1
|
Long T, Shu Y, Liu X, Huang L, Zeng L, Li L, Zhan J, Li H, Peng D. Abnormal temporal variability of thalamo-cortical circuit in patients with moderate-to-severe obstructive sleep apnea. J Sleep Res 2024; 33:e14159. [PMID: 38318885 DOI: 10.1111/jsr.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
This study investigated the abnormal dynamic functional connectivity (dFC) variability of the thalamo-cortical circuit in patients with obstructive sleep apnea (OSA) and explored the relationship between these changes and the clinical characteristics of patients with OSA. A total of 91 newly diagnosed patients with moderate-to-severe OSA and 84 education-matched healthy controls (HCs) were included. All participants underwent neuropsychological testing and a functional magnetic resonance imaging scan. We explored the thalamo-cortical dFC changes by dividing the thalamus into 16 subregions and combining them using a sliding-window approach. Correlation analysis assessed the relationship between dFC variability and clinical features, and the support vector machine method was used for classification. The OSA group exhibited increased dFC variability between the thalamic subregions and extensive cortical areas, compared with the HCs group. Decreased dFC variability was observed in some frontal-occipital-temporal cortical regions. These dFC changes positively correlated with daytime sleepiness, disease severity, and cognitive scores. Altered dFC variability contributed to the discrimination between patients with OSA and HCs, with a classification accuracy of 77.8%. Our findings show thalamo-cortical overactivation and disconnection in patients with OSA, disrupting information flow within the brain networks. These results enhance understanding of the temporal variability of thalamo-cortical circuits in patients with OSA.
Collapse
Affiliation(s)
- Ting Long
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiang Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ling Huang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lifeng Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Popescu M, Popescu EA, DeGraba TJ, Hughes JD. Altered long-range functional connectivity in PTSD: Role of the infraslow oscillations of cortical activity amplitude envelopes. Clin Neurophysiol 2024; 163:22-36. [PMID: 38669765 DOI: 10.1016/j.clinph.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE Coupling between the amplitude envelopes (AEs) of regional cortical activity reflects mechanisms that coordinate the excitability of large-scale cortical networks. We used resting-state MEG recordings to investigate the association between alterations in the coupling of cortical AEs and symptoms of post-traumatic stress disorder (PTSD). METHODS Participants (n = 96) were service members with combat exposure and various levels of post-traumatic stress severity (PTSS). We assessed the correlation between PTSS and (1) coupling of broadband cortical AEs of beta band activity, (2) coupling of the low- (<0.5 Hz) and high-frequency (>0.5 Hz) components of the AEs, and (3) their time-varying patterns. RESULTS PTSS was associated with widespread hypoconnectivity assessed from the broadband AE fluctuations, which correlated with subscores for the negative thoughts and feelings/emotional numbing (NTF/EN) and hyperarousal clusters of symptoms. Higher NTF/EN scores were also associated with smaller increases in resting-state functional connectivity (rsFC) with time during the recordings. The distinct patterns of rsFC in PTSD were primarily due to differences in the coupling of low-frequency (infraslow) fluctuations of the AEs of beta band activity. CONCLUSIONS Our findings implicate the mechanisms underlying the regulation/coupling of infraslow oscillations in the alterations of rsFC assessed from broadband AEs and in PTSD symptomatology. SIGNIFICANCE Altered coordination of infraslow amplitude fluctuations across large-scale cortical networks can contribute to network dysfunction and may provide a target for treatment in PTSD.
Collapse
Affiliation(s)
- Mihai Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Elena-Anda Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas J DeGraba
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - John D Hughes
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA; Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
3
|
Wang B, Yuan Y, Yang L, Huang Y, Zhang X, Zhang X, Yan W, Li Y, Li D, Xiang J, Yang J, Liu M. Multi-hierarchy Network Configuration Can Predict Brain States and Performance. J Cogn Neurosci 2024; 36:1695-1714. [PMID: 38579269 DOI: 10.1162/jocn_a_02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we propose an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.
Collapse
Affiliation(s)
- Bin Wang
- Taiyuan University of Technology
| | | | - Lan Yang
- Taiyuan University of Technology
| | | | - Xi Zhang
- Taiyuan University of Technology
| | | | | | - Ying Li
- Taiyuan University of Technology
| | | | | | | | | |
Collapse
|
4
|
Lv Z, Li J, Yao L, Guo X. Predicting resting-state brain functional connectivity from the structural connectome using the heat diffusion model: a multiple-timescale fusion method. J Neural Eng 2024; 21:026041. [PMID: 38565132 DOI: 10.1088/1741-2552/ad39a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Objective.Understanding the intricate relationship between structural connectivity (SC) and functional connectivity (FC) is pivotal for understanding the complexities of the human brain. To explore this relationship, the heat diffusion model (HDM) was utilized to predict FC from SC. However, previous studies using the HDM have typically predicted FC at a critical time scale in the heat kernel equation, overlooking the dynamic nature of the diffusion process and providing an incomplete representation of the predicted FC.Approach.In this study, we propose an alternative approach based on the HDM. First, we introduced a multiple-timescale fusion method to capture the dynamic features of the diffusion process. Additionally, to enhance the smoothness of the predicted FC values, we employed the Wavelet reconstruction method to maintain local consistency and remove noise. Moreover, to provide a more accurate representation of the relationship between SC and FC, we calculated the linear transformation between the smoothed FC and the empirical FC.Main results.We conducted extensive experiments in two independent datasets. By fusing different time scales in the diffusion process for predicting FC, the proposed method demonstrated higher predictive correlation compared with method considering only critical time points (Singlescale). Furthermore, compared with other existing methods, the proposed method achieved the highest predictive correlations of 0.6939±0.0079 and 0.7302±0.0117 on the two datasets respectively. We observed that the visual network at the network level and the parietal lobe at the lobe level exhibited the highest predictive correlations, indicating that the functional activity in these regions may be closely related to the direct diffusion of information between brain regions.Significance.The multiple-timescale fusion method proposed in this study provides insights into the dynamic aspects of the diffusion process, contributing to a deeper understanding of how brain structure gives rise to brain function.
Collapse
Affiliation(s)
- Zhengyuan Lv
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jingming Li
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaojuan Guo
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, People's Republic of China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
5
|
Wu Q, Lei H, Mao T, Deng Y, Zhang X, Jiang Y, Zhong X, Detre JA, Liu J, Rao H. Test-Retest Reliability of Resting Brain Small-World Network Properties across Different Data Processing and Modeling Strategies. Brain Sci 2023; 13:brainsci13050825. [PMID: 37239297 DOI: 10.3390/brainsci13050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) with graph theoretical modeling has been increasingly applied for assessing whole brain network topological organization, yet its reproducibility remains controversial. In this study, we acquired three repeated resting-state fMRI scans from 16 healthy controls during a strictly controlled in-laboratory study and examined the test-retest reliability of seven global and three nodal brain network metrics using different data processing and modeling strategies. Among the global network metrics, the characteristic path length exhibited the highest reliability, whereas the network small-worldness performed the poorest. Nodal efficiency was the most reliable nodal metric, whereas betweenness centrality showed the lowest reliability. Weighted global network metrics provided better reliability than binary metrics, and reliability from the AAL90 atlas outweighed those from the Power264 parcellation. Although global signal regression had no consistent effects on the reliability of global network metrics, it slightly impaired the reliability of nodal metrics. These findings provide important implications for the future utility of graph theoretical modeling in brain network analyses.
Collapse
Affiliation(s)
- Qianying Wu
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui Lei
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- College of Education, Hunan Agricultural University, Changsha 410127, China
| | - Tianxin Mao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yao Deng
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaocui Zhang
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410017, China
- Medical Psychological Institute, Central South University, Changsha 410017, China
- National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Yali Jiang
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410017, China
| | - Xue Zhong
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410017, China
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianghong Liu
- Department of Family and Community Health, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hengyi Rao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201613, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Zhang X, Zang Z. Evaluate the efficacy and reliability of functional gradients in within-subject designs. Hum Brain Mapp 2023; 44:2336-2344. [PMID: 36661209 PMCID: PMC10028665 DOI: 10.1002/hbm.26213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
The cerebral cortex is characterized as the integration of distinct functional principles that correspond to basic primary functions, such as vision and movement, and domain-general functions, such as attention and cognition. Diffusion embedding approach is a novel tool to describe transitions between different functional principles, and has been successively applied to investigate pathological conditions in between-group designs. What still lacking and urgently needed is the efficacy of this method to differentiate within-subject circumstances. In this study, we applied the diffusion embedding to eyes closed (EC) and eyes on (EO) resting-state conditions from 145 participants. We found significantly lower within-network dispersion of visual network (VN) (p = 7.3 × 10-4 ) as well as sensorimotor network (SMN) (p = 1 × 10-5 ) and between-network dispersion of VN (p = 2.3 × 10-4 ) under EC than EO, while frontoparietal network (p = 9.2 × 10-4 ) showed significantly higher between-network dispersion during EC than EO. Test-retest reliability analysis further displayed fair reliability (intraclass correlation coefficient [ICC] < 0.4) of the network dispersions (mean ICC = 0.116 ± 0.143 [standard deviation]) except for the within-network dispersion of SMN under EO (ICC = 0.407). And the reliability under EO was higher but not significantly higher than reliability under EC. Our study demonstrated that the diffusion embedding approach that shows fair reliability is capable of distinguishing EC and EO resting-state conditions, such that this method could be generalized to other within-subject designs.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
7
|
Lee PL, Lee TM, Lee WK, Chu NN, Shelepin YE, Hsu HT, Chang HH. The Full Informational Spectral Analysis for Auditory Steady-State Responses in Human Brain Using the Combination of Canonical Correlation Analysis and Holo-Hilbert Spectral Analysis. J Clin Med 2022; 11:jcm11133868. [PMID: 35807153 PMCID: PMC9267805 DOI: 10.3390/jcm11133868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Auditory steady-state response (ASSR) is a translational biomarker for several neurological and psychiatric disorders, such as hearing loss, schizophrenia, bipolar disorder, autism, etc. The ASSR is sinusoidal electroencephalography (EEG)/magnetoencephalography (MEG) responses induced by periodically presented auditory stimuli. Traditional frequency analysis assumes ASSR is a stationary response, which can be analyzed using linear analysis approaches, such as Fourier analysis or Wavelet. However, recent studies have reported that the human steady-state responses are dynamic and can be modulated by the subject’s attention, wakefulness state, mental load, and mental fatigue. The amplitude modulations on the measured oscillatory responses can result in the spectral broadening or frequency splitting on the Fourier spectrum, owing to the trigonometric product-to-sum formula. Accordingly, in this study, we analyzed the human ASSR by the combination of canonical correlation analysis (CCA) and Holo-Hilbert spectral analysis (HHSA). The CCA was used to extract ASSR-related signal features, and the HHSA was used to decompose the extracted ASSR responses into amplitude modulation (AM) components and frequency modulation (FM) components, in which the FM frequency represents the fast-changing intra-mode frequency and the AM frequency represents the slow-changing inter-mode frequency. In this paper, we aimed to study the AM and FM spectra of ASSR responses in a 37 Hz steady-state auditory stimulation. Twenty-five healthy subjects were recruited for this study, and each subject was requested to participate in two auditory stimulation sessions, including one right-ear and one left-ear monaural steady-state auditory stimulation. With the HHSA, both the 37 Hz (fundamental frequency) and the 74 Hz (first harmonic frequency) auditory responses were successfully extracted. Examining the AM spectra, the 37 Hz and the 74 Hz auditory responses were modulated by distinct AM spectra, each with at least three composite frequencies. In contrast to the results of traditional Fourier spectra, frequency splitting was seen at 37 Hz, and a spectral peak was obscured at 74 Hz in Fourier spectra. The proposed method effectively corrects the frequency splitting problem resulting from time-varying amplitude changes. Our results have validated the HHSA as a useful tool for steady-state response (SSR) studies so that the misleading or wrong interpretation caused by amplitude modulation in the traditional Fourier spectrum can be avoided.
