1
|
Tooming M, Mertsina P, Kahre T, Teek R, Vainumäe I, Lilles S, Wojcik MH, Ilves P, Õunap K. Uncovering somatic mosaic variants of PIK3CA-related overgrowth disorders - three cases with different clinical presentations. Front Genet 2025; 15:1484651. [PMID: 39872006 PMCID: PMC11769973 DOI: 10.3389/fgene.2024.1484651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/12/2024] [Indexed: 01/29/2025] Open
Abstract
Introduction PIK3CA related disorders (PRD, OMIM: *171834) are genetic disorders resulting from pathogenic somatic mosaic variants in the PIK3CA gene, which encodes a protein crucial for regulating cell growth and division. PRD typically manifest during the post-zygotic phase, leading to a broad spectrum of overgrowth and vascular malformations affecting various body regions. Methods Conventional diagnostic methods struggle to detect and confirm pathogenic PIK3CA gene variants due to the mosaic nature of these disorders and the limited accessibility of affected tissues. In this study, we conducted comprehensive genomic profiling on a cohort of individuals with PRD to address these diagnostic challenges. Results Our analysis revealed significant diagnostic challenges posed by somatic mosaicism in PRD. The comprehensive genomic profiling allowed for the meticulous evaluation of potentially pathogenic gene variants in affected individuals and their corresponding tissues. Discussion Our findings advocate for the adoption of comprehensive genomic profiling in clinical practice to improve the detection and management of PRD. This approach can enhance patient care by providing a more accurate diagnosis and better understanding of the genetic underpinnings of PRD.
Collapse
Affiliation(s)
- M. Tooming
- Genetics and Personalized Medicine Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - P. Mertsina
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - T. Kahre
- Genetics and Personalized Medicine Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - R. Teek
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - I. Vainumäe
- Children’s Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Children’s Clinic, Tartu University Hospital, Tartu, Estonia
| | - S. Lilles
- Children’s Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Children’s Clinic, Tartu University Hospital, Tartu, Estonia
| | - M. H. Wojcik
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Broad Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
| | - P. Ilves
- Department of Radiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - K. Õunap
- Genetics and Personalized Medicine Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
2
|
Luu M, Vabres P, Espitalier A, Maurer A, Garde A, Racine C, Carpentier M, Rega A, Loffroy R, Hadouiri N, Boddaert N, Curie A, Guibaud L, Chebbi M, Charligny J, Kuentz P, Canaud G, Bahi-Buisson N, Fleck C, Cransac A, Bardou M, Faivre L. A phase II double-blind multicentre, placebo-controlled trial to assess the efficacy and safety of alpelisib (BYL719) in paediatric and adult patients with Megalencephaly-CApillary malformation Polymicrogyria syndrome (MCAP): the SESAM study protocol. BMJ Open 2024; 14:e084614. [PMID: 39806603 PMCID: PMC11667470 DOI: 10.1136/bmjopen-2024-084614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION The megalencephaly capillary malformation polymicrogyria (MCAP syndrome) results from mosaic gain-of-function PIK3CA variants. The main clinical features are macrocephaly, somatic overgrowth, neurodevelopmental delay and brain anomalies. Alpelisib (Vijoice) is a recently FDA-approved PI3Kα-specific inhibitor for patients with PIK3CA-related overgrowth spectrum (PROS). During its development, in patients with the MCAP subgroup of PROS, there was no specific, standardised evaluation of the effect on neuro-cognitive functioning. Moreover, it remains unknown if the molecule crosses the blood-brain barrier. Our objective is to evaluate the efficacy of a 24 month treatment with alpelisib on adaptive behaviour in patients with MCAP syndrome. METHODS AND ANALYSIS SESAM is an industry-sponsored two-period multicentre French academic phase II trial, with a 6-month double-blind, placebo-controlled period followed by an open-label period. The primary endpoint is a ≥4-point improvement in the Vineland II Adaptive Behaviour Scale (VABS), 24 months after treatment initiation. Secondary objectives are safety, VABS improvement at 6 months, impact on the quality of life, epilepsy and hypotonia. 20 patients aged 2 to 40 years with an MCAP diagnosis and neurodevelopmental disorders of various degrees, will be followed monthly in local centres, centrally assessed (clinical, biological, neuropsychological and functional evaluation) at baseline and every 6 months. Patients will be evaluated by volumetric MRI at baseline and at 24 months. An optional lumbar puncture will be performed to investigate blood-brain barrier crossing. Inclusions were completed by April 2024, with the end of follow-up in November 2026.Given the efficacy of alpelisib in patients with PROS, if the drug crosses the blood-brain barrier, we can expect a clinical benefit for patients with neurocognitive disorders. ETHICS AND DISSEMINATION Ethical approval was given by CPP Sud-Ouest et Outre-Mer I (reference: 2022-500197-34-01). Findings from this study will be disseminated via publication, reports and conference presentations. TRIAL REGISTRATION NUMBER NCT05577754.
Collapse
Affiliation(s)
- Maxime Luu
- Centre d’investigation clinique – module plurithématique (CIC-P) INSERM 1432, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
- INSERM UMR1231 Génétique des Anomalies du Développement (GAD), Université de Bourgogne, Dijon, France
| | - Pierre Vabres
- Dermatology, Centre référence MAGEC, Dijon, France
- St John's Institute of Dermatology, London, UK
| | - Aurélie Espitalier
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| | - Agnès Maurer
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| | - Aurore Garde
- INSERM UMR1231 Génétique des Anomalies du Développement (GAD), Université de Bourgogne, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| | - Caroline Racine
- INSERM UMR1231 Génétique des Anomalies du Développement (GAD), Université de Bourgogne, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| | - Maud Carpentier
- Direction de la Recherche Clinique, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| | - Adélaide Rega
- Département de Radiologie et Imagerie Diagnostique et Thérapeutique, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| | - Romaric Loffroy
- Département de Radiologie et Imagerie Diagnostique et Thérapeutique, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| | - Nawale Hadouiri
- Département de Médecine Physique et de Réadaptation, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| | - Nathalie Boddaert
- INSERM UMR-1163 Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Département de Radiologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique - Hopitaux de Paris, Paris, Île-de-France, France
| | - Aurore Curie
- Centre de référence Déficience Intellectuelle de causes rares, Service de neuropédiatrie, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Laurent Guibaud
- Service d'Imagerie Pédiatrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Mouna Chebbi
- Service de Pharmacologie périnatale, pédiatrique et adulte (site HEGP), Recherche Clinique Entrepôts de Données et Pharmacologie, GHU Paris. Université Paris Cité, Assistance Publique - Hopitaux de Paris, Paris, Île-de-France, France
| | - Julie Charligny
- Centre d’investigation clinique – module plurithématique (CIC-P) INSERM 1432, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| | - Paul Kuentz
- INSERM UMR1231 Génétique des Anomalies du Développement (GAD), Université de Bourgogne, Dijon, France
- Oncobiologie Génétique Bioinformatique, FHU-TRANSLAD et Institut GIMI, Centre Hospitalier Universitaire de Besancon, Besancon, Bourgogne-Franche-Comté, France
| | - Guillaume Canaud
- INSERM UMR-1163 Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- INSERM U1151, Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, Université Paris Cité, Paris, Île-de-France, France
| | - Nadia Bahi-Buisson
- Département de Radiologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique - Hopitaux de Paris, Paris, Île-de-France, France
- Service de Neurologie Pédiatrique, DMU MICADO, Hôpital Necker Enfants Malades, Assistance Publique - Hopitaux de Paris, Paris, Île-de-France, France
| | - Camille Fleck
- Direction de la Recherche Clinique, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| | - Amelie Cransac
- Département de Pharmacie, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, Bourgogne-Franche-Comté, France
- INSERM LNC-UMR1231, Université de Bourgogne, Dijon, Bourgogne-Franche-Comté, France
| | - Marc Bardou
- Centre d’investigation clinique – module plurithématique (CIC-P) INSERM 1432, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
- INSERM UMR1231 Génétique des Anomalies du Développement (GAD), Université de Bourgogne, Dijon, France
| | - Laurence Faivre
- INSERM UMR1231 Génétique des Anomalies du Développement (GAD), Université de Bourgogne, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne-Franche-Comté, France
| |
Collapse
|
3
|
Nogueiras-Álvarez R, Pérez Francisco I. Pharmacogenetics in Oncology: A useful tool for individualizing drug therapy. Br J Clin Pharmacol 2024; 90:2483-2508. [PMID: 39077855 DOI: 10.1111/bcp.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
With the continuous development of genetics in healthcare, there has been a significant contribution to the development of precision medicine, which is ultimately aimed at improving the care of patients. Generally, drug treatments used in Oncology are characterized by a narrow therapeutic range and by their potential toxicity. Knowledge of pharmacogenomics and pharmacogenetics can be very useful in the area of Oncology, as they constitute additional tools that can help to individualize patients' treatment. This work includes a description of some genes that have been revealed to be useful in the field of Oncology, as they play a role in drug prescription and in the prediction of treatment response.
Collapse
Affiliation(s)
- Rita Nogueiras-Álvarez
- Osakidetza Basque Health Service, Galdakao-Usansolo University Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Bizkaia/Vizcaya, Spain
| | - Inés Pérez Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, Vitoria-Gasteiz, Araba/Álava, Spain
| |
Collapse
|
4
|
Menges CW, Hassan D, Cheung M, Bellacosa A, Testa JR. Alterations of the AKT Pathway in Sporadic Human Tumors, Inherited Susceptibility to Cancer, and Overgrowth Syndromes. Curr Top Microbiol Immunol 2024. [PMID: 39192048 DOI: 10.1007/82_2024_278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The AKT kinases are critical signaling molecules that regulate cellular physiology upon the activation of tyrosine kinase receptors and phosphatidylinositol 3-kinases (PI3K). AKT kinases govern many cellular processes considered hallmarks of cancer, including cell proliferation and survival, cell size, tumor invasion, metastasis, and angiogenesis. AKT signaling is regulated by multiple tumor suppressors and oncogenic proteins whose loss or activation, respectively, leads to dysregulation of this pathway, thereby contributing to oncogenesis. Herein, we review the enormous body of literature documenting how the AKT pathway becomes hyperactivated in sporadic human tumors and various hereditary cancer syndromes. We also discuss the role of activating mutations of AKT pathway genes in various chimeric overgrowth disorders, including Proteus syndrome, hypoglycemia with hypertrophy, CLOVES and SOLAMEN syndromes, and hemimegalencephaly.
Collapse
Affiliation(s)
- Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Eurofins Lancaster Laboratories Professional Scientific Services, Lancaster, PA, 17601, USA
| | - Dalal Hassan
- Cancer Epigenetics Institute, Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mitchell Cheung
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Cancer Epigenetics Institute, Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
5
|
Wee NKY, McGregor NE, Walker EC, Poulton IJ, Dang MKM, Gooi JH, Phillips WA, Sims NA. Direct activation of PI3K in osteoblasts and osteocytes strengthens murine bone through sex-specific actions on cortical surfaces. J Bone Miner Res 2024; 39:1174-1187. [PMID: 38959852 DOI: 10.1093/jbmr/zjae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Intracellular phosphoinositide 3-kinase (PI3K) signaling is activated by multiple bone-active receptors. Genetic mutations activating PI3K signaling are associated with clinical syndromes of tissue overgrowth in multiple organs, often including the skeleton. While one formation is increased by removing the PI3K inhibitor (phosphatase and TENsin homolog deleted on chromosome 10 (PTEN)), the effect of direct PI3K activation in the osteoblast lineage has not been reported. We introduced a known gain-of-function mutation in Pik3ca, the gene encoding the p110α catalytic subunit of PI3K, in osteocytes and late osteoblasts using the dentin matrix protein-1 Cre (Dmp1Cre) mouse and assessed the skeletal phenotype. Femur shape was grossly normal, but cortical thickness was significantly greater in both male and female Dmp1Cre.Pik3caH1047R mice, leading to almost doubled bone strength at 12 wk of age. Both sexes had smaller marrow areas from 6 wk of age. Female mice also exhibited greater cross-sectional area, which continued to increase until 24 wk of age, resulting in a further increase in bone strength. Although both male and female mice had increased endocortical mineralizing surface, only female mice had increased periosteal mineralizing surface. The bone formed in the Dmp1Cre.Pik3caH1047R mice showed no increase in intracortical remodeling nor any defect in cortical bone consolidation. In contrast, on both endocortical and periosteal surfaces, there was more lamellar bone formation, including highly organized osteocyte networks extending along the entire surface at a greater thickness than in control mice. In conclusion, direct activation of PI3Kα in cells targeted by Dmp1Cre leads to high cortical bone mass and strength with abundant lamellar cortical bone in female and male mice with no increase in intracortical remodeling. This differs from the effect of PTEN deletion in the same cells, suggesting that activating PI3Kα in osteoblasts and osteocytes may be a more suitable target to promote formation of lamellar bone.
