1
|
Sousa CS, Monteiro A, Salgado AJ, Silva NA. Combinatorial therapies for spinal cord injury repair. Neural Regen Res 2025; 20:1293-1308. [PMID: 38845223 DOI: 10.4103/nrr.nrr-d-24-00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/02/2024] [Indexed: 07/31/2024] Open
Abstract
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.
Collapse
Affiliation(s)
- Carla S Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar - gualtar, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Campus de Gualtar - gualtar, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar - gualtar, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Campus de Gualtar - gualtar, Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar - gualtar, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Campus de Gualtar - gualtar, Braga, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar - gualtar, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Campus de Gualtar - gualtar, Braga, Portugal
| |
Collapse
|
2
|
Sousa JPM, Deus IA, Monteiro CF, Custódio CA, Gil J, Papadimitriou L, Ranella A, Stratakis E, Mano JF, Marques PAAP. Amniotic Membrane-Derived Multichannel Hydrogels for Neural Tissue Repair. Adv Healthc Mater 2024; 13:e2400522. [PMID: 38989725 DOI: 10.1002/adhm.202400522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/27/2024] [Indexed: 07/12/2024]
Abstract
In the pursuit of advancing neural tissue regeneration, biomaterial scaffolds have emerged as promising candidates, offering potential solutions for nerve disruptions. Among these scaffolds, multichannel hydrogels, characterized by meticulously designed micrometer-scale channels, stand out as instrumental tools for guiding axonal growth and facilitating cellular interactions. This study explores the innovative application of human amniotic membranes modified with methacryloyl domains (AMMA) in neural stem cell (NSC) culture. AMMA hydrogels, possessing a tailored softness resembling the physiological environment, are prepared in the format of multichannel scaffolds to simulate native-like microarchitecture of nerve tracts. Preliminary experiments on AMMA hydrogel films showcase their potential for neural applications, demonstrating robust adhesion, proliferation, and differentiation of NSCs without the need for additional coatings. Transitioning into the 3D realm, the multichannel architecture fosters intricate neuronal networks guiding neurite extension longitudinally. Furthermore, the presence of synaptic vesicles within the cellular arrays suggests the establishment of functional synaptic connections, underscoring the physiological relevance of the developed neuronal networks. This work contributes to the ongoing efforts to find ethical, clinically translatable, and functionally relevant approaches for regenerative neuroscience.
Collapse
Affiliation(s)
- Joana P M Sousa
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-193, Portugal
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Inês A Deus
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Cátia F Monteiro
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Catarina A Custódio
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
- Metatissue, PCI · Creative Science Park Aveiro Region, Via do Conhecimento, Ílhavo, 3830-352, Portugal
| | - João Gil
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-193, Portugal
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- INESC-MN - INESC Microsistemas e Nanotecnologia, Rua Alves Redol 9, Lisbon, 1000-029, Portugal
| | - Lina Papadimitriou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - João F Mano
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
| | - Paula A A P Marques
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-193, Portugal
- LASI - Intelligent Systems Associate Laboratory, Portugal
| |
Collapse
|
3
|
Zhao H, Xiong T, Chu Y, Hao W, Zhao T, Sun X, Zhuang Y, Chen B, Zhao Y, Wang J, Chen Y, Dai J. Biomimetic Dual-Network Collagen Fibers with Porous and Mechanical Cues Reconstruct Neural Stem Cell Niche via AKT/YAP Mechanotransduction after Spinal Cord Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311456. [PMID: 38497893 DOI: 10.1002/smll.202311456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Tissue engineering scaffolds can mediate the maneuverability of neural stem cell (NSC) niche to influence NSC behavior, such as cell self-renewal, proliferation, and differentiation direction, showing the promising application in spinal cord injury (SCI) repair. Here, dual-network porous collagen fibers (PCFS) are developed as neurogenesis scaffolds by employing biomimetic plasma ammonia oxidase catalysis and conventional amidation cross-linking. Following optimizing the mechanical parameters of PCFS, the well-matched Young's modulus and physiological dynamic adaptability of PCFS (4.0 wt%) have been identified as a neurogenetic exciter after SCI. Remarkably, porous topographies and curving wall-like protrusions are generated on the surface of PCFS by simple and non-toxic CO2 bubble-water replacement. As expected, PCFS with porous and matched mechanical properties can considerably activate the cadherin receptor of NSCs and induce a series of serine-threonine kinase/yes-associated protein mechanotransduction signal pathways, encouraging cellular orientation, neuron differentiation, and adhesion. In SCI rats, implanted PCFS with matched mechanical properties further integrated into the injured spinal cords, inhibited the inflammatory progression and decreased glial and fibrous scar formation. Wall-like protrusions of PCFS drive multiple neuron subtypes formation and even functional neural circuits, suggesting a viable therapeutic strategy for nerve regeneration and functional recovery after SCI.
Collapse
Affiliation(s)
- Haitao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tiandi Xiong
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yun Chu
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Wangping Hao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tongtong Zhao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyue Sun
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Sufiyan M, Kushwaha P, Ahmad M, Mandal P, Vishwakarma KK. Scaffold-Mediated Drug Delivery for Enhanced Wound Healing: A Review. AAPS PharmSciTech 2024; 25:137. [PMID: 38877197 DOI: 10.1208/s12249-024-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Wound healing is a complex physiological process involving coordinated cellular and molecular events aimed at restoring tissue integrity. Acute wounds typically progress through the sequential phases of hemostasis, inflammation, proliferation, and remodeling, while chronic wounds, such as venous leg ulcers and diabetic foot ulcers, often exhibit prolonged inflammation and impaired healing. Traditional wound dressings, while widely used, have limitations such poor moisture retention and biocompatibility. To address these challenges and improve patient outcomes, scaffold-mediated delivery systems have emerged as innovative approaches. They offer advantages in creating a conducive environment for wound healing by facilitating controlled and localized drug delivery. The manuscript explores scaffold-mediated delivery systems for wound healing applications, detailing the use of natural and synthetic polymers in scaffold fabrication. Additionally, various fabrication techniques are discussed for their potential in creating scaffolds with controlled drug release kinetics. Through a synthesis of experimental findings and current literature, this manuscript elucidates the promising potential of scaffold-mediated drug delivery in improving therapeutic outcomes and advancing wound care practices.
Collapse
Affiliation(s)
- Mohd Sufiyan
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Purba Mandal
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | | |
Collapse
|
5
|
Gao Y, Wang Y, Wu Y, Liu S. Biomaterials targeting the microenvironment for spinal cord injury repair: progression and perspectives. Front Cell Neurosci 2024; 18:1362494. [PMID: 38784712 PMCID: PMC11111957 DOI: 10.3389/fncel.2024.1362494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) disrupts nerve pathways and affects sensory, motor, and autonomic function. There is currently no effective treatment for SCI. SCI occurs within three temporal periods: acute, subacute, and chronic. In each period there are different alterations in the cells, inflammatory factors, and signaling pathways within the spinal cord. Many biomaterials have been investigated in the treatment of SCI, including hydrogels and fiber scaffolds, and some progress has been made in the treatment of SCI using multiple materials. However, there are limitations when using individual biomaterials in SCI treatment, and these limitations can be significantly improved by combining treatments with stem cells. In order to better understand SCI and to investigate new strategies for its treatment, several combination therapies that include materials combined with cells, drugs, cytokines, etc. are summarized in the current review.
Collapse
Affiliation(s)
- Yating Gao
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Zhao Y, Ran B, Lee D, Liao J. Photo-Controllable Smart Hydrogels for Biomedical Application: A Review. SMALL METHODS 2024; 8:e2301095. [PMID: 37884456 DOI: 10.1002/smtd.202301095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Nowadays, smart hydrogels are being widely studied by researchers because of their advantages such as simple preparation, stable performance, response to external stimuli, and easy control of response behavior. Photo-controllable smart hydrogels (PCHs) are a class of responsive hydrogels whose physical and chemical properties can be changed when stimulated by light at specific wavelengths. Since the light source is safe, clean, simple to operate, and easy to control, PCHs have broad application prospects in the biomedical field. Therefore, this review timely summarizes the latest progress in the PCHs field, with an emphasis on the design principles of typical PCHs and their multiple biomedical applications in tissue regeneration, tumor therapy, antibacterial therapy, diseases diagnosis and monitoring, etc. Meanwhile, the challenges and perspectives of widespread practical implementation of PCHs are presented in biomedical applications. This study hopes that PCHs will flourish in the biomedical field and this review will provide useful information for interested researchers.
