prolinal, inhibits glyceraldehyde-3-phosphate dehydrogenase translocation and production of reactive oxygen species in CV1-P cells exposed to 6-hydroxydopamine. Toxicol In Vitro 2006; 20:1446-54. [PMID: 16942854 DOI: 10.1016/j.tiv.2006.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 06/28/2006] [Accepted: 07/03/2006] [Indexed: 11/22/2022]
Abstract
We studied the ability of prolyl oligopeptidase (POP) inhibitors, Z-Pro-Prolinal and JTP-4819, to prevent translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and formation of reactive oxygen species (ROS), in 6-hydroxydopamine (6-OHDA) and cytosine arabinoside (Ara-C) treated monkey fibroblast (CV1-P) and human neuroblastoma (SH-SY5Y) cells. The cells were pretreated with POP inhibitors (30 min) before addition of toxicants. GAPDH was analyzed by Western hybridization, ROS by fluorescent 2'7'-dichlorodihydro-fluorescein diacetate, and viability by the MTT method. Both toxicants induced GAPDH translocation to the particulate fraction (mitochondria and nuclei). Z-Pro-Prolinal was able to inhibit the translocation in 6-OHDA-exposed CV1-P cells. In SH-SY5Y cells and in JTP-4819 pretreated cells, no prevention of translocation was seen. However, the intensity of GAPDH in cytosolic fraction increased. Both inhibitors blocked 6-OHDA-induced ROS-production to the control level in CV1-P but, not in SH-SY5Y cells, without affecting their viability. In conclusion, POP inhibitors are able to prevent certain cell stress related factors such as ROS production or GAPDH translocation.
Collapse
Affiliation(s)
- Katja A Puttonen
- Department of Pharmacology and Toxicology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
45
|
Heintz D, Erxleben A, High AA, Wurtz V, Reski R, Van Dorsselaer A, Sarnighausen E. Rapid alteration of the phosphoproteome in the moss Physcomitrella patens after cytokinin treatment. J Proteome Res 2006; 5:2283-93. [PMID: 16944940 DOI: 10.1021/pr060152e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cytokinin hormones are crucial regulators of a large number of processes in plant development. Recently, significant progress has been made toward the elucidation of the molecular details of cytokinin that has led to a model for signal transduction involving a phosphorylation cascade. However, the current knowledge of cytokinin action remains largely unknown and does not explain the different roles of this hormone. To gain further insights into this aspect of cytokinin action and the inducible phosphorelay, we have produced the first large-scale map of a phosphoproteome in the moss Physcomitrella patens. Using a protocol that we recently published (Heintz, D.; et al. Electrophoresis 2004, 25, 1149-1159) that combines IMAC, MALDI-TOF-MS, and LC-MS/MS, a total of 172 phosphopeptide sequences were obtained by a peptide de novo sequencing strategy. Specific P. patens EST and raw genomic databases were interrogated, and protein homology searches resulted in the identification of 112 proteins that were then classified into functional categories. In addition, the temporal dynamics of the phosphoproteome in response to cytokinin stimulation was studied at 2, 4, 6, and 15 min after hormone addition. We identified 13 proteins that were not previously known targets of cytokinin action. Among the responsive proteins, some were involved in metabolism, and several proteins of unknown function were also identified. We have mapped the time course of their activation in response to cytokinin and discussed their hypothetical biological significance. Deciphering these early induced phosphorylation events has shown that the cytokinin effect can be rapid (few minutes), and the duration of this effect can be variable. Also phosphorylation events can be differentially regulated. Taken together our proteomic study provides an enriched look of the multistep phosphorelay system mediating cytokinin response and suggests the existence of a multidirectional interaction between cytokinin and numerous other pathways.