Collapse
Affiliation(s)
- Po-Lei Lee
- Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan; (T.-M.L.); (H.-T.H.)
- Correspondence: (P.-L.L.); (H.-H.C.)
| | - Te-Min Lee
- Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan; (T.-M.L.); (H.-T.H.)
| | - Wei-Keung Lee
- Department of Rehabilitation, Taoyuan General Hospital, Taoyuan 330, Taiwan;
| | | | - Yuri E. Shelepin
- The Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
| | - Hao-Teng Hsu
- Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan; (T.-M.L.); (H.-T.H.)
| | - Hsiao-Huang Chang
- Division of Cardiovascular Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Correspondence: (P.-L.L.); (H.-H.C.)
| |
Collapse
|
8
|
Reduced nucleus accumbens functional connectivity in reward network and default mode network in patients with recurrent major depressive disorder. Transl Psychiatry 2022; 12:236. [PMID: 35668086 PMCID: PMC9170720 DOI: 10.1038/s41398-022-01995-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
The nucleus accumbens (NAc) is considered a hub of reward processing and a growing body of evidence has suggested its crucial role in the pathophysiology of major depressive disorder (MDD). However, inconsistent results have been reported by studies on reward network-focused resting-state functional MRI (rs-fMRI). In this study, we examined functional alterations of the NAc-based reward circuits in patients with MDD via meta- and mega-analysis. First, we performed a coordinated-based meta-analysis with a new SDM-PSI method for all up-to-date rs-fMRI studies that focused on the reward circuits of patients with MDD. Then, we tested the meta-analysis results in the REST-meta-MDD database which provided anonymous rs-fMRI data from 186 recurrent MDDs and 465 healthy controls. Decreased functional connectivity (FC) within the reward system in patients with recurrent MDD was the most robust finding in this study. We also found disrupted NAc FCs in the DMN in patients with recurrent MDD compared with healthy controls. Specifically, the combination of disrupted NAc FCs within the reward network could discriminate patients with recurrent MDD from healthy controls with an optimal accuracy of 74.7%. This study confirmed the critical role of decreased FC in the reward network in the neuropathology of MDD. Disrupted inter-network connectivity between the reward network and DMN may also have contributed to the neural mechanisms of MDD. These abnormalities have potential to serve as brain-based biomarkers for individual diagnosis to differentiate patients with recurrent MDD from healthy controls.
Collapse
|
9
|
Latency structure of BOLD signals within white matter in resting-state fMRI. Magn Reson Imaging 2022; 89:58-69. [PMID: 34999161 PMCID: PMC9851671 DOI: 10.1016/j.mri.2021.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Previous studies have demonstrated that BOLD signals in gray matter in resting-state functional MRI (RSfMRI) have variable time lags, representing apparent propagations of fMRI BOLD signals in gray matter. We complemented existing findings and explored the corresponding variations of signal latencies in white matter. METHODS We used data from the Brain Genomics Superstruct Project, consisting of 1412 subjects (both sexes included) and divided the dataset into ten equal groups to study both the patterns and reproducibility of latency estimates within white matter. We constructed latency matrices by computing cross-covariances between voxel pairs. We also applied a clustering analysis to identify functional networks within white matter, based on which latency analysis was also performed to investigate lead/lag relationship at network level. A dataset consisting of various sensory states (eyes closed, eyes open and eyes open with fixation) was also included to examine the relationship between latency structure and different states. RESULTS Projections of voxel latencies from the latency matrices were highly correlated (average Pearson correlation coefficient = 0.89) across the subgroups, confirming the reproducibility and structure of signal lags in white matter. Analysis of latencies within and between networks revealed a similar pattern of inter- and intra-network communication to that reported for gray matter. Moreover, a dominant direction, from inferior to superior regions, of BOLD signal propagation was revealed by higher resolution clustering. The variations of lag structure within white matter are associated with different sensory states. CONCLUSIONS These findings provide additional insight into the character and roles of white matter BOLD signals in brain functions.
Collapse
|
10
|
Guglielmini S, Bopp G, Marcar VL, Scholkmann F, Wolf M. Systemic physiology augmented functional near-infrared spectroscopy hyperscanning: a first evaluation investigating entrainment of spontaneous activity of brain and body physiology between subjects. NEUROPHOTONICS 2022; 9:026601. [PMID: 35449706 PMCID: PMC9016073 DOI: 10.1117/1.nph.9.2.026601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/18/2022] [Indexed: 05/27/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) enables measuring the brain activity of two subjects while they interact, i.e., the hyperscanning approach. Aim: In our exploratory study, we extended classical fNIRS hyperscanning by adding systemic physiological measures to obtain systemic physiology augmented fNIRS (SPA-fNIRS) hyperscanning while blocking and not blocking the visual communication between the subjects. This approach enables access brain-to-brain, brain-to-body, and body-to-body coupling between the subjects simultaneously. Approach: Twenty-four pairs of subjects participated in the experiment. The paradigm consisted of two subjects that sat in front of each other and had their eyes closed for 10 min, followed by a phase of 10 min where they made eye contact. Brain and body activity was measured continuously by SPA-fNIRS. Results: Our study shows that making eye contact for a prolonged time causes significant changes in brain-to-brain, brain-to-body, and body-to-body coupling, indicating that eye contact is followed by entrainment of the physiology between subjects. Subjects that knew each other generally showed a larger trend to change between the two conditions. Conclusions: The main point of this study is to introduce a new framework to investigate brain-to-brain, body-to-body, and brain-to-body coupling through a simple social experimental paradigm. The study revealed that eye contact leads to significant synchronization of spontaneous activity of the brain and body physiology. Our study is the first that employed the SPA-fNIRS approach and showed its usefulness to investigate complex interpersonal physiological changes.
Collapse
Affiliation(s)
- Sabino Guglielmini
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| | - Gino Bopp
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| | - Valentine L. Marcar
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
- University Hospital Zürich, Comprehensive Cancer Center Zürich, Zürich, Switzerland
| | - Felix Scholkmann
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zurich, Switzerland
| |
Collapse
|
11
|
Li Z, Hu J, Wang Z, You R, Cao D. Basal ganglia stroke is associated with altered functional connectivity of the left inferior temporal gyrus. J Neuroimaging 2022; 32:744-751. [PMID: 35175633 DOI: 10.1111/jon.12978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute cerebral infarction in the basal ganglia is associated with an increased risk of cognitive impairment, suggesting that cognitive networks might be involved in neural plasticity after ischemic stroke. This study was conducted to explore the abnormalities in functional and causal connectivity of the brain network in patients with acute ischemic stroke (AIS) in the basal ganglia. METHODS Resting-state functional magnetic resonance imaging was performed in 27 patients with AIS in the basal ganglia and 27 healthy controls (HCs). Brain regions with statistically different degree centrality (DC) values between groups were selected as seed points for granger causality analysis (GCA) analysis. The effective connectivity values of GCA were extracted, and the correlation between them and the Montreal Cognitive Assessment (MoCA) score was analyzed. RESULTS Compared with HCs group, AIS patients displayed increased DC value in the left inferior temporal gyrus (ITG) and hippocampus head, reduced effective connectivity from the left ITG to the left precentral and postcentral gyri, increased effective connectivity from the left precentral and postcentral gyri to the left ITG, and reduced effective connectivity from the left anterior cingulate gyrus to the left ITG. The MoCA score of the AIS group was lower than that of the HCs group (t = -7.33, p < .05). CONCLUSION Alterations of functional and causal connectivity among multiple brain regions suggest that patients with AIS in the basal ganglia have impairment of multifunctional networks in the whole brain.
Collapse
Affiliation(s)
- Zhongming Li
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianping Hu
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhimin Wang
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ruixiong You
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Dairong Cao
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Yang L, Wei J, Li Y, Wang B, Guo H, Yang Y, Xiang J. Test–Retest Reliability of Synchrony and Metastability in Resting State fMRI. Brain Sci 2021; 12:brainsci12010066. [PMID: 35053813 PMCID: PMC8773904 DOI: 10.3390/brainsci12010066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, interest has been growing in dynamic characteristic of brain signals from resting-state functional magnetic resonance imaging (rs-fMRI). Synchrony and metastability, as neurodynamic indexes, are considered as one of methods for analyzing dynamic characteristics. Although much research has studied the analysis of neurodynamic indices, few have investigated its reliability. In this paper, the datasets from the Human Connectome Project have been used to explore the test–retest reliabilities of synchrony and metastability from multiple angles through intra-class correlation (ICC). The results showed that both of these indexes had fair test–retest reliability, but they are strongly affected by the field strength, the spatial resolution, and scanning interval, less affected by the temporal resolution. Denoising processing can help improve their ICC values. In addition, the reliability of neurodynamic indexes was affected by the node definition strategy, but these effects were not apparent. In particular, by comparing the test–retest reliability of different resting-state networks, we found that synchrony of different networks was basically stable, but the metastability varied considerably. Among these, DMN and LIM had a relatively higher test–retest reliability of metastability than other networks. This paper provides a methodological reference for exploring the brain dynamic neural activity by using synchrony and metastability in fMRI signals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Xiang
- Correspondence: ; Tel.: +86-186-0351-1178
| |
Collapse
|
13
|
Chen F, Lv X, Fang J, Li T, Xu J, Wang X, Hong Y, Hong L, Wang J, Wang W, Wang C. Body-mind relaxation meditation modulates the thalamocortical functional connectivity in major depressive disorder: a preliminary resting-state fMRI study. Transl Psychiatry 2021; 11:546. [PMID: 34689151 PMCID: PMC8542047 DOI: 10.1038/s41398-021-01637-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 08/12/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Mindfulness-based interventions such as meditation have increasingly been utilized for the treatment of psychological disorders and have been shown to be effective in the treatment of depression and relapse prevention. However, it remains largely unclear the neural mechanism of the therapeutic effects of meditation among depressed individuals. In this study, we investigated how body-mind relaxation meditation (BMRM) can modulate the thalamocortical functional connectivity (FC) in major depressive disorder patients and healthy controls. In the present study, we recruited 21 medication-naive adolescents with major depressive disorder (MDDs) and 24 matched healthy controls (HCs). We designed an audio recording to induce body-mind relaxation meditation. Resting-state fMRI (rs-fMRI) scans were collected before and after the BMRM intervention in both groups. The thalamus subregions were defined according to the Human Brainnetome Atlas, and functional connectivity (FC) was measured and compared to find brain regions that were affected by the BMRM intervention. Before the BMRM intervention, MDDs showed reduced FC of the bilateral precuneus/post cingulate cortex with the left posterior parietal thalamus and left caudal temporal thalamus, as well as an increased FC of the left occipital thalamus with the left medial frontal cortex. Moreover, aberrant FCs in MDDs at baseline were normalized following the BMRM intervention. After the BMRM intervention, both MDDs and HCs showed decreased FC between the left rostral temporal thalamus and the left inferior occipital. Given the small sample used in this study, future studies are warranted to evaluate the generalizability of these findings. Our findings suggest that BMRM is associated with changes in thalamocortical functional connectivity in MDDs. BMRM may act by strengthening connections between the thalamus and the default mode network, which are involved in a variety of high-level functioning, such as attention and self-related processes.