Collapse
Affiliation(s)
- Natalie K Y Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy 3065, Victoria, Australia
| | - Narelle E McGregor
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy 3065, Victoria, Australia
| | - Emma C Walker
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy 3065, Victoria, Australia
| | - Ingrid J Poulton
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy 3065, Victoria, Australia
| | - Michelle Kieu Mi Dang
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy 3065, Victoria, Australia
| | - Jonathan H Gooi
- Structural Biology Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy 3065, Victoria, Australia
| | - Wayne A Phillips
- Cancer Biology and Surgical Oncology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy 3065, Victoria, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy 3065, Victoria, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne 3065, Victoria, Australia
| |
Collapse
|
6
|
Conduit SE, Pearce W, Bhamra A, Bilanges B, Bozal-Basterra L, Foukas LC, Cobbaut M, Castillo SD, Danesh MA, Adil M, Carracedo A, Graupera M, McDonald NQ, Parker PJ, Cutillas PR, Surinova S, Vanhaesebroeck B. A class I PI3K signalling network regulates primary cilia disassembly in normal physiology and disease. Nat Commun 2024; 15:7181. [PMID: 39168978 PMCID: PMC11339396 DOI: 10.1038/s41467-024-51354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Primary cilia are antenna-like organelles which sense extracellular cues and act as signalling hubs. Cilia dysfunction causes a heterogeneous group of disorders known as ciliopathy syndromes affecting most organs. Cilia disassembly, the process by which cells lose their cilium, is poorly understood but frequently observed in disease and upon cell transformation. Here, we uncover a role for the PI3Kα signalling enzyme in cilia disassembly. Genetic PI3Kα-hyperactivation, as observed in PIK3CA-related overgrowth spectrum (PROS) and cancer, induced a ciliopathy-like phenotype during mouse development. Mechanistically, PI3Kα and PI3Kβ produce the PIP3 lipid at the cilia transition zone upon disassembly stimulation. PI3Kα activation initiates cilia disassembly through a kinase signalling axis via the PDK1/PKCι kinases, the CEP170 centrosomal protein and the KIF2A microtubule-depolymerising kinesin. Our data suggest diseases caused by PI3Kα-activation may be considered 'Disorders with Ciliary Contributions', a recently-defined subset of ciliopathies in which some, but not all, of the clinical manifestations result from cilia dysfunction.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wayne Pearce
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Benoit Bilanges
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Lazaros C Foukas
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Mathias Cobbaut
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mohammad Amin Danesh
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Mahreen Adil
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080, Bilbao, Spain
| | - Mariona Graupera
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, Spain
| | - Neil Q McDonald
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Peter J Parker
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- King's College London, Guy's Campus, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Chen H, Sun B, Gao W, Qiu Y, Wei W, Li Y, Ye W, Song H, Hua C, Lin X. PIK3CA mutations enhance the adipogenesis of ADSCs in facial infiltrating lipomatosis through TRPV1. iScience 2024; 27:110467. [PMID: 39104411 PMCID: PMC11298645 DOI: 10.1016/j.isci.2024.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Facial infiltrating lipomatosis (FIL) is a congenital disorder. The pathogenesis of FIL is associated with PIK3CA mutations, but the underlying mechanisms remain undetermined. We found that the adipose tissue in FIL demonstrated adipocytes hypertrophy and increased lipid accumulation. All adipose-derived mesenchymal stem cells from FIL (FIL-ADSCs) harbored PIK3CA mutations. Moreover, FIL-ADSCs exhibited a greater capacity for adipogenesis. Knockdown of PIK3CA resulted in a reduction in the adipogenic potential of FIL-ADSCs. Furthermore, WX390, a dual-target PI3K/mTOR inhibitor, was found to impede PIK3CA-mediated adipogenesis both in vivo and in vitro. RNA sequencing (RNA-seq) revealed that the expression of transient receptor potential vanilloid subtype 1 (TRPV1) was upregulated after PI3K pathway inhibition, and overexpression or activation of TRPV1 both inhibited adipogenesis. Our study showed that PIK3CA mutations promoted adipogenesis in FIL-ADSCs and this effect was achieved by suppressing TPRV1. Pathogenesis experiments suggested that WX390 may serve as an agent for the treatment of FIL.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yajing Qiu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Wei
- Shanghai Jiatan Pharmatech Co, LTD, Shanghai, China
| | - Yongguo Li
- Shanghai Jiatan Pharmatech Co, LTD, Shanghai, China
| | - Wei Ye
- Shanghai Jiatan Pharmatech Co, LTD, Shanghai, China
| | | | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
8
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
9
|
Stor MLE, Horbach SER, Lokhorst MM, Tan E, Maas SM, van Noesel CJM, van der Horst CMAM. Genetic mutations and phenotype characteristics in peripheral vascular malformations: A systematic review. J Eur Acad Dermatol Venereol 2024; 38:1314-1328. [PMID: 38037869 DOI: 10.1111/jdv.19640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 12/02/2023]
Abstract
Vascular malformations (VMs) are clinically diverse with regard to the vessel type, anatomical location, tissue involvement and size. Consequently, symptoms and disease impact differ significantly. Diverse causative mutations in more and more genes are discovered and play a major role in the development of VMs. However, the relationship between the underlying causative mutations and the highly variable phenotype of VMs is not yet fully understood. In this systematic review, we aimed to provide an overview of known causative mutations in genes in VMs and discuss associations between the causative mutations and clinical phenotypes. PubMed and EMBASE libraries were systematically searched on November 9th, 2022 for randomized controlled trials and observational studies reporting causative mutations in at least five patients with peripheral venous, lymphatic, arteriovenous and combined malformations. Study quality was assessed with the Newcastle-Ottawa Scale. Data were extracted on patient and VM characteristics, molecular sequencing method and results of molecular analysis. In total, 5667 articles were found of which 69 studies were included, reporting molecular analysis in a total of 4261 patients and 1686 (40%) patients with peripheral VMs a causative mutation was detected. In conclusion, this systematic review provides a comprehensive overview of causative germline and somatic mutations in various genes and associated phenotypes in peripheral VMs. With these findings, we attempt to better understand how the underlying causative mutations in various genes contribute to the highly variable clinical characteristics of VMs. Our study shows that some causative mutations lead to a uniform phenotype, while other causal variants lead to more varying phenotypes. By contrast, distinct causative mutations may lead to similar phenotypes and result in almost indistinguishable VMs. VMs are currently classified based on clinical and histopathology features, however, the findings of this systematic review suggest a larger role for genotype in current diagnostics and classification.
Collapse
Affiliation(s)
- M L E Stor
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - S E R Horbach
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - M M Lokhorst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - E Tan
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - S M Maas
- Department of Clinical Genetics, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - C J M van Noesel
- Department of Pathology, Molecular Diagnostics, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - C M A M van der Horst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Yamaguchi J, Isnard P, Robil N, de la Grange P, Hoguin C, Schmitt A, Hummel A, Megret J, Goudin N, Luka M, Ménager MM, Masson C, Zarhrate M, Bôle-Feysot C, Janiszewska M, Polyak K, Dairou J, Baldassari S, Baulac S, Broissand C, Legendre C, Terzi F, Canaud G. PIK3CA inhibition in models of proliferative glomerulonephritis and lupus nephritis. J Clin Invest 2024; 134:e176402. [PMID: 38842935 PMCID: PMC11290976 DOI: 10.1172/jci176402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
Proliferative glomerulonephritis is a severe condition that often leads to kidney failure. There is a significant lack of effective treatment for these disorders. Here, following the identification of a somatic PIK3CA gain-of-function mutation in podocytes of a patient, we demonstrate using multiple genetically engineered mouse models, single-cell RNA sequencing, and spatial transcriptomics the crucial role played by this pathway for proliferative glomerulonephritis development by promoting podocyte proliferation, dedifferentiation, and inflammation. Additionally, we show that alpelisib, a PI3Kα inhibitor, improves glomerular lesions and kidney function in different mouse models of proliferative glomerulonephritis and lupus nephritis by targeting podocytes. Surprisingly, we determined that pharmacological inhibition of PI3Kα affects B and T lymphocyte populations in lupus nephritis mouse models, with a decrease in the production of proinflammatory cytokines, autoantibodies, and glomerular complement deposition, which are all characteristic features of PI3Kδ inhibition, the primary PI3K isoform expressed in lymphocytes. Importantly, PI3Kα inhibition does not impact lymphocyte function under normal conditions. These findings were then confirmed in human lymphocytes isolated from patients with active lupus nephritis. In conclusion, we demonstrate the major role played by PI3Kα in proliferative glomerulonephritis and show that in this condition, alpelisib acts on both podocytes and the immune system.
Collapse
Affiliation(s)
- Junna Yamaguchi
- Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Pierre Isnard
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Service d’Anatomie pathologique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Noémie Robil
- Genosplice Technology, Paris Biotech Santé, Paris, France
| | | | - Clément Hoguin
- Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | | | - Aurélie Hummel
- Service de Néphrologie, Transplantation Adultes, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jérôme Megret
- Structure Fédérative de Recherche Necker, INSERM US24, CNRS UAR 3633, Institut Necker-Enfants Malades, Paris, France
| | - Nicolas Goudin
- Structure Fédérative de Recherche Necker, INSERM US24, CNRS UAR 3633, Institut Necker-Enfants Malades, Paris, France
| | - Marine Luka
- Inflammatory Responses and Transcriptomic Networks in Diseases
- INSERM U1163
| | - Mickaël M. Ménager
- Inflammatory Responses and Transcriptomic Networks in Diseases
- INSERM U1163
| | - Cécile Masson
- Bioinformatics Platform, Structure Fédérative de Recherche Necker, INSERM UMR1163, Université de Paris, and
| | | | | | - Michalina Janiszewska
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, Florida, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Julien Dairou
- Université Paris Cité, Paris, France
- Laboratoire de Chimie et Biologie Pharmacologiques et Toxicologiques, Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Christophe Legendre
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Service de Néphrologie, Transplantation Adultes, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Fabiola Terzi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Guillaume Canaud
- Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| |
Collapse
|
11
|
Revencu N, Eijkelenboom A, Bracquemart C, Alhopuro P, Armstrong J, Baselga E, Cesario C, Dentici ML, Eyries M, Frisk S, Karstensen HG, Gene-Olaciregui N, Kivirikko S, Lavarino C, Mero IL, Michiels R, Pisaneschi E, Schönewolf-Greulich B, Wieland I, Zenker M, Vikkula M. Assessment of gene-disease associations and recommendations for genetic testing for somatic variants in vascular anomalies by VASCERN-VASCA. Orphanet J Rare Dis 2024; 19:213. [PMID: 38778413 PMCID: PMC11110196 DOI: 10.1186/s13023-024-03196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Vascular anomalies caused by somatic (postzygotic) variants are clinically and genetically heterogeneous diseases with overlapping or distinct entities. The genetic knowledge in this field is rapidly growing, and genetic testing is now part of the diagnostic workup alongside the clinical, radiological and histopathological data. Nonetheless, access to genetic testing is still limited, and there is significant heterogeneity across the approaches used by the diagnostic laboratories, with direct consequences on test sensitivity and accuracy. The clinical utility of genetic testing is expected to increase progressively with improved theragnostics, which will be based on information about the efficacy and safety of the emerging drugs and future molecules. The aim of this study was to make recommendations for optimising and guiding the diagnostic genetic testing for somatic variants in patients with vascular malformations. RESULTS Physicians and lab specialists from 11 multidisciplinary European centres for vascular anomalies reviewed the genes identified to date as being involved in non-hereditary vascular malformations, evaluated gene-disease associations, and made recommendations about the technical aspects for identification of low-level mosaicism and variant interpretation. A core list of 24 genes were selected based on the current practices in the participating laboratories, the ISSVA classification and the literature. In total 45 gene-phenotype associations were evaluated: 16 were considered definitive, 16 strong, 3 moderate, 7 limited and 3 with no evidence. CONCLUSIONS This work provides a detailed evidence-based view of the gene-disease associations in the field of vascular malformations caused by somatic variants. Knowing both the gene-phenotype relationships and the strength of the associations greatly help laboratories in data interpretation and eventually in the clinical diagnosis. This study reflects the state of knowledge as of mid-2023 and will be regularly updated on the VASCERN-VASCA website (VASCERN-VASCA, https://vascern.eu/groupe/vascular-anomalies/ ).
Collapse
Affiliation(s)
- Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Astrid Eijkelenboom
- Department of Pathology, Radboud University Medical Center, VASCERN VASCA European Reference Centre, PO Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Claire Bracquemart
- Normandie Univ, UNICAEN, Service de Génétique, CHU Caen Normandie, BIOTARGEN EA 7450, VASCERN VASCA European Reference Centre, Caen, 14000, France
| | - Pia Alhopuro
- HUS Diagnostic Center, Laboratory of Genetics, University of Helsinki and Helsinki University Hospital, VASCERN VASCA European Reference Centre, Helsinki, Finland
| | - Judith Armstrong
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III (ISCIII), Madrid, and Genomic Unit, Molecular and Genetic Medicine Section, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Eulalia Baselga
- Department of Dermatology, Hospital Sant Joan de Deu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, VASCERN VASCA European Reference Centre, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, VASCERN VASCA European Reference Centre, 00165, Rome, Italy
| | - Melanie Eyries
- Sorbonne Université, Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, VASCERN VASCA European Reference Centre, Paris, France
| | - Sofia Frisk
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, VASCERN VASCA European Reference Centre, Stockholm, Sweden
| | - Helena Gásdal Karstensen
- Department of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, VASCERN VASCA European Reference Centre, Copenhagen, Denmark
| | - Nagore Gene-Olaciregui
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Sirpa Kivirikko
- Department of Clinical Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, VASCERN VASCA European Reference Centre, Helsinki, Finland
| | - Cinzia Lavarino
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, VASCERN VASCA European Reference Centre, Oslo, Norway
| | - Rodolphe Michiels
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, VASCERN VASCA European Reference Centre, Rome, Italy
| | - Bitten Schönewolf-Greulich
- Department of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, VASCERN VASCA European Reference Centre, Copenhagen, Denmark
| | - Ilse Wieland
- Institute of Human Genetics, University Hospital Otto-Von-Guericke-University, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Otto-Von-Guericke-University, Magdeburg, Germany
| | - Miikka Vikkula
- Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
- Human Molecular Genetics , de Duve Institute, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium.
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
12
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
13
|
Laval N, Kleiber N, Soucy JF, Dubois J, Assaad MA. Atypical Presentation and Evolution of Necrotizing Enterocolitis as a PIK3CA Pathological Variant. Cureus 2024; 16:e59243. [PMID: 38813336 PMCID: PMC11134116 DOI: 10.7759/cureus.59243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 05/31/2024] Open
Abstract
Activating mutation of PIK3CA is linked with cases of overgrowth syndromes and belongs to the PIK3CA-related overgrowth spectrum (PROS). Mutations in this gene are associated with vascular malformations, brain abnormalities, and an increased risk for certain tumors. We report the case of a newborn girl, preterm at 34 weeks of gestation, referred to our center for atypical necrotizing enterocolitis (NEC). At laparotomy, the appearance of the intestinal tract was described as puffy, cauliflower-like with a dark purplish coloration. Subsequently, the colostomy was described as having a consistent proliferative appearance. Medical treatment with sirolimus resulted in minimal improvement. There are no reported cases in the literature of association between NEC and PIK3CA mutation. It is possible that PIK3CA mutation, including the related vascular anomalies, plays a role in the pathogenesis of NEC with this condition.