Collapse
Affiliation(s)
- Yiwen Zhao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dashiell Lee
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
7
|
Marques-Almeida T, Lanceros-Mendez S, Ribeiro C. State of the Art and Current Challenges on Electroactive Biomaterials and Strategies for Neural Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301494. [PMID: 37843074 DOI: 10.1002/adhm.202301494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Indexed: 10/17/2023]
Abstract
The loss or failure of an organ/tissue stands as one of the healthcare system's most prevalent, devastating, and costly challenges. Strategies for neural tissue repair and regeneration have received significant attention due to their particularly strong impact on patients' well-being. Many research efforts are dedicated not only to control the disease symptoms but also to find solutions to repair the damaged tissues. Neural tissue engineering (TE) plays a key role in addressing this problem and significant efforts are being carried out to develop strategies for neural repair treatment. In the last years, active materials allowing to tune cell-materials interaction are being increasingly used, representing a recent paradigm in TE applications. Among the most important stimuli influencing cell behavior are the electrical and mechanical ones. In this way, materials with the ability to provide this kind of stimuli to the neural cells seem to be appropriate to support neural TE. In this scope, this review summarizes the different biomaterials types used for neural TE, highlighting the relevance of using active biomaterials and electrical stimulation. Furthermore, this review provides not only a compilation of the most relevant studies and results but also strategies for novel and more biomimetic approaches for neural TE.
Collapse
Affiliation(s)
- Teresa Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Clarisse Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| |
Collapse
|
8
|
Santos MGD, França FS, Prestes JP, Teixeira C, Sommer LC, Sperling LE, Pranke P. Production of a Bioink Containing Decellularized Spinal Cord Tissue for 3D Bioprinting. Tissue Eng Part A 2024; 30:61-74. [PMID: 37772706 DOI: 10.1089/ten.tea.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
For the past few years, three-dimensional (3D) bioprinting has emerged as a promising approach in the field of regenerative medicine. This technique allows for the production of 3D scaffolds to support cell transplantation due to its ability to mimic the extracellular environment. One alternative to enhancing cell adhesion, survival, and proliferation is the use of decellularized extracellular matrix as a bioink component. The aim of this study was to produce a bioink using lyophilized rat decellularized spinal cord tissue (DSCT) for 3D bioprinting of nervous tissue. DNA quantification, hematoxylin and eosin and DAPI staining indicated that 1% sodium dodecyl sulfate and 9 h processing were effective in removing the cells from the spinal cord samples. The cell viability assay showed that the decellularized matrix is not cytotoxic for PC12 cells. The hydrogel containing DSCT, alginate, and gelatine used as the base for the bioink has a shear thinning behavior and low G″/G' ratio, allowing for good printability without compromising cell viability after 3D bioprinting. The bioink supported long-term PC12 cell survival, with 93% of live cells 4 weeks after printing, and stimulated the production of laminin-1 and neurofilament-M. This bioink, therefore, represents an easily available biomaterial for central nervous system tissue engineering.
Collapse
Affiliation(s)
- Marcelo Garrido Dos Santos
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Fernanda Stapenhorst França
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - João Pedro Prestes
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristian Teixeira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Luiz Carlos Sommer
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Elena Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Instituto de Pesquisa com Células-tronco (IPCT), Porto Alegre, Brazil
| |
Collapse
|
9
|
Tian T, Zhang S, Yang M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell 2023; 14:635-652. [PMID: 36856750 PMCID: PMC10501188 DOI: 10.1093/procel/pwad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 02/12/2023] Open
Abstract
Spinal cord injury (SCI) disrupts the structural and functional connectivity between the higher center and the spinal cord, resulting in severe motor, sensory, and autonomic dysfunction with a variety of complications. The pathophysiology of SCI is complicated and multifaceted, and thus individual treatments acting on a specific aspect or process are inadequate to elicit neuronal regeneration and functional recovery after SCI. Combinatory strategies targeting multiple aspects of SCI pathology have achieved greater beneficial effects than individual therapy alone. Although many problems and challenges remain, the encouraging outcomes that have been achieved in preclinical models offer a promising foothold for the development of novel clinical strategies to treat SCI. In this review, we characterize the mechanisms underlying axon regeneration of adult neurons and summarize recent advances in facilitating functional recovery following SCI at both the acute and chronic stages. In addition, we analyze the current status, remaining problems, and realistic challenges towards clinical translation. Finally, we consider the future of SCI treatment and provide insights into how to narrow the translational gap that currently exists between preclinical studies and clinical practice. Going forward, clinical trials should emphasize multidisciplinary conversation and cooperation to identify optimal combinatorial approaches to maximize therapeutic benefit in humans with SCI.
Collapse
Affiliation(s)
- Ting Tian
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Jia Z, Zeng H, Ye X, Dai M, Tang C, Liu L. Hydrogel-based treatments for spinal cord injuries. Heliyon 2023; 9:e19933. [PMID: 37809859 PMCID: PMC10559361 DOI: 10.1016/j.heliyon.2023.e19933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal cord injury (SCI) is characterized by damage resulting in dysfunction of the spinal cord. Hydrogels are common biomaterials that play an important role in the treatment of SCI. Hydrogels are biocompatible, and some have electrical conductivity that are compatible with spinal cord tissues. Hydrogels have a high drug-carrying capacity, allowing them to be used for SCI treatment through the loading of various types of active substances, drugs, or cells. We first discuss the basic anatomy and physiology of the human spinal cord and briefly discuss SCI and its treatment. Then, we describe different treatment strategies for SCI. We further discuss the crosslinking methods and classification of hydrogels and detail hydrogel biomaterials prepared using different processing methods for the treatment of SCI. Finally, we analyze the future applications and limitations of hydrogels for SCI. The development of biomaterials opens up new possibilities and options for the treatment of SCI. Thus, our findings will inspire scholars in related fields and promote the development of hydrogel therapy for SCI.
Collapse
Affiliation(s)
- Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
11
|
Sharma A, Kokil GR, He Y, Lowe B, Salam A, Altalhi TA, Ye Q, Kumeria T. Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioact Mater 2023; 24:535-550. [PMID: 36714332 PMCID: PMC9860401 DOI: 10.1016/j.bioactmat.2023.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites. Among these, the composites of inorganic materials with organic polymers present unique structural and biochemical properties equivalent to naturally occurring hybrid systems such as bones, and thus are highly desired. The last decade has witnessed a steady increase in research on such systems with the focus being on mimicking the peculiar properties of inorganic/organic combination composites in nature. In this review, we discuss the recent progress on the use of inorganic particle/polymer composites for tissue engineering and regenerative medicine. We have elaborated the advantages of inorganic particle/polymer composites over their organic particle-based composite counterparts. As the inorganic particles play a crucial role in defining the features and regenerative capacity of such composites, the review puts a special emphasis on the various types of inorganic particles used in inorganic particle/polymer composites. The inorganic particles that are covered in this review are categorised into two broad types (1) solid (e.g., calcium phosphate, hydroxyapatite, etc.) and (2) porous particles (e.g., mesoporous silica, porous silicon etc.), which are elaborated in detail with recent examples. The review also covers other new types of inorganic material (e.g., 2D inorganic materials, clays, etc.) based polymer composites for tissue engineering applications. Lastly, we provide our expert analysis and opinion of the field focusing on the limitations of the currently used inorganic/organic combination composites and the immense potential of new generation of composites that are in development.
Collapse
Affiliation(s)
- Astha Sharma
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Ganesh R. Kokil
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Baboucarr Lowe
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Arwa Salam
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Tariq A. Altalhi
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
12
|
Chen SH, Lien PH, Lin FH, Chou PY, Chen CH, Chen ZY, Chen SH, Hsieh ST, Huang CC, Kao HK. Aligned core-shell fibrous nerve wrap containing Bletilla striata polysaccharide improves functional outcomes of peripheral nerve repair. Int J Biol Macromol 2023; 241:124636. [PMID: 37119896 DOI: 10.1016/j.ijbiomac.2023.124636] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Peripheral nerve injuries are commonly encountered in extremity traumas. Their motor and sensory recovery following microsurgical repair is limited by slow regeneration speed (<1 mm/d) and subsequent muscle atrophy, which are consequently correlated with the activity of local Schwann cells and efficacy of axon outgrowth. To promote post-surgical nerve regeneration, we synthesized a nerve wrap consisting of an aligned polycaprolactone (PCL) fiber shell with a Bletilla striata polysaccharide (BSP) core (APB). Cell experiments demonstrated that the APB nerve wrap markedly promoted neurite outgrowth and Schwann cell migration and proliferation. Animal experiments applying a rat sciatic nerve repair model indicated that the APB nerve wrap restored conduction efficacy of the repaired nerve and the compound action potential as well as contraction force of the related leg muscles. Histology of the downstream nerves disclosed significantly higher fascicle diameter and myelin thickness with the APB nerve wrap compared to those without BSP. Thus, the BSP-loaded nerve wrap is potentially beneficial for the functional recovery after peripheral nerve repair and offers sustained targeted release of a natural polysaccharide with good bioactivity.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan.