Collapse
Affiliation(s)
- Fangfang Chen
- grid.263488.30000 0001 0472 9649College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060 China
| | - Xueyu Lv
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jiliang Fang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Tao Li
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jinping Xu
- grid.458489.c0000 0001 0483 7922Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Xiaoling Wang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Yang Hong
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Lan Hong
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jian Wang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Weidong Wang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Chao Wang
- School of Psychology, Shenzhen University, Shenzhen, 518060, China. .,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
14
|
Ely AV, Jagannathan K, Spilka N, Keyser H, Rao H, Franklin TR, Wetherill RR. Exploration of the influence of body mass index on intra-network resting-state connectivity in chronic cigarette smokers. Drug Alcohol Depend 2021; 227:108911. [PMID: 34364193 PMCID: PMC8464487 DOI: 10.1016/j.drugalcdep.2021.108911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Obesity and cigarette smoking are two leading preventable causes of death. Previous research suggests that comorbid smoking and obesity likely share neurobehavioral underpinnings; however, the influence of body mass index (BMI) on resting-state functional connectivity (rsFC) in smokers remains unknown. In this study, we explore how BMI affects rsFC and associations between rsFC and smoking-related behavior. METHODS Treatment-seeking cigarette smokers (N = 87; 54 % men) completed a BOLD resting-state fMRI scan session. We grouped smokers into BMI groups (N = 23 with obesity, N = 33 with overweight, N = 31 lean) and used independent components analysis (ICA) to identify the resting state networks commonly associated with cigarette smoking: salience network (SN), right and left executive control networks (ECN) and default mode network (DMN). Average rsFC values were extracted (p < 0.001, k = 100) to determine group differences in rsFC and relationship to self-reported smoking and dependence. RESULTS Analyses revealed a significant relationship between BMI and connectivity in the SN and a significant quadratic effect of BMI on DMN connectivity. Heavier smoking was related to greater rsFC in the SN among lean and obese groups but reduced rsFC in the overweight group. CONCLUSIONS Findings build on research suggesting an influence of BMI on the neurobiology of smokers. In particular, dysfunction of SN-DMN-ECN circuitry in smokers with overweight may lead to a failure to modulate attention and behavior and subsequent difficulty quitting smoking. Future research is needed to elucidate the mechanism underlying the interaction of BMI and smoking and its impact on treatment.
Collapse
Affiliation(s)
- Alice V. Ely
- Corresponding authors: University of Pennsylvania, Department of Psychiatry, 3535 Market St Suite 500, Philadelphia PA 19104, ,
| | | | | | | | | | | | - Reagan R. Wetherill
- Corresponding authors: University of Pennsylvania, Department of Psychiatry, 3535 Market St Suite 500, Philadelphia PA 19104, ,
| |
Collapse
|
15
|
Noble S, Scheinost D, Constable RT. A guide to the measurement and interpretation of fMRI test-retest reliability. Curr Opin Behav Sci 2021; 40:27-32. [PMID: 33585666 PMCID: PMC7875178 DOI: 10.1016/j.cobeha.2020.12.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The test-retest reliability of functional neuroimaging data has recently been a topic of much discussion. Despite early conflicting reports, converging reports now suggest that test-retest reliability is poor for standard univariate measures-namely, voxel- and region-level task-based activation and edge-level functional connectivity. To better understand the implications of these recent studies requires understanding the nuances of test-retest reliability as commonly measured by the intraclass correlation coefficient (ICC). Here we provide a guide to the measurement and interpretation of test-retest reliability in functional neuroimaging and review major findings in the literature. We highlight the importance of making choices that improve reliability so long as they do not diminish validity, pointing to the potential of multivariate approaches that improve both. Finally, we discuss the implications of recent reports of low test-retest reliability in the context of ongoing work in the field.
Collapse
Affiliation(s)
- Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine
- Department of Statistics and Data Science, Yale University
- Child Study Center, Yale School of Medicine
- Department of Biomedical Engineering, Yale School of Medicine
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine
- Child Study Center, Yale School of Medicine
- Department of Biomedical Engineering, Yale School of Medicine
- Department of Neurosurgery, Yale School of Medicine
| |
Collapse
|
16
|
Guerreiro MJS, Linke M, Lingareddy S, Kekunnaya R, Röder B. The effect of congenital blindness on resting-state functional connectivity revisited. Sci Rep 2021; 11:12433. [PMID: 34127748 PMCID: PMC8203782 DOI: 10.1038/s41598-021-91976-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Lower resting-state functional connectivity (RSFC) between 'visual' and non-'visual' neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition-as well as to evaluate the effect of resting state condition on group differences in RSFC-, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between 'visual' and non-'visual' circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.
Collapse
Affiliation(s)
- Maria J S Guerreiro
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany.
- Biological Psychology, Department of Psychology, Carl Von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany.
| | - Madita Linke
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
| | - Sunitha Lingareddy
- Department of Radiology, Lucid Medical Diagnostics, Banjara Hills, Hyderabad, Telengana, 500082, India
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V. Ramanamma Children's Eye Care Center, Department of Pediatric Ophthalmology, Strabismus, and Neuro-Ophthalmology, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telengana, 500034, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
| |
Collapse
|
17
|
Modular and state-relevant functional network connectivity in high-frequency eyes open vs eyes closed resting fMRI data. J Neurosci Methods 2021; 358:109202. [PMID: 33951454 PMCID: PMC10187826 DOI: 10.1016/j.jneumeth.2021.109202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/11/2021] [Accepted: 04/22/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Resting-state fMRI (rs-fMRI) is employed to assess "functional connections" of signal between brain regions. However, multiple rs-fMRI paradigms and data-filtering strategies have been used, highlighting the need to explore BOLD signal across the spectrum. Rs-fMRI data is typically filtered at frequencies ranging between 0.008∼0.2 Hz to mitigate nuisance signal (e.g. cardiac, respiratory) and maximize neuronal BOLD signal. However, some argue neuronal BOLD signal may be parsed at higher frequencies. NEW METHOD To assess the contributions of rs-fMRI along the BOLD spectra on functional network connectivity (FNC) matrices, a spatially constrained independent component analysis (ICA) was performed at seven different frequency "bins", after which FNC values and FNC measures of matrix-randomness were assessed using linear mixed models. RESULTS Results show FNCs at higher-frequency bins display similar randomness to those from the typical frequency bins (0.01-0.15), while the largest values are in the 0.31-0.46 Hz bin. Eyes open (EO) vs eyes closed (EC) comparison found EC was less random than EO across most frequency bins. Further, FNC was greater in EC across auditory and cognitive control pairings while EO values were greater in somatomotor, visual, and default mode FNC. COMPARISON WITH EXISTING METHODS Effect sizes of frequency and resting-state paradigm vary from small to large, but the most notable results are specific to frequency ranges and resting-state paradigm with artifacts like motion displaying negligible effect sizes. CONCLUSIONS These suggest unique information may be derived from FNC matrices across frequencies and paradigms, but additional data is necessary prior to any definitive conclusions.
Collapse
|
18
|
Honnorat N, Saranathan M, Sullivan EV, Pfefferbaum A, Pohl KM, Zahr NM. Performance ramifications of abnormal functional connectivity of ventral posterior lateral thalamus with cerebellum in abstinent individuals with Alcohol Use Disorder. Drug Alcohol Depend 2021; 220:108509. [PMID: 33453503 PMCID: PMC7889734 DOI: 10.1016/j.drugalcdep.2021.108509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
The extant literature supports the involvement of the thalamus in the cognitive and motor impairment associated with chronic alcohol consumption, but clear structure/function relationships remain elusive. Alcohol effects on specific nuclei rather than the entire thalamus may provide the basis for differential cognitive and motor decline in Alcohol Use Disorder (AUD). This functional MRI (fMRI) study was conducted in 23 abstinent individuals with AUD and 27 healthy controls to test the hypothesis that functional connectivity between anterior thalamus and hippocampus would be compromised in those with an AUD diagnosis and related to mnemonic deficits. Functional connectivity between 7 thalamic structures [5 thalamic nuclei: anterior ventral (AV), mediodorsal (MD), pulvinar (Pul), ventral lateral posterior (VLP), and ventral posterior lateral (VPL); ventral thalamus; the entire thalamus] and 14 "functional regions" was evaluated. Relative to controls, the AUD group exhibited different VPL-based functional connectivity: an anticorrelation between VPL and a bilateral middle temporal lobe region observed in controls became a positive correlation in the AUD group; an anticorrelation between the VPL and the cerebellum was stronger in the AUD than control group. AUD-associated altered connectivity between anterior thalamus and hippocampus as a substrate of memory compromise was not supported; instead, connectivity differences from controls selective to VPL and cerebellum demonstrated a relationship with impaired balance. These preliminary findings support substructure-level evaluation in future studies focused on discerning the role of the thalamus in AUD-associated cognitive and motor deficits.
Collapse
Affiliation(s)
- Nicolas Honnorat
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.
| | - Manojkumar Saranathan
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA.