Collapse
Affiliation(s)
- Nancy Laval
- Neonatology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, CAN
- Neonatology, Centre Hospitalier Chrétien MontLégia, Liège, BEL
| | - Niina Kleiber
- Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montréal, CAN
| | - Jean-François Soucy
- Medical Genetics, Centre Hospitalier Universitaire Sainte-Justine, Montréal, CAN
| | - Josée Dubois
- Radiology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, CAN
| | | |
Collapse
|
14
|
Kinsler VA. Response to "Guidance on screening MRI decisions for congenital melanocytic nevi". J Am Acad Dermatol 2024; 90:e109-e110. [PMID: 37972654 DOI: 10.1016/j.jaad.2023.07.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Veronica A Kinsler
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Mosaicism and Precision Medicine Laboratory, the Francis Crick Institute, London, United Kingdom; Paediatric Dermatology, Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
15
|
Devoogdt N, Thomis S, Belva F, Dickinson-Blok J, Fourgeaud C, Giacalone G, Karlsmark T, Kavola H, Keeley V, Marques ML, Mansour S, Nissen CV, Nørregaard S, Oberlin M, Ručigaj TP, Somalo-Barranco G, Suominen S, Van Duinen K, Vignes S, Damstra R. The VASCERN PPL working group patient pathway for primary and paediatric lymphoedema. Eur J Med Genet 2024; 67:104905. [PMID: 38143023 DOI: 10.1016/j.ejmg.2023.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Lymphoedema is caused by an imbalance between fluid production and transport by the lymphatic system. This imbalance can be either caused by reduced transport capacity of the lymphatic system or too much fluid production and leads to swelling associated with tissue changes (skin thickening, fat deposition). Its main common complication is the increased risk of developing cellulitis/erysipelas in the affected area, which can worsen the lymphatic function and can be the cause of raised morbidity of the patient if not treated correctly/urgently. The term primary lymphoedema covers a group of rare conditions caused by abnormal functioning and/or development of the lymphatic system. It covers a highly heterogeneous group of conditions. An accurate diagnosis of primary lymphoedema is crucial for the implementation of an optimal treatment plan and management, as well as to reduce the risk of worsening. Patient care is diverse across Europe, and national specialised centres and networks are not available everywhere. The European Reference Network on Rare Multisystemic Vascular Diseases (VASCERN) gathers the best expertise in Europe and provide accessible cross-border healthcare to patients with rare vascular diseases. There are six different working groups in VASCERN, which focus on arterial diseases, hereditary haemorrhagic telangiectasia, neurovascular diseases, lymphoedema and vascular anomalies. The working group Paediatric and Primary Lymphedema (PPL WG) gathers and shares knowledge and expertise in the diagnosis and management of adults and children with primary and paediatric lymphoedema. The members of PPL WG have worked together to produce this opinion statement reflecting strategies on how to approach patients with primary and paediatric lymphoedema. The objective of this patient pathway is to improve patient care by reducing the time to diagnosis, define the best management and follow-up strategies and avoid overuse of resources. Therefore, the patient pathway describes the clinical evaluation and investigations that lead to a clinical diagnosis, the genetic testing, differential diagnosis, the management and treatment options and the patient follow up at expert and local centres. Also, the importance of the patient group participation in the PPL WG is discussed.
Collapse
Affiliation(s)
- Nele Devoogdt
- Centre for Lymphedema, Department of Vascular Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Sarah Thomis
- Centre for Lymphedema, Department of Vascular Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Janine Dickinson-Blok
- Expert Center for Lymphovascular Medicine, Nij Smellinghe Hospital, Drachten, the Netherlands
| | - Caroline Fourgeaud
- Department of Lymphology and Reference Center for Rare Vascular Diseases, Cognacq-Jay Hospital, 15, Rue Eugène-Millon, 75015, Paris, France
| | | | - Tonny Karlsmark
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Heli Kavola
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Vaughan Keeley
- Derby Lymphedema Service, University Hospitals of Derby and Burton NHS Trust, Derby, UK
| | | | - Sahar Mansour
- Department of Lymphovascular Medicine, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Christoffer V Nissen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Susan Nørregaard
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Michael Oberlin
- European Centre for Lymphology, Földi Clinic, Hinterzarten, Germany
| | | | | | - Sinikka Suominen
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Kirsten Van Duinen
- Expert Center for Lymphovascular Medicine, Nij Smellinghe Hospital, Drachten, the Netherlands
| | - Stéphane Vignes
- Department of Lymphology and Reference Center for Rare Vascular Diseases, Cognacq-Jay Hospital, 15, Rue Eugène-Millon, 75015, Paris, France
| | - Robert Damstra
- Expert Center for Lymphovascular Medicine, Nij Smellinghe Hospital, Drachten, the Netherlands.
| |
Collapse
|
16
|
Huang Z, Zhao J, Sun L, Zhong W, Yin Y, Tian W. Morphological and radiological features of congenital muscular hypertrophy of the upper limb: experience from a tertiary institution. J Hand Surg Eur Vol 2023; 48:1144-1150. [PMID: 37751489 DOI: 10.1177/17531934231188973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Congenital muscular hypertrophy is a rare overgrowth disorder in the phosphatidylinositol-3-kinase related spectrum. In the past 3 years, ten patients with 11 limbs involved were treated in our centre. The aim of the study was to describe the clinical and radiological deformities of these patients. We documented the characteristic clinical morphological changes, such as hypertrophy, loss of wrist flexion, thumb hyperabduction, finger deviation and skin crease changes in the palm. Radiologically, the mean first metacarpal radial deviation angle of the affected side measured 55° (range 34 to 67) compared to the normal contralateral side 42° (range 32 to 53). The mean intermetacarpal space ratio was 1.2 (range 1.1 to 1.4) and the mean palm width ratio was 1.2 (range 1.1 to 1.3). In this study, we were able to further characterize the radiological and morphological changes of congenital muscular hypertrophy of upper limbs, which would be helpful for establishing the diagnosis and monitor treatment of this rare condition.Level of evidence: IV.
Collapse
Affiliation(s)
- Zhifeng Huang
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| | - Junhui Zhao
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| | - Liying Sun
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| | - Wenyao Zhong
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| | - Yuehan Yin
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| | - Wen Tian
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
17
|
Reynolds G, Cardaropoli S, Carli D, Luca M, Gazzin A, Coppo P, La Selva R, Piglionica M, Bagnulo R, Turchiano A, Ranieri C, Resta N, Mussa A. Epidemiology of the disorders of the Pik3ca-related overgrowth spectrum (Pros). Eur J Hum Genet 2023; 31:1333-1336. [PMID: 37365400 PMCID: PMC10620148 DOI: 10.1038/s41431-023-01414-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
PIK3CA pathogenic variants are responsible for a group of overgrowth syndromes, collectively known as PIK3CA-Related Overgrowth Spectrum (PROS). These gain-of-function variants arise postzygotically, and, according to time of onset, kind of embryonal tissue affected and regional body extension, give rise to heterogeneous phenotypes. PROS rarity and heterogeneity hamper the correct estimation of its epidemiology. Our work represents the first attempt to define the prevalence of PROS according to the established diagnostic criteria and molecular analysis and based on solid demographic data. We assessed the prevalence in Piedmont Region (Italy), including in the study all participants diagnosed with PROS born there from 1998 to 2021. The search identified 37 cases of PROS born across the 25-year period, providing a prevalence of 1:22,313 live births. Molecular analysis was positive in 81.0% of participants. Taking into account the cases with a detected variant in PIK3CA (n = 30), prevalence of molecularly positive PROS was 1:27,519.
Collapse
Affiliation(s)
- Giuseppe Reynolds
- Department of Public Health and Pediatric Sciences, School of Medicine, University of Torino, Torino, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, School of Medicine, University of Torino, Torino, Italy
| | - Diana Carli
- Department of Medical Science, University of Torino, Torino, Italy
| | - Maria Luca
- Department of Medical Science, University of Torino, Torino, Italy
| | - Andrea Gazzin
- Department of Public Health and Pediatric Sciences, School of Medicine, University of Torino, Torino, Italy
| | - Paola Coppo
- Pediatric Dermatology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Roberta La Selva
- Pediatric Dermatology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Marilidia Piglionica
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Rosanna Bagnulo
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Antonella Turchiano
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Nicoletta Resta
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J) University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, School of Medicine, University of Torino, Torino, Italy.
| |
Collapse
|
18
|
Faivre L, Crépin JC, Réda M, Nambot S, Carmignac V, Abadie C, Mirault T, Faure-Conter C, Mazereeuw-Hautier J, Maza A, Puzenat E, Collonge-Rame MA, Bursztejn AC, Philippe C, Thauvin-Robinet C, Chevarin M, Abasq-Thomas C, Amiel J, Arpin S, Barbarot S, Baujat G, Bessis D, Bourrat E, Boute O, Chassaing N, Coubes C, Demeer B, Edery P, El Chehadeh S, Goldenberg A, Hadj-Rabia S, Haye D, Isidor B, Jacquemont ML, Van Kien PK, Lacombe D, Lehalle D, Lambert L, Martin L, Maruani A, Morice-Picard F, Petit F, Phan A, Pinson L, Rossi M, Touraine R, Vanlerberghe C, Vincent M, Vincent-Delorme C, Whalen S, Willems M, Marle N, Verkarre V, Devalland C, Devouassoux-Shisheboran M, Abad M, Rioux-Leclercq N, Bonniaud B, Duffourd Y, Martel J, Binquet C, Kuentz P, Vabres P. Low risk of embryonic and other cancers in PIK3CA-related overgrowth spectrum: Impact on screening recommendations. Clin Genet 2023; 104:554-563. [PMID: 37580112 DOI: 10.1111/cge.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023]
Abstract
The PIK3CA-related overgrowth spectrum (PROS) encompasses various conditions caused by mosaic activating PIK3CA variants. PIK3CA somatic variants are also involved in various cancer types. Some generalized overgrowth syndromes are associated with an increased risk of Wilms tumor (WT). In PROS, abdominal ultrasound surveillance has been advocated to detect WT. We aimed to determine the risk of embryonic and other types of tumors in patients with PROS in order to evaluate surveillance relevance. We searched the clinical charts from 267 PROS patients for the diagnosis of cancer, and reviewed the medical literature for the risk of cancer. In our cohort, six patients developed a cancer (2.2%), and Kaplan Meier analyses estimated cumulative probabilities of cancer occurrence at 45 years of age was 5.6% (95% CI = 1.35%-21.8%). The presence of the PIK3CA variant was only confirmed in two out of four tumor samples. In the literature and our cohort, six cases of Wilms tumor/nephrogenic rests (0.12%) and four cases of other cancers have been reported out of 483 proven PIK3CA patients, in particular the p.(His1047Leu/Arg) variant. The risk of WT in PROS being lower than 5%, this is insufficient evidence to recommend routine abdominal imaging. Long-term follow-up studies are needed to evaluate the risk of other cancer types, as well as the relationship with the extent of tissue mosaicism and the presence or not of the variant in the tumor samples.
Collapse
Affiliation(s)
- Laurence Faivre
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
- Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs et FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Jean-Charles Crépin
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
- Service de Dermatologie, CHU Dijon Bourgogne, Dijon, France
- Centre de référence Maladies Rares Génétiques à Expression Cutanée (MAGEC), CHU Dijon, Dijon, France
| | - Manon Réda
- Oncogénétique, Centre de lutte contre le cancer Georges François Leclerc, Dijon, France
| | - Sophie Nambot
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
- Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs et FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- Oncogénétique, Centre de lutte contre le cancer Georges François Leclerc, Dijon, France
| | - Virginie Carmignac
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
- Centre de référence Maladies Rares Génétiques à Expression Cutanée (MAGEC), CHU Dijon, Dijon, France
| | | | - Tristan Mirault
- Université Paris Cité, PARCC INSERM U970, Centre de référence des maladies vasculaires rares, Hôpital européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | | | - Aude Maza
- Service de Dermatologie, CHU Toulouse, Toulouse, France
| | - Eve Puzenat
- Service de Dermatologie, CHU Besançon, Besançon, France
| | | | | | - Christophe Philippe
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
- UF6254 Innovation en Diagnostic Génomique des Maladies Rares, Plate-forme de Biologie Hospitalo-Universitaire, CHU Dijon-Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon Bourgogne, Dijon, France
| | - Martin Chevarin
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
- UF6254 Innovation en Diagnostic Génomique des Maladies Rares, Plate-forme de Biologie Hospitalo-Universitaire, CHU Dijon-Bourgogne, Dijon, France
| | - Claire Abasq-Thomas
- Département de Pédiatrie et Génétique Médicale, CHU Brest Morvan, Brest, France
| | - Jeanne Amiel
- Service de Médecine Génomique des Maladies Rares et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Stéphanie Arpin
- Service de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHRU de Tours, Tours, France
| | | | - Geneviève Baujat
- Service de Médecine Génomique des Maladies Rares et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Didier Bessis
- Département de Dermatologie, CHRU de Montpellier, Montpellier, France
| | - Emmanuelle Bourrat
- Service de dermatologie, centre de référence maladies génétiques à expression cutanée MAGEC, CHU St-Louis, Service de pédiatrie générale, CHU Robert Debré, Paris, France
| | - Odile Boute
- Service de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Lille, Lille, France
| | - Nicolas Chassaing
- Service de Génétique Médicale et Centre de Compétence Anomalies du Développement et Syndromes Malformatifs, CHU Toulouse, Toulouse, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies rares et Médecine Personnalisée, et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHRU de Montpellier, Montpellier, France
| | - Bénédicte Demeer
- Centre d'Activité de Génétique Clinique et Oncogénétique, CHU d'Amiens, Amiens, France
| | - Patrick Edery
- Service de génétique, Centre de Référence Anomalies du Développement, Hospices Civils de Lyon, Bron, France
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Université Claude Bernard Lyon 1, Bron, France
| | - Salima El Chehadeh
- Service de Génétique Médicale, Centre de Référence Déficiences Intellectuelles de Causes Rares, Institut de Génétique Médicale d'Alsace (IGMA), CHRU de Strasbourg, Strasbourg, France
| | - Alice Goldenberg
- Service de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU de Rouen et Centre Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - Smail Hadj-Rabia
- Service de Dermatologie et Centre de Référence des Maladies Rares Génétiques à Expression Cutanée (MAGEC), Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Universitaire Necker Enfants Malades, Paris, France
| | - Damien Haye
- Service de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHRU de Tours, Tours, France
| | - Bertrand Isidor