| | - Po-Hao Lien
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pang-Yun Chou
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | - Zhi-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Hsien Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Liu X, Wu C, Zhang Y, Chen S, Ding J, Chen Z, Wu K, Wu X, Zhou T, Zeng M, Wei D, Sun J, Fan H, Zhou L. Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis. Carbohydr Polym 2023; 306:120578. [PMID: 36746568 DOI: 10.1016/j.carbpol.2023.120578] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
With wide clinical demands, therapies for traumatic brain injury (TBI) are far from satisfactory. Combining the merits of stem cells but avoiding the risk of immunologic rejection, bone marrow mesenchymal stem cell-derived exosomes (BME) attract increasing interests and have been proved effective for TBI repair by intravenous or in situ injection. However, difficulties in sustained delivery or aggregation in lesion sites remain obstacle to using BME for TBI. Inspired by that hydrogels are promising to bridge the destroyed neural gap and provide neural niches, we raised a novel strategy of incorporating BME into hyaluronan-collagen hydrogel (DHC-BME) to achieve both mimicking of brain matrix and steady release of exosomes, and thus realizing TBI repair. External characterizations proved that the BME and DHC synergistically promoted neural stem cells (NSCs) differentiation into neurons and oligodendrocytes while inhibited astrocytes differentiation. DHC-BME induced angiogenesis and neurogenesis, from endogenous NSC recruitment to neuronal differentiation and vascularization to synergistically promote axonal regeneration, remyelination, synapse formation and even brain structural remodeling, and lastly, neurological functional recovery of TBI.
Collapse
Affiliation(s)
- Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China; Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhihong Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaoyang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
14
|
Abstract
Collagen is commonly used as a regenerative biomaterial due to its excellent biocompatibility and wide distribution in tissues. Different kinds of hybridization or cross-links are favored to offer improvements to satisfy various needs of biomedical applications. Previous reviews have been made to introduce the sources and structures of collagen. In addition, biological and mechanical properties of collagen-based biomaterials, their modification and application forms, and their interactions with host tissues are pinpointed. However, there is still no review about collagen-based biomaterials for tissue engineering. Therefore, we aim to summarize and discuss the progress of collagen-based materials for tissue regeneration applications in this review. We focus on the utilization of collagen-based biomaterials for bones, cartilages, skin, dental, neuron, cornea, and urological applications and hope these experiences and outcomes can provide inspiration and practical techniques for the future development of collagen-based biomaterials in related application fields. Moreover, future improving directions and challenges for collagen-based biomaterials are proposed as well.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Prosthodontics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Yan Dong
- Department of Prosthodontics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
15
|
Fan L, Ren Y, Emmert S, Vučković I, Stojanovic S, Najman S, Schnettler R, Barbeck M, Schenke-Layland K, Xiong X. The Use of Collagen-Based Materials in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24043744. [PMID: 36835168 PMCID: PMC9963569 DOI: 10.3390/ijms24043744] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synthetic bone substitute materials (BSMs) are becoming the general trend, replacing autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As the main component of bone matrix, collagen type I has played a critical role in the construction of ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research, including the exploration of various collagen types, structures, and sources, the optimization of preparation techniques, modification technologies, and the manufacture of various collagen-based materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive activity of collagen-based materials caused inefficient bone replacement and limited their translation into clinical reality. In the area of BTE, so far, attempts have focused on the preparation of collagen-based biomimetic BSMs, along with other inorganic materials and bioactive substances. By reviewing the approved products on the market, this manuscript updates the latest applications of collagen-based materials in bone regeneration and highlights the potential for further development in the field of BTE over the next ten years.
Collapse
Affiliation(s)
- Lu Fan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
| | - Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Ivica Vučković
- Department of Maxillofacial Surgery, Clinic for Dental Medicine, 18000 Niš, Serbia
| | - Sanja Stojanovic
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
- BerlinAnalytix GmbH, Ullsteinstraße 108, 12109 Berlin, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| |
Collapse
|
16
|
Li Z, Ruan C, Niu X. Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
17
|
Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels 2023; 9:gels9020100. [PMID: 36826270 PMCID: PMC9957409 DOI: 10.3390/gels9020100] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Tissue damage and organ failure are major problems that many people face worldwide. Most of them benefit from treatment related to modern technology's tissue regeneration process. Tissue engineering is one of the booming fields widely used to replace damaged tissue. Scaffold is a base material in which cells and growth factors are embedded to construct a substitute tissue. Various materials have been used to develop scaffolds. Bio-based natural materials are biocompatible, safe, and do not release toxic compounds during biodegradation. Therefore, it is highly recommendable to fabricate scaffolds using such materials. To date, there have been no singular materials that fulfill all the features of the scaffold. Hence, combining two or more materials is encouraged to obtain the desired characteristics. To design a reliable scaffold by combining different materials, there is a need to choose a good fabrication technique. In this review article, the bio-based natural materials and fine fabrication techniques that are currently used in developing scaffolds for tissue regeneration applications, along with the number of articles published on each material, are briefly discussed. It is envisaged to gain explicit knowledge of developing scaffolds from bio-based natural materials for tissue regeneration applications.
Collapse
|
18
|
Stepanova OV, Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Chadin AV, Karsuntseva EK, Reshetov IV, Chekhonin VP. Prospects for the use of olfactory mucosa cells in bioprinting for the treatment of spinal cord injuries. World J Clin Cases 2023; 11:322-331. [PMID: 36686356 PMCID: PMC9850961 DOI: 10.12998/wjcc.v11.i2.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The review focuses on the most important areas of cell therapy for spinal cord injuries. Olfactory mucosa cells are promising for transplantation. Obtaining these cells is safe for patients. The use of olfactory mucosa cells is effective in restoring motor function due to the remyelination and regeneration of axons after spinal cord injuries. These cells express neurotrophic factors that play an important role in the functional recovery of nerve tissue after spinal cord injuries. In addition, it is possible to increase the content of neurotrophic factors, at the site of injury, exogenously by the direct injection of neurotrophic factors or their delivery using gene therapy. The advantages of olfactory mucosa cells, in combination with neurotrophic factors, open up wide possibilities for their application in three-dimensional and four-dimensional bioprinting technology treating spinal cord injuries.
Collapse
Affiliation(s)
- Olga Vladislavovna Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Grigorii Andreevich Fursa
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Svetlana Sergeevna Andretsova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Biology, Moscow State University, Moscow 119991, Russia
| | - Valentina Sergeevna Shishkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Anastasia Denisovna Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Andrey Viktorovich Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | | | | | - Vladimir Pavlovich Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnologу, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
19
|
Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS APPLIED BIO MATERIALS 2023; 6:1-23. [PMID: 36599046 DOI: 10.1021/acsabm.2c00740] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous scaffolds have been widely explored for tissue regeneration and engineering in vitro three-dimensional models. In this review, a comprehensive literature analysis is conducted to identify the steps involved in their generation. The advantages and disadvantages of the available techniques are discussed, highlighting the importance of considering pore geometrical parameters such as curvature and size, and summarizing the requirements to generate the porous scaffold according to the desired application. This paper considers the available design tools, mathematical models, materials, fabrication techniques, cell seeding methodologies, assessment methods, and the status of pore scaffolds in clinical applications. This review compiles the relevant research in the field in the past years. The trends, challenges, and future research directions are discussed in the search for the generation of a porous scaffold with improved mechanical and biological properties that can be reproducible, viable for long-term studies, and closer to being used in the clinical field.