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Adolf Pfefferbaum
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Kilian M Pohl
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Natalie M Zahr
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Lin H, Lin Q, Li H, Wang M, Chen H, Liang Y, Bu X, Wang W, Yi Y, Zhao Y, Zhang X, Xie Y, Du S, Yang C, Huang X. Functional Connectivity of Attention-Related Networks in Drug-Naïve Children With ADHD. J Atten Disord 2021; 25:377-388. [PMID: 30259777 DOI: 10.1177/1087054718802017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective: This study aimed to explore alterations of seed-based functional connectivity (FC) in dorsal attention network (DAN), ventral attention network (VAN), and default mode network (DMN) in ADHD children. Method: A voxel-based comparison of FC maps between 46 drug-naïve children with ADHD and 31 healthy controls (HCs) and correlation analysis between connectivity features and behavior were performed. Results: Compared with the HCs, children with ADHD were characterized by hyperconnectivity between DAN and regions of DMN and by hyperconnectivity between DMN and a set of regions involved in somatosensory, visual, and auditory cortices. No significant group different FC was found between VAN and the whole brain. Higher FC between DMN and somatosensory, visual, and auditory cortex was associated with better performance in attention and executive function. Conclusion: The dysregulation of networks in children with ADHD not only involves the DAN and DMN but also the somatosensory, motor, visual, and auditory networks.
Collapse
Affiliation(s)
- Haixi Lin
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Qingxia Lin
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Hailong Li
- West China Hospital of Sichuan University, Chengdu, China
| | - Meihao Wang
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Hong Chen
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Yan Liang
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Xuan Bu
- West China Hospital of Sichuan University, Chengdu, China
| | - Weiqian Wang
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Yanhong Yi
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Yongzhong Zhao
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaoyan Zhang
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Yupeng Xie
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Songmei Du
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Chuang Yang
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaoqi Huang
- West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Wills KE, González HFJ, Johnson GW, Haas KF, Morgan VL, Narasimhan S, Englot DJ. People with mesial temporal lobe epilepsy have altered thalamo-occipital brain networks. Epilepsy Behav 2021; 115:107645. [PMID: 33334720 PMCID: PMC7882020 DOI: 10.1016/j.yebeh.2020.107645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
While temporal lobe epilepsy (TLE) is a focal epilepsy, previous work demonstrates that TLE causes widespread brain-network disruptions. Impaired visuospatial attention and learning in TLE may be related to thalamic arousal nuclei connectivity. Our prior preliminary work in a smaller patient cohort suggests that patients with TLE demonstrate abnormal functional connectivity between central lateral (CL) thalamic nucleus and medial occipital lobe. Others have shown pulvinar connectivity disturbances in TLE, but it is incompletely understood how TLE affects pulvinar subnuclei. Also, the effects of epilepsy surgery on thalamic functional connectivity remains poorly understood. In this study, we examine the effects of TLE on functional connectivity of two key thalamic arousal-nuclei: lateral pulvinar (PuL) and CL. We evaluate resting-state functional connectivity of the PuL and CL in 40 patients with TLE and 40 controls using fMRI. In 25 patients, postoperative images (>1 year) were also compared with preoperative images. Compared to controls, patients with TLE exhibit loss of normal positive connectivity between PuL and lateral occipital lobe (p < 0.05), and a loss of normal negative connectivity between CL and medial occipital lobe (p < 0.01, paired t-tests). FMRI amplitude of low-frequency fluctuation (ALFF) in TLE trended higher in ipsilateral PuL (p = 0.06), but was lower in the lateral occipital (p < 0.01) and medial occipital lobe in patients versus controls (p < 0.05, paired t-tests). More abnormal ALFF in the ipsilateral lateral occipital lobe is associated with worse preoperative performance on Rey Complex Figure Test Immediate (p < 0.05, r = 0.381) and Delayed scores (p < 0.05, r = 0.413, Pearson's Correlations). After surgery, connectivity between PuL and lateral occipital lobe remains abnormal in patients (p < 0.01), but connectivity between CL and medial occipital lobe improves and is no longer different from control values (p > 0.05, ANOVA, post hoc Fischer's LSD). In conclusion, thalamic arousal nuclei exhibit abnormal connectivity with occipital lobe in TLE, and some connections may improve after surgery. Studying thalamic arousal centers may help explain distal network disturbances in TLE.
Collapse
Affiliation(s)
- Kristin E Wills
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Hernán F J González
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA
| | - Graham W Johnson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA
| | - Kevin F Haas
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Victoria L Morgan
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA; Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saramati Narasimhan
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dario J Englot
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Tang TY, Luan Y, Jiao Y, Zhang J, Ju SH, Teng GJ. Disrupted Amygdala Connectivity Is Associated With Elevated Anxiety in Sensorineural Hearing Loss. Front Neurosci 2020; 14:616348. [PMID: 33362462 PMCID: PMC7758419 DOI: 10.3389/fnins.2020.616348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Hearing loss is associated with rising risks of emotional impairments, suggesting emotional processing networks might be involved in the neural plasticity after hearing loss. This study was conducted to explore how functional connectivity of the amygdala reconfigures in the auditory deprived brain and better understand the neural mechanisms underlying hearing loss-related emotional disturbances. Methods: In total, 38 chronic sensorineural hearing loss (SNHL) patients and 37 healthy controls were recruited for multimodal magnetic resonance imaging scanning and neuropsychological assessments. Voxel-wise functional connectivity (FC) maps of both the left and right amygdala were conducted and compared between the SNHL patients and healthy controls. The uncinate fasciculus (UF), an association fiber pathway, was reconstructed in both groups. The track number, mean track length, fractional anisotropy (FA) and mean diffusion values of the left and right UF were further quantified, respectively. Besides, Pearson's correlation analyses were conducted to investigate the relationship between the functional/structural abnormalities and the negative emotional states in SNHL patients. Results: The SNHL patients presented higher depressive and anxious levels compared to the healthy controls. Decreased FCs were detected between the amygdala and the auditory cortex, striatum, multimodal processing areas, and frontoparietal control areas in the SNHL patients. The amygdala was found to be structurally connected with several FC decreased regions through the UF. Moreover, the hypo-synchronization and the white matter impairment were both found to be associated with patients' elevated anxious status. Conclusions: These functional and structural findings depicted the reconfiguration of the amygdala in SNHL, which provided a new perspective toward the functional circuit mechanisms targeting the emotional impairments related to hearing loss.
Collapse
Affiliation(s)
- Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Ying Luan
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Sheng-Hong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
22
|
Mayeli A, Al Zoubi O, Misaki M, Stewart JL, Zotev V, Luo Q, Phillips R, Fischer S, Götz M, Paulus MP, Refai H, Bodurka J. Integration of Simultaneous Resting-State Electroencephalography, Functional Magnetic Resonance Imaging, and Eye-Tracker Methods to Determine and Verify Electroencephalography Vigilance Measure. Brain Connect 2020; 10:535-546. [PMID: 33112650 DOI: 10.1089/brain.2019.0731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background/Introduction: Concurrent electroencephalography and resting-state functional magnetic resonance imaging (rsfMRI) have been widely used for studying the (presumably) awake and alert human brain with high temporal/spatial resolution. Although rsfMRI scans are typically collected while individuals are instructed to focus their eyes on a fixated cross, objective and verified experimental measures to quantify degree of vigilance are not readily available. Electroencephalography (EEG) is the modality extensively used for estimating vigilance, especially during eyes-closed resting state. However, pupil size measured using an eye-tracker device could provide an indirect index of vigilance. Methods: Three 12-min resting scans (eyes open, fixating on the cross) were collected from 10 healthy control participants. We simultaneously collected EEG, fMRI, physiological, and eye-tracker data and investigated the correlation between EEG features, pupil size, and heart rate. Furthermore, we used pupil size and EEG features as regressors to find their correlations with blood-oxygen-level-dependent fMRI measures. Results: EEG frontal and occipital beta power (FOBP) correlates with pupil size changes, an indirect index for locus coeruleus activity implicated in vigilance regulation (r = 0.306, p < 0.001). Moreover, FOBP also correlated with heart rate (r = 0.255, p < 0.001), as well as several brain regions in the anticorrelated network, including the bilateral insula and inferior parietal lobule. Discussion: In this study, we investigated whether simultaneous EEG-fMRI combined with eye-tracker measurements can be used to determine EEG signal feature associated with vigilance measures during eyes-open rsfMRI. Our results support the conclusion that FOBP is an objective measure of vigilance in healthy human subjects. Impact statement We revealed an association between electroencephalography frontal and occipital beta power (FOBP) and pupil size changes during an eyes-open resting state, which supports the conclusion that FOBP could serve as an objective measure of vigilance in healthy human subjects. The results were validated by using simultaneously recorded heart rate and functional magnetic resonance imaging (fMRI). Interestingly, independently verified heart rate changes can also provide an easy-to-determine measure of vigilance during resting-state fMRI. These findings have important implications for an analysis and interpretation of dynamic resting-state fMRI connectivity studies in health and disease.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.,School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, Oklahoma, USA
| | - Obada Al Zoubi
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.,School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, Oklahoma, USA
| | - Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | | | - Vadim Zotev
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Qingfei Luo
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | | | | | | | | | - Hazem Refai
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, Oklahoma, USA
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.,Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, Oklahoma, USA
| |
Collapse
|
23
|
Hopman RJ, LoTemplio SB, Scott EE, McKinney TL, Strayer DL. Resting-state posterior alpha power changes with prolonged exposure in a natural environment. Cogn Res Princ Implic 2020; 5:51. [PMID: 33108586 PMCID: PMC7591649 DOI: 10.1186/s41235-020-00247-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022] Open
Abstract
Exposure to environments that contain natural features can benefit mood, cognition, and physiological responses. Previous research proposed exposure to nature restores voluntary attention - attention that is directed towards a task through top down control. Voluntary attention is limited in capacity and depletes with use. Nature provides unique stimuli that do not require voluntary attention; therefore, the neural resources needed for attention to operate efficiently are theorized to restore when spending time in nature. Electroencephalography reflects changes in attention through fluctuations in power within specific frequencies. The current study (N = 29) measured changes in averaged resting state posterior alpha power before, during, and after a multiday nature exposure. Linear mixed-effects models revealed posterior alpha power was significantly lower during the nature exposure compared to pre-trip and post-trip testing, suggesting posterior alpha power may be a potential biomarker for differences related to exposure to natural and urban environments.