- Service de Génétique Médicale et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU de Nantes, Nantes, France
| | - Marie-Line Jacquemont
- Unité de Génétique Médicale et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU de la Réunion, Saint-Pierre, France
| | - Philippe Khau Van Kien
- Unité de Génétique Médicale et Cytogénétique, Centre de Compétence Anomalies du Développement et Syndromes Malformatifs, CHU de Nîmes, Nîmes, France
| | - Didier Lacombe
- Service de Génétique Médicale et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU de Bordeaux, Bordeaux, France
| | - Daphné Lehalle
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
| | - Laetitia Lambert
- Service de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU de Nancy, Nancy, France
| | | | | | - Fanny Morice-Picard
- Service de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU de Nancy, Nancy, France
- Service de Dermatologie, CHU de Bordeaux, Bordeaux, France
| | - Florence Petit
- Service de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Lille, Lille, France
| | - Alice Phan
- Service de Dermatologie, CHU de Lyon, Lyon, France
| | - Lucile Pinson
- Département de Génétique Médicale, Maladies rares et Médecine Personnalisée, et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHRU de Montpellier, Montpellier, France
| | - Massimiliano Rossi
- Service de génétique, Centre de Référence Anomalies du Développement, Hospices Civils de Lyon, Bron, France
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Université Claude Bernard Lyon 1, Bron, France
| | - Renaud Touraine
- Service de Génétique Clinique et Centre de Compétence Anomalies du Développement et Syndromes Malformatifs, CHU de Saint-Etienne, Saint-Etienne, France
| | - Clémence Vanlerberghe
- Service de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Lille, Lille, France
| | - Marie Vincent
- Service de Génétique Médicale et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU de Nantes, Nantes, France
| | - Catherine Vincent-Delorme
- Service de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Lille, Lille, France
| | - Sandra Whalen
- Unité Fonctionnelle de Génétique Clinique, Hôpital Armand-Trousseau, Paris, France
| | - Marjolaine Willems
- Département de Génétique Médicale, Maladies rares et Médecine Personnalisée, et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHRU de Montpellier, Montpellier, France
| | - Nathalie Marle
- UF6254 Innovation en Diagnostic Génomique des Maladies Rares, Plate-forme de Biologie Hospitalo-Universitaire, CHU Dijon-Bourgogne, Dijon, France
| | - Virginie Verkarre
- Service d'Anatomie Pathologique, Hôpital Européen Georges Pompidou, Paris, France et INSERM UMR 970, Equipe 13, PARCC Université de Paris Cité, Paris, France
| | - Christine Devalland
- Service d'Anatomie Pathologique, Hôpital Nord Franche Comté, Trevenans, France
| | | | - Marine Abad
- Service d'Anatomie Pathologique, CHU Besançon, Besançon, France
| | | | | | - Yannis Duffourd
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
| | - Jehanne Martel
- Centre de référence Maladies Rares Génétiques à Expression Cutanée (MAGEC), CHU Dijon, Dijon, France
| | - Christine Binquet
- INSERM, Université de Bourgogne, CHU Dijon Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
| | - Paul Kuentz
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Pierre Vabres
- Equipe INSERM UMR1231, Génétique des Anomalies du Développement, FHU TRANSLAD, Université Bourgogne Franche-Comté, Dijon, France
- Service de Dermatologie, CHU Dijon Bourgogne, Dijon, France
- Centre de référence Maladies Rares Génétiques à Expression Cutanée (MAGEC), CHU Dijon, Dijon, France
| |
Collapse
|
19
|
Sasaki Y, Ishikawa K, Hatanaka KC, Oyamada Y, Sakuhara Y, Shimizu T, Saito T, Murao N, Onodera T, Miura T, Maeda T, Funayama E, Hatanaka Y, Yamamoto Y, Sasaki S. Targeted next-generation sequencing for detection of PIK3CA mutations in archival tissues from patients with Klippel-Trenaunay syndrome in an Asian population : List the full names and institutional addresses for all authors. Orphanet J Rare Dis 2023; 18:270. [PMID: 37667289 PMCID: PMC10478188 DOI: 10.1186/s13023-023-02893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Klippel-Trenaunay syndrome (KTS) is a rare slow-flow combined vascular malformation with limb hypertrophy. KTS is thought to lie on the PIK3CA-related overgrowth spectrum, but reports are limited. PIK3CA encodes p110α, a catalytic subunit of phosphatidylinositol 3-kinase (PI3K) that plays an essential role in the PI3K/AKT/mammalian target of rapamycin (mTOR) signaling pathway. We aimed to demonstrate the clinical utility of targeted next-generation sequencing (NGS) in identifying PIK3CA mosaicism in archival formalin-fixed paraffin-embedded (FFPE) tissues from patients with KTS. RESULTS Participants were 9 female and 5 male patients with KTS diagnosed as capillaro-venous malformation (CVM) or capillaro-lymphatico-venous malformation (CLVM). Median age at resection was 14 years (range, 5-57 years). Median archival period before DNA extraction from FFPE tissues was 5.4 years (range, 3-7 years). NGS-based sequencing of PIK3CA achieved an amplicon mean coverage of 119,000x. PIK3CA missense mutations were found in 12 of 14 patients (85.7%; 6/8 CVM and 6/6 CLVM), with 8 patients showing the hotspot variants E542K, E545K, H1047R, and H1047L. The non-hotspot PIK3CA variants C420R, Q546K, and Q546R were identified in 4 patients. Overall, the mean variant allele frequency for identified PIK3CA variants was 6.9% (range, 1.6-17.4%). All patients with geographic capillary malformation, histopathological lymphatic malformation or macrodactyly of the foot had PIK3CA variants. No genotype-phenotype association between hotspot and non-hotspot PIK3CA variants was found. Histologically, the vessels and adipose tissues of the lesions showed phosphorylation of the proteins in the PI3K/AKT/mTOR signaling pathway, including p-AKT, p-mTOR, and p-4EBP1. CONCLUSIONS The PI3K/AKT/mTOR pathway in mesenchymal tissues was activated in patients with KTS. Amplicon-based targeted NGS could identify low-level mosaicism from low-input DNA extracted from FFPE tissues, potentially providing a diagnostic option for personalized medicine with inhibitors of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan.
| | - Kanako C Hatanaka
- Center for Development of Advanced Diagnostics, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Hokkaido, Japan
| | - Yumiko Oyamada
- Department of Diagnostic Pathology, Tonan Hospital, Hokkaido, Japan
| | - Yusuke Sakuhara
- Department of Diagnostic and Interventional Radiology, Tonan Hospital, Hokkaido, Japan
| | - Tadashi Shimizu
- Department of Diagnostic and Interventional Radiology, Tonan Hospital, Hokkaido, Japan
| | - Tatsuro Saito
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Hokkaido, Japan
- Riken Genesis Co., Ltd, Tokyo, Japan
| | - Naoki Murao
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Hokkaido, Japan
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Hokkaido, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Satoru Sasaki
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| |
Collapse
|
20
|
Zhang B, He R, Xu Z, Sun Y, Wei L, Li L, Liu Y, Guo W, Song L, Wang H, Lin Z, Ma L. Somatic mutation spectrum of a Chinese cohort of pediatrics with vascular malformations. Orphanet J Rare Dis 2023; 18:261. [PMID: 37658401 PMCID: PMC10474751 DOI: 10.1186/s13023-023-02860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/20/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Somatic mutations of cancer driver genes are found to be responsible for vascular malformations with clinical manifestations ranging from cutaneous birthmarks to life-threatening systemic anomalies. Till now, only a limited number of cases and mutations were reported in Chinese population. The purpose of this study was to describe the somatic mutation spectrum of a cohort of Chinese pediatrics with vascular malformations. METHODS Pediatrics diagnosed with various vascular malformations were collected between May 2019 and October 2020 from Beijing Children's Hospital. Genomic DNA of skin lesion of each patient was extracted and sequenced by whole-exome sequencing to identify pathogenic somatic mutations. Mutations with variant allele frequency less than 5% were validated by ultra-deep sequencing. RESULTS A total of 67 pediatrics (33 males, 34 females, age range: 0.1-14.8 years) were analyzed. Exome sequencing identified somatic mutations of corresponding genes in 53 patients, yielding a molecular diagnosis rate of 79.1%. Among 29 PIK3CA mutations, 17 were well-known hotspot p.E542K, p.E545K and p.H1047R/L. Non-hotspot mutations were prevalent in patients with PIK3CA-related overgrowth spectrum, accounting for 50.0% (11/22) of detected mutations. The hotspot GNAQ p.R183Q and TEK p.L914F mutations were responsible for the majority of port-wine stain/Sturge-Weber syndrome and venous malformation, respectively. In addition, we identified a novel AKT1 p.Q79K mutation in Proteus syndrome and MAP3K3 p.E387D mutation in verrucous venous malformation. CONCLUSIONS The somatic mutation spectrum of vascular malformations in Chinese population is similar to that reported in other populations, but non-hotspot PIK3CA mutations may also be prevalent. Molecular diagnosis may help the clinical diagnosis, treatment and management of these pediatric patients with vascular malformations.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China.
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China.
| | - Rui He
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Yujuan Sun
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Li Wei
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Li Li
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Yuanxiang Liu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China
| | - Wu Guo
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China
| | - Li Song
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450000, Henan, China
| | - Huijun Wang
- Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Guangzhou, 510091, China
| | - Zhimiao Lin
- Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Guangzhou, 510091, China.
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University (National Center for Children's Health, China), No. 56 Nanlishi Road, Xicheng District, Beijing, 100045, China.
| |
Collapse
|
21
|
Chen H, Sun B, Gao W, Qiu Y, Hua C, Lin X. Delineation of the phenotypes and genotypes of facial infiltrating lipomatosis associated with PIK3CA mutations. Orphanet J Rare Dis 2023; 18:189. [PMID: 37452404 PMCID: PMC10347770 DOI: 10.1186/s13023-023-02786-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Facial infiltrating lipomatosis (FIL) is a rare congenital disorder characterized by unilateral facial swelling, for which surgery is the prevailing therapeutic option. Several studies have shown that the development of FIL is closely associated with PIK3CA mutations. This study aimed to further identify rare clinical features and underlying molecular variants in patients with FIL. RESULTS Eighteen patients were included in this study, and all patients presented with infiltrating adipose tissues confirmed by magnetic resonance imaging. Macrodactyly, polydactyly, hemimegalencephaly and hemihyperplasia were also observed in patients with FIL. In total, eight different PIK3CA mutations were detected in tissues obtained from sixteen patients, including the missense mutations p.His1047Arg (n = 4), p.Cys420Arg (n = 2), p.Glu453Lys (n = 2), p.Glu542Lys (n = 2), p.Glu418Lys (n = 1), p.Glu545Lys (n = 1), and p.His1047Tyr (n = 1) and the deletion mutation p.Glu110del (n = 3). Furthermore, the GNAQ mutation p.Arg183Gln was detected in the epidermal nevus tissue of one patient. Imaging revealed that several patients carrying hotspot mutations had more severe adipose infiltration and skeletal deformities. CONCLUSIONS The abundant clinical presentations and genetic profiles of FIL make it difficult to treat. PIK3CA mutations drive the pathogenesis of FIL, and PIK3CA hotspot mutations may lead to more extensive infiltration of lipomatosis. Understanding the molecular variant profile of FIL will facilitate the application of novel PI3K-targeted inhibitors.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Bin Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Wei Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yajing Qiu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Chen Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
22
|
Zhang Y, Ma Z, Wang Y, Feng X, An Z. Phosphatidylinositol 3 kinase inhibitor-related pneumonitis: a systematic review and meta-analysis. Expert Rev Clin Pharmacol 2023; 16:855-863. [PMID: 37489925 DOI: 10.1080/17512433.2023.2238602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Serious phosphatidylinositol 3 kinase (PI3K) inhibitor-related pneumonitis has raised clinical concerns, and integrated data for this condition are lacking. METHODS Randomized controlled trials (RCTs) comparing PI3K inhibitor therapy with control treatments from electronic databases and registrations were searched from inception to 1 April 20231 April 2023seven1 April 2023. The outcomes of our study were the incidence and risk of all-grade and grade ≥ 3 PI3K inhibitor-associated pneumonitis compared with controls. RESULTS The meta-analysis included 13 studies comprising 3916 patients. The incidence of all-grade and grade ≥ 3 pneumonitis was 3.7% (82/2210) and 3.0% (35/1162) in patients treated with PI3K inhibitors. PI3K inhibitors significantly increased the risk of all-grade and grade ≥ 3 pneumonitis compared with controls (RR 5.63, 95% CI [2.97, 10.65], P < 0.00001; RR 6.85, 95% CI [2.45, 19.11], P = 0.0002, respectively) with no significant heterogeneity across studies. In terms of different PI3K inhibitors, copanlisib and idelalisib significantly increased the risk of pneumonitis compared to controls (RR 4.99, 95% CI [1.19, 21.01], P = 0.03; RR 5.53, 95% CI [2.35, 13.01], P < 0.0001, respectively). CONCLUSION PI3K inhibitors significantly increased the risk of pneumonitis compared with controls, and most cases are severe or even life-threatening. PROSPERO REGISTRATION NUMBER CRD42022318878.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhuo Ma
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yushu Wang
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xin Feng
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhuoling An
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Belli C, Repetto M, Anand S, Porta C, Subbiah V, Curigliano G. The emerging role of PI3K inhibitors for solid tumour treatment and beyond. Br J Cancer 2023; 128:2150-2162. [PMID: 36914722 PMCID: PMC10241926 DOI: 10.1038/s41416-023-02221-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) play a central role in tumourigenesis with recurrent activating mutations of its p110α subunit (PIK3CA) identified in several tumours. Although several PI3K inhibitors are approved for haematological malignancies, only alpelisib was approved in solid tumours and for the treatment of PIK3CA-related overgrowth spectrum (PROS) syndrome. Traditional PI3K inhibitors inhibit both wild-type and mutant PI3K with almost equal potency, thus limiting their efficacy due to on-target toxicity. Since the initiation of phase I clinical trials investigating next generation allosteric mutant and isoform selective PIK3CA inhibitors, there has been a surge in interest in PIK3CA targeting in solid tumours. Preclinical characterisation of these compounds showed that maximal mutant protein inhibition fails to elicit metabolic and glucose homoeostasis dysregulation, one of the dose limiting toxicities of both selective and pan PI3K inhibitors. While extreme selectivity can be hypothesised to grant activity and safety advantage to these novel agents, on the other hand reduced benefit can be speculated for patients harbouring multiple or rare PIK3CA mutations. This review summarises the current understanding of PI3K alterations and the state-of-the-art treatment strategies in PI3K driven solid tumours, while also exploring the potential intrinsic and acquired resistance mechanisms to these agents, and the emerging role of mutant selective PIK3CA inhibitors.