Collapse
Affiliation(s)
- Dimitri Heintz
- Laboratoire de Spectrométrie de Masse Bio-Organique, CNRS, ECPM, Université Louis Pasteur, 25 rue Becquerel F67087, Strasbourg, Cedex 2, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Bell RL, Kimpel MW, Rodd ZA, Strother WN, Bai F, Peper CL, Mayfield RD, Lumeng L, Crabb DW, McBride WJ, Witzmann FA. Protein expression changes in the nucleus accumbens and amygdala of inbred alcohol-preferring rats given either continuous or scheduled access to ethanol. Alcohol 2006; 40:3-17. [PMID: 17157716 DOI: 10.1016/j.alcohol.2006.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 10/23/2022]
Abstract
Chronic ethanol (EtOH) drinking produces neuronal alterations within the limbic system. To investigate changes in protein expression levels associated with EtOH drinking, inbred alcohol-preferring (iP) rats were given one of three EtOH access conditions in their home-cages: continuous ethanol (CE: 24h/day, 7days/week access to EtOH), multiple scheduled access (MSA: four 1-h sessions during the dark cycle/day, 5 days/week) to EtOH, or remained EtOH-naïve. Both MSA and CE groups consumed between 6 and 6.5g of EtOH/kg/day after the 3rd week of access. On the first day of EtOH access for the seventh week, access was terminated at the end of the fourth MSA session for MSA rats and the corresponding time point (2300h) for CE rats. Ten h later, the rats were decapitated, brains extracted, the nucleus accumbens (NAcc) and amygdala (AMYG) microdissected, and protein isolated for 2-dimensional gel electrophoretic analyses. In the NAcc, MSA altered expression levels for 12 of the 14 identified proteins, compared with controls, with six of these proteins altered by CE access, as well. In the AMYG, CE access changed expression levels for 22 of the 27 identified proteins, compared with controls, with 8 of these proteins altered by MSA, as well. The proteins could be grouped into functional categories of chaperones, cytoskeleton, intracellular communication, membrane transport, metabolism, energy production, or neurotransmission. Overall, it appears that EtOH drinking and the conditions under which EtOH is consumed, differentially affect protein expression levels between the NAcc and AMYG. This may reflect differences in neuroanatomical and/or functional characteristics associated with EtOH self-administration and possibly withdrawal, between these two brain structures.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research and Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hansson O, Ström K, Güner N, Wierup N, Sundler F, Höglund P, Holm C. Inflammatory Response in White Adipose Tissue in the Non-Obese Hormone-Sensitive Lipase Null Mouse Model. J Proteome Res 2006; 5:1701-10. [PMID: 16823978 DOI: 10.1021/pr060101h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, a local inflammatory response in white adipose tissue from the nonobese HSL-null mouse model is demonstrated. The protein levels of several well-known markers of inflammation, like TNFalpha and ferritin HC, were highly increased and accompanied by an activation of NFkappaB. A number of macrophage proteins, i.e., gal-3, Capg, and MCP-4, were expressed at increased levels and immunohistochemical analyses revealed an increased infiltration of F4/80+ cells.
Collapse
Affiliation(s)
- Ola Hansson
- Department of Experimental Medical Science, Lund University, BMC C11, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kim CI, Lee SH, Seong GJ, Kim YH, Lee MY. Nuclear translocation and overexpression of GAPDH by the hyper-pressure in retinal ganglion cell. Biochem Biophys Res Commun 2006; 341:1237-43. [PMID: 16469296 DOI: 10.1016/j.bbrc.2006.01.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/13/2006] [Indexed: 01/12/2023]
Abstract
To investigate the effect of hyper-pressure on retinal ganglion cells (RGC-5), RGC-5 cells were exposed to an ambient hydrostatic pressure of 100 mmHg. Upon treatment, the proliferation of RGC-5 cells was inhibited and neuronal apoptosis was detected by specific apoptosis marker TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling). To probe into the mechanism mediating the apoptosis of RGC-5 cells in 100 mmHg, protein profile alterations following hyper-pressure treatment were examined using two-dimensional gel electrophoresis (2-DE) followed by MALDI-TOF. Out of the 400 protein spots of RGC-5 cells detected on 2-DE gels, 37 differentially expressed protein spots were further identified using in gel tryptic digestion and mass spectrometry. Among these proteins, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was significantly expressed 10 times more in 100 mmHg than in normal pressure. The accumulation of GAPDH in the nucleus and its translocation from the cytosol to the nucleus in 100 mmHg were observed using a microscope. These results suggest that the hyper-pressure-induced apoptosis in RGC-5 cells may be involved with not only the increase of GAPDH expression, but also the accumulation and the translocalization of GAPDH to the nucleus.