Collapse
Affiliation(s)
- Rachel J Hopman
- Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, 805 Columbus Ave, 670 ISEC, Boston, MA, 02115, USA.
| | - Sara B LoTemplio
- Department of Psychology, University of Utah, 380 S. 1530 E. RM 502, Salt Lake City, UT, 84112, USA
| | - Emily E Scott
- Department of Psychology, University of Utah, 380 S. 1530 E. RM 502, Salt Lake City, UT, 84112, USA
| | - Ty L McKinney
- Department of Psychology, University of Utah, 380 S. 1530 E. RM 502, Salt Lake City, UT, 84112, USA
| | - David L Strayer
- Department of Psychology, University of Utah, 380 S. 1530 E. RM 502, Salt Lake City, UT, 84112, USA
| |
Collapse
|
24
|
Hori Y, Schaeffer DJ, Gilbert KM, Hayrynen LK, Cléry JC, Gati JS, Menon RS, Everling S. Altered Resting-State Functional Connectivity Between Awake and Isoflurane Anesthetized Marmosets. Cereb Cortex 2020; 30:5943-5959. [PMID: 32556184 PMCID: PMC7899065 DOI: 10.1093/cercor/bhaa168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a New World primate that is becoming increasingly popular as a preclinical model. To assess functional connectivity (FC) across the marmoset brain, resting-state functional MRI (RS-fMRI) is often performed under isoflurane anesthesia to avoid the effects of motion, physiological stress, and training requirements. In marmosets, however, it remains unclear how isoflurane anesthesia affects patterns of FC. Here, we investigated the effects of isoflurane on FC when delivered with either medical air or 100% pure oxygen, two canonical methods of inhalant isoflurane anesthesia delivery. The results demonstrated that when delivered with either medical air or 100% oxygen, isoflurane globally decreased FC across resting-state networks that were identified in awake marmosets. Generally, although isoflurane globally decreased FC in resting-state networks, the spatial structure of the networks was preserved. Outside of the context of RS networks, we indexed pair-wise functional connectivity between regions across the brain and found that isoflurane substantially altered interhemispheric and thalamic FC. Taken together, these findings indicate that RS-fMRI under isoflurane anesthesia is useful to evaluate the global structure of functional networks, but may obfuscate important nodes of some network components when compared to data acquired in fully awake marmosets.
Collapse
Affiliation(s)
- Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lauren K Hayrynen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
25
|
Weng Y, Liu X, Hu H, Huang H, Zheng S, Chen Q, Song J, Cao B, Wang J, Wang S, Huang R. Open eyes and closed eyes elicit different temporal properties of brain functional networks. Neuroimage 2020; 222:117230. [PMID: 32771616 DOI: 10.1016/j.neuroimage.2020.117230] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
The eyes are our windows to the brain. There are differences in brain activity between people who have their eyes closed (EC) and eyes open (EO). Previous studies focused on differences in brain functional properties between these eyes conditions based on an assumption that brain activity is a static phenomenon. However, the dynamic nature of the brain activity in different eyes conditions is still unclear. In this study, we collected resting-state fMRI data from 21 healthy subjects in the EC and EO conditions. Using a sliding time window approach and a k-means clustering algorithm, we calculated the temporal properties of dynamic functional connectivity (dFC) states in the eyes conditions. We also used graph theory to estimate the dynamic topological properties of functional networks in the two conditions. We detected two dFC states, a hyper-connected State 1 and a hypo-connected State 2. We showed the following results: (i) subjects in the EC condition stayed longer in the hyper-connected State 1 than those in the EO; (ii) subjects in the EO condition stayed longer in the hypo-connected State 2 than those in the EC; and (iii) the dFC state transformed into the other state more frequently during EC than during EO. We also found the variance of the characteristic path length was higher during EC than during EO in the hyper-connected State 1. These results indicate that brain activity may be more active and unstable during EC than during EO. Our findings may provide insights into the dynamic nature of the resting-state brain and could be a useful reference for future rs-fMRI studies.
Collapse
Affiliation(s)
- Yihe Weng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Xiaojin Liu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Huiqing Hu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Huiyuan Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Senning Zheng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Qinyuan Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Jie Song
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Bolin Cao
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Junjing Wang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Shuai Wang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Ruiwang Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
26
|
Morgan VL, Rogers BP, González HFJ, Goodale SE, Englot DJ. Characterization of postsurgical functional connectivity changes in temporal lobe epilepsy. J Neurosurg 2020; 133:392-402. [PMID: 31200384 PMCID: PMC6911037 DOI: 10.3171/2019.3.jns19350] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/24/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Seizure outcome after mesial temporal lobe epilepsy (mTLE) surgery is complex and diverse, even across patients with homogeneous presurgical clinical profiles. The authors hypothesized that this is due in part to variations in network connectivity across the brain before and after surgery. Although presurgical network connectivity has been previously characterized in these patients, the objective of this study was to characterize presurgical to postsurgical functional network connectivity changes across the brain after mTLE surgery. METHODS Twenty patients with drug-refractory unilateral mTLE (5 left side, 10 female, age 39.3 ± 13.5 years) who underwent either selective amygdalohippocampectomy (n = 13) or temporal lobectomy (n = 7) were included in the study. Presurgical and postsurgical (36.6 ± 14.3 months after surgery) functional connectivity (FC) was measured with 3-T MRI and compared with findings in age-matched healthy controls (n = 44, 21 female, age 39.3 ± 14.3 years). Postsurgical connectivity changes were then related to seizure outcome, type of surgery, and presurgical disease parameters. RESULTS The results demonstrated significant decreases of FC from control group values across the brain after surgery that were not present before surgery, including many contralateral hippocampal connections distal to the surgical site. Postsurgical impairment of contralateral precuneus to ipsilateral occipital connectivity was associated with seizure recurrence. Presurgical impairment of the contralateral precuneus to contralateral temporal lobe connectivity was associated with those who underwent selective amygdalohippocampectomy compared to those who had temporal lobectomy. Finally, changes in thalamic connectivity after surgery were linearly related to duration of epilepsy and frequency of consciousness-impairing seizures prior to surgery. CONCLUSIONS The widespread contralateral hippocampal FC changes after surgery may be a reflection of an ongoing epileptogenic progression that has been altered by the surgery, rather than a direct result of the surgery itself. This network evolution may contribute to long-term seizure outcome. Therefore, the combination of presurgical network mapping with the understanding of the dynamic effects of surgery on the networks may ultimately be used to create predictors of the likelihood of long-term seizure recurrence in individual patients after mTLE surgery.
Collapse
Affiliation(s)
- Victoria L. Morgan
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | | | | | - Dario J. Englot
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
27
|
Li MG, He JF, Liu XY, Wang ZF, Lou X, Ma L. Structural and Functional Thalamic Changes in Parkinson's Disease With Mild Cognitive Impairment. J Magn Reson Imaging 2020; 52:1207-1215. [PMID: 32557988 DOI: 10.1002/jmri.27195] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The thalamus is a key node of deep gray matter and previous studies have demonstrated that it is involved in the modulation of cognition. PURPOSE To investigate the volume changes of the thalamus and its subregions and altered thalamus functional connectivity patterns in Parkinson's disease (PD) patients with and without mild cognitive impairment (MCI). STUDY TYPE Prospective. POPULATION Thirty-three patients with MCI (PD-MCI), 36 PD patients having no cognitive impairment (PD-NCI), 21 healthy controls (HCs). SEQUENCE 3.0T MRI scanner; 3D T1 -weighted fast spoiled gradient recalled echo (3D T1 -FSPGR); resting-state fMRI ASSESSMENT: Voxel-based morphometry (VBM) was performed to calculate the volume of the thalamus and its subregions. The left and right total thalamus were considered seeds and seed-based functional connectivity (FC) was analyzed. Additionally, correlations between volumes and cognitive performance and between FC values and cognitive performance were examined separately. STATISTICAL TEST Analysis of covariance (ANCOVA); two-sample t-tests; partial correlation analysis. RESULTS The volumes of the total thalamus (PD-MCI vs. PD-NCI vs. HCs: 18.39 ± 1.67 vs. 19.63 ± 1.79 vs. 19.47 ± 1.35) and its subregions were significantly reduced in PD-MCI as compared to PD-NCI (total thalamus: P = 0.002) and HCs (total thalamus: P = 0.012). Compared with PD-NCI, PD-MCI showed increased FC between the thalamus and bilateral middle cingulate cortex and left posterior cingulate cortex, and decreased FC between thalamus and the left superior occipital gyrus, left cuneus, left precuneus, and left middle occipital gyrus. Volumes of thalamus and the subregions, as well as the FC of thalamus with the identified regions, were significantly correlated (P < 0.05, FDR-corrected) with neuropsychological scores in PD patients. DATA CONCLUSION We noted volume loss and altered FC of thalamus in PD-MCI patients, and these changes were correlated with global cognitive performance. LEVEL OF EVIDENCE 2 TECHNICAL EFFICIENCY: Stage 2 J. Magn. Reson. Imaging 2020;52:1207-1215.
Collapse
Affiliation(s)
- Ming-Ge Li
- School of Medicine, Nankai University, Tianjin, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jian-Feng He
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xin-Yun Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Zhen-Fu Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- School of Medicine, Nankai University, Tianjin, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Opening or closing eyes at rest modulates the functional connectivity of V1 with default and salience networks. Sci Rep 2020; 10:9137. [PMID: 32499585 PMCID: PMC7272628 DOI: 10.1038/s41598-020-66100-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
Current evidence suggests that volitional opening or closing of the eyes modulates brain activity and connectivity. However, how the eye state influences the functional connectivity of the primary visual cortex has been poorly investigated. Using the same scanner, fMRI data from two groups of participants similar in age, sex and educational level were acquired. One group (n = 105) performed a resting state with eyes closed, and the other group (n = 63) performed a resting state with eyes open. Seed-based voxel-wise functional connectivity whole-brain analyses were performed to study differences in the connectivity of the primary visual cortex. This region showed higher connectivity with the default mode and sensorimotor networks in the eyes closed group, but higher connectivity with the salience network in the eyes open group. All these findings were replicated using an open source shared dataset. These results suggest that opening or closing the eyes may set brain functional connectivity in an interoceptive or exteroceptive state.
Collapse
|
29
|
Manan HA, Franz EA, Yahya N. Functional connectivity changes in patients with brain tumours—A systematic review on resting state-fMRI. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.npbr.2020.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Liu TT, Falahpour M. Vigilance Effects in Resting-State fMRI. Front Neurosci 2020; 14:321. [PMID: 32390792 PMCID: PMC7190789 DOI: 10.3389/fnins.2020.00321] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/18/2020] [Indexed: 12/02/2022] Open
Abstract
Measures of resting-state functional magnetic resonance imaging (rsfMRI) activity have been shown to be sensitive to cognitive function and disease state. However, there is growing evidence that variations in vigilance can lead to pronounced and spatially widespread differences in resting-state brain activity. Unless properly accounted for, differences in vigilance can give rise to changes in resting-state activity that can be misinterpreted as primary cognitive or disease-related effects. In this paper, we examine in detail the link between vigilance and rsfMRI measures, such as signal variance and functional connectivity. We consider how state changes due to factors such as caffeine and sleep deprivation affect both vigilance and rsfMRI measures and review emerging approaches and methodological challenges for the estimation and interpretation of vigilance effects.