Collapse
Affiliation(s)
- Carmen Belli
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141, Milan, Italy
| | - Matteo Repetto
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Santosh Anand
- Department of Informatics, System, and Communications (DISCo), University of Milano-Bicocca, Milan, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy.
| |
Collapse
|
24
|
LoPresti MA, Du RY, Lee JE, Iacobas I, Bergstrom K, McClugage SG, Lam SK. Germline genetic mutations in pediatric cerebrovascular anomalies: a multidisciplinary approach to screening, testing, and management. J Neurosurg Pediatr 2023; 31:212-220. [PMID: 36681951 DOI: 10.3171/2022.11.peds22392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Genetic alterations are increasingly recognized as etiologic factors linked to the pathogenesis and development of cerebrovascular anomalies. Their identification allows for advanced screening and targeted therapeutic approaches. The authors aimed to describe the role of a collaborative approach to care and genetic testing in pediatric patients with neurovascular anomalies, with the objectives of identifying what genetic testing recommendations were made, the yield of genetic testing, and the implications for familial screening and management at present and in the future. METHODS The authors performed a descriptive retrospective cohort study examining pediatric patients genetically screened through the Pediatric Neurovascular Program of a single treatment center. Patients 18 years of age and younger with neurovascular anomalies, diagnosed radiographically or histopathologically, were evaluated for germline genetic testing. Patient demographic data and germline genetic testing and recommendation, clinical, treatment, and outcome data were collected and analyzed. RESULTS Sixty patients were included; 29 (47.5%) were female. The mean age at consultation was 11.0 ± 4.9 years. Diagnoses included cerebral arteriovenous malformations (AVMs) (n = 23), cerebral cavernous malformations (n = 19), non-neurofibromatosis/non-sickle cell moyamoya (n = 8), diffuse cerebral proliferative angiopathy, and megalencephaly-capillary malformation. Of the 56 patients recommended to have genetic testing, 40 completed it. Genetic alterations were found in 13 (23%) patients. Four patients with AVMs had RASA1, GDF2, and ACVRL1 mutations. Four patients with cavernous malformations had Krit1 mutations. One with moyamoya disease had an RNF213 mutation. Three patients with megalencephaly-capillary malformation had PIK3CA mutations, and 1 patient with a cavernous sinus lesion had an MED12 mutation. The majority of AVM patients were treated surgically. Patients with diffuse cerebral proliferative angiopathy were treated medically with sirolimus. At-risk relatives of 3 patients positive for genetic anomalies had also been tested. CONCLUSIONS This study demonstrates a role for exploring genetic alterations in the identification and treatment of pediatric neurovascular disease pathogenesis. Germline genetic mutations were found in almost one-quarter of the patients screened in this study, results that helped to identify medically targeted treatment modalities for some pediatric neurovascular patients. Insight into the genetic etiology of vascular anomalies may provide broader clinical implications for risk assessment, family screening, follow-up surveillance, and medical management.
Collapse
Affiliation(s)
- Melissa A LoPresti
- 1Department of Neurosurgery, Northwestern University Feinberg School of Medicine, and Division of Pediatric Neurosurgery, Lurie Children's Hospital, Chicago, Illinois
- 2Department of Neurosurgery, Baylor College of Medicine; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas
| | - Rebecca Y Du
- 1Department of Neurosurgery, Northwestern University Feinberg School of Medicine, and Division of Pediatric Neurosurgery, Lurie Children's Hospital, Chicago, Illinois
| | - Jae Eun Lee
- 2Department of Neurosurgery, Baylor College of Medicine; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas
| | - Ionela Iacobas
- 3Department of Pediatrics, Baylor College of Medicine; Section of Hematology Oncology, Vascular Anomalies Center, Texas Children's Hospital, Houston, Texas; and
| | - Katie Bergstrom
- 4Department of Pediatrics, Division of Genetics, Seattle Children's Hospital, Seattle, Washington
| | - Samuel G McClugage
- 2Department of Neurosurgery, Baylor College of Medicine; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas
| | - Sandi K Lam
- 1Department of Neurosurgery, Northwestern University Feinberg School of Medicine, and Division of Pediatric Neurosurgery, Lurie Children's Hospital, Chicago, Illinois
| |
Collapse
|
25
|
Blum N, Harris MP. Localized heterochrony integrates overgrowth potential of oncogenic clones. Dis Model Mech 2023; 16:286292. [PMID: 36621776 PMCID: PMC9932785 DOI: 10.1242/dmm.049793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Somatic mutations occur frequently and can arise during embryogenesis, resulting in the formation of a patchwork of mutant clones. Such mosaicism has been implicated in a broad range of developmental anomalies; however, their etiology is poorly understood. Patients carrying a common somatic oncogenic mutation in either PIK3CA or AKT1 can present with disproportionally large digits or limbs. How mutant clones, carrying an oncogenic mutation that often drives unchecked proliferation, can lead to controlled and coordinated overgrowth is unknown. We use zebrafish to explore the growth dynamics of oncogenic clones during development. Here, in a subset of clones, we observed a local increase in proportion of the fin skeleton closely resembling overgrowth phenotypes in patients. We unravel the cellular and developmental mechanisms of these overgrowths, and pinpoint the cell type and timing of clonal expansion. Coordinated overgrowth is associated with rapid clone expansion during early pre-chondrogenic phase of bone development, inducing a heterochronic shift that drives the change in bone size. Our study details how development integrates and translates growth potential of oncogenic clones, thereby shaping the phenotypic consequences of somatic mutations.
Collapse
Affiliation(s)
- Nicola Blum
- Department of Orthopaedics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Matthew P Harris
- Department of Orthopaedics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
26
|
Mussa A, Leoni C, Iacoviello M, Carli D, Ranieri C, Pantaleo A, Buonuomo PS, Bagnulo R, Ferrero GB, Bartuli A, Melis D, Maitz S, Loconte DC, Turchiano A, Piglionica M, De Luisi A, Susca FC, Bukvic N, Forleo C, Selicorni A, Zampino G, Onesimo R, Cappuccio G, Garavelli L, Novelli C, Memo L, Morando C, Della Monica M, Accadia M, Capurso M, Piscopo C, Cereda A, Di Giacomo MC, Saletti V, Spinelli AM, Lastella P, Tenconi R, Dvorakova V, Irvine AD, Resta N. Genotypes and phenotypes heterogeneity in PIK3CA-related overgrowth spectrum and overlapping conditions: 150 novel patients and systematic review of 1007 patients with PIK3CA pathogenetic variants. J Med Genet 2023; 60:163-173. [PMID: 35256403 DOI: 10.1136/jmedgenet-2021-108093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, Università degli Studi di Torino, Torino, Italy.,Pediatric Clinical Genetics, Regina Margherita Children's Hospital, Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Matteo Iacoviello
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, Università degli Studi di Torino, Torino, Italy.,Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children's Hospital, Città Della Salute e Della Scienza di Torino, Torino, Italy
| | - Carlotta Ranieri
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Antonino Pantaleo
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Paola Sabrina Buonuomo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - Rosanna Bagnulo
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Fisciano, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, MBBM Foundation, San Gerardo Hospital, Monza, Italy
| | - Daria Carmela Loconte
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Antonella Turchiano
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Marilidia Piglionica
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Annunziata De Luisi
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Francesco Claudio Susca
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Nenad Bukvic
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University Hospital, Napoli, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Novelli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
| | - Luigi Memo
- Department of Pediatrics, Neonatal Intensive Care Unit, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | - Carla Morando
- Department of Pediatrics, Neonatal Intensive Care Unit, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | | | - Maria Accadia
- Medical Genetics Unit, Hospital "Cardinale G. Panico", Tricase, Italy
| | - Martina Capurso
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Carmelo Piscopo
- Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy, Italy
| | - Anna Cereda
- Pediatric Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Veronica Saletti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Patrizia Lastella
- Centro Sovraziendale di Assistenza e Ricerca per le Malattie Rare, Internal Medicine Unit 'C. Frugoni', Ospedale Consorziale Policlinico di Bari, Bari, Italy
| | - Romano Tenconi
- Department of Pediatrics, Clinical Genetics, Universita degli Studi di Padova, Padova, Italy
| | - Veronika Dvorakova
- Dermatology Clinic, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Alan D Irvine
- Dermatology Clinic, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
27
|
Triana P, Sarmiento MDC, Rodriguez-Laguna L, Martinez-Glez V, Lopez-Gutierrez JC. Undergrowth Of First Toe In PiK3CA-Related Overgrowth Spectrum (PROS). Ann Vasc Surg 2023; 88:233-238. [PMID: 35878698 DOI: 10.1016/j.avsg.2022.06.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND PIK3CA-related overgrowth syndrome (PROS) include a heterogeneous group of disorders characterized by segmental overgrowth secondary to somatic mosaic activating variants in PIK3CA. Segmental undergrowth is more uncommon and has been less studied but pathogenic variants in PIK3CA have also been found. With this in mind, we have noticed a group of patients with PROS that present an undergrowth component associated with their focal overgrowth. METHODS Retrospective review of patients with PROS presenting overgrowth of the lower limb and undergrowth of the ipsilateral first toe was performed. RESULTS Six patients were included, 4 female and 2 male with a median age of 16.8 years. All patients presented a PROS phenotype with overgrowth of the lower limb and undergrowth of ipsilateral first toe. A PIK3CA pathogenic variant was confirmed in all patients. Patients underwent multiple treatments, currently all are receiving alpelisib with a mean duration of 15.8 months (1-39) and partial response in lipomatosis and vascular anomalies but no response in overgrowth and undergrowth so far. CONCLUSIONS Pathogenic variants in the same gene can create different phenotypes depending on the time and place of the mutation. There is little information regarding opposing phenotpyes in the same patient with PROS. The presence of undergrowth in our series might be explained by genetic, embryogenic, maternal, or placental factors but needs to be further investigated.
Collapse
Affiliation(s)
- Paloma Triana
- Pediatric surgery, La Paz Children's Hospital, Madrid, Spain.
| | | | - Lara Rodriguez-Laguna
- Vascular Malformations Section, Institute of Medical and Molecular Genetics, INGEMM-IdiPAZ, La Paz Hospital, Madrid, Spain
| | - Victor Martinez-Glez
- Vascular Malformations Section, Institute of Medical and Molecular Genetics, INGEMM-IdiPAZ, La Paz Hospital, Madrid, Spain; CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | | |
Collapse
|
28
|
Ladraa S, Zerbib L, Bayard C, Fraissenon A, Venot Q, Morin G, Garneau AP, Isnard P, Chapelle C, Hoguin C, Fraitag S, Duong JP, Guibaud L, Besançon A, Kaltenbach S, Villarese P, Asnafi V, Broissand C, Goudin N, Dussiot M, Nemazanyy I, Viel T, Autret G, Cruciani-Guglielmacci C, Denom J, Bruneau J, Tavitian B, Legendre C, Dairou J, Lacorte JM, Levy P, Pende M, Polak M, Canaud G. PIK3CA gain-of-function mutation in adipose tissue induces metabolic reprogramming with Warburg-like effect and severe endocrine disruption. SCIENCE ADVANCES 2022; 8:eade7823. [PMID: 36490341 PMCID: PMC9733923 DOI: 10.1126/sciadv.ade7823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
PIK3CA-related overgrowth syndrome (PROS) is a genetic disorder caused by somatic mosaic gain-of-function mutations of PIK3CA. Clinical presentation of patients is diverse and associated with endocrine disruption. Adipose tissue is frequently involved, but its role in disease development and progression has not been elucidated. Here, we created a mouse model of PIK3CA-related adipose tissue overgrowth that recapitulates patient phenotype. We demonstrate that PIK3CA mutation leads to GLUT4 membrane accumulation with a negative feedback loop on insulin secretion, a burst of liver IGFBP1 synthesis with IGF-1 sequestration, and low circulating levels. Mouse phenotype was mainly driven through AKT2. We also observed that PIK3CA mutation induces metabolic reprogramming with Warburg-like effect and protein and lipid synthesis, hallmarks of cancer cells, in vitro, in vivo, and in patients. We lastly show that alpelisib is efficient at preventing and improving PIK3CA-adipose tissue overgrowth and reversing metabolomic anomalies in both animal models and patients.
Collapse
Affiliation(s)
- Sophia Ladraa
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Lola Zerbib
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Charles Bayard
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Service d’Imagerie Pédiatrique, Hôpital Femme-Mère-Enfant, HCL, Bron, France
- CREATIS UMR 5220, Villeurbanne 69100, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
| | - Quitterie Venot
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Gabriel Morin
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Alexandre P. Garneau
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Pierre Isnard
- Université Paris Cité, Paris, France
- Service d’Anatomie pathologique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Célia Chapelle
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Clément Hoguin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Sylvie Fraitag
- Service d’Anatomie pathologique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jean-Paul Duong
- Université Paris Cité, Paris, France
- Service d’Anatomie pathologique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Laurent Guibaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Service d’Imagerie Pédiatrique, Hôpital Femme-Mère-Enfant, HCL, Bron, France
| | - Alix Besançon
- Université Paris Cité, Paris, France
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Centre des maladies endocriniennes rares de la croissance et du développement, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Sophie Kaltenbach
- Université Paris Cité, Paris, France
- Laboratoire d’Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Patrick Villarese
- Laboratoire d’Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Vahid Asnafi
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Laboratoire d’Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Nicolas Goudin
- Necker Bio-Image Analysis, INSERM US24/CNRS UMS 3633, Paris, France
| | - Michael Dussiot
- Université Paris Cité, Paris, France
- INSERM U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratoire d’Excellence GR-Ex, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Thomas Viel
- Plateforme Imageries du Vivant, Université de Paris, PARCC, INSERM, Paris, France
| | - Gwennhael Autret
- Plateforme Imageries du Vivant, Université de Paris, PARCC, INSERM, Paris, France
| | | | - Jessica Denom
- Université Paris Cité, Paris, France
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Paris, France
| | - Julie Bruneau
- Université Paris Cité, Paris, France
- Service d’Anatomie pathologique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Bertrand Tavitian
- Université Paris Cité, Paris, France
- Plateforme Imageries du Vivant, Université de Paris, PARCC, INSERM, Paris, France
| | - Christophe Legendre
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Service de Néphrologie, Transplantation Adultes, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Julien Dairou
- Université Paris Cité, Paris, France
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Paris, France
| | - Jean-Marc Lacorte
- Laboratoire de Biochimie Endocrinienne et Oncologique, Hôpital La Pitié Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Paris, France
| | - Pacifique Levy
- Laboratoire de Biochimie Endocrinienne et Oncologique, Hôpital La Pitié Salpêtrière, AP-HP, Paris, France
| | - Mario Pende
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Michel Polak
- Université Paris Cité, Paris, France
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Centre des maladies endocriniennes rares de la croissance et du développement, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Guillaume Canaud
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
29
|
Becker J, Gross UC, Weber DM, Weibel L, Theiler M, Brandt S, Bode PK. PIK3CA Mutational Analysis in Patients With Macrodactyly. Pediatr Dev Pathol 2022; 25:624-634. [PMID: 36314082 DOI: 10.1177/10935266221080155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Somatic mosaicism for PIK3CA mutations causes various types of growth disorders, which have been summarized under the term PROS (PIK3CA related overgrowth spectrum). Targeted therapy with PI3K inhibitors seems to be a promising alternative for severe PROS cases. Therefore, PIK3CA testing may become more relevant in the future. METHODS We report on 14 PROS patients, who had surgery for macrodactyly in the majority of cases. Clinical data were retrieved from the patient's records. Macroscopic and microscopic findings were retrospectively reviewed. Mutational analysis was performed on formalin-fixed paraffin-embedded (FFPE) material. RESULTS Patient age ranged from 7 months to 35 years. Five patients showed additional anomalies. One patient had CLOVES syndrome. The majority of the specimens were ray resections characterized by hypertrophic fat tissue. Overall, microscopy was subtle. The abnormal adipose tissue showed lobules exhibiting at least focally fibrous septa. In each case, we could detect a PIK3CA mutation. CONCLUSION Histology of affected fat tissue in PROS patients is overall nonspecific. Therefore, mutational analysis represents the key to the diagnosis, especially in unclear clinical cases. We demonstrated that FFPE material is suitable for PIK3CA testing, which can be considered as basis for targeted therapy with PI3K inhibitors.