Collapse
Affiliation(s)
- Mariana S Flores-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| |
Collapse
|
20
|
Research on Polycaprolactone-Gelatin Composite Scaffolds Carrying Nerve Growth Factor for the Repair of Spinal Cord Injury. DISEASE MARKERS 2022; 2022:3880687. [PMID: 36212178 PMCID: PMC9536995 DOI: 10.1155/2022/3880687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Objective This study was to investigate the mechanism of action of polycaprolactone/gelatin (PCL/GE) composite fiber scaffold with nerve growth factor (NGF) in the recovery of spinal cord injury (SCI). Methods Sixty female Sprague-Dawley (SD) rats were randomly assigned to the negative control group, the positive control group, the PCL/GE scaffold group, and the collagen-binding structural domain nerve growth factor (CBD-NGF)/PCL/GE scaffold group, with 15 rats in each group. Spinal cord transection was used to establish SCI models in rats. The negative control group received sham surgery, while the other three groups were given spinal cord transection at the tenth thoracic vertebra (T10) segment. The rats in the PCL/GE scaffold group were implanted with a 4 mm PCL/GE composite fiber scaffold, and those in the CBD-NGF/PCL/GE scaffold group were implanted with a CBD-NGF/PCL/GE composite fiber scaffold. The Basso–Beattie–Bresnahan (BBB) locomotor rating scale was used to evaluate the locomotor ability of the hind limbs of the rats, and the amplitude and latency of motor evoked potentials (MEP) were recorded by neurophysiological testing at 12 w postoperatively. The levels of growth-associated protein 43 (GAP43) and neurofilament protein 200 (NF200) in the spinal cord tissue of the injury site were determined using Western Blot at 12 w after surgery. Spinal cord tissues of 2 cm within the injury site, the thoracic segment above the injury site, and the lumbar segment below the injury site were collected from the measurement of axonal transport using fluorescent retrograde tracer fluorogold, and the integrated absorbance (IA) values of FC-positive cells were calculated. Results After treatment, the negative control rats showed normal locomotion function of the hind limb with the highest BBB scores, while the positive control rats had the lowest BBB scores and showed paraplegia. The scaffold groups exhibited better locomotion function of the hind limb and higher BBB scores than the positive controls, with greater improvement observed in the CBD-NGF/PCL/GE scaffold group (P < 0.05). Compared with the positive controls, the PCL/GE scaffold group and CBD-NGF/PCL/GE scaffold group exhibited significantly shorter latency and increased amplitude of MEP, with more significant changes observed in the CBD-NGF/PCL/GE scaffold group (P < 0.05). Compared with the positive control group, the GAP43 and NF200 levels of spinal cord tissue were significantly elevated in both the PCL/GE scaffold group and the CBD-NGF/PCL/GE scaffold group, and the changes were more pronounced in the CBD-NGF/PCL/GE scaffold group (P < 0.05). The differences in the IA values of FC-positive cells in the spinal cord tissue of the lumbar segment below the injury site among the four groups did not come up to the statistical standard (P > 0.05). Compared with the positive control group, the FC-positive cell IA values of spinal cord tissue in the thoracic segment above the injury area were markedly increased in the PCL/GE scaffold group and the CBD-NGF/PCL/GE scaffold group, and the alterations were more significant in the CBD-NGF/PCL/GE scaffold group (P < 0.05). Conclusion PCL/GE composite fiber scaffold with NGF significantly improves motor and neurological functions in the hind limbs of SCI rats and promotes the recovery of axonal transport, and the mechanism may be associated with the upregulation of GAP43 and NF200 levels in spinal cord injury site tissues.
Collapse
|
21
|
Shao J, Nie P, Yang W, Guo R, Ding D, Liang R, Wei B, Wei H. An EPO-loaded multifunctional hydrogel synergizing with adipose-derived stem cells restores neurogenic erectile function via enhancing nerve regeneration and penile rehabilitation. Bioeng Transl Med 2022; 7:e10319. [PMID: 36176612 PMCID: PMC9471998 DOI: 10.1002/btm2.10319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Neurogenic erectile dysfunction (nED) is one of the most common and intractable postoperative complications of rectal and prostate cancer surgery and sometimes accompanies patients lifelong. The transplantation of stem cells has been proved a promising way for treatment. However, the therapeutic efficacy is severely impaired by excessive cell loss and death and poor accumulation in the injury site along with the traditional implantation strategy. Herein, an EPO-loaded multifunctional hydrogel was designed. The hydrogels' adhesive property and mechanical strength were enhanced by adding catechol-catechol adducts, thus significantly improving adipose-derived stem cells (ADSC) retention and rescuing cell loss in the injury site. Meanwhile, the sustained release of EPO effectively ameliorated the viability and paracrine activity of ADSC, leading to enhanced migration of Schwann cells and differentiation of PC12 cells in vivo. On a bilateral cavernous nerve injury rat model, the present stem cell-EPO-hydrogel implanted strategy could significantly alleviate erectile dysfunction. The higher expression of Tuj1 and lower expression of GFAP in the major pelvic ganglia (MPG) indicated the acceleration of neural differentiation while the suppressing development of astrocytes. Also, the combined therapy restored the expression levels of eNOs, nNOs, and α-SMA in penile tissues, suggesting the rehabilitation of the penis. Further analysis of Masson trichrome staining and apoptosis evaluation of the corpus cavernosum showed the preservation of vascular endothelium content and the prevention of penile fibrosis after denervation. Overall, we believe that this combined strategy presents a promising way not only for restoring neurogenic erectile function but also for the clinical translation of stem cell therapy.
Collapse
Affiliation(s)
- Jun Shao
- Department of Gastrointestinal SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Pan Nie
- Department of Gastrointestinal SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wende Yang
- Department of Gastrointestinal SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Dongbing Ding
- Department of Gastrointestinal SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Rongpu Liang
- Department of Gastrointestinal SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Bo Wei
- Department of Gastrointestinal SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Hongbo Wei
- Department of Gastrointestinal SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
22
|
Montalvo-Parra MD, Ortega-Lara W, Loya-García D, Bustamante-Arias A, Guerrero-Ramírez GI, Calzada-Rodríguez CE, Torres-Guerrero GF, Hernández-Sedas B, Cárdenas-Rodríguez IT, Guevara-Quintanilla SE, Salán-Gomez M, Hernández-Delgado MÁ, Garza-González S, Gamboa-Quintanilla MG, Villagómez-Valdez LG, Zavala J, Valdez-García JE. Customizable Collagen Vitrigel Membranes and Preliminary Results in Corneal Engineering. Polymers (Basel) 2022; 14:polym14173556. [PMID: 36080636 PMCID: PMC9460691 DOI: 10.3390/polym14173556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Corneal opacities are a leading cause of visual impairment that affect 4.2 million people annually. The current treatment is corneal transplantation, which is limited by tissue donor shortages. Corneal engineering aims to develop membranes that function as scaffolds in corneal cell transplantation. Here, we describe a method for producing transplantable corneal constructs based on a collagen vitrigel (CVM) membrane and corneal endothelial cells (CECs). The CVMs were produced using increasing volumes of collagen type I: 1X (2.8 μL/mm2), 2X, and 3X. The vitrification process was performed at 40% relative humidity (RH) and 40 °C using a matryoshka-like system consisting of a shaking-oven harboring a desiccator with a saturated K2CO3 solution. The CVMs were characterized via SEM microscopy, cell adherence, FTIR, and manipulation in an ex vivo model. A pilot transplantation of the CECs/CVM construct in rabbits was also carried out. The thickness of the CVMs was 3.65–7.2 µm. The transparency was superior to a human cornea (92.6% = 1X; 94% = 2X; 89.21% = 3X). SEM microscopy showed a homogenous surface and laminar organization. The cell concentration seeded over the CVM increased threefold with no significant difference between 1X, 2X, and 3X (p = 0.323). The 2X-CVM was suitable for surgical manipulation in the ex vivo model. Constructs using the CECs/2X-CVM promoted corneal transparency restoration.