Collapse
Affiliation(s)
- Thomas T. Liu
- Center for Functional MRI, University of California, San Diego, La Jolla, CA, United States
- Departments of Radiology, Psychiatry, and Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Maryam Falahpour
- Center for Functional MRI, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
31
|
Pais-Roldán P, Takahashi K, Sobczak F, Chen Y, Zhao X, Zeng H, Jiang Y, Yu X. Indexing brain state-dependent pupil dynamics with simultaneous fMRI and optical fiber calcium recording. Proc Natl Acad Sci U S A 2020; 117:6875-6882. [PMID: 32139609 PMCID: PMC7104268 DOI: 10.1073/pnas.1909937117] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pupillometry, a noninvasive measure of arousal, complements human functional MRI (fMRI) to detect periods of variable cognitive processing and identify networks that relate to particular attentional states. Even under anesthesia, pupil dynamics correlate with brain-state fluctuations, and extended dilations mark the transition to more arousable states. However, cross-scale neuronal activation patterns are seldom linked to brain state-dependent pupil dynamics. Here, we complemented resting-state fMRI in rats with cortical calcium recording (GCaMP-mediated) and pupillometry to tackle the linkage between brain-state changes and neural dynamics across different scales. This multimodal platform allowed us to identify a global brain network that covaried with pupil size, which served to generate an index indicative of the brain-state fluctuation during anesthesia. Besides, a specific correlation pattern was detected in the brainstem, at a location consistent with noradrenergic cell group 5 (A5), which appeared to be dependent on the coupling between different frequencies of cortical activity, possibly further indicating particular brain-state dynamics. The multimodal fMRI combining concurrent calcium recordings and pupillometry enables tracking brain state-dependent pupil dynamics and identifying unique cross-scale neuronal dynamic patterns under anesthesia.
Collapse
Affiliation(s)
- Patricia Pais-Roldán
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074 Tuebingen, Germany
- Medical Imaging Physics, Institute of Neuroscience and Medicine, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Kengo Takahashi
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074 Tuebingen, Germany
| | - Filip Sobczak
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074 Tuebingen, Germany
| | - Yi Chen
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074 Tuebingen, Germany
| | - Xiaoning Zhao
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
| | - Hang Zeng
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074 Tuebingen, Germany
| | - Yuanyuan Jiang
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany;
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
32
|
Zhang Y, Zhu C. Assessing Brain Networks by Resting-State Dynamic Functional Connectivity: An fNIRS-EEG Study. Front Neurosci 2020; 13:1430. [PMID: 32038138 PMCID: PMC6993585 DOI: 10.3389/fnins.2019.01430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
The coordination of brain activity between disparate neural populations is highly dynamic. Investigations into intrinsic brain organization by evaluating dynamic resting-state functional connectivity (dRSFC) have attracted great attention in recent years. However, there are few dRSFC studies based on functional near-infrared spectroscopy (fNIRS) even though it has some advantages for studying the temporal evolution of brain function. In this research, we recruited 20 young adults and measured their resting-state brain fluctuations in several areas of the frontal, parietal, temporal, and occipital lobes using fNIRS-electroencephalography (EEG) simultaneous recording. Based on a sliding-window approach, we found that the variability of the dRSFC within any region of interest was significantly lower than the connections between region of interests but noticeably greater than the correlation between the channels with a short interoptode distance, which mainly consist of physiological fluctuations occurring in the superficial layers. Furthermore, based on a time-resolved k-means clustering analysis, the temporal evolution was extracted for three dominant functional networks. These networks were roughly consistent between different subject subgroups and in varying sliding time window lengths of 20, 30, and 60 s. Between these three functional networks, there were obvious time-varied and system-specific synchronous relationships. In addition, the oscillation of the frontal-parietal-temporal network showed significant correlation with the switching of one EEG microstate, a finding which is consistent with a previous functional MRI-EEG study. All this evidence implies the functional significance of fNIRS-dRSFC and demonstrates the feasibility of fNIRS for extracting the dominant functional networks based on RSFC dynamics.
Collapse
Affiliation(s)
- Yujin Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
33
|
Karunakaran KD, Yuan R, He J, Zhao J, Cui JL, Zang YF, Zhang Z, Alvarez TL, Biswal BB. Resting-State Functional Connectivity of the Thalamus in Complete Spinal Cord Injury. Neurorehabil Neural Repair 2020; 34:122-133. [PMID: 31904298 DOI: 10.1177/1545968319893299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background. Neuroimaging studies of spinal cord injury (SCI) have mostly examined the functional organization of the cortex, with only limited focus on the subcortical substrates of the injury. However, thalamus is an important modulator and sensory relay that requires investigation at a subnuclei level to gain insight into the neuroplasticity following SCI. Objective. To use resting-state functional magnetic resonance imaging to examine the functional connectivity (FC) of thalamic subnuclei in complete SCI patients. Methods. A seed-based connectivity analysis was applied for 3 thalamic subnuclei: pulvinar, mediodorsal, and ventrolateral nucleus in each hemisphere. A nonparametric 2-sample t test with permutations was applied for each of the 6 thalamic seeds to compute FC differences between 22 healthy controls and 19 complete SCI patients with paraplegia. Results. Connectivity analysis showed a decrease in the FC of the bilateral mediodorsal nucleus with right superior temporal gyrus and anterior cingulate cortex in the SCI group. Similarly, the left ventrolateral nucleus exhibited decreased FC with left superior temporal gyrus in SCI group. In contrast, left pulvinar nucleus demonstrated an increase in FC with left inferior frontal gyrus and left inferior parietal lobule in SCI group. Our findings also indicate a negative relationship between postinjury durations and thalamic FC to regions of sensorimotor and visual cortices, where longer postinjury durations (~12 months) is associated with higher negative connectivity between these regions. Conclusion. This study provides evidence for reorganization in the thalamocortical connections known to be involved in multisensory integration and affective processing, with possible implications in the generation of sensory abnormalities after SCI.
Collapse
Affiliation(s)
| | - Rui Yuan
- Stanford School of Medicine, Stanford, CA, USA
| | - Jie He
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | - Jian Zhao
- Armed Police Force Hospital of Sichuan, Leshan, Sichuan, China
| | - Jian-Ling Cui
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | - Yu-Feng Zang
- Hangzhou Normal University Affiliated Hospital, Hangzhou, Zheijang, China
| | - Zhong Zhang
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | | | | |
Collapse
|
34
|
Englot DJ, Morgan VL, Chang C. Impaired vigilance networks in temporal lobe epilepsy: Mechanisms and clinical implications. Epilepsia 2020; 61:189-202. [PMID: 31901182 DOI: 10.1111/epi.16423] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
Mesial temporal lobe epilepsy (mTLE) is a neurological disorder in which patients suffer from frequent consciousness-impairing seizures, broad neurocognitive deficits, and diminished quality of life. Although seizures in mTLE originate focally in the hippocampus or amygdala, mTLE patients demonstrate cognitive deficits that extend beyond temporal lobe function-such as decline in executive function, cognitive processing speed, and attention-as well as diffuse decreases in neocortical metabolism and functional connectivity. Given prior observations that mTLE patients exhibit impairments in vigilance, and that seizures may disrupt the activity and long-range connectivity of subcortical brain structures involved in vigilance regulation, we propose that subcortical activating networks underlying vigilance play a critical role in mediating the widespread neural and cognitive effects of focal mTLE. Here, we review evidence for impaired vigilance in mTLE, examine clinical implications and potential network underpinnings, and suggest neuroimaging strategies for determining the relationship between vigilance, brain connectivity, and neurocognition in patients and healthy controls.
Collapse
Affiliation(s)
- Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Victoria L Morgan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Catie Chang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
35
|
Webster K, Ro T. Visual Modulation of Resting State α Oscillations. eNeuro 2020; 7:ENEURO.0268-19.2019. [PMID: 31836596 PMCID: PMC6944479 DOI: 10.1523/eneuro.0268-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022] Open
Abstract
Once thought to simply reflect passive cortical idling, recent studies have demonstrated that α oscillations play a causal role in cognition and perception. However, whether and how cognitive or sensory processes modulate various components of the α rhythm is poorly understood. Sensory input and resting states were manipulated in human subjects while electroencephalography (EEG) activity was recorded in three conditions: eyes-open fixating on a visual stimulus, eyes-open without visual input (darkness), and eyes-closed without visual input (darkness). We show that α power and peak frequency increase when visual input is reduced compared to the eyes open, fixating condition. These results suggest that increases in α power reflect a shift from an exteroceptive to interoceptive state and that increases in peak frequency following restricted visual input (darkness) may reflect increased sampling of the external environment in order to detect stimuli. They further demonstrate how sensory information modulates α and the importance of selecting an appropriate resting condition in studies of α.
Collapse
Affiliation(s)
| | - Tony Ro
- Program in Psychology
- Program in Biology
- Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, New York, NY 10016
| |
Collapse
|
36
|
Noble S, Scheinost D, Constable RT. A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis. Neuroimage 2019; 203:116157. [PMID: 31494250 PMCID: PMC6907736 DOI: 10.1016/j.neuroimage.2019.116157] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Once considered mere noise, fMRI-based functional connectivity has become a major neuroscience tool in part due to early studies demonstrating its reliability. These fundamental studies revealed only the tip of the iceberg; over the past decade, many test-retest reliability studies have continued to add nuance to our understanding of this complex topic. A summary of these diverse and at times contradictory perspectives is needed. OBJECTIVES We aimed to summarize the existing knowledge regarding test-retest reliability of functional connectivity at the most basic unit of analysis: the individual edge level. This entailed (1) a meta-analytic estimate of reliability and (2) a review of factors influencing reliability. METHODS A search of Scopus was conducted to identify studies that estimated edge-level test-retest reliability. To facilitate comparisons across studies, eligibility was restricted to studies measuring reliability via the intraclass correlation coefficient (ICC). The meta-analysis included a random effects pooled estimate of mean edge-level ICC, with studies nested within datasets. The review included a narrative summary of factors influencing edge-level ICC. RESULTS From an initial pool of 212 studies, 44 studies were identified for the qualitative review and 25 studies for quantitative meta-analysis. On average, individual edges exhibited a "poor" ICC of 0.29 (95% CI = 0.23 to 0.36). The most reliable measurements tended to involve: (1) stronger, within-network, cortical edges, (2) eyes open, awake, and active recordings, (3) more within-subject data, (4) shorter test-retest intervals, (5) no artifact correction (likely due in part to reliable artifact), and (6) full correlation-based connectivity with shrinkage. CONCLUSION This study represents the first meta-analysis and systematic review investigating test-retest reliability of edge-level functional connectivity. Key findings suggest there is room for improvement, but care should be taken to avoid promoting reliability at the expense of validity. By pooling existing knowledge regarding this key facet of accuracy, this study supports broader efforts to improve inferences in the field.