Collapse
Affiliation(s)
- Jakob Becker
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Ulrike Camenisch Gross
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Daniel M Weber
- Division of Hand Surgery, Department of Pediatric Surgery, 30995University Children's Hospital Zürich, Zürich, Switzerland
| | - Lisa Weibel
- Pediatric Skin Center, Department of Dermatology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Theiler
- Pediatric Skin Center, Department of Dermatology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Simone Brandt
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland.,Institute of Pathology Medica, Zürich, Switzerland
| | - Peter K Bode
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Wenger TL, Ganti S, Bull C, Lutsky E, Bennett JT, Zenner K, Jensen DM, Dmyterko V, Mercan E, Shivaram GM, Friedman SD, Bindschadler M, Drusin M, Perkins JN, Kong A, Bly RA, Dahl JP, Bonilla-Velez J, Perkins JA. Alpelisib for the treatment of PIK3CA-related head and neck lymphatic malformations and overgrowth. Genet Med 2022; 24:2318-2328. [PMID: 36066547 PMCID: PMC11091962 DOI: 10.1016/j.gim.2022.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE PIK3CA-related overgrowth spectrum (PROS) conditions of the head and neck are treatment challenges. Traditionally, these conditions require multiple invasive interventions, with incomplete malformation removal, disfigurement, and possible dysfunction. Use of the PI3K inhibitor alpelisib, previously shown to be effective in PROS, has not been reported in PIK3CA-associated head and neck lymphatic malformations (HNLMs) or facial infiltrating lipomatosis (FIL). We describe prospective treatment of 5 children with PIK3CA-associated HNLMs or head and neck FIL with alpelisib monotherapy. METHODS A total of 5 children with PIK3CA-associated HNLMs (n = 4) or FIL (n = 1) received alpelisib monotherapy (aged 2-12 years). Treatment response was determined by parental report, clinical evaluation, diary/questionnaire, and standardized clinical photography, measuring facial volume through 3-dimensional photos and magnetic resonance imaging. RESULTS All participants had reduction in the size of lesion, and all had improvement or resolution of malformation inflammation/pain/bleeding. Common invasive therapy was avoided (ie, tracheotomy). After 6 or more months of alpelisib therapy, facial volume was reduced (range 1%-20%) and magnetic resonance imaging anomaly volume (range 0%-23%) were reduced, and there was improvement in swallowing, upper airway patency, and speech clarity. CONCLUSION Individuals with head and neck PROS treated with alpelisib had decreased malformation size and locoregional overgrowth, improved function and symptoms, and fewer invasive procedures.
Collapse
Affiliation(s)
- Tara L Wenger
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA.
| | - Sheila Ganti
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA; Division of Pediatric Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA
| | - Catherine Bull
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA; Division of Pediatric Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA
| | - Erika Lutsky
- Division of Pediatric Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA
| | - James T Bennett
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital, Seattle, WA
| | - Kaitlyn Zenner
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA
| | - Dana M Jensen
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital, Seattle, WA
| | - Victoria Dmyterko
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital, Seattle, WA
| | - Ezgi Mercan
- Craniofacial Center, Seattle Children's Hospital, Seattle, WA
| | - Giri M Shivaram
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA; Interventional Radiology, Department of Radiology, Seattle Children's Hospital, Seattle, WA
| | - Seth D Friedman
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA
| | - Michael Bindschadler
- Division of Neurology, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA
| | - Madeleine Drusin
- Division of Pediatric Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA; Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA
| | - Jonathan N Perkins
- Division of Pediatric Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA; Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA
| | - Ada Kong
- Investigational Drug Services, Seattle Children's Hospital, Seattle, WA
| | - Randall A Bly
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA; Division of Pediatric Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA; Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA
| | - John P Dahl
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA; Division of Pediatric Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA; Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA
| | - Juliana Bonilla-Velez
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA; Division of Pediatric Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA; Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA
| | - Jonathan A Perkins
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA; Division of Pediatric Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA; Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
31
|
Marechal E, Poliard A, Henry K, Moreno M, Legrix M, Macagno N, Mondielli G, Fauquier T, Barlier A, Etchevers HC. Multiple congenital malformations arise from somatic mosaicism for constitutively active Pik3ca signaling. Front Cell Dev Biol 2022; 10:1013001. [PMID: 36353506 PMCID: PMC9637999 DOI: 10.3389/fcell.2022.1013001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Recurrent missense mutations of the PIK3CA oncogene are among the most frequent drivers of human cancers. These often lead to constitutive activation of its product p110α, a phosphatidylinositol 3-kinase (PI3K) catalytic subunit. In addition to causing a broad range of cancers, the H1047R mutation is also found in affected tissues of a distinct set of congenital tumors and malformations. Collectively termed PIK3CA-related disorders (PRDs), these lead to overgrowth of brain, adipose, connective and musculoskeletal tissues and/or blood and lymphatic vessel components. Vascular malformations are frequently observed in PRD, due to cell-autonomous activation of PI3K signaling within endothelial cells. These, like most muscle, connective tissue and bone, are derived from the embryonic mesoderm. However, important organ systems affected in PRDs are neuroectodermal derivatives. To further examine their development, we drove the most common post-zygotic activating mutation of Pik3ca in neural crest and related embryonic lineages. Outcomes included macrocephaly, cleft secondary palate and more subtle skull anomalies. Surprisingly, Pik3ca-mutant subpopulations of neural crest origin were also associated with widespread cephalic vascular anomalies. Mesectodermal neural crest is a major source of non-endothelial connective tissue in the head, but not the body. To examine the response of vascular connective tissues of the body to constitutive Pik3ca activity during development, we expressed the mutation by way of an Egr2 (Krox20) Cre driver. Lineage tracing led us to observe new lineages that had normally once expressed Krox20 and that may be co-opted in pathogenesis, including vascular pericytes and perimysial fibroblasts. Finally, Schwann cell precursors having transcribed either Krox20 or Sox10 and induced to express constitutively active PI3K were associated with vascular and other tumors. These murine phenotypes may aid discovery of new candidate human PRDs affecting craniofacial and vascular smooth muscle development as well as the reciprocal paracrine signaling mechanisms leading to tissue overgrowth.
Collapse
Affiliation(s)
- Elise Marechal
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Anne Poliard
- URP 2496 Orofacial Pathologies, Imagery and Biotherapies, CNRS, GDR 2031 CREST-NET, Université Paris Cité, Montrouge, France
- School of Dentistry, Université Paris Cité, Montrouge, France
| | - Kilian Henry
- School of Dentistry, Université Paris Cité, Montrouge, France
| | - Mathias Moreno
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Mathilde Legrix
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Nicolas Macagno
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Grégoire Mondielli
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Teddy Fauquier
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Anne Barlier
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
- AP-HM, MMG, MarMaRa Institute, La Conception Hospital Laboratory of Molecular Biology, Marseille, France
| | - Heather C. Etchevers
- INSERM, MMG, U1251, CNRS, GDR 2031 CREST-NET, MarMaRa Institute, Aix Marseille University, Marseille, France
- *Correspondence: Heather C. Etchevers,
| |
Collapse
|
32
|
Gariépy-Assal L, Dubois J, Zwicker K, Pincivy A, Powell J, Zhang Y, Breakey V, Price V, Brandão LR, Carcao M, Kleiber N. Defining vascular anomaly phenotypes in children based on a systematic literature search: A critical step in developing a single severity score for interventional clinical trials. Pediatr Blood Cancer 2022; 69:e29869. [PMID: 35731233 DOI: 10.1002/pbc.29869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Genetically targeted drugs in vascular anomalies (VA) are used despite the absence of a validated severity score. The aim of this study was to evaluate the feasibility of grouping phenotypic VA clinical characteristics into a single severity score. METHODS A systematic literature review including children treated with sirolimus accompanied by a detailed description of phenotype and management was conducted. Demographic data and clinical features were extracted to define distinct categories of phenotypes. RESULTS Children with VA display two main phenotypes regardless of VA subtype, which may overlap. A systemic phenotype results from direct invasion and compression of vital structures generally leading to hospitalization and aggressive management in infancy. A functional phenotype is associated with chronic pain and disability manifesting mainly during early adolescence and managed in the outpatient setting. CONCLUSION The two distinct phenotypes described could be the basis for developing a unified scoring system for VA severity assessment.
Collapse
Affiliation(s)
- Laurence Gariépy-Assal
- Pediatric Residency Program, CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Josée Dubois
- Department of Radiology, CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada.,Vascular Anomaly Team, CHU Sainte-Justine, Université de Montréal, Canada.,Vascular Anomalies Canada, Anomalies Vasculaires, Montréal, Quebec, Canada.,Research Center, CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Kelley Zwicker
- Vascular Anomalies Canada, Anomalies Vasculaires, Montréal, Quebec, Canada.,Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Alix Pincivy
- Library, CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Julie Powell
- Vascular Anomaly Team, CHU Sainte-Justine, Université de Montréal, Canada.,Vascular Anomalies Canada, Anomalies Vasculaires, Montréal, Quebec, Canada.,Division of Dermatology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Yang Zhang
- Canadian Economic Analysis Department, Bank of Canada, Ottawa, Ontario, Canada
| | - Vicky Breakey
- Vascular Anomalies Canada, Anomalies Vasculaires, Montréal, Quebec, Canada.,Division of Pediatric Hematology/Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Victoria Price
- Vascular Anomalies Canada, Anomalies Vasculaires, Montréal, Quebec, Canada.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Leonardo R Brandão
- Vascular Anomalies Canada, Anomalies Vasculaires, Montréal, Quebec, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Manuel Carcao
- Vascular Anomalies Canada, Anomalies Vasculaires, Montréal, Quebec, Canada.,Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Niina Kleiber
- Vascular Anomaly Team, CHU Sainte-Justine, Université de Montréal, Canada.,Vascular Anomalies Canada, Anomalies Vasculaires, Montréal, Quebec, Canada.,Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada.,Research Center, CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
33
|
Sabir AH, Cocca A, Cheung M, Irving M. A challenging diagnosis of the PIK3CA-related overgrowth spectrum. Clin Dysmorphol 2022; 31:211-216. [PMID: 36005254 DOI: 10.1097/mcd.0000000000000425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ataf Hussain Sabir
- Department of Clinical Genetics, Lavender House, Birmingham Women's and Children's Hospital NHS Foundation Trust
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Alessandra Cocca
- Department of Paediatric Endocrinology, Evelina London Children's Hospital
| | - Moira Cheung
- Department of Paediatric Endocrinology, Evelina London Children's Hospital
- Guy's King's College and Saint Thomas' Hospitals' Medical and Dental School of King's College London, King's College London, School of Medical Education
| | - Melita Irving
- Guy's King's College and Saint Thomas' Hospitals' Medical and Dental School of King's College London, King's College London, School of Medical Education
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
34
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
35
|
Heym KM, Masand PM, Margolin JF. How we approach the diagnosis of a vascular anomaly. Pediatr Blood Cancer 2022; 69 Suppl 3:e29802. [PMID: 35709330 DOI: 10.1002/pbc.29802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/14/2022] [Accepted: 05/08/2022] [Indexed: 11/11/2022]
Abstract
Vascular anomalies represent a diverse group of complex disorders that can cause significant complications, including coagulopathies, pain, and decreased function. The diagnosis of vascular anomalies is often challenging due to heterogeneity of presenting phenotypes and overlapping clinical features with other pediatric conditions. Pediatric hematologists/oncologists (PHO) are uniquely positioned for an essential role in diagnosing, managing, and coordinating the multidisciplinary care required to maximize the quality of life of these patients. Here, we review the diagnostic approach involved in patients with vascular anomalies and utilize cases to highlight the challenges involved, and how PHOs can play a vital part in the care of these patients.
Collapse
Affiliation(s)
- Kenneth M Heym
- Department of Hematology/Oncology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Prakash M Masand
- Department of Radiology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Judith F Margolin
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
36
|
Watson KD, Kim KR, Blatt J. How we approach complex vascular anomalies and overgrowth syndromes. Pediatr Blood Cancer 2022; 69 Suppl 3:e29273. [PMID: 36070209 DOI: 10.1002/pbc.29273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023]
Abstract
Vascular anomalies, both vascular tumors and vascular malformations, can occur in isolation or as part of syndromes including those which feature phenotypic overgrowth. To update what is known about vascular anomalies associated with overgrowth, PubMed was searched for "overgrowth syndromes and vascular anomalies or malformations." PubMed, OMIM, and the Rare Disease Database also were searched for specific diagnoses. We review individual overgrowth syndromes, provide a case-based approach to the clinical, radiographic, pathologic, and genetic basis for diagnosis, to complications of both the vascular anomalies and the overgrowth, and emphasize the need for a multidisciplinary approach to care.