Collapse
Affiliation(s)
- Choong-Il Kim
- Division of Life Science, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Deng Y, Hu LS, Lu GX. Expression and identification of a novel apoptosis gene Spata17 (MSRG-11) in mouse spermatogenic cells. Acta Biochim Biophys Sin (Shanghai) 2006; 38:37-45. [PMID: 16395525 DOI: 10.1111/j.1745-7270.2006.00125.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this study, anti-spermatogenesis-associated 17 (Spata17) polyclonal antibody was prepared by immunizing New Zealand white rabbits with a synthesized peptide corresponding to the amino acid sequence 7-23 of the mouse Spata17 protein. Immunohistochemical analysis revealed that Spata17 protein was most abundant in the cytoplasm of round spermatids and elongating spermatids within seminiferous tubules of the adult testis. The expression of Spata17 mRNA in cultured mouse spermatogonia (GC-1) cells was almost undetectable. In an experimental unilateral cryptorchidism model of an adult mouse, the expression of Spata17 mRNA had no obvious difference with the normal testis until postoperation day 1, but gradually decreased from day 3 and was almost undetectable on day 17. Immunohistochemical analysis revealed that the protein was almost undetectable within seminiferous tubules of an experimental unilateral cryptorchidism model of the adult testis on postoperation day 8. Flow cytometry analysis showed that the expression of Spata17 protein in the GC-1 cell line could accelerate GC-1 cell apoptosis. The effect increases with the increasing of the transfected dose of pcDNA3.1(-)/Spata17. By Hoechst 33258 staining, a classical way of identifying apoptotic cells, we further confirmed that the apoptosis was induced by expression of Spata17 in transfected GC-1 cells.
Collapse
Affiliation(s)
- Yun Deng
- National Center for Human Stem Cell Research and Engineering, Institute of Human Reproductive and Stem Cell Engineering, Central South University, Changsha 410078, China
| | | | | |
Collapse
|
50
|
Alexander-Kaufman K, James G, Sheedy D, Harper C, Matsumoto I. Differential protein expression in the prefrontal white matter of human alcoholics: a proteomics study. Mol Psychiatry 2006; 11:56-65. [PMID: 16172612 DOI: 10.1038/sj.mp.4001741] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuroimaging and post-mortem studies indicate that chronic alcohol use induces global changes in brain morphology, such as cortical and subcortical atrophy. Recent studies have shown that frontal lobe structures are specifically susceptible to alcohol-related brain damage and shrinkage in this area is largely due to a loss of white matter. This may explain the high incidence of cognitive dysfunction observed in alcoholics. Using a proteomics-based approach, changes in protein expression in the dorsolateral prefrontal region (BA9) white matter were identified in human alcoholic brains. Protein extracts from the BA9 white matter of 25 human brains (10 controls; eight uncomplicated alcoholics; six alcoholics complicated with hepatic cirrhosis; one reformed alcoholic) were separated using two-dimensional gel electrophoresis. Overall, changes in the relative expression of 60 proteins were identified (P<0.05, ANOVA) in the alcoholic BA9 white matter. In total, 18 protein spots have been identified using MALDI-TOF; including hNP22, alpha-internexin, transketolase, creatine kinase chain B, ubiquitin carboxy-terminal hydrolase L1 and glyceraldehyde-3-phosphate dehydrogenase. Several of these proteins have been previously implicated in alcohol-related disorders and brain damage. By identifying changes in protein expression in this region from alcoholics, hypotheses may draw upon more mechanistic explanations as to how chronic ethanol consumption causes white matter damage.
Collapse
Affiliation(s)
- K Alexander-Kaufman
- Department of Pathology, Blackburn Building D06, The University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|