Collapse
Affiliation(s)
- Stephanie Noble
- Interdepartmental Neuroscience Program, Yale University, USA.
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA; Department of Statistics and Data Science, Yale University, USA; Child Study Center, Yale School of Medicine, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale University, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA; Department of Neurosurgery, Yale School of Medicine, USA
| |
Collapse
|
37
|
Jiang R, Zuo N, Ford JM, Qi S, Zhi D, Zhuo C, Xu Y, Fu Z, Bustillo J, Turner JA, Calhoun VD, Sui J. Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships. Neuroimage 2019; 207:116370. [PMID: 31751666 PMCID: PMC7345498 DOI: 10.1016/j.neuroimage.2019.116370] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023] Open
Abstract
Although both resting and task-induced functional connectivity (FC) have been used to characterize the human brain and cognitive abilities, the potential of task-induced FCs in individualized prediction for out-of-scanner cognitive traits remains largely unexplored. A recent study Greene et al. (2018) predicted the fluid intelligence scores using FCs derived from rest and multiple task conditions, suggesting that task-induced brain state manipulation improved prediction of individual traits. Here, using a large dataset incorporating fMRI data from rest and 7 distinct task conditions, we replicated the original study by employing a different machine learning approach, and applying the method to predict two reading comprehension-related cognitive measures. Consistent with their findings, we found that task-based machine learning models often outperformed rest-based models. We also observed that combining multi-task fMRI improved prediction performance, yet, integrating the more fMRI conditions can not necessarily ensure better predictions. Compared with rest, the predictive FCs derived from language and working memory tasks were highlighted with more predictive power in predominantly default mode and frontoparietal networks. Moreover, prediction models demonstrated high stability to be generalizable across distinct cognitive states. Together, this replication study highlights the benefit of using task-based FCs to reveal brain-behavior relationships, which may confer more predictive power and promote the detection of individual differences of connectivity patterns underlying relevant cognitive traits, providing strong evidence for the validity and robustness of the original findings.
Collapse
Affiliation(s)
- Rongtao Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Judith M Ford
- Department of Psychiatry, University of California, San Francisco, CA, 94143, USA; San Francisco VA Medical Center, San Francisco, CA, 94143, USA
| | - Shile Qi
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA, 30303
| | - Dongmei Zhi
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Anding Hospital, Tianjin Mental Health Center, Tianjin, 300222, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA, 30303
| | - Juan Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jessica A Turner
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA, 30303; Department of Psychology and Neuroscience, Georgia State University, Atlanta, GA, 30302, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA, 30303.
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA, 30303; Chinese Academy of Sciences Center for Excellence in Brain Science, Institute of Automation, Beijing, China.
| |
Collapse
|
38
|
Guo X, Duan X, Chen H, He C, Xiao J, Han S, Fan YS, Guo J, Chen H. Altered inter- and intrahemispheric functional connectivity dynamics in autistic children. Hum Brain Mapp 2019; 41:419-428. [PMID: 31600014 PMCID: PMC7268059 DOI: 10.1002/hbm.24812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence has associated autism spectrum disorder (ASD) with static functional connectivity abnormalities between multiple brain regions. However, the temporal dynamics of intra‐ and interhemispheric functional connectivity patterns remain unknown in ASD. Resting‐state functional magnetic resonance imaging data were analyzed for 105 ASD and 102 demographically matched typically developing control (TC) children (age range: 7–12 years) available from the Autism Brain Imaging Data Exchange database. Whole‐brain functional connectivity was decomposed into ipsilateral and contralateral functional connectivity, and sliding‐window analysis was utilized to capture the intra‐ and interhemispheric dynamic functional connectivity density (dFCD) patterns. The temporal variability of the functional connectivity dynamics was further quantified using the standard deviation (SD) of intra‐ and interhemispheric dFCD across time. Finally, a support vector regression model was constructed to assess the relationship between abnormal dFCD variance and autism symptom severity. Both intra‐ and interhemispheric comparisons showed increased dFCD variability in the anterior cingulate cortex/medial prefrontal cortex and decreased variability in the fusiform gyrus/inferior temporal gyrus in autistic children compared with TC children. Autistic children additionally showed lower intrahemispheric dFCD variability in sensorimotor regions including the precentral/postcentral gyrus. Moreover, aberrant temporal variability of the contralateral dFCD predicted the severity of social communication impairments in autistic children. These findings demonstrate altered temporal dynamics of the intra‐ and interhemispheric functional connectivity in brain regions incorporating social brain network of ASD, and highlight the potential role of abnormal interhemispheric communication dynamics in neural substrates underlying impaired social processing in ASD.
Collapse
Affiliation(s)
- Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China.,School of Medicine, Guizhou University, Guiyang, China
| | - Changchun He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoqiang Han
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
39
|
González HFJ, Chakravorti S, Goodale SE, Gupta K, Claassen DO, Dawant B, Morgan VL, Englot DJ. Thalamic arousal network disturbances in temporal lobe epilepsy and improvement after surgery. J Neurol Neurosurg Psychiatry 2019; 90:1109-1116. [PMID: 31123139 PMCID: PMC6744309 DOI: 10.1136/jnnp-2019-320748] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The effects of temporal lobe epilepsy (TLE) on subcortical arousal structures remain incompletely understood. Here, we evaluate thalamic arousal network functional connectivity in TLE and examine changes after epilepsy surgery. METHODS We examined 26 adult patients with TLE and 26 matched control participants and used resting-state functional MRI (fMRI) to measure functional connectivity between the thalamus (entire thalamus and 19 bilateral thalamic nuclei) and both neocortex and brainstem ascending reticular activating system (ARAS) nuclei. Postoperative imaging was completed for 19 patients >1 year after surgery and compared with preoperative baseline. RESULTS Before surgery, patients with TLE demonstrated abnormal thalamo-occipital functional connectivity, losing the normal negative fMRI correlation between the intralaminar central lateral (CL) nucleus and medial occipital lobe seen in controls (p < 0.001, paired t-test). Patients also had abnormal connectivity between ARAS and CL, lower ipsilateral intrathalamic connectivity, and smaller ipsilateral thalamic volume compared with controls (p < 0.05 for each, paired t-tests). Abnormal brainstem-thalamic connectivity was associated with impaired visuospatial attention (ρ = -0.50, p = 0.02, Spearman's rho) while lower intrathalamic connectivity and volume were related to higher frequency of consciousness-sparing seizures (p < 0.02, Spearman's rho). After epilepsy surgery, patients with improved seizures showed partial recovery of thalamo-occipital and brainstem-thalamic connectivity, with values more closely resembling controls (p < 0.01 for each, analysis of variance). CONCLUSIONS Overall, patients with TLE demonstrate impaired connectivity in thalamic arousal networks that may be involved in visuospatial attention, but these disturbances may partially recover after successful epilepsy surgery. Thalamic arousal network dysfunction may contribute to morbidity in TLE.
Collapse
Affiliation(s)
- Hernán F J González
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA .,Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Srijata Chakravorti
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Sarah E Goodale
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kanupriya Gupta
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benoit Dawant
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Changes in Resting-State Functional Connectivity Related to Freezing of Gait in Parkinson's Disease. Neuroscience 2019; 418:311-317. [PMID: 31479699 DOI: 10.1016/j.neuroscience.2019.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/18/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022]
Abstract
Freezing of gait (FOG) is a common motor symptom in Parkinson's disease (PD) thought to arise from the dysfunctional cortico-basal ganglia-thalamic circuity. The purpose of this study was to assess the changes in brain resting-state functional connectivity (rs-FC) of subcortical structures comprising the cortico-basal ganglia-thalamic circuity in individuals with PD with and without FOG. Resting-state functional magnetic resonance imaging was acquired in 27 individuals with idiopathic PD (14 with FOG and 13 without FOG). A seed-to-voxel analysis was performed with the seeds in the bilateral basal ganglia nuclei, thalamus, and pedunculopontine nucleus. Between-group differences in rs-FC revealed that the bilateral thalamus and globus pallidus external were significantly more connected with visual areas in PD with FOG compared to PD without FOG. In addition, PD with FOG had increased connectivity between the left putamen and retrosplenial cortex as well as with the cerebellum. Our findings suggest an increased connectivity at rest of subcortical and cortical regions involved in sensory and visuospatial processing that may be compensating for sensorimotor deficits in FOG. This increased connectivity may contribute to the hypothesized overload in the cortico-basal ganglia-thalamic circuity processing capacity, which may ultimately result in FOG occurrence.
Collapse
|
41
|
Qian S, Wang X, Qu X, Zhang P, Li Q, Wang R, Liu DQ. Links Between the Amplitude Modulation of Low-Frequency Spontaneous Fluctuation Across Resting State Conditions and Thalamic Functional Connectivity. Front Hum Neurosci 2019; 13:199. [PMID: 31263405 PMCID: PMC6584839 DOI: 10.3389/fnhum.2019.00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
A comparison of the different types of resting state reveals some interesting characteristics of spontaneous brain activity that cannot be found in a single condition. Differences in the amplitude of low-frequency fluctuation (ALFF) between the eyes open (EO) and the eyes closed (EC) almost have a spatially distinct pattern with traditional EO-EC activation within sensory systems, suggesting the divergent functional roles of ALFF and activation. However, the underlying mechanism is far from clear. Since the thalamus plays an essential role in sensory processing, one critical step toward understanding the divergences is to depict the relationships between the thalamus and the ALFF modulation in sensory regions. In this preliminary study, we examined the association between the changes of ALFF and the changes of thalamic functional connectivity (FC) between EO and EC. We focused on two visual thalamic nuclei, the lateral geniculate nucleus (LGN) and the pulvinar (Pu). FC results showed that LGN had stronger synchronization with regions in lateral but not in medial visual networks, while Pu had a weaker synchronization with auditory and sensorimotor areas during EO compared with EC. Moreover, the patterns of FC modulation exhibited considerable overlaps with the ALFF modulation, and there were significant correlations between them across subjects. Our findings support the crucial role of the thalamus in amplitude modulation of low-frequency spontaneous activity in sensory systems, and may pave the way to elucidate the mechanisms governing distinction between evoked activation and modulation of low-frequency spontaneous brain activity.