Collapse
Affiliation(s)
- Katherine D Watson
- Division of Pediatric Hematology/Oncology, Children's Cancer and Blood Disorders Center, Children's Hospital of the King's Daughters, Norfolk, Virginia, USA
| | - Kyung R Kim
- Division of Vascular & Interventional Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Julie Blatt
- Division of Pediatric Hematology Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Brain Abnormalities in PIK3CA-Related Overgrowth Spectrum: Physician, Patient, and Caregiver Experiences. Adv Ther 2022; 39:3871-3880. [PMID: 35857185 PMCID: PMC9297058 DOI: 10.1007/s12325-022-02246-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
PIK3CA-related overgrowth spectrum (PROS) disorders are caused by somatic, gain-of-function mutations in PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) that result in hyperactivation of the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PROS encompasses a broad spectrum of overlapping phenotypes that vary considerably in their severity and tissue distribution, leading to different and complex experiences for affected children and their families. The parent of a child with the PROS disorder megalencephaly-capillary malformation (MCAP) coauthored this article. MCAP is characterized by significant neurological involvement, and she describes personal experiences with this condition, including delays associated with obtaining a correct diagnosis, finding an experienced care team, challenges with schooling, medical complications, and the ongoing emotional and financial impacts on their lives. A physician perspective, which reinforces the challenges faced by the young child and his family, is provided by a clinician and researcher specializing in PROS disorders with central nervous system involvement. The physician reviews the mechanism of disease, some of the challenges in accurately diagnosing PROS conditions, disease-related complications, current treatment options and their limitations, and emerging therapeutic options including ongoing clinical trials. Our objective is to share these experiences and insights to benefit patients with PROS disorders, their families, and health care professionals involved with caring for patients with PROS.
Collapse
|
38
|
Wasilewska K, Gambin T, Rydzanicz M, Szczałuba K, Płoski R. Postzygotic mutations and where to find them - Recent advances and future implications in the field of non-neoplastic somatic mosaicism. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108426. [PMID: 35690331 DOI: 10.1016/j.mrrev.2022.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023]
Abstract
The technological progress of massively parallel sequencing (MPS) has triggered a remarkable development in the research on postzygotic mutations. Although the overwhelming majority of studies in the field focus on oncogenesis, non-neoplastic diseases are attracting more and more attention. The aim of this review was to summarize some of the most recent findings in the field of somatic mosaicism in diseases other than neoplastic events. We discuss the abundance and role of postzygotic mutations, with a special emphasis on disorders which occur only in a mosaic form (obligatory mosaic diseases; OMDs). Based on the list of OMDs compiled from the published literature and three databases (OMIM, Orphanet and MosaicBase), we demonstrate the prevalence of cancer-related genes across OMDs and suggest other sources to further explore OMDs and OMD-related genes. Additionally, we comment on some practical aspects related to mosaic diseases, such as approaches to tissue sampling, the MPS coverage required to detect variants at a very low frequency, as well as on bioinformatic and molecular tools dedicated to detect somatic mutations in MPS data.
Collapse
Affiliation(s)
- Krystyna Wasilewska
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland.
| |
Collapse
|
39
|
Diociaiuti A, Rotunno R, Pisaneschi E, Cesario C, Carnevale C, Condorelli AG, Rollo M, Di Cecca S, Quintarelli C, Novelli A, Zambruno G, El Hachem M. Clinical and Molecular Spectrum of Sporadic Vascular Malformations: A Single-Center Study. Biomedicines 2022; 10:biomedicines10061460. [PMID: 35740480 PMCID: PMC9220263 DOI: 10.3390/biomedicines10061460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 01/04/2023] Open
Abstract
Sporadic vascular malformations (VMs) are a large group of disorders of the blood and lymphatic vessels caused by somatic mutations in several genes—mainly regulating the RAS/MAPK/ERK and PI3K/AKT/mTOR pathways. We performed a cross-sectional study of 43 patients affected with sporadic VMs, who had received molecular diagnosis by high-depth targeted next-generation sequencing in our center. Clinical and imaging features were correlated with the sequence variants identified in lesional tissues. Six of nine patients with capillary malformation and overgrowth (CMO) carried the recurrent GNAQ somatic mutation p.Arg183Gln, while two had PIK3CA mutations. Unexpectedly, 8 of 11 cases of diffuse CM with overgrowth (DCMO) carried known PIK3CA mutations, and the remaining 3 had pathogenic GNA11 variants. Recurrent PIK3CA mutations were identified in the patients with megalencephaly–CM–polymicrogyria (MCAP), CLOVES, and Klippel–Trenaunay syndrome. Interestingly, PIK3CA somatic mutations were associated with hand/foot anomalies not only in MCAP and CLOVES, but also in CMO and DCMO. Two patients with blue rubber bleb nevus syndrome carried double somatic TEK mutations, two of which were previously undescribed. In addition, a novel sporadic case of Parkes Weber syndrome (PWS) due to an RASA1 mosaic pathogenic variant was described. Finally, a girl with a mild PWS and another diagnosed with CMO carried pathogenic KRAS somatic variants, showing the variability of phenotypic features associated with KRAS mutations. Overall, our findings expand the clinical and molecular spectrum of sporadic VMs, and show the relevance of genetic testing for accurate diagnosis and emerging targeted therapies.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
- Correspondence: ; Tel.: +39-0668592509
| | - Roberta Rotunno
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
| | - Elisa Pisaneschi
- Translational Cytogenomics Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (E.P.); (C.C.); (A.N.)
| | - Claudia Cesario
- Translational Cytogenomics Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (E.P.); (C.C.); (A.N.)
| | - Claudia Carnevale
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - Massimo Rollo
- Interventional Radiology Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Stefano Di Cecca
- Department Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (S.D.C.); (C.Q.)
| | - Concetta Quintarelli
- Department Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (S.D.C.); (C.Q.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Antonio Novelli
- Translational Cytogenomics Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (E.P.); (C.C.); (A.N.)
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.C.); (G.Z.)
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.C.); (M.E.H.)
| |
Collapse
|
40
|
Rodríguez-Laguna L, Davis K, Finger M, Aubel D, Vlamis R, Johnson C. Mapping the PIK3CA-related overgrowth spectrum (PROS) patient and caregiver journey using a patient-centered approach. Orphanet J Rare Dis 2022; 17:189. [PMID: 35526022 PMCID: PMC9077929 DOI: 10.1186/s13023-022-02338-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/26/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND PROS disorders are driven by somatic, gain-of-function mutations in PIK3CA that result in hyperactivation of the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PROS encompasses a broad spectrum of overlapping phenotypes (including overgrowth and vascular malformations) that vary significantly in their severity; every case is unique, leading to different, complex experiences. Here, we aim to describe the PROS experience from the patients' and caregivers' points of view, from onset to diagnosis to treatment and support. RESULTS The PROS patient journey was developed using a literature review, an ethnography study, health care professional (HCP) research, and social listening. It was then validated with patients, caregivers, and patient advocates. Physician research included 94 PROS centers and other vascular anomaly centers throughout the United States and Europe. Ethnographic research included 24 patients, caregivers, and/or advocates; selected data from 223 patients were reviewed. Key priority areas of need were identified, along with barriers to and potential enablers of quality care. Visual mapping of the PROS patient and family journey was developed to identify key personal health and system issues, and opportunities for improvements throughout patients' lifespans. Maps were also developed for 3 specific conditions: Klippel-Trénaunay syndrome (K-T); congenital lipomatous overgrowth, vascular malformations, epidermal nevi, scoliosis/skeletal and spinal anomalies (CLOVES) syndrome; and megalencephaly-capillary malformation syndrome (M-CM). Overall, most patients with PROS conditions and their families struggle with a long path to diagnosis, access to genetic testing, and finding qualified specialists. Following diagnosis, patients and families are frequently challenged with major medical events, comorbidities, unpredictability, frequent hospitalization, impact on school and work, the need for multidisciplinary care, unwanted attention, adverse impact on mental and emotional health, and financial pressures. Lack of effective pain management emerged as a substantial issue. Challenges and barriers to quality care shift throughout patients' lifespans; transition from pediatric to adult care can be especially difficult. CONCLUSIONS This patient journey in PROS was created in collaboration with patients, caregivers, and advocates as key partners. This novel methodology, which could be applied elsewhere, can more accurately identify areas of unmet need, barriers to care, education topics, and assist HCPs to understand the patient and family perspective.
Collapse
Affiliation(s)
- Lara Rodríguez-Laguna
- Vascular Malformations Section, Institute of Medical and Molecular Genetics, INGEMM-IdiPAZ, La Paz University Hospital, Paseo de La Castellana, 261, 28046, Madrid, Spain.
| | | | | | - Dawn Aubel
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Robin Vlamis
- Solstice HealthCommunications, Far Hills, NJ, USA
| | - Craig Johnson
- Interventional Radiology, Nemours Children's Hospital, Orlando, FL, USA
| |
Collapse
|
41
|
Öztürk Durmaz E, Demircioğlu D, Yalınay Dikmen P, Alanay Y, Alanay A, Demirkesen C, Tokat F, Karaarslan E. A Review on Cutaneous and Musculoskeletal Manifestations of CLOVES Syndrome. Clin Cosmet Investig Dermatol 2022; 15:621-630. [PMID: 35444443 PMCID: PMC9013705 DOI: 10.2147/ccid.s351637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 01/19/2023]
Abstract
CLOVES syndrome is a novel sporadic mosaic segmental overgrowth syndrome, currently categorized under the canopy of PROS (PIK3CA-related overgrowth spectrum) disorders. All PROS disorders harbor heterozygous postzygotic activating somatic mutations involving the PIK3CA gene. As an upstream regulator of the PI3K/AKT/mTOR signal transduction pathway, activating mutations of PIK3CA gene commence in uncontrolled growth of cutaneous, vascular (capillaries, veins, and lymphatics), adipose, neural, and musculoskeletal tissues. The excessive growth is segmental, patchy, asymmetric, and confined to body parts affected by the mutation. The term ‘CLOVES’ is an acronym denoting congenital lipomatous overgrowth, vascular malformations, epidermal nevi and spinal (scoliosis) and/ or skeletal anomalies. The syndrome is characterized by an admixture of overgrown tissues, derived mainly from mesoderm and neuroectoderm. Among PROS disorders, CLOVES syndrome represents the extreme end of the spectrum with massive affection of almost the entire body. The syndrome might judiciously be treated with medications hampering with the PI3K/AKT/mTOR signal transduction pathway. This article aims at reviewing the cutaneous and musculoskeletal manifestations of CLOVES syndrome, as the paradigm for PROS disorders. CLOVES syndrome and other PROS disorders are still misdiagnosed, underdiagnosed, underreported, and undertreated by the dermatology community.
Collapse
Affiliation(s)
- Emel Öztürk Durmaz
- Department of Dermatology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| | - Deniz Demircioğlu
- Department of Dermatology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| | - Pınar Yalınay Dikmen
- Department of Neurology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| | - Yasemin Alanay
- Department of Pediatrics, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| | - Ahmet Alanay
- Department of Orthopedics, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| | - Cüyan Demirkesen
- Department of Pathology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| | - Fatma Tokat
- Department of Pathology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| | - Ercan Karaarslan
- Department of Radiology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| |
Collapse
|
42
|
Harnarayan P, Harnanan D. The Klippel-Trénaunay Syndrome in 2022: Unravelling Its Genetic and Molecular Profile and Its Link to the Limb Overgrowth Syndromes. Vasc Health Risk Manag 2022; 18:201-209. [PMID: 35401004 PMCID: PMC8985909 DOI: 10.2147/vhrm.s358849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/24/2022] [Indexed: 01/19/2023] Open
Abstract
The Klippel-Trénaunay syndrome is an unusual syndrome of vascular and dermatologic manifestation in which patients demonstrate hemihypertrophy of the soft tissue and bones of one limb, cutaneous haemangiomas and varicosities in anatomically abnormal positions. Described in 1900 by two French physicians, the etiology remained unclear until recently, when evidence emerged that there was a genetic basis for this sporadic disorder. Genes that encoded pathological angiogenic factors and caused vascular dysmorphogenesis, explaining the molecular bases of this syndrome, were identified. Several angiogenic genes were identified but one gene, the AGGF1 (formerly VG5Q) gene, was seen in mutations involving patients diagnosed with Klippel-Trénaunay syndrome. Furthermore, this syndrome was also noted to have overlapping clinical features linked with the “overgrowth syndromes,” in which genetic mutations along somatic lines were identified. These involved The PI3K enzyme which forms part of the phosphoinositide 3–kinase pathway which is encoded by the PIK3CA-gene. This enzyme mediates embryonic cellular growth in-utero and diseases involved in this pathway are classified as members of the PIK3CA-related overgrowth syndrome. This paper reviews the status of what is now known about the molecular genetics of this unusual, but clinically challenging disorder and its differentiation from similar diseases, linked with the PIK3CA-gene and the related overgrowth syndromes.
Collapse
Affiliation(s)
- Patrick Harnarayan
- Department of Clinical Surgical Sciences, University of The West Indies, St. Augustine, Trinidad & Tobago, West Indies
- Correspondence: Patrick Harnarayan, Department of Clinical Surgical Sciences, University of The West Indies, St. Augustine, Trinidad & Tobago, West Indies, Email
| | - Dave Harnanan
- Department of Clinical Surgical Sciences, University of The West Indies, St. Augustine, Trinidad & Tobago, West Indies
| |
Collapse
|
43
|
Bourgon N, Carmignac V, Sorlin A, Duffourd Y, Philippe C, Thauvin-Robinet C, Guibaud L, Faivre L, Vabres P, Kuentz P. Clinical and molecular data in cases of prenatal localized overgrowth disorder: major implication of genetic variants in PI3K-AKT-mTOR signaling pathway. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:532-542. [PMID: 34170046 DOI: 10.1002/uog.23715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To describe clinical and molecular findings in a French multicenter cohort of fetuses with prenatal diagnosis of congenital abnormality and suspicion of a localized overgrowth disorder (LOD) suggestive of genetic variants in the PI3K-AKT-mTOR signaling pathway. METHODS We analyzed retrospectively data obtained between 1 January 2013 and 1 May 2020 from fetuses with brain and/or limb overgrowth referred for molecular diagnosis of PI3K-AKT-mTOR pathway genes by next-generation sequencing (NGS) using pathological tissue obtained by fetal autopsy. We also assessed the diagnostic yield of amniotic fluid. RESULTS During the study period, 21 subjects with LOD suspected of being secondary to a genetic variant of the PI3K-AKT-mTOR pathway were referred for analysis. Of these, 17 fetuses had brain overgrowth, including six with isolated megalencephaly (MEG) and 11 with hemimegalencephaly (HMEG). Of the six with MEG, germline variants were identified in four cases, in either PIK3R2, AKT3 or MTOR, and a postzygotic PIK3R2 variant was found in the other two cases. Of the 11 with HMEG, a postzygotic PIK3CA variant was found in three fetuses with extracerebral features of PIK3CA-related overgrowth spectrum, and in seven fetuses with isolated HMEG. No pathogenic variant was identified in the 11th case with HMEG. Four fetuses with limb overgrowth also had one or more lymphatic malformations (LM) and harbored a postzygotic PIK3CA variant. NGS on cultured amniocytes performed in 10 cases, of which nine had been found positive on analysis of pathological fetal tissue, showed variants in four, in either PIK3CA, PIK3R2 or AKT3. CONCLUSIONS Isolated MEG or HMEG may lead to identification of genetic variants in the PI3K-AKT-mTOR signaling pathway. Cases of limb overgrowth and LM or isolated HMEG are likely associated with PIK3CA variants. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- N Bourgon
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Service d'Obstétrique-Maternité, Chirurgie Médecine et Imagerie Fœtale, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - V Carmignac
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - A Sorlin
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence 'Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est', Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - Y Duffourd
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - C Philippe
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - C Thauvin-Robinet
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence 'Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est', Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - L Guibaud
- Service d'Imagerie Médicale, Hôpital Femme-Mère-Enfants, Hospices Civils de Lyon, Bron, France
| | - L Faivre
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence 'Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est', Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - P Vabres
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Service de Dermatologie, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - P Kuentz
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| |
Collapse
|
44
|
Update of Pediatric Lipomatous Lesions: A Clinicopathological, Immunohistochemical and Molecular Overview. J Clin Med 2022; 11:jcm11071938. [PMID: 35407546 PMCID: PMC8999862 DOI: 10.3390/jcm11071938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Lipomatous neoplasms are a rare entity in the pediatric population, comprising less than 10% of soft tissue tumors in the first two decades of life. Some characteristics of pediatric adipocytic tumors are analogous to their adult counterparts, some pediatric lipomatous lesions however harbor unique features. In recent years, there have been significant advances in the understanding of the pathogenesis and hence in the classification and treatment of pediatric adipocytic tumors. This literature-based article will provide a review of the presently known clinicopathological, immunohistochemical and molecular features of pediatric lipomatous lesions.