Collapse
Affiliation(s)
- María Dolores Montalvo-Parra
- Tecnologico de Monterrey, Escuela de Ingenieria, 2501 Garza Sada Ave., Colonia Tecnologico. C.P., 64849 Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Wendy Ortega-Lara
- Tecnologico de Monterrey, Escuela de Ingenieria, 2501 Garza Sada Ave., Colonia Tecnologico. C.P., 64849 Monterrey, NL, Mexico
| | - Denise Loya-García
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Andrés Bustamante-Arias
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Guillermo-Isaac Guerrero-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Cesar E. Calzada-Rodríguez
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Guiomar Farid Torres-Guerrero
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Betsabé Hernández-Sedas
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Italia Tatnaí Cárdenas-Rodríguez
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Sergio E. Guevara-Quintanilla
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Marcelo Salán-Gomez
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Miguel Ángel Hernández-Delgado
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Salvador Garza-González
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Mayra G. Gamboa-Quintanilla
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Luis Guillermo Villagómez-Valdez
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| | - Judith Zavala
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
- Correspondence:
| | - Jorge E. Valdez-García
- Tecnologico de Monterrey, Escuela de Medicina, 3000 Morones Prieto Ave., Colonia Los Doctores. C.P., 64710 Monterrey, NL, Mexico
| |
Collapse
|
23
|
Liu T, Zhu W, Zhang X, He C, Liu X, Xin Q, Chen K, Wang H. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5079153. [PMID: 35978649 PMCID: PMC9377911 DOI: 10.1155/2022/5079153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating central nervous system disease caused by accidental events, resulting in loss of sensory and motor function. Considering the multiple effects of primary and secondary injuries after spinal cord injury, including oxidative stress, tissue apoptosis, inflammatory response, and neuronal autophagy, it is crucial to understand the underlying pathophysiological mechanisms, local microenvironment changes, and neural tissue functional recovery for preparing novel treatment strategies. Treatment based on cell transplantation has become the forefront of spinal cord injury therapy. The transplanted cells provide physical and nutritional support for the damaged tissue. At the same time, the implantation of biomaterials with specific biological functions at the site of the SCI has also been proved to improve the local inhibitory microenvironment and promote axonal regeneration, etc. The combined transplantation of cells and functional biomaterials for SCI treatment can result in greater neuroprotective and regenerative effects by regulating cell differentiation, enhancing cell survival, and providing physical and directional support for axon regeneration and neural circuit remodeling. This article reviews the pathophysiology of the spinal cord, changes in the microenvironment after injury, and the mechanisms and strategies for spinal cord regeneration and repair. The article will focus on summarizing and discussing the latest intervention models based on cell and functional biomaterial transplantation and the latest progress in combinational therapies in SCI repair. Finally, we propose the future prospects and challenges of current treatment regimens for SCI repair, to provide references for scientists and clinicians to seek better SCI repair strategies in the future.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Wenhao Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoyu Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaolong Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Qiang Xin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Kexin Chen
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Haifeng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
24
|
Feng Y, Peng Y, Jie J, Yang Y, Yang P. The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Front Cell Neurosci 2022; 16:969002. [PMID: 35990891 PMCID: PMC9385973 DOI: 10.3389/fncel.2022.969002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regeneration of neural tissue is limited following spinal cord injury (SCI). Successful regeneration of injured nerves requires the intrinsic regenerative capability of the neurons and a suitable microenvironment. However, the local microenvironment is damaged, including insufficient intraneural vascularization, prolonged immune responses, overactive immune responses, dysregulated bioenergetic metabolism and terminated bioelectrical conduction. Among them, the immune microenvironment formed by immune cells and cytokines plays a dual role in inflammation and regeneration. Few studies have focused on the role of the immune microenvironment in spinal cord regeneration. Here, we summarize those findings involving various immune cells (neutrophils, monocytes, microglia and T lymphocytes) after SCI. The pathological changes that occur in the local microenvironment and the function of immune cells are described. We also summarize and discuss the current strategies for treating SCI with tissue-engineered biomaterials from the perspective of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jing Jie
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
- Jing Jie,
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Yumin Yang,
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
- *Correspondence: Pengxiang Yang,
| |
Collapse
|
25
|
Fan C, Yang W, Zhang L, Cai H, Zhuang Y, Chen Y, Zhao Y, Dai J. Restoration of spinal cord biophysical microenvironment for enhancing tissue repair by injury-responsive smart hydrogel. Biomaterials 2022; 288:121689. [DOI: 10.1016/j.biomaterials.2022.121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
|
26
|
Lv Z, Dong C, Zhang T, Zhang S. Hydrogels in Spinal Cord Injury Repair: A Review. Front Bioeng Biotechnol 2022; 10:931800. [PMID: 35800332 PMCID: PMC9253563 DOI: 10.3389/fbioe.2022.931800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Traffic accidents and falling objects are responsible for most spinal cord injuries (SCIs). SCI is characterized by high disability and tends to occur among the young, seriously affecting patients' lives and quality of life. The key aims of repairing SCI include preventing secondary nerve injury, inhibiting glial scarring and inflammatory response, and promoting nerve regeneration. Hydrogels have good biocompatibility and degradability, low immunogenicity, and easy-to-adjust mechanical properties. While providing structural scaffolds for tissues, hydrogels can also be used as slow-release carriers in neural tissue engineering to promote cell proliferation, migration, and differentiation, as well as accelerate the repair of damaged tissue. This review discusses the characteristics of hydrogels and their advantages as delivery vehicles, as well as expounds on the progress made in hydrogel therapy (alone or combined with cells and molecules) to repair SCI. In addition, we discuss the prospects of hydrogels in clinical research and provide new ideas for the treatment of SCI.
Collapse
Affiliation(s)
- Zhenshan Lv
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianjiao Zhang
- Medical Insurance Management Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| |
Collapse
|
27
|
Zachariou D, Evangelopoulos DS, Rozis M, Papagrigorakis E, Galanis A, Vavourakis M, Pneumaticos SG, Vlamis J. Application of Collagen-Based Scaffolds for the Treatment of Spinal Cord Injuries in Animal Models: A Literature Update. Cureus 2022; 14:e25997. [PMID: 35859951 PMCID: PMC9288156 DOI: 10.7759/cureus.25997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/05/2022] Open
Abstract
SCI is regarded as one of the most devastating central nervous system (CNS) injuries, exhibiting an alarmingly rising incidence rate, indirectly connected with the expansion of the global economy. The consequences of SCI are multidimensional: SCI injuries may result in permanent voluntary motor dysfunction and loss of sensation while incurring heavy economic and psychological burdens as part of the treatment. Thus, it is crucial to develop effective and suitable SCI treatment strategies. Collagen-based scaffold application is one of the most promising methods of SCI treatment. This review compiles newer bibliographical data regarding the application of collagen scaffolds for the treatment of Spinal cord injury (SCI) in animal models. Recently, several relevant studies have been carried out using carefully selected animals with similar pathophysiology to humans. In mouse, rat and canine models that have undergone transection or hemisection, the stump connection, the transplanted cell differentiation, and the elimination of glial scar are promising. Also, encouraging results have been found regarding the increased neuronal growth, the decreased collagen deposition, the behavioral recovery, the improved electrophysiology, and the enhanced axonal regeneration.
Collapse
|
28
|
Liu S, Yang H, Chen D, Xie Y, Tai C, Wang L, Wang P, Wang B. Three-dimensional bioprinting sodium alginate/gelatin scaffold combined with neural stem cells and oligodendrocytes markedly promoting nerve regeneration after spinal cord injury. Regen Biomater 2022; 9:rbac038. [PMID: 35801010 PMCID: PMC9255276 DOI: 10.1093/rb/rbac038] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
Accumulating research has indicated that the transplantation of combined stem cells and scaffolds is an effective method for spinal cord injury (SCI). The development of three-dimensional (3D) bioprinting technology can make the 3D scaffolds combined with cells more accurate and effective for SCI treatment. However, unmyelinated newborn nerve fibers have no nerve signaling conduction, hampering recovery of motor function. In this study, we designed and printed a type of sodium alginate/gelatin scaffold loaded with neural stem cells and oligodendrocytes, which were involved in the formation of the myelin sheaths of neural cell axons. In order to observe the effectiveness of this 3D bioprinting scaffold, we transplanted it into the completely transected rat spinal cord, and then immunofluorescence staining, hematoxylin–eosin staining and behavioral assessment were performed. The results showed that this 3D bioprinting scaffold markedly improved the hindlimb motor function and promoted nerve regeneration. These findings suggested that this novel 3D bioprinting scaffold was a good carrier for cells transplantation, thereby enhancing spinal cord repair following injury.
Collapse
Affiliation(s)
- Shuo Liu
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - Hui Yang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - Dong Chen
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - Yuanyuan Xie
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - ChenXu Tai
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - Liudi Wang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School , Nanjing, Jiangsu Province, China
| | - Bin Wang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| |
Collapse
|
29
|
Li J, Kim C, Pan CC, Babian A, Lui E, Young JL, Moeinzadeh S, Kim S, Yang YP. Hybprinting for musculoskeletal tissue engineering. iScience 2022; 25:104229. [PMID: 35494239 PMCID: PMC9051619 DOI: 10.1016/j.isci.2022.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Carolyn Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Aaron Babian
- Department of Biological Sciences, University of California, Davis CA 95616, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey L Young
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Gao C, Song S, Lv Y, Huang J, Zhang Z. Recent Development of Conductive Hydrogels for Tissue Engineering: Review and Perspective. Macromol Biosci 2022; 22:e2200051. [PMID: 35472125 DOI: 10.1002/mabi.202200051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Indexed: 11/11/2022]
Abstract
In recent years, tissue engineering techniques have been rapidly developed and offer a new therapeutic approach to organ or tissue damage repair. However, most of tissue engineering scaffolds are nonconductive and cannot establish effective electrical coupling with tissue for the electroactive tissues. Electroconductive hydrogels (ECHs) have received increasing attention in tissue engineering owing to their electroconductivity, biocompatibility and high water content. In vitro, ECHs can not only promote the communication of electrical signals between cells, but also mediate the adhesion, proliferation, migration, and differentiation of different kinds of cells. In vivo, ECHs can transmit the electric signal to electroactive tissues and activate bioelectrical signaling pathways to promote tissue repair. As a result, implanting ECHs into damaged tissues can effectively reconstruct physiological functions related to electrical conduction. In this review, we first present an overview about the classifications and the fabrication methods of ECHs. And then, the applications of ECHs in tissue engineering, including cardiac, nerve, skin and skeletal muscle tissue, are highlighted. At last, we provide some rational guidelines for designing ECHs towards clinical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chen Gao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Shaoshuai Song
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| | - Yinjuan Lv
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Jie Huang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| | - Zhijun Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| |
Collapse
|
31
|
Chen C, Xu HH, Liu XY, Zhang YS, Zhong L, Wang YW, Xu L, Wei P, Chen YX, Liu P, Hao CR, Jia XL, Hu N, Wu XY, Gu XS, Chen LQ, Li XH. 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats. Regen Biomater 2022; 9:rbac014. [PMID: 35480857 PMCID: PMC9036898 DOI: 10.1093/rb/rbac014] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Abstract
Although implantation of biomaterials carrying mesenchymal stem cells (MSCs) is considered as a promising strategy for ameliorating neural function after spinal cord injury (SCI), there are still some challenges including poor cell survival rate, tumorigenicity and ethics concerns. The performance of the secretome derived from MSCs was more stable, and its clinical transformation was more operable. Cytokine antibody array demonstrated that the secretome of MSCs contained 79 proteins among the 174 proteins analyzed. 3D printed collagen/silk fibroin scaffolds carrying MSCs secretome improved hindlimb locomotor function according to the BBB scores, the inclined-grid climbing test and electrophysiological analysis. Parallel with locomotor function recovery, 3D printed collagen/silk fibroin scaffolds carrying MSCs secretome could further facilitate nerve fiber regeneration, enhance remyelination and accelerate the establishment of synaptic connections at the injury site compared to 3D printed collagen/silk fibroin scaffolds alone group according to magnetic resonance imaging (MRI), diffusion Tensor imaging (DTI), hematoxylin and eosin (HE) staining, Bielschowsky’s silver staining immunofluorescence staining and transmission electron microscopy (TEM). These results indicated the implantation of 3D printed collagen/silk fibroin scaffolds carrying MSCs secretome might be a potential treatment for SCI.
Collapse
Affiliation(s)
- Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, 300162, China
| | - Hai-Huan Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, 300162, China
| | - Xiao-Yin Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yu-Sheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Lin Zhong
- Department of Hematology, the first affiliated hospital of Chengdu medical college, Chengdu, Sichuan, 610500, China
| | - You-Wei Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Lin Xu
- Medical Psychology Section, Hubei General Hospital of Armed Police Force, Wuhan, Hubei, 430071, China
| | - Pan Wei
- Department of Neurosurgery, The First People's Hospital Of Long Quan yi District, Cheng Du 610000, Si Chuan, China
| | - Ya-Xing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Peng Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chen-Ru Hao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Li Jia
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Yang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiao-Song Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Li-Qun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
32
|
Poongodi R, Chen YL, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Bio-Scaffolds as Cell or Exosome Carriers for Nerve Injury Repair. Int J Mol Sci 2021; 22:13347. [PMID: 34948144 PMCID: PMC8707664 DOI: 10.3390/ijms222413347] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ying-Lun Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Jen-Kun Cheng
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
33
|
Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021; 146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) devastate event that is commonly caused by traumatic or non-traumatic events. The reinnervation of spinal cord axons is hampered through a myriad of devices counting on the damaged myelin, inflammation, glial scar, and defective inhibitory molecules. Unfortunately, an effective treatment to completely repair SCI and improve functional recovery has not been found. In this regard, strategies such as using cells, biomaterials, biomolecules, and drugs have been reported to be effective for SCI recovery. Furthermore, recent advances in combinatorial treatments, which address various aspects of SCI pathophysiology, provide optimistic outcomes for spinal cord regeneration. According to the global importance of SCI, the goal of this article review is to provide an overview of the pathophysiology of SCI, with an emphasis on the latest modes of intervention and current advanced approaches for the treatment of SCI, in conjunction with an assessment of combinatorial approaches in preclinical and clinical trials. So, this article can give scientists and clinicians' clues to help them better understand how to construct preclinical and clinical studies that could lead to a breakthrough in spinal cord regeneration.
Collapse
|
34
|
Walsh CM, Wychowaniec JK, Brougham DF, Dooley D. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions. Pharmacol Ther 2021; 234:108043. [PMID: 34813862 DOI: 10.1016/j.pharmthera.2021.108043] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a complex medical and psychological challenge for which there is no curative therapy currently available. Despite major progress in pharmacological and surgical approaches, clinical trials for SCI patients have been uniformly disappointing thus far as there are many practical and biological issues yet to be resolved. Neuroinflammation is a critical event of the secondary injury phase after SCI, and recent research strategies have focused on modulating the immune response after injury to provide a more favorable recovery environment. Biomaterials can serve this purpose by providing physical and trophic support to the injured spinal cord after SCI. Of all potential biomaterials, functional hydrogels are emerging as a key component in novel treatment strategies for SCI, including controlled and localized delivery of immunomodulatory therapies to drive polarization of immune cells towards a pro-regenerative phenotype. Here, we extensively review recent developments in the use of functional hydrogels as immunomodulatory therapies for SCI. We briefly describe physicochemical properties of hydrogels and demonstrate how advanced fabrication methods lead to the required heterogeneity and hierarchical arrangements that increasingly mimic complex spinal cord tissue. We then summarize potential SCI therapeutic modalities including: (i) hydrogels alone; (ii) hydrogels as cellular or (iii) bioactive molecule delivery vehicles, and; (iv) combinatorial approaches. By linking the structural properties of hydrogels to their functions in treatment with particular focus on immunopharmacological stimuli, this may accelerate further development of functional hydrogels for SCI, and indeed next-generation central nervous system regenerative therapies.
Collapse
Affiliation(s)
- Ciara M Walsh
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
35
|
Liu S, Xie YY, Wang LD, Tai CX, Chen D, Mu D, Cui YY, Wang B. A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury. Neural Regen Res 2021; 16:2284-2292. [PMID: 33818514 PMCID: PMC8354107 DOI: 10.4103/1673-5374.310698] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Collagen scaffolds possess a three-dimensional porous structure that provides sufficient space for cell growth and proliferation, the passage of nutrients and oxygen, and the discharge of metabolites. In this study, a porous collagen scaffold with axially-aligned luminal conduits was prepared. In vitro biocompatibility analysis of the collagen scaffold revealed that it enhances the activity of neural stem cells and promotes cell extension, without affecting cell differentiation. The collagen scaffold loaded with neural stem cells improved the hindlimb motor function in the rat model of T8 complete transection and promoted nerve regeneration. The collagen scaffold was completely degraded in vivo within 5 weeks of implantation, exhibiting good biodegradability. Rectal temperature, C-reactive protein expression and CD68 staining demonstrated that rats with spinal cord injury that underwent implantation of the collagen scaffold had no notable inflammatory reaction. These findings suggest that this novel collagen scaffold is a good carrier for neural stem cell transplantation, thereby enhancing spinal cord repair following injury. This study was approved by the Animal Ethics Committee of Nanjing Drum Tower Hospital (the Affiliated Hospital of Nanjing University Medical School), China (approval No. 2019AE02005) on June 15, 2019.
Collapse
Affiliation(s)
- Shuo Liu
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuan-Yuan Xie
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Liu-Di Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Chen-Xu Tai
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Dong Chen
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Dan Mu
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yan-Yan Cui
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
- Correspondence to: Bin Wang, .
| |
Collapse
|
36
|
Ma YH, Shi HJ, Wei QS, Deng QW, Sun JH, Liu Z, Lai BQ, Li G, Ding Y, Niu WT, Zeng YS, Zeng X. Developing a mechanically matched decellularized spinal cord scaffold for the in situ matrix-based neural repair of spinal cord injury. Biomaterials 2021; 279:121192. [PMID: 34700225 DOI: 10.1016/j.biomaterials.2021.121192] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Tissue engineering is a promising strategy to repair spinal cord injury (SCI). However, a bioscaffold with mechanical properties that match those of the pathological spinal cord tissue and a pro-regenerative matrix that allows robust neurogenesis for overcoming post-SCI scar formation has yet to be developed. Here, we report that a mechanically enhanced decellularized spinal cord (DSC) scaffold with a thin poly (lactic-co-glycolic acid) (PLGA) outer shell may fulfill the requirements for effective in situ neuroengineering after SCI. Using chemical extraction and electrospinning methods, we successfully constructed PLGA thin shell-ensheathed DSC scaffolds (PLGA-DSC scaffolds) in a way that removed major inhibitory components while preserving the permissive matrix. The DSCs exhibited good cytocompatibility with neural stem cells (NSCs) and significantly enhanced their differentiation toward neurons in vitro. Due to the mechanical reinforcement, the implanted PLGA-DSC scaffolds showed markedly increased resilience to infiltration by myofibroblasts and the deposition of dense collagen matrix, thereby creating a neurogenic niche favorable for the targeted migration, residence and neuronal differentiation of endogenous NSCs after SCI. Furthermore, PLGA-DSC presented a mild immunogenic property but prominent ability to polarize macrophages from the M1 phenotype to the M2 phenotype, leading to significant tissue regeneration and functional restoration after SCI. Taken together, the results demonstrate that the mechanically matched PLGA-DSC scaffolds show promise for effective tissue repair after SCI.
Collapse
Affiliation(s)
- Yuan-Huan Ma
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Key Laboratory of Age-Related Cardiocerebral Diseases, Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong Province, 524023, China; Guangzhou Institute of Clinical Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong Province, 510180, PR China
| | - Hui-Juan Shi
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China
| | - Qing-Shuai Wei
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China
| | - Qing-Wen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Jia-Hui Sun
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Zhou Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Guangdong Key Laboratory of Age-Related Cardiocerebral Diseases, Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong Province, 524023, China
| | - Bi-Qin Lai
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Ge Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Wan-Ting Niu
- Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
37
|
Chen X, Wang Y, Zhou G, Hu X, Han S, Gao J. The combination of nanoscaffolds and stem cell transplantation: Paving a promising road for spinal cord injury regeneration. Biomed Pharmacother 2021; 143:112233. [PMID: 34649357 DOI: 10.1016/j.biopha.2021.112233] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI), one of the most devastating traumas, has caused long-term disability in millions of people worldwide. The pathophysiology of SCI primarily occurs in two stages classified as primary injury and secondary injury. Due to the rupture of axons and the apoptosis of neurons, patients lose their motor, sensory, and reflex functions, which also imposes a huge burden on families and society. However, traditional surgery does not facilitate neuronal regeneration. Although neural stem cells (NSCs) have the potential for multidirectional differentiation, the probability of differentiation into neurons and survival are still low. Surprisingly, the unique properties of nanotechnologies enable targeted drug delivery while reducing adverse reactions, assisting NSCs in differentiating into neurons. Here, recent studies on promising nanoscaffolds are highlighted, and their strengths and drawbacks are evaluated. Although the treatment of SCI remains fraught with challenges, the combination of nanoscaffolds and NSCs pave a promising road for SCI regeneration.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyang Wang
- School of Medicine, Tsinghua University, Haidian District, Beijing, China
| | - Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianghui Hu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
38
|
Liu XY, Chen C, Xu HH, Zhang YS, Zhong L, Hu N, Jia XL, Wang YW, Zhong KH, Liu C, Zhu X, Ming D, Li XH. Integrated printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal cord injury. Regen Biomater 2021; 8:rbab047. [PMID: 34513004 PMCID: PMC8417565 DOI: 10.1093/rb/rbab047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Recent studies have shown that 3D printed scaffolds integrated with growth factors can guide the growth of neurites and promote axon regeneration at the injury site. However, heat, organic solvents or cross-linking agents used in conventional 3D printing reduce the biological activity of growth factors. Low temperature 3D printing can incorporate growth factors into the scaffold and maintain their biological activity. In this study, we developed a collagen/chitosan scaffold integrated with brain-derived neurotrophic factor (3D-CC-BDNF) by low temperature extrusion 3D printing as a new type of artificial controlled release system, which could prolong the release of BDNF for the treatment of spinal cord injury (SCI). Eight weeks after the implantation of scaffolds in the transected lesion of T10 of the spinal cord, 3D-CC-BDNF significantly ameliorate locomotor function of the rats. Consistent with the recovery of locomotor function, 3D-CC-BDNF treatment could fill the gap, facilitate nerve fiber regeneration, accelerate the establishment of synaptic connections and enhance remyelination at the injury site.
Collapse
Affiliation(s)
- Xiao-Yin Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China.,National Engineering Research Center in Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.,Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chong Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Hai-Huan Xu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Yu-Sheng Zhang
- National Engineering Research Center in Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Lin Zhong
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Nan Hu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Li Jia
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - You-Wei Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Kun-Hong Zhong
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chang Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xu Zhu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Dong Ming
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Hong Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Doblado LR, Martínez-Ramos C, García-Verdugo JM, Moreno-Manzano V, Pradas MM. Engineered axon tracts within tubular biohybrid scaffolds. J Neural Eng 2021; 18. [PMID: 34311448 DOI: 10.1088/1741-2552/ac17d8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
Injuries to the nervous system that involve the disruption of axonal pathways are devastating to the individual and require specific tissue engineering strategies. Here we analyse a cells-biomaterials strategy to overcome the obstacles limiting axon regenerationin vivo, based on the combination of a hyaluronic acid (HA) single-channel tubular conduit filled with poly-L-lactide acid (PLA) fibres in its lumen, with pre-cultured Schwann cells (SCs) as cells supportive of axon extension. The HA conduit and PLA fibres sustain the proliferation of SC, which enhance axon growth acting as a feeder layer and growth factor pumps. The parallel unidirectional ensemble formed by PLA fibres and SC tries to recapitulate the directional features of axonal pathways in the nervous system. A dorsal root ganglion (DRG) explant is planted on one of the conduit's ends to follow axon outgrowth from the DRG. After a 21 d co-culture of the DRG + SC-seeded conduit ensemble, we analyse the axonal extension throughout the conduit by scanning, transmission electronic and confocal microscopy, in order to study the features of SC and the grown axons and their association. The separate effects of SC and PLA fibres on the axon growth are also experimentally addressed. The biohybrid thus produced may be considered a synthetic axonal pathway, and the results could be of use in strategies for the regeneration of axonal tracts.
Collapse
Affiliation(s)
- Laura Rodríguez Doblado
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón 12071, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universitat de València, CIBERNED, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Universidad Católica de Valencia, Valencia, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
40
|
Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater 2021; 6:2412-2438. [PMID: 33553825 PMCID: PMC7847813 DOI: 10.1016/j.bioactmat.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) is a rapidly growing interdisciplinary field, which aims to restore or improve lost tissue function. Despite that TE was introduced more than 20 years ago, innovative and more sophisticated trends and technologies point to new challenges and development. Current challenges involve the demand for multifunctional bioscaffolds which can stimulate tissue regrowth by biochemical curves, biomimetic patterns, active agents and proper cell types. For those purposes especially promising are carefully chosen primary cells or stem cells due to its high proliferative and differentiation potential. This review summarized a variety of recently reported advanced bioscaffolds which present new functions by combining polymers, nanomaterials, bioactive agents and cells depending on its desired application. In particular necessity of study biomaterial-cell interactions with in vitro cell culture models, and studies using animals with in vivo systems were discuss to permit the analysis of full material biocompatibility. Although these bioscaffolds have shown a significant therapeutic effect in nervous, cardiovascular and muscle, tissue engineering, there are still many remaining unsolved challenges for scaffolds improvement.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Marta J. Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| |
Collapse
|
41
|
Yuan J, Botchway BOA, Zhang Y, Wang X, Liu X. Combined bioscaffold with stem cells and exosomes can improve traumatic brain injury. Stem Cell Rev Rep 2021; 16:323-334. [PMID: 31808037 DOI: 10.1007/s12015-019-09927-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intricacy of the brain, along with the existence of blood brain barrier (BBB) does complicate the delivery of effective therapeutics through simple intravascular injection. Hence, an effective delivery mechanism of therapeutics in the event of either traumatic brain injury (TBI) or other brain injuries is needed. Stem cells can promote regeneration and repair injury. The usage of biomaterials and exosomes in transporting stem cells to target lesion sites has been suggested as a potential option. The combination of biomaterials with modified exosomes can help in transporting stem cells to injury sites, whiles also increasing their survival and promoting effective treatment. Herein, we review the current researches pertinent to biological scaffolds and exosomes in repairing TBI and present the current progress and new direction in the clinical setting. We begin with the role of bioscaffold in treating neuronal conditions, the effect of exosomes in injury, and conclude with the improvement of TBI via the employment of combined exosomes, bioscaffold and stem cells.
Collapse
Affiliation(s)
- Jiaying Yuan
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Xizhi Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China.
| |
Collapse
|
42
|
Cao J, Wu J, Mu J, Feng S, Gao J. The design criteria and therapeutic strategy of functional scaffolds for spinal cord injury repair. Biomater Sci 2021; 9:4591-4606. [PMID: 34018520 DOI: 10.1039/d1bm00361e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) remains a therapeutic challenge in clinic. Current drug and cell therapeutics have obtained significant efficacy but are still in the early stages for complete neural and functional recovery. In the past few decades, functional scaffolds (FSs) have been rapidly developed to bridge the lesion and provide a framework for tissue regeneration in SCI repair. Moreover, a FS can act as an adjuvant for locally delivering drugs in the lesion with a designed drug release profile, and supplying a biomimetic environment for implanted cells. In this review, the design criteria of FSs for SCI treatment are summarized according to their biocompatibility, mechanical properties, morphology, architecture, and biodegradability. Subsequently, FSs designed for SCI repair in the scope of drug delivery, cell implantation and combination therapy are introduced, respectively. And how a FS promotes their therapeutic efficacy is analyzed. Finally, the challenges, perspectives, and potential of FSs for SCI treatment are discussed. Hopefully, this review may inspire the future development of potent FSs to facilitate SCI repair in clinic.
Collapse
Affiliation(s)
- Jian Cao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Jiahe Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Jiafu Mu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China. and International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China. and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
43
|
Kovylin RS, Aleynik DY, Fedushkin IL. Modern Porous Polymer Implants: Synthesis, Properties, and Application. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The needs of modern surgery triggered the intensive development of transplantology, medical materials science, and tissue engineering. These directions require the use of innovative materials, among which porous polymers occupy one of the leading positions. The use of natural and synthetic polymers makes it possible to adjust the structure and combination of properties of a material to its particular application. This review generalizes and systematizes the results of recent studies describing requirements imposed on the structure and properties of synthetic (or artificial) porous polymer materials and implants on their basis and the advantages and limitations of synthesis methods. The most extensively employed, promising initial materials are considered, and the possible areas of application of polymer implants based on these materials are highlighted.
Collapse
|
44
|
Silva D, Sousa R, Salgado A. Hydrogels as delivery systems for spinal cord injury regeneration. Mater Today Bio 2021; 9:100093. [PMID: 33665602 PMCID: PMC7905359 DOI: 10.1016/j.mtbio.2021.100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury is extremely debilitating, both at physiological and psychological levels, changing completely the patient's lifestyle. The introduction of biomaterials has opened a new window to develop a therapeutic approach to induce regeneration after injury due to similarities with extracellular matrix. Particularly, hydrogels have the ability to support axonal growth and endogenous regeneration. Moreover, they can also act as potential matrixes in which to load and deliver therapeutic agents at injury site. In this review, we highlight some important characteristics to be considered when designing hydrogels as delivery systems (DS), such as rheology, mesh size, swelling, degradation, gelation temperature and surface charge. Additionally, affinity-based release systems, incorporation of nanoparticles, or ion-mediated interactions are also pondered. Overall, hydrogel DS aim to promote a sustained, controlled and prolonged release at injury site, allowing a targeted oriented action of the therapeutic agent that will be used.
Collapse
Affiliation(s)
- D. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057/4805-017, Braga/Guimarães, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017, Guimarães, Portugal
| | - R.A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017, Guimarães, Portugal
| | - A.J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057/4805-017, Braga/Guimarães, Portugal
| |
Collapse
|
45
|
Takayama I, Katayama A, Terakawa M. Fabrication of Hollow Channels Surrounded by Gold Nanoparticles in Hydrogel by Femtosecond Laser Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10122529. [PMID: 33339371 PMCID: PMC7766102 DOI: 10.3390/nano10122529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The fabrication of hollow channels surrounded by gold nanoparticles in poly(ethylene glycol) diacrylate (PEGDA) is demonstrated. The absorption spectra show that gold nanoparticles were formed at the periphery of the focus by reduction of gold ions. The microscope observation and Raman spectroscopy analyses indicate that the center of the channels were void of PEGDA, which can be attributed to the femtosecond laser-induced degradation of the hydrogel. Since both the hydrogel and gold nanoparticles are biocompatible, this technique of fabricating hollow channels surrounded by gold nanoparticles is promising for tissue engineering, drug screening, and lab-on-a-chip devices.
Collapse
Affiliation(s)
- Izumi Takayama
- School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (I.T.); (A.K.)
| | - Akito Katayama
- School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (I.T.); (A.K.)
| | - Mitsuhiro Terakawa
- School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (I.T.); (A.K.)
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
46
|
Zhou P, Xu P, Guan J, Zhang C, Chang J, Yang F, Xiao H, Sun H, Zhang Z, Wang M, Hu J, Mao Y. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration. Colloids Surf B Biointerfaces 2020; 194:111214. [DOI: 10.1016/j.colsurfb.2020.111214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/03/2023]
|
47
|
Zou Y, Ma D, Shen H, Zhao Y, Xu B, Fan Y, Sun Z, Chen B, Xue W, Shi Y, Xiao Z, Gu R, Dai J. Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair. Biomater Sci 2020; 8:5145-5156. [PMID: 32832944 DOI: 10.1039/d0bm00431f] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural stem/progenitor cell (NSPC)-based spinal cord injury (SCI) therapy is expected to bridge the lesion site by transplanting exogenous NSPCs for replacement of lost cells. The transplanted NSPCs produce a microenvironment conducive to neuronal regeneration, and ultimately, functional recovery. Although both human fetal brain- and spinal cord- derived NSPCs (hbNSPCs and hscNSPCs, respectively) have been used for SCI repair, it remains unclear whether hscNSPCs are a more appropriate stem cell source for transplantation than hbNSPCs. Therefore, in this study, we transplanted hbNSPCs or hscNSPCs into rats with complete transection SCI to monitor their differences in SCI treatment. An aligned collagen sponge scaffold (ACSS) was used here for cell retention. Aligned biomaterial scaffolds provide a support platform and favorable morphology for cell growth and differentiation, and guide axial axonal extension. The ACSS fabricated by our group has been previously reported to improve spinal cord repair by promoting neuronal regeneration and remyelination. Compared with the hbNSPC-ACSS, the hscNSPC-ACSS effectively promoted long-term cell survival and neuronal differentiation and improved the SCI microenvironment by reducing inflammation and glial scar formation. Furthermore, the transplanted hscNSPC-ACSS improved recovery of locomotor functions. Therefore, hscNSPCs appear to be a superior cell source to hbNSPCs for SCI cell therapy with greater potential clinical applications.
Collapse
Affiliation(s)
- Yunlong Zou
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X, Yu C, Li F, Liang C, Chen Q. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 2020; 11:439. [PMID: 32513969 PMCID: PMC7280216 DOI: 10.1038/s41419-020-2620-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Due to the disconnection of surviving neural elements after spinal cord injury (SCI), such patients had to suffer irreversible loss of motor or sensory function, and thereafter enormous economic and emotional burdens were brought to society and family. Despite many strategies being dealing with SCI, there is still no effective regenerative therapy. To date, significant progress has been made in studies of SCI repair strategies, including gene regulation of neural regeneration, cell or cell-derived exosomes and growth factors transplantation, repair of biomaterials, and neural signal stimulation. The pathophysiology of SCI is complex and multifaceted, and its mechanisms and processes are incompletely understood. Thus, combinatorial therapies have been demonstrated to be more effective, and lead to better neural circuits reconstruction and functional recovery. Combinations of biomaterials, stem cells, growth factors, drugs, and exosomes have been widely developed. However, simply achieving axon regeneration will not spontaneously lead to meaningful functional recovery. Therefore, the formation and remodeling of functional neural circuits also depend on rehabilitation exercises, such as exercise training, electrical stimulation (ES) and Brain-Computer Interfaces (BCIs). In this review, we summarize the recent progress in biological and engineering strategies for reconstructing neural circuits and promoting functional recovery after SCI, and emphasize current challenges and future directions.
Collapse
Affiliation(s)
- Biao Yang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Zhang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Liwei Ying
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhe Gong
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Cao Yu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Chengzhen Liang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Qixin Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
49
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
50
|
Restoration of Neurological Function Following Peripheral Nerve Trauma. Int J Mol Sci 2020; 21:ijms21051808. [PMID: 32155716 PMCID: PMC7084579 DOI: 10.3390/ijms21051808] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following peripheral nerve trauma that damages a length of the nerve, recovery of function is generally limited. This is because no material tested for bridging nerve gaps promotes good axon regeneration across the gap under conditions associated with common nerve traumas. While many materials have been tested, sensory nerve grafts remain the clinical “gold standard” technique. This is despite the significant limitations in the conditions under which they restore function. Thus, they induce reliable and good recovery only for patients < 25 years old, when gaps are <2 cm in length, and when repairs are performed <2–3 months post trauma. Repairs performed when these values are larger result in a precipitous decrease in neurological recovery. Further, when patients have more than one parameter larger than these values, there is normally no functional recovery. Clinically, there has been little progress in developing new techniques that increase the level of functional recovery following peripheral nerve injury. This paper examines the efficacies and limitations of sensory nerve grafts and various other techniques used to induce functional neurological recovery, and how these might be improved to induce more extensive functional recovery. It also discusses preliminary data from the clinical application of a novel technique that restores neurological function across long nerve gaps, when repairs are performed at long times post-trauma, and in older patients, even under all three of these conditions. Thus, it appears that function can be restored under conditions where sensory nerve grafts are not effective.
Collapse
|