Collapse
Affiliation(s)
- Shufang Qian
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Xinbo Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Xiujuan Qu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Peiwen Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Qiuyue Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Ruidi Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| |
Collapse
|
42
|
Anderson AN, King JB, Anderson JS. Neuroimaging in Psychiatry and Neurodevelopment: why the emperor has no clothes. Br J Radiol 2019; 92:20180910. [PMID: 30864835 DOI: 10.1259/bjr.20180910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuroimaging has been a dominant force in guiding research into psychiatric and neurodevelopmental disorders for decades, yet researchers have been unable to formulate sensitive or specific imaging tests for these conditions. The search for neuroimaging biomarkers has been constrained by limited reproducibility of imaging techniques, limited tools for evaluating neurochemistry, heterogeneity of patient populations not defined by brain-based phenotypes, limited exploration of temporal components of brain function, and relatively few studies evaluating developmental and longitudinal trajectories of brain function. Opportunities for development of clinically impactful imaging metrics include longer duration functional imaging data sets, new engineering approaches to mitigate suboptimal spatiotemporal resolution, improvements in image post-processing and analysis strategies, big data approaches combined with data sharing of multisite imaging samples, and new techniques that allow dynamical exploration of brain function across multiple timescales. Despite narrow clinical impact of neuroimaging methods, there is reason for optimism that imaging will contribute to diagnosis, prognosis, and treatment monitoring for psychiatric and neurodevelopmental disorders in the near future.
Collapse
Affiliation(s)
| | - Jace B King
- 2Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| | - Jeffrey S Anderson
- 2Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| |
Collapse
|
43
|
Abnormal intrinsic functional network hubs and connectivity following peripheral visual loss because of inherited retinal degeneration. Neuroreport 2019; 30:295-304. [DOI: 10.1097/wnr.0000000000001200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Zhang D, Gao Z, Liang B, Li J, Cai Y, Wang Z, Gao M, Jiao B, Huang R, Liu M. Eyes Closed Elevates Brain Intrinsic Activity of Sensory Dominance Networks: A Classifier Discrimination Analysis. Brain Connect 2019; 9:221-230. [DOI: 10.1089/brain.2018.0644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Delong Zhang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Zhenni Gao
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Bishan Liang
- Guangdong Polytechnic Normal University, Guangzhou, China
| | - Junchao Li
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Yuxuan Cai
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Zengjian Wang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Mengxia Gao
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Bingqing Jiao
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Ming Liu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
45
|
Krueger J, Disney AA. Structure and function of dual-source cholinergic modulation in early vision. J Comp Neurol 2018; 527:738-750. [PMID: 30520037 DOI: 10.1002/cne.24590] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Behavioral states such as arousal and attention have profound effects on sensory processing, determining how-even whether-a stimulus is perceived. This state-dependence is believed to arise, at least in part, in response to inputs from subcortical structures that release neuromodulators such as acetylcholine, often nonsynaptically. The mechanisms that underlie the interaction between these nonsynaptic signals and the more point-to-point synaptic cortical circuitry are not well understood. This review highlights the state of the field, with a focus on cholinergic action in early visual processing. Key anatomical and physiological features of both the cholinergic and the visual systems are discussed. Furthermore, presenting evidence of cholinergic modulation in visual thalamus and primary visual cortex, we explore potential functional roles of acetylcholine and its effects on the processing of visual input over the sleep-wake cycle, sensory gain control during wakefulness, and consider evidence for cholinergic support of visual attention.
Collapse
Affiliation(s)
- Juliane Krueger
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Anita A Disney
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
46
|
Wei J, Chen T, Li C, Liu G, Qiu J, Wei D. Eyes-Open and Eyes-Closed Resting States With Opposite Brain Activity in Sensorimotor and Occipital Regions: Multidimensional Evidences From Machine Learning Perspective. Front Hum Neurosci 2018; 12:422. [PMID: 30405376 PMCID: PMC6200849 DOI: 10.3389/fnhum.2018.00422] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/28/2018] [Indexed: 01/30/2023] Open
Abstract
Studies have demonstrated that there are widespread significant differences in spontaneous brain activity between eyes-open (EO) and eyes-closed (EC) resting states. However, it remains largely unclear whether spontaneous brain activity is effectively related to EO and EC resting states. The amplitude, local functional concordance, inter-hemisphere functional synchronization, and network centrality of spontaneous brain activity were measured by the fraction amplitude of low frequency fluctuation (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC) and degree centrality (DC), respectively. Using the public Eyes-open/Eyes-closed dataset, we employed the support vector machine (SVM) and bootstrap technique to establish linking models for the fALFF, ReHo, VMHC and DC dimensions. The classification accuracies of linking models are 0.72 (0.59, 0.82), 0.88 (0.79, 0.97), 0.82 (0.74, 0.91) and 0.70 (0.62, 0.79), respectively. Specifically, we observed that brain activity in the EO condition is significantly greater in attentional system areas, including the fusiform gyrus, occipital and parietal cortex, but significantly lower in sensorimotor system areas, including the precentral/postcentral gyrus, paracentral lobule (PCL) and temporal cortex compared to the EC condition from the four dimensions. The results consistently indicated that spontaneous brain activity is effectively related to EO and EC resting states, and the two resting states are of opposite brain activity in sensorimotor and occipital regions. It may provide new insight into the neural substrate of the resting state and help computational neuroscientists or neuropsychologists to choose an appropriate resting state condition to investigate various mental disorders from the resting state functional magnetic resonance imaging (fMRI) technique.
Collapse
Affiliation(s)
- Jie Wei
- School of Electronic and Information Engineering, Southwest University, Chongqing, China.,School of Mathematics and Statistics, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Nonlinear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Tong Chen
- School of Electronic and Information Engineering, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Nonlinear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China.,Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Chuandong Li
- School of Electronic and Information Engineering, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Nonlinear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Guangyuan Liu
- School of Electronic and Information Engineering, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Nonlinear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Jiang Qiu
- Department of Psychology, Southwest University, Chongqing, China
| | - Dongtao Wei
- Department of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
47
|
Yamamoto M, Kushima I, Suzuki R, Branko A, Kawano N, Inada T, Iidaka T, Ozaki N. Aberrant functional connectivity between the thalamus and visual cortex is related to attentional impairment in schizophrenia. Psychiatry Res Neuroimaging 2018; 278:35-41. [PMID: 29981940 DOI: 10.1016/j.pscychresns.2018.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022]
Abstract
Resting-state (rs) functional magnetic resonance imaging (fMRI) studies have revealed dysfunctional thalamocortical functional connectivity (FC) in schizophrenia. However, the relationship between thalamocortical FC and cognitive impairment has not been thoroughly investigated. We hypothesized that aberrant thalamocortical FC is related to attention deficits in schizophrenia. Thirty-eight patients with schizophrenia and 38 matched healthy controls underwent rs-fMRI and task fMRI while performing a Flanker task. We observed decreased left thalamic activation in patients with schizophrenia using task fMRI to determine the thalamic seed. A seed-based analysis using this seed was performed in the whole brain to assess differences in thalamocortical FC between the groups. Significantly worse performance was observed in the patient group. The rs-fMRI analysis revealed significantly increased FC between the left thalamus seed and the occipital cortices/postcentral gyri in patients when compared to controls. In the patient group, significant positive correlations were observed between the degree of FC from the left thalamus to the bilateral occipital gyri, which correspond to the visual cortex, and the Flanker effect. No significant correlation was detected in the control group. These results indicate that aberrant FC between the left thalamus and the visual cortex is related to attention deficits in schizophrenia.
Collapse
Affiliation(s)
- Maeri Yamamoto
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan; Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ryohei Suzuki
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Aleksic Branko
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Naoko Kawano
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan; Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Tetsuya Iidaka
- Department of Physical and Occupational Therapy, Nagoya University, Graduate School of Medicine, 1-1-20, Daiko-minami, Higashi, Nagoya, Aichi 461-8673, Japan.
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| |
Collapse
|
48
|
Nair S, Jao Keehn RJ, Berkebile MM, Maximo JO, Witkowska N, Müller RA. Local resting state functional connectivity in autism: site and cohort variability and the effect of eye status. Brain Imaging Behav 2018; 12:168-179. [PMID: 28197860 DOI: 10.1007/s11682-017-9678-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with prominent impairments in sociocommunicative abilities, which have been linked to anomalous brain network organization. Despite ample evidence of atypical long-distance connectivity, the literature on local connectivity remains small and divergent. We used resting-state functional MRI regional homogeneity (ReHo) as a local connectivity measure in comparative analyses across several well-matched low-motion subsamples from the Autism Brain Imaging Data Exchange and in-house data, with a grand total of 147 ASD and 184 typically developing (TD) participants, ages 7-18 years. We tested for group differences in each subsample, with additional focus on the difference between eyes-open and eyes-closed resting states. Despite selection of highest quality data and tight demographic and motion matching between groups and across samples, few effects in exactly identical loci (voxels) were found across samples. However, there was gross consistency across all eyes-open samples of local overconnectivity (ASD > TD) in posterior, visual regions. There was also gross consistency of local underconnectivity (ASD < TD) in cingulate gyrus, although exact loci varied between mid/posterior and anterior sections. While all eyes-open datasets showed the described gross similarities, the pattern of group differences for participants scanned with eyes closed was different, with local overconnectivity in ASD in posterior cingulate gyrus, but underconnectivity in some visual regions. Our findings suggest that fMRI local connectivity measures may be relatively susceptible to site and cohort variability and that some previous inconsistencies in the ASD ReHo literature may be reconciled by more careful consideration of eye status.
Collapse
Affiliation(s)
- Sangeeta Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - R Joanne Jao Keehn
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - Michael M Berkebile
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - José Omar Maximo
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA.,Department of Psychology, University of Alabama, Birmingham, AL, USA
| | - Natalia Witkowska
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
49
|
Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal. SENSORS 2018; 18:s18030697. [PMID: 29495415 PMCID: PMC5877194 DOI: 10.3390/s18030697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022]
Abstract
The recorded electroencephalography (EEG) signal is often contaminated with different kinds of artifacts and noise. Singular spectrum analysis (SSA) is a powerful tool for extracting the brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed component (RC) and the change rate in the trace of the Toeplitz matrix, it is demonstrated that the embedding dimension is related to the frequency bandwidth of each reconstructed component, in consistence with the component mixing in the singular value decomposition step. A method for selecting the embedding dimension is thereby proposed and verified by simulated EEG signal based on the Markov Process Amplitude (MPA) EEG Model. Real EEG signal is also collected from the experimental subjects under both eyes-open and eyes-closed conditions. The experimental results show that based on the embedding dimension selection method, the alpha rhythm can be extracted from the real EEG signal by the adaptive SSA, which can be effectively utilized to distinguish between the eyes-open and eyes-closed states.
Collapse
|
50
|
Rusiniak M, Wróbel A, Cieśla K, Pluta A, Lewandowska M, Wójcik J, Skarżyński PH, Wolak T. The relationship between alpha burst activity and the default mode network. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|