Collapse
|
45
|
Gökpınar İli E, Taşdelen E, Durmaz CD, Altıner Ş, Tuncalı T, Martinez-Glez V, Karabulut HG, Vural S, Ceylaner S, Acar MO, Ilgın Ruhi H. Phenotypic and molecular characterization of five patients with PIK3CA-related overgrowth spectrum (PROS). Am J Med Genet A 2022; 188:1792-1800. [PMID: 35238469 DOI: 10.1002/ajmg.a.62709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/18/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
Abstract
Somatic and germline PI3K-AKT-mTOR pathway pathogenic variants are involved in several segmental overgrowth phenotypes such as the PIK3CA-related overgrowth spectrum (PROS), Proteus syndrome, and PTEN hamartoma tumor syndrome. In this study, we describe five patients with PROS. We identified by high-throughput sequencing four different somatic PIK3CA pathogenic variants in five individuals. The Glu726Lys variant, which was previously reported in megalencephaly-capillary malformation-polymicrogyria (MCAP) syndrome, was identified in two patients with unclassified PROS. The Cys420Arg substitution, which was previously reported in CLOVES, was found in a patient with fibroadipose hyperplasia. Additionally, relatively rare pathogenic variants, His1047Tyr and Tyr1021Cys, were detected in two patients with MCAP. Therefore, we suggest performing deep sequencing of PIK3CA in all patients with suspected PROS, instead of targeted polymerase chain reaction for hotspot pathogenic variants.
Collapse
Affiliation(s)
- Ezgi Gökpınar İli
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey.,Genetic Diseases Center, Başakşehir Çam and Sakura City Hospital, İstanbul, Turkey
| | - Elifcan Taşdelen
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey.,Genetic Diseases Center, Şanlıurfa Eyyübiye Training and Research Hospital, Şanlıurfa, Turkey
| | - Ceren Damla Durmaz
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey.,Genetic Diseases Center, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey.,Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Şule Altıner
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Timur Tuncalı
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Victor Martinez-Glez
- Vascular Malformations Section, Institute of Medical and Molecular Genetics (INGEMM-IdiPAZ), Hospital Universitario La Paz, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | | | - Seçil Vural
- Department of Dermatology, Koç University School of Medicine, İstanbul, Turkey
| | - Serdar Ceylaner
- Intergen Genetic Diagnosis and Research Center, Ankara, Turkey
| | - Mustafa Oğuz Acar
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Hatice Ilgın Ruhi
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
46
|
Porrino J, Al-Dasuqi K, Irshaid L, Wang A, Kani K, Haims A, Maloney E. Update of pediatric soft tissue tumors with review of conventional MRI appearance-part 1: tumor-like lesions, adipocytic tumors, fibroblastic and myofibroblastic tumors, and perivascular tumors. Skeletal Radiol 2022; 51:477-504. [PMID: 34191084 DOI: 10.1007/s00256-021-03836-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 02/02/2023]
Abstract
There are numerous soft tissue tumors and tumor-like conditions in the pediatric population. Magnetic resonance imaging is the most useful modality for imaging these lesions. Although certain soft tissue lesions exhibit magnetic resonance features characteristic of a specific diagnosis, most lesions are indeterminate, and a biopsy is necessary for diagnosis. We provide a detailed update of soft tissue tumors and tumor-like conditions that occur in the pediatric population, emphasizing each lesion's conventional magnetic resonance imaging appearance, using the recently released 5th edition of the World Health Organization Classification of Soft Tissue and Bone Tumors as a guide. In part one of this review, pediatric tumor-like lesions, adipocytic tumors, fibroblastic and myofibroblastic tumors, and perivascular tumors are discussed. In part two, vascular lesions, fibrohistiocytic tumors, muscle tumors, peripheral nerve sheath tumors, tumors of uncertain differentiation, and undifferentiated small round cell sarcomas are reviewed. Per the convention of the WHO, these lesions involve the connective, subcutaneous, and other non-parenchymatous-organ soft tissues, as well as the peripheral and autonomic nervous system.
Collapse
Affiliation(s)
- Jack Porrino
- Yale Radiology and Biomedical Imaging, 330 Cedar Street, New Haven, CT, 06520, USA.
| | - Khalid Al-Dasuqi
- Yale Radiology and Biomedical Imaging, 330 Cedar Street, New Haven, CT, 06520, USA
| | - Lina Irshaid
- Yale School of Medicine Department of Pathology, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Annie Wang
- Yale Radiology and Biomedical Imaging, 330 Cedar Street, New Haven, CT, 06520, USA
| | - Kimia Kani
- Department of Radiology, University of Maryland Medical Center, 22 S Greene St, Baltimore, MD, 21201, USA
| | - Andrew Haims
- Yale Radiology and Biomedical Imaging, 330 Cedar Street, New Haven, CT, 06520, USA
| | - Ezekiel Maloney
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98105, USA
| |
Collapse
|
47
|
Stor ML, Lokhorst MM, Horbach SE, van der Horst CM. The long-term progression of macrodactyly. JPRAS Open 2022; 31:10-21. [PMID: 34869816 PMCID: PMC8626795 DOI: 10.1016/j.jpra.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Macrodactyly is a rare congenital disorder of overgrowth affecting the digits of the upper or lower extremity. Mostly, patients are surgically treated during childhood to reduce the digit or to stop growth. There are no standardized guidelines for the treatment and follow-up of macrodactyly. Consequently, follow-up may not be regularly scheduled into adulthood. METHODS A retrospective, descriptive analysis of patients with the long-term progression of macrodactyly who presented at our tertiary referral hospital between July 2018 and March 2020 was performed. All patients from our local macrodactyly database were screened for progression of macrodactyly since adulthood; this resulted in four patients. The aim of these case series is to highlight the clinical features and disease course at long-term follow-up. RESULTS All patients were surgically treated during childhood and showed progression of tissue overgrowth during adult life. All patients developed severe secondary degenerative bone changes in macrodactyly affected digits, such as ankyloses of joints, new bone formation, and bony spurs. Subsequently, tissue overgrowth and degenerative bone changes led to functional problems. CONCLUSION Patients with macrodactyly may experience growth during adult life, which may progress to deforming changes. Consequently, patients should be informed about the possible growth, and the progressive growth should be monitored.
Collapse
Affiliation(s)
- Merel L.E. Stor
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Max M. Lokhorst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Sophie E.R. Horbach
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Chantal M.A.M. van der Horst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Ng AT, Tower RL, Drolet BA. Targeted treatment of vascular anomalies. Int J Womens Dermatol 2022; 7:636-639. [PMID: 35024417 PMCID: PMC8721128 DOI: 10.1016/j.ijwd.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Vascular anomalies comprise an array of congenital developmental disorders that can lead to significant disfigurement and physiologic disarray. The vast multitude of clinical phenotypes has inherently led to misdiagnosis and patients and families enduring long diagnostic odysseys of medical care. Although the observed variation in disease manifestations remains poorly understood, targeted next-generation sequencing has pivoted our understanding of the pathobiology of vascular anomalies and, for the first time, uncovered potential pharmacologic targets for these disorders. In this review article, we highlight current and developing targeted therapies for vascular anomalies, namely phosphoinositide 3-kinase and mitogen-activated protein kinase pathway inhibitors, and discuss the future directions of targeted therapies.
Collapse
Affiliation(s)
- Ashley T Ng
- Department of Dermatology School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Richard L Tower
- Department of Pediatrics, Medical College of Wisconsin, Madison, Wisconsin
| | - Beth A Drolet
- Department of Dermatology School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
49
|
Su LX, Sun Y, Wang Z, Wang D, Yang X, Zheng L, Wen M, Fan X, Cai R. Complex vascular anomalies and tissue overgrowth of limbs associated with increased skin temperature and peripheral venous dilatation: parks weber syndrome or PROS? Hereditas 2022; 159:1. [PMID: 34980271 PMCID: PMC8725539 DOI: 10.1186/s41065-021-00217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 01/19/2023] Open
Abstract
PIK3CA-related overgrowth spectrum (PROS) is a series of congenital, sporadic disorders that are associated with segmental overgrowth phenotypes and postzygotic, somatic gene mutations in the PIK3CA-ATK-mTOR pathway. The variability and overlapping phenotypes between PROS and other complex vascular malformations make the differential diagnosis confusing and challenging. PROS should be considered for the differential diagnosis with other complex vascular malformations and syndromes with a tissue overgrowth phenotype, such as Parkes-Weber syndrome (PWS). Herein, we diagnosed one unique clinically challenging case manifested as capillary malformation (CM), limb overgrowth, as well as increased skin temperature and peripheral venous dilatation of lower limb that indicated a potential fast-flow lesion. The patient was initially diagnosed with PWS. Contrary to the previous diagnosis, based on further MR imaging and digital subtraction angiography (DSA), which ruled out the existence of AVMs and AVFs, and molecular analysis with targeted next-generation sequencing (NGS) revealing a somatic PIK3CA mutation, we ultimately diagnosed that the patient had a unique form of PROS simulating PWS phenotypes. We suggest that it is important to propose the differential diagnosis of PWS and PROS, two diseases that share a common overgrowth phenotype. We recommended radiological diagnosis such as MRI, CT and DSA as well as further molecular diagnosis to provide more information for the assessment of vascular lesions and to further guide clinical treatment strategies.
Collapse
Affiliation(s)
- Li Xin Su
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi Sun
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhenfeng Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Deming Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xitao Yang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lianzhou Zheng
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Mingzhe Wen
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xindong Fan
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Ren Cai
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
50
|
Douzgou S, Rawson M, Baselga E, Danielpour M, Faivre L, Kashanian A, Keppler-Noreuil KM, Kuentz P, Mancini GMS, Maniere MC, Martinez-Glez V, Parker VE, Semple RK, Srivastava S, Vabres P, de Wit MCY, Graham JM, Clayton-Smith J, Mirzaa GM, Biesecker LG. A standard of care for individuals with PIK3CA-related disorders: An international expert consensus statement. Clin Genet 2022; 101:32-47. [PMID: 34240408 PMCID: PMC8664971 DOI: 10.1111/cge.14027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023]
Abstract
Growth promoting variants in PIK3CA cause a spectrum of developmental disorders, depending on the developmental timing of the mutation and tissues involved. These phenotypically heterogeneous entities have been grouped as PIK3CA-Related Overgrowth Spectrum disorders (PROS). Deep sequencing technologies have facilitated detection of low-level mosaic, often necessitating testing of tissues other than blood. Since clinical management practices vary considerably among healthcare professionals and services across different countries, a consensus on management guidelines is needed. Clinical heterogeneity within this spectrum leads to challenges in establishing management recommendations, which must be based on patient-specific considerations. Moreover, as most of these conditions are rare, affected families may lack access to the medical expertise that is needed to help address the multi-system and often complex medical issues seen with PROS. In March 2019, macrocephaly-capillary malformation (M-CM) patient organizations hosted an expert meeting in Manchester, United Kingdom, to help address these challenges with regards to M-CM syndrome. We have expanded the scope of this project to cover PROS and developed this consensus statement on the preferred approach for managing affected individuals based on our current knowledge.
Collapse
Affiliation(s)
- Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, M13 9WL, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, M13 9PL, United Kingdom
| | - Myfanwy Rawson
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, M13 9WL, United Kingdom
| | - Eulalia Baselga
- Department of Dermatology, Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Moise Danielpour
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Centre, Los Angeles, CA 90048, USA; Department of Neurosurgery, Cedars-Sinai Medical Centre, Los Angeles, CA 90048, USA
| | - Laurence Faivre
- Department of Medical Genetics and Centre of Reference for Developmental Anomalies and Malformative syndromes, CHU de Dijon, 14 Rue Paul Gaffarel, 21000 Dijon, France
| | - Alon Kashanian
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Centre, Los Angeles, CA 90048, USA; Department of Neurosurgery, Cedars-Sinai Medical Centre, Los Angeles, CA 90048, USA
| | - Kim M Keppler-Noreuil
- Division of Genetics & Metabolism, Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul Kuentz
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, France
| | - Grazia MS Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Centre, 3015, GD, Rotterdam, the Netherlands
| | - Marie-Cecile Maniere
- Centre de Référence, Maladies orales et dentaires rares, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Victor Martinez-Glez
- IdiPAZ Research Institute, Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Victoria E Parker
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Robert K Semple
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pierre Vabres
- Department of Medical Genetics and Centre of Reference for Developmental Anomalies and Malformative syndromes, CHU de Dijon, 14 Rue Paul Gaffarel, 21000 Dijon, France
| | - Marie-Claire Y de Wit
- Department of Child Neurology, Sophia Children's hospital, Erasmus MC University Medical Centre Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - John M Graham
- Department of Paediatrics, Division of Medical Genetics, Cedars Sinai Medical Centre, David Geffen School of Medicine at UCLA, Los Angeles, CA 90048, USA
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, M13 9WL, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, M13 9PL, United Kingdom
| | - Ghayda M Mirzaa
- Genetic Medicine, Department of Paediatrics, University of Washington, Seattle, USA
| | - Leslie G Biesecker
- Centre